Injective Tauberian operators on L_1 and operators with dense range on ℓ_{∞} *

William B. Johnson[†], Amir Bahman Nasseri, Gideon Schechtman[‡], and Tomasz Tkocz[§]

Abstract

There exist injective Tauberian operators on $L_1(0,1)$ that have dense, non closed range. This gives injective, non surjective operators on ℓ_{∞} that have dense range. Consequently, there are two quasicomplementary, non complementary subspaces of ℓ_{∞} that are isometric to ℓ_{∞} .

1 Introduction

A (bounded, linear) operator T from a Banach space X into a Banach space Y is called Tauberian provided $T^{**-1}Y = X$. The structure of Tauberian operators when the domain is an L_1 space is well understood and exposed in Gonzáles and Martínez-Abejón's book [5, Chapter 4]. (For convenience they only consider $L_1(\mu)$ when μ is finite and purely nonatomic, but their proofs for the results we mention work for general L_1 spaces.) In particular, [5, Theorem 4.1.3] implies that when X is an L_1 space, an operator $T: X \to Y$ is Tauberian iff whenever (x_n) is a sequence of disjoint unit vectors, there is an

^{*}AMS subject classification: 46E30, 46B08, 47A53 Key words: L_1 , Tauberian operator, ℓ_{∞}

 $^{^\}dagger Supported$ in part by NSF DMS-1301604 and U.S.-Israel Binational Science Foundation

[‡]Supported in part by U.S.-Israel Binational Science Foundation. Participant NSF Workshop in Analysis and Probability, Texas A&M University

[§]T. Tkocz thanks his PhD supervisor, Keith Ball, for his invaluable constant advice and encouragement

N so that the restriction of T to $[x_N]_{n=N}^{\infty}$ is an isomorphism (and, moreover, the norm of the inverse of the restricted operator is bounded independently of the disjoint sequence). From this it follows that an injective operator $T: X \to Y$ is Tauberian iff it isomorphically preserves isometric copies of ℓ_1 in the sense that the restriction of T to any subspace of X that is isometrically isomorphic to ℓ_1 is an isomorphism. (Recall that a subspace of an L_1 space is isometrically isomorphic to ℓ_1 iff it is the closed linear span of a sequence of non zero disjoint vectors [11, Chapter 14.5].) Since Tu is Tauberian if T is Tauberian and u is an isomorphism, one deduces that an injective Tauberian operator from an L_1 space isomorphically preserves isomorphic copies of ℓ_1 in the sense that the restriction of T to any subspace of X that is isomorphic to ℓ_1 is an isomorphism. Thus injective Tauberian operators from an L_1 space are opposite to ℓ_1 -singular operators; i.e., operators whose restriction to every subspace isomorphic to ℓ_1 is *not* an isomorphism.

The main result in this paper is a negative solution to [5, Problem 1]: Suppose T is a Tauberian operator on an L_1 space. Must T be upper semi-Fredholm; i.e., must the range $\mathcal{R}(T)$ of T be closed and the null space $\mathcal{N}(T)$ of T be finite dimensional? The basic example is a Tauberian operator on $L_1(0, 1)$ that has infinite dimensional null space. This is rather striking because the Tauberian condition is equivalent to the statement that there is c > 0 so that the restriction of the operator to $L_1(A)$ is an isomorphism whenever the subset A of [0, 1] has Lebesgue measure at most c.

In fact, we show that there is an injective, dense range, non surjective Tauberian operator on $L_1(0, 1)$. Since T is Tauberian, T^{**} is also injective, so $\mathcal{R}(T^*)$ is dense and proper, and T^* is injective because $\mathcal{R}(T)$ is dense. This solves a problem [10] the second author raised on MathOverFlow.net that led to the collaboration of the authors.

2 The examples

We begin with a lemma that is an easy consequence of characterizations of Tauberian operators on L_1 spaces.

Lemma 1 Let X be an L_1 space and T an operator from X to a Banach space Y. The operator T is Tauberian if and only if there is r > 0 and a natural number N so that if $(x_n)_{n=1}^N$ are disjoint unit vectors in X, then $\max_{1 \le n \le N} ||Tx_n|| \ge r$. **Proof:** The condition in the lemma clearly implies that if (x_n) is a disjoint sequence of unit vectors in X, then $\liminf_n ||Tx_n|| > 0$, which is one of the equivalent conditions for T to be Tauberian [5, Theorem 4.1.3]. On the other hand, suppose that there are disjoint collections $(x_k^n)_{k=1}^n$, n = 1, 2, ... with $\max_{1 \le k \le n} ||Tx_k^n|| \to 0$ as $n \to \infty$. Then the closed sublattice generated by $\bigcup_{n=1}^{\infty} (x_k^n)_{k=1}^n$ is a separable abstract L_1 space (meaning that it is a Banach lattice such that ||x + y|| = ||x|| + ||y|| whenever $|x| \lor |y| = 0$) and hence is order isometric to $L_1(\mu)$ for some probability μ by Kakutani's theorem (see e.g. [7, Theorem 1.b.2]). Choose $1 \le k(n) \le n$ so that the support of $x_{k(n)}^n$ in $L_1(\mu)$ has measure at most 1/n. Since T is Tauberian, by [5, Proposition 4.1.8] necessarily $\liminf_n ||Tx_{k(n)}^n|| > 0$, which is a contradiction.

The reason that Lemma 1 is useful for us is that the condition in the Lemma is stable under ultraproducts. Call an operator that satisfies the condition in Lemma 1 (r, N)-Tauberian. For background on ultraproducts of Banach spaces and of operators, see [4, Chapter 8]. We use the fact that the ultraproduct of L_1 spaces is an abstract L_1 space and hence is order isometric to $L_1(\mu)$ for some measure μ .

Lemma 2 Let (X_k) be a sequence of L_1 spaces, and for each k let T_k be a norm one linear operator from X_k into a Banach space Y_k . Assume that there is r > 0 and a natural number N so that each operator T_k is (r, N)-Tauberian. Let \mathcal{U} be a free ultrafilter on the natural numbers. Then $(T_k)_{\mathcal{U}}$: $(X_k)_{\mathcal{U}} \to (Y_k)_{\mathcal{U}}$ is (r, N)-Tauberian.

Here $(T_k)_{\mathcal{U}}$ is the usual ultraproduct of the sequence (T_k) , defined by

 $(T_k)_{\mathcal{U}}(x_k) = (T_k x_k).$

Proof: The vectors (x_k) and (y_k) are disjoint in the abstract L_1 space $(X_k)_{\mathcal{U}}$ iff $\lim_{\mathcal{U}} ||x_k| \wedge |y_k|| = 0$, so it is only a matter of proving that if T is (r, N)-Tauberian from some L_1 space X, then for each $\varepsilon > 0$ there is $\delta > 0$ so that if x_1, \ldots, x_N are unit vectors in X and $||x_n| \wedge |x_m|| < \delta$ for $1 \le n < m \le N$, then $\max_{1 \le n \le N} ||Tx_n|| > r - \varepsilon$. But if x_1, \ldots, x_N are unit vectors that are ε -disjoint as above, and y_1, \ldots, y_n are defined by

$$y_n := [|x_n| - (|x_n| \land (\lor \{|x_m| : m \neq n\})] \operatorname{sign}(x_n),$$

then the y_n are disjoint and all have norm at least $1 - N\delta$. Normalize the y_n and apply the (r, N)-Tauberian condition to this normalized disjoint sequence to see that $\max_{1 \le n \le N} ||Tx_n|| > r - \varepsilon$ if $\delta = \delta(\varepsilon, N)$ is sufficiently small.

An example that answers [5, Problem 1] is the restriction of an ultraproduct of operators on finite dimensional L_1 spaces constructed in [3].

Theorem 1 There is a Tauberian operator T on $L_1(0, 1)$ that has an infinite dimensional null space. Consequently, T is not upper semi-Fredholm.

Proof: An immediate consequence of [3, Proposition 6 & Theorem 1] is that there is r > 0 and a natural number N so that for all sufficiently large n there is a norm one (r, N)-Tauberian operator T_n from ℓ_1^n into itself with dim $\mathcal{N}(T_n) > rn$. The ultraproduct $\tilde{T} := (T_n)_{\mathcal{U}}$ is then a norm one (r, N)-Tauberian operator on the gigantic L_1 space $X_1 := (\ell_1^n)_{\mathcal{U}}$, and the null space of \tilde{T} is infinite dimensional. Take any separable infinite dimensional subspace X_0 of $\mathcal{N}(\tilde{T})$ and let X be the closed sublattice of X_1 generated by X_0 . Let Ybe the sublattice of X_1 generated by $\tilde{T}X$ and let T be the restriction of \tilde{T} to X, considered as an operator into Y. So X and Y are separable L_1 spaces and by Lemmas 1 and 2 the operator T is Tauberian. Of course, by construction $\mathcal{N}(T)$ is infinite dimensional and reflexive (because T is Tauberian). Thus X is not isomorphic to ℓ_1 and hence is isomorphic to $L_1(0, 1)$. So is Y, but that does not matter: Y, being a separable L_1 space, embeds isometrically into $L_1(0, 1)$.

We want to "soup up" the operator T in Theorem 1 to get an injective, non surjective, dense range Tauberian operator on $L_1(0, 1)$. We could quote a general result [6, Theorem 3.4] of González and Onieva to shorten the presentation, but we prefer to give a short direct proof.

We recall a simple known lemma:

Lemma 3 Let X and Y be separable infinite dimensional Banach spaces and $\varepsilon > 0$. Let Y_0 be a countable dimensional dense subspace of Y. Then there is a nuclear operator $u : X \to Y$ so that u is injective and $||u||_{\wedge} < \varepsilon$ and $uX \supset Y_0$.

Proof: Recall that an *M*-basis for a Banach space *X* is a biorthogonal system $(x_{\alpha}, x_{\alpha}^*) \subset X \times X^*$ such that the linear span of (x_{α}) is dense in *X* and $\cap_{\alpha} \mathcal{N}(x_{\alpha}^*) = \{0\}$. Every separable Banach space *X* has an *M*-basis

[8]; moreover, the vectors (x_{α}) in the *M*-basis can span any given countable dimensional dense subspace of *X*.

Take *M*-bases (x_n, x_n^*) and (y_n, y_n^*) for *X* and *Y*, respectively, normalized so that $||x_n^*|| = 1 = ||y_n||$ and such that the linear span of (y_n) is Y_0 . Choose $\lambda_n > 0$ so that $\sum_n \lambda_n < \varepsilon$ and set $u(x) = \sum_n \lambda_n \langle x_n^*, x \rangle y_n$.

Theorem 2 There is an injective, non surjective, dense range Tauberian operator on $L_1(0, 1)$.

Proof: By Theorem 1 there is a Tauberian operator T on $L_1(0, 1)$ that has an infinite dimensional null space. By Lemma 3 there is a nuclear operator \tilde{v} : $\mathcal{N}(T) \to L_1(0, 1)$ that is injective and has dense range, and we can extend \tilde{v} to a nuclear operator v on $L_1(0, 1)$. We can choose \tilde{v} so that $\tilde{v}(\mathcal{N}(T)) \cap TL_1(0, 1)$ is infinite dimensional by the last statement in Lemma 3. This guarantees that the Tauberian operator $T_1 := T + v$ has an infinite dimensional null space (this allows us to avoid breaking the following argument into cases).

Now $\mathcal{N}(T_1) \cap \mathcal{N}(T) = \{0\}$, so again by Lemma 3 and the extension property of nuclear operators there is a nuclear operator $u: L_1(0,1)/\mathcal{N}(T) \to \ell_1$ so that the restriction of u to $Q_{\mathcal{N}(T)}\mathcal{N}(T_1)$ is injective and has dense range (here for a subspace E of X, the operator Q_E is the quotient mapping from X onto X/E). Finally, define $T_2: L_1(0,1) \to L_1(0,1) \oplus_1 \ell_1$ by $T_2 x := T_1 x \oplus u Q_{\mathcal{N}(T)} x$. Then T_2 is an injective Tauberian operator with dense range. T_2 is not surjective because $P_{\ell_1} T_2$ is nuclear by construction, where P_{ℓ_1} is the projection of $L_1(0,1) \oplus_1 \ell_1$ onto $\{0\} \oplus_1 \ell_1$. Since $L_1(0,1) \oplus_1 \ell_1$ is isomorphic to $L_1(0,1)$, this completes the proof.

Corollary 1 There is an injective, dense range, non surjective operator on ℓ_{∞} . Consequently, there is a quasi-complementary, non complementary decomposition of ℓ_{∞} into two subspaces each of which is isometrically isomorphic to ℓ_{∞} .

Proof: Let T be an injective, dense range, non surjective Tauberian operator on $L_1(0, 1)$ (Theorem 2). Since T is Tauberian, T^{**} is also injective, so T^* has dense range but T^* is not surjective because its range is not closed, and T^* is injective because T has dense range. The operator T^* translates to an operator on ℓ_{∞} that has the same properties because L_{∞} is isomorphic to ℓ_{∞} by an old result due to Pełczyński (see, e.g., [1, Theorem 4.3.10]) (notice however that, unlike T^* , the operator on ℓ_{∞} cannot be weak^{*} continuous). For the "consequently" statement, let S be any norm one injective, dense range, non surjective operator on ℓ_{∞} . In the space $\ell_{\infty} \oplus_{\infty} \ell_{\infty}$, which is isometric to ℓ_{∞} , define $X := \ell_{\infty} \oplus \{0\}$ and $Y := \{(x, Sx) : x \in \ell_{\infty}\}$. Obviously X and Y are isometric to ℓ_{∞} and $X + Y = \ell_{\infty} \oplus S\ell_{\infty}$, which is a dense proper subspace of $\ell_{\infty} \oplus_{\infty} \ell_{\infty}$. Finally, $X \cap Y = \{0\}$ since S is injective, so X and Y are quasi-complementary, non complementary subspaces of $\ell_{\infty} \oplus_{\infty} \ell_{\infty}$.

Theorem 2 and the MathOverFlow question [10] suggest the following problem: Suppose X is a separable Banach space (so that X^* is isometric to a weak^{*} closed subspace of ℓ_{∞}) and X^* is non separable. Is there a dense range operator on X^* that is not surjective? The answer is "no": Argyros, Arvanitakis, and Tolias [2] constructed a separable space X so that X^* is non separable, hereditarily indecomposable (HI), and every strictly singular operator on X^* is weakly compact. Since X^* is HI, every operator on X^* is of the form $\lambda I + S$ with S strictly singular. If $\lambda \neq 0$, then $\lambda I + S$ is Fredholm of index zero by Kato's classical perturbation theory. On the other hand, since every weakly compact subset of the dual to a separable space is norm separable, every strictly singular operator on X^* has separable range. (Thanks to Spiros Argyros for bringing this example to our attention.)

Any operator T on l^{∞} that has dense range but is not surjective has the property that 0 is an interior point of $\sigma(T)$. This follows from Thm 2.6 in [9], where it is shown that $\partial \sigma(T) \subset \sigma_p(T^*)$ for any operator T acting on a C(K) space which has the Grothendieck property.

References

- [1] Albiac, Fernando; Kalton, Nigel J. Topics in Banach space theory. Graduate Texts in Mathematics, 233. Springer, New York, 2006.
- [2] Argyros, Spiros A.; Arvanitakis, Alexander D.; Tolias, Andreas G. Saturated extensions, the attractors method and hereditarily James tree spaces. Methods in Banach space theory, 190, London Math. Soc. Lecture Note Ser., 337, Cambridge Univ. Press, Cambridge, 2006.
- [3] Berinde, R.; Gilbert, A. C.; Indyk, P; Karloff, H.; Strauss, M. J. Combining geometry and combinatorics: a unified approach to sparse signal recovery. 2008 46th Annual Allerton Conference on Communication, Control, and Computing (2008), 798–805.

- [4] Diestel, Joe; Jarchow, Hans; Tonge, Andrew. Absolutely summing operators. Cambridge Studies in Advanced Mathematics, 43. Cambridge University Press, Cambridge, 1995.
- [5] González, Manuel; Martínez-Abejón, Antonio. Tauberian operators. Operator Theory: Advances and Applications, 194. Birkhuser Verlag, Basel, 2010.
- [6] González, Manuel; Onieva, Victor M. On the instability of non-semi-Fredholm operators under compact perturbations. J. Math. Anal. Appl. 114 (1986), no. 2, 450–457.
- [7] Lindenstrauss, Joram; Tzafriri, Lior Classical Banach spaces. II. Function spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, 97. Springer-Verlag, Berlin-New York, 1979.
- [8] Mackey, George W. Note on a theorem of Murray. Bull. Amer. Math. Soc. 52, (1946), 322–325.
- [9] A. B. Nasseri, The spectrum of operators on C(K) with the Grothendieck property and characterization of J-Class Operators which are adjoints.
- [10] Nasseri, Amir Bahman. http://mathoverflow.net/questions/101253
- [11] Royden, H. L. Real analysis. Third edition. Macmillan Publishing Company, New York, 1988.

W. B. Johnson Department of Mathematics Texas A&M University College Station, TX 77843 U.S.A. johnson@math.tamu.edu

A. B. Nasseri Fakultät für Mathematik Technische Universität Dortmund D-44221 Dortmund, Germany amirbahman@hotmail.de G. Schechtman Department of Mathematics Weizmann Institute of Science Rehovot, Israel gideon@weizmann.ac.il

T. Tkocz Mathematics Institute University of Warwick Coventry CV4 7AL, UK ttkocz@gmail.com