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Abstract

Let p = % It is known that if N = £3n — oo then with high probability (w.h.p.)
Gp,p has a unique giant largest component. We show that if in addition, e = e(n) — 0
then w.h.p. the cover time of G, is asymptotic to nlog? N; previously Barlow, Ding,
Nachmias and Peres had shown this up to constant multiplicative factors.

1 Introduction

Let G = (V, E) be a connected graph with vertex set V' of size n and an edge set E. In a simple
random walk W on a graph G, at each step, a particle moves from its current vertex to a
randomly chosen neighbor. For v € V', let C, be the expected time taken for a simple random
walk starting at v to visit every vertex of G. The vertex cover time Cg of G is defined as
Cg = maxyey C,. The (vertex) cover time of connected graphs has been extensively studied.
It was shown by Feige [17], [18], that for any connected graph G, the cover time satisfies
(1 —o(1))nlogn < Ce < (14 o(1))5n®.

In a series of papers, Cooper and Frieze have asymptotically established the cover time in a
variety of random graph models. The following theorem lists some of the main results. (Here
A, ~ B, if A, = (14+0(1))B, as n — 00.)
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Theorem 1. The following asymptotic estimates for the cover time hold with high probability
(w.h.p.):

[5] If G = Gy with p= %" ¢ > 1, then Cg = ¢(c)nlogn where ¢(c) = clog (-%).

[6] If G = G, withr=0O(1), a random r-regular graph, then Ce ~ “=inlogn.

1/d
[7] Let G = Gpay withd >3 andr = <c¥’%> be the random geometric graph on n vertices

in dimension dE| Then Cg =~ ¢(c)nlogn.

8] If D = D,, (the random digraph counterpart of G,,), then Cp ~ ¢(c)nlogn.

Cooper and Frieze [9] also established the cover time of the giant component Cy of the random
graph G, , with p = ¢/n, where ¢ > 1 is a constant. They showed in this setting that w.h.p.
the cover time C¢, satisfies

cx(2 — )
4(cx —1Inc)

where = denotes the solution in (0,1) of x =1 — e~

Ccl ~

n(lnn)?,

cx

This raises the question as to what happens in G, if p = (1 +¢)/n, ¢ > 0 and we allow
e — 0. It is known that a unique giant component emerges w.h.p. only when £3n — oo.
Barlow, Ding, Nachmias and Peres [2] showed that w.h.p.

Co, = ©(nlog?(e’n)). (1)

Cooper, Frieze and Lubetzky [10] showed that if C’F) denotes the 2-core of the giant compo-

nent C; of Gy, (C; stripped of its attached trees), then, in this range of p, w.h.p. Coe
1

%5n log®(3n), but they were not able to determine the cover time of the giant C) asymptoti-
cally. We do this in the current paper, confirming their conjecture.

~
~

We prove the following theorem:

Theorem 2. Let p = £ with e = e(n) > 0, ¢ = 0 such that e*n — oo. Let Cy be the giant
component of Gy, . Then w.h.p.
Ce, = nlog?(e*n).

Our proof is very different from the proof in [10]. We will use the notion of a Gaussian
Free Field (GFF). This was used in the breakthrough paper of Ding, Lee and Peres [14] that

IHere T is the volume of the Euclidean ball of radius one in R¢. The random geometric graph G = Gn,dr
is defined as follows: we choose n points independently uniformly at random from [0, 1] to be the vertices of
G and two points are joined by an edge if and only if they are at most distance r-apart.



describes a deterministic algorithm for approximating C'¢ to within a constant factor. This
was later refined by Ding [15] and by Zhai [24]. It is the latter paper that we will use. In the
next section, we will describe the tools needed for our proof. Then in Section |3 we will use
these tools to prove Theorem [2]

2 Tools

2.1 Gaussian Free Field

Definition 1. For our purposes, given a graph G = (V, E), a GFF is a random vector
(ny, v € V') whose joint distribution is Gaussian with

(i) E(n,) =0forallve V.
(i) 7y, = 0 for some fixed vertex vy € V.

(iii) E((n, — 7w)?) = Reg(v,w) for all v,w € V.

Note that in particular, Var(n,) = E(n?) = Reg(v,vg). (Here Reg is the effective resistance
between v and w, when G is treated as an electrical network where each edge is a resistor of
resistance one. See Doyle and Snell [I6] or Lewin, Peres and Wilmer [22] for nice discussions
of this notion). As its name suggests, Res is most naturally defined in terms of electrical
networks. For us the following mathematical definition will suffice: for a graph G = (V, E)
and vertices v, w € V', we use the commute time identity to define

(v, w) + 7(w,v)

0B (2)

Re (v, w) =

where 7(v,w) is the expected time for a simple random walk starting at v to reach w.

Note that, as suggested by the electrical analog, we have
Reg (v, w) < dist(v, w). (3)

This is a simple consequence of Rayleigh’s Monotonicity Law (delete all edges except for a
shortest path from v to w), see [16].

In the continuous setting, the Gaussian free field generalizes Brownian motion (or the Brow-
nian bridge) and can be seen as a model of a random surface. In the discrete setting, the
Gaussian Free Field can be seen as generalizing Brownian motion on a line to an analog of
Brownian motion on the topology of the graph. In particular, if G is a path with ¢ edges, and
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the fixed vertex vy is an endpoint of the path, then the normals 7, in the GFF for the path
can be generated in terms of Brownian motion W (t), by setting 7, to be W (dist(v, vy)).

The important thing for the present paper is a remarkable connection between the Gaussian
Free Field on a graph and its cover time. Let us define

M= E(%le%;( nv)'

Ding, Lee and Peres [I4] proved that there are universal constants ¢y, c2 such that
a|E|M? < Cg < co| EB|M?. (4)
Next let R = max, yev Rer(v, w). Zhai [24] proved the following theorem:

Theorem 3 (Zhai). Let G = (V, E) be a finite undirected graph with a specified vertez vy € V.
There are universal positive constants ci,co such that if we let T.,, be the first time that all
the vertices in V' have been visited at least once for the walk on G started at vy, we have

Pr<

o = [EIM?| 2 |E[(VAR: M+ AR)) < ey -

for any X\ > ¢;.

Setting X = | ET;’\ZQ, this gives after crude estimates

> R R
|EX—1|§E|X—1|:/O Pr(|X—1\>t)dt§C<\/W+W>

for a universal constant C'. Note that R and M do not depend on v, (for M, observe that for
any fixed vertex w, Elmax,cy 1,] = E[(max,ev (9, — Mw)) + 1w] = Elmaxyey (n, — ny)], since
the Gaussians have mean 0, see also Remark 1.3 in [24]). After taking the maximum over vy
we thus get that Cs = max,, E7,, satisfies

Cq = |E|M? (1+0<\/%+%>). (6)

Now, as we will see in the next section, the number of edges in the emerging giant is given by
the following theorem:

Theorem 4. Let G = G, be as in Theorem[d Then
|E(Ch)] = 2en  w.h.p. (7)

This follows from the work in [I2] as we will see in Section [2.2]

Our main contribution is the following theorem:
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Theorem 5. Let G = G, be as in Theorem |4 and let M the the expected maximum of a
GFF on G as defined above. Then

_ log(e?n)

M~ (25)172 w.h.p. (8)

This immediately implies Theorem [2| as follows:

Proof of Theorem[Z In view of @ obtained from Theorem , Theorem [5| implies Theorem
if we can show that w.h.p. R = o(M?). Now, we know from (), and (or from
Theorem [5)) that w.h.p. M = Q(s7'/2log(¢%n)). Therefore to prove that R = o(M?) it will

be sufficient to prove
1 3
R=0 <@> , 9)

This can be verified as follows: first we observe that the effective resistance between two
vertices of a graph G is always bounded above by the diameter of G, see . Second, it was
proved in [I3] that w.h.p. the diameter of G, , is asymptotically equal to 3108(e™) 4nd s0 @D

follows immediately. ) O

2.2 Structure of the emerging giant

Ding, Kim, Lubetzky and Peres [12] describe the following construction of a random graph,
which we denote by H. Let 0 < u < 1 satisfy pe™ = (1 4+ ¢£)e~(+9). Let (1, 0?) denote the
normal distribution with mean p and variance o2

GIANTCONSTRUCTION

Step 1. Let A ~ N (1+¢ — p, L) and assign ii.d. variables D, ~ Poisson(A) (u € [n]) to
the vertices, conditioned that > D,1p,>3 is even. (While A can be negative, we show
in below that it is positive w.h.p.)
Let Ny = |[{u: D, =k} | and N> = >, -5 Ni. Select a random graph K; on N3
vertices, uniformly among all graphs with N, vertices of degree k for all k£ > 3.

Step 2. Replace each edge e € E(K;) by a path P, of length Geom(1l — p) to create Ko.
(Hereafter, K; denotes the graph from Step 1 whose vertices are the subset of vertices
of H consisting of these original vertices of degree > 3 and Ky O K; denotes the
graph created by the end of this step.)

Step 3. Attach an independent Poisson(u)-Galton-Watson tree with root v to each vertex v
of KQ.



The main result of [12] is the following theorem:
Theorem 6. Let ¢ — 0 such that e3n — oco. For any graph property A, Pr(H € A) — 0
implies that Pr(Cy € A) — 0.

We will work with this construction for the remainder of the manuscript. For our application
of the Gaussian free field, we make the convenient choice that vy is a vertex in K.

Proof of Theorem[]]. Let H be the graph constructed in Steps 1-3. In view of Theorem [f] in
order to show |E(C})| =~ 2en, we show |E(H)| ~ 2en. We observe that
1—pu—cel0,& (10)

Recall from Step 1 that A ~ N (1 +e—pu, %) Applying the Chebyshev inequality we see
that for any 6 > 0, we have

1
Pr(IA—EA)| >0)< )
(A - B 2 0) <
Putting # = n~1/3, we see that 6%en = en'/? — o0, so
A=EA+ 0N =2e+0(n 3 + &%), w.h.p. (11)

The restriction > D,1p,>3 is even will be satisfied with constant probability and then we see
that w.h.p.

4
N>g ~ gegn and almost all vertices of K; have degree three. (12)
Therefore, w.h.p.,
34
|B(K))| ~ 555% =2¢%n (13)

The expected length of each path constructed by Step 2 is asymptotically equal to 1/(1—pu) ~
1/e. The path lengths are independent with geometric distributions (which have exponential
tails) and so their sum is concentrated around their mean (by virtue of, e.g. Bernstein’s
inequality) which is asymptotically equal to |E(K1)|2 ~ 2¢2n. Thus, w.h.p., |E(K3)| =~ 2¢2n.

£

Note also that in K5, w.h.p., there is no path longer than flog N>s.

Furthermore, the expected size of each tree in Step 3 is also asymptotically equal to 1/e.
These trees are independently constructed whose sizes also have exponentially decaying tails
and so the total number of edges is concentrated around its mean which is asymptotically
equal to |E(K3)|2 ~ 2en. Thus, w.h.p. |E(H)| ~ 2en, which proves Theorem . O

£

Let
N = &°n and let x denote the smallest power of 2 which is at least 1/e.

Lemma 7. W.h.p. |P.| < @ for all paths P, created in Step 2.
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Proof.

Pr (|Pe| > 210g N) < (1 . 5(1 N E))QIOgN/a < N_(2_0(1)).
€
The result now follows from and the Markov inequality. m

2.2.1 Galton-Watson Trees

A key parameter for us will be the probability that a Galton-Watson tree with Poisson(u)
offspring distribution survives for at least k levels. The following Lemma was proved by Ding,
Kim, Lubetzky and Peres (see Lemma 4.2 in [13]).

Lemma 8. Let 0 < < 1 and € > 0 satisfy pe™ = (1 +¢)e” 9. Let T be a Poisson(u)-
Galton-Watson tree. Let Ly denote the k-th level of T'. Then there exist absolute constants
c1 < ¢g such that for any k > 1/¢ we have

ci(eexp{—k(e +c1e?)}) < Pr(Ly #0) < ca(cexp {—k(c — e?) }).

Their proof also easily gives the following result.
Lemma 9. For k < 1/¢ we have
10

We shall need the following result about trees attached in Step 3. Here and throughout the
remainder of the paper,
N =&3n.

Lemma 10. Consider the construction of the graph H from Steps 1-3. Let 0 < v < 1. Let
T be the set of trees attached in Step 8 of GIANTCONSTRUCTION. Then, w.h.p. (referring to
the entire construction, not just Step 3), we have:

(a)

1
There are between EclNl_““LO(E) and 25N 77106 trees in T of depth at least v~ log N.
(14)

(b)

2log N
There are no trees in T of depth exceeding 8 .

(15)
In fact the probability of the event in is 1 — O(N~(—o)),
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Here ci,c9 > 0 are the universal constants from Lemma @

Proof. (a) Let p,, denote Pr(Ly, # 0) for k, = [ye tlog N, v > 0. Conditioning on the results
of Step 1 and Step 2, the number v, of trees created in Step 3 of depth at least & is a binomial
with number of trials [V (K5)| and probability of success p,. Recall |V (K>)| & (1 + o(1))%2.
It follows from Lemma [§ that

(1+0(1) 5 2 - cieexp{—(y+ 0e) log N)} = 2

Since 1 —~ > 0 and € — 0, note that eventually 1 —~+ O(g) > Jy for some positive universal
constant &y, so N1=7+10E) 5 o0,

Thus conditional on the results of Step 1 and Step 2, v, is distributed as a binomial with
mean going to infinity and so we have that if 0 < v < 1 then the Chernoff bounds imply .

(b) It follows from Lemma |8 that the probability that any fixed tree has depth at least
2e7 log N is O(eN~27°M)). There are w.h.p. O(c?n) trees and so the expected number of
trees with this or greater depth is O(e?n x eN~27°) = O(N~17°MW). The result now follows
from the Markov inequality. m

2.3 Normal Properties

In this section we describe several properties of the normal distribution that we will use in
our proof.

First suppose that ¢, go, . . ., g5 are independent copies of N'(0,1). Then if G, = max;—1__s gi,

.....

loglog s + log(4m) — 2y 1
E(G,) =+/2logs — O 16
(G) = v2logs aTons O ogs (16)

where v = 0.577 ... is the Euler-Mascheroni constant. For a proof see Cramér [11].

Next suppose that (X;)1<i<s and (Y;)1<;<s are two centered Gaussian vectors in R® such that
E(X;— X;)?<E(Y;—Y;)* for all 1 <i,j <s. Then,

E(max{X;:i=1,2,...,s}) <E(max{Y;:1=1,2,...,s}) (17)

(sometimes refered to as Slepian’s lemma). See Fernique [I9] (Theorem 2.1.2 and Corollary
2.1.3). Finally we have that if (X;);<;<s is a centered Gaussian vector and 0* = max; Var(X;),

then
E(max X;) < 04/2logs. (18)

1<i<s



This can be found, for example, in the appendix of the book by Chatterjee [4]; it follows
from a simple union bound. Nevertheless, repeated carefully chosen applications of will
suffice to prove our upper bound on M. (Importantly, observe by comparison with that
independent normals are asymptotically the worst case for the expected maximum.)

We also have
Pr(| max X; — E(max X;)| > t) < 2e7"/%, (19)

1<i<s 1<i<s

See for example Ledoux [20].

2.4 First Visit Time Lemma

In this section we give a lemma that the first author has used (along with Colin Cooper) many
times in the study of the cover time of various models of random graphs. Let G denote a
fixed connected graph, and let u be some arbitrary vertex from which a walk W, is started.
Let W, (t) be the vertex reached at step ¢ and let qut)(:v) = Pr(W,(t) = z). In the following
lemma, w = w(n) is an arbitrary function that tends to oo with n and T' = T,,,;, is a mixing
time in the sense that for ¢ > T,,,;»

P (z) = m,

Ty

max
u,x€V

< (20)

gl

Next, considering the walk W,, starting at v, let 7, = Pr(W,(t) = v) be the probability that
this walk returns to v at step t = 0,1, ....

For ¢t > 0, let A;(v) be the event that W, does not visit v in steps 1,7 + 1, ..., t. The vertex
u will have to be implicit in this definition. Let 7, be the steady state probability of vertex v
and

T
R’U = Z’f‘t_ (21)
=0
Lemma 11. Suppose that
Tm, =o(1). (22)
Then for allt > T,
o(1+O(Tny))t _
Pr(A;(v)) = exp {—W ( +R( ™)) } + o(Te= T, (23)
for some absolute constant ¢ > 0.
In the lemma as used by Cooper and Frieze [5] — [10], there was a technical condition that

has been removed by Manzo, Quattropani and Scoppola [2I] and we have taken advantage of
this improvement to the lemma.



2.5 Effective resistance on K,

Recall that the emerging giant can be modeled as a collection of independent Poisson Galton
Watson trees attached to K,. Our proof will depend on a bound on the effective resistance
of K5 and then show that this bound suffices to analyze the effective resistance within the
Galton Watson trees. Recall that we think of the graph as an electrical network where each
edge is a resistor of resistance one.

There are several steps to the analysis and we give an outline here. The main result of the
section is Lemma [12]

(a) At the top level we bound effective resistance between v, vy € V(K3) using the commute
time identity, (2)).

(b) We observe that a random walk on K5 is rapidly mixing and so bounding commute times
reduces to bounding the expected time to visit vy from the steady state using the First
Visit Lemma. We transform K5 into a related graph K5 to ensure that holds, and

such that a bound on resistance for K. 2 yields a bound on resistance in K.

(¢) To apply Lemma [11] we need to bound R, the expected number of returns to a vertex
v within the mixing time 7. Almost all vertices of Ko, I?g are far from short cycles and
so their local neighborhoods are trees. We prune these trees so that they induce binary
trees in K;. This just simplifies some calculations. Pruning increases R, and effective
resistances and thus it suffices to bound R, on these pruned trees.

(d) Having control of the R, allows Lemma |11] to control commute times. When we apply
this lemma in Section we find some minor correlation problem. This will be handled
with the use of the edge-deletion graphs K. defined below.

Transforming K, Let ¢; = [rklog N/loglog N|. We replace each such path of length ¢ in
K, by one of length [¢/¢1]¢,. Rayleigh’s Law ([16], [22]) states that increasing the resistance
of any edge increases all effective resistances. Placing a vertex in the middle of an edge has the
same effect as that of increasing the resistance of that edge. This implies that all resistances
between vertices are increased by this change of path length. Now every path has a length
which is a multiple of ¢; and so if we replace paths, currently of length k¢, by paths of length
k, then we change all resistances by the same factor ¢;. We let Ky = (V| E') denote the graph
obtained in the above manner and let ﬁeﬂ‘ denote effective resistance in k. 9.

For e € E(K) we let Reg. denote effective resistance in Ky — E(P.). In addition, for each
e € E(K,) we shorten paths Py, f # e in Ky — E(P.). The graph obtained is Ky, = (V, E.).
Let Rere > Res denote effective resistance in K.
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Remark 1. From our construction, we see that Eeff76 1s independent of the length of P.. The
usefulness of this construct will become apparant when we estimate the size of the sets U™*

in Section [3.2.1.

Suppose next that we arbitrarily orient the induced paths P.,e € E(K;) from h, to t. where
e = {he,t.}. Forv € V(Ky) \ V(K;), we let e;(v) denote the edge of K; whose division
includes v. We note that

~

Reff(l), Uo) S Remel(v) (tel(v), Uo) S glReﬂ,q(v)(tel(vﬁ Uo) for all v S V(Kz) \ V(Kl) (24)

For kK > 1 we let
—~ ~ kk
Ak = {6 S E(Kl) : Reff,e(taUO) > f_} :
1

Most vertices in K7 have tree-like neighborhoods. We will define the notion of a tree-like
vertex formally below. Suffice it to say at the moment that w.h.p. there are at most log'® N
vertices that are not tree-like.

Lemma 12. [ft. € V(K,) is tree-like, then
~ 14
Pr(e € Ag|Ky) < e @oWsk 2L <} < 2]og N. (25)
K

Here we are conditioning on the output of Step 1 in GIANTCONSTRUCTION; the probability
space is just over the randomness in Step 2.

Proof. We use the commute time identity ([16], [22]) for a random walk W, on the graph
Ky, to write for v € e € E(K}),

2Rese(v,00)|Ee| = 7(0,00) + 7 (00, ), (26)
where 7(v,w) is the expected time for W, to reach w when started at v.

The proof of this lemma is unfortunately quite long. We break it up into a sequence of claims,
that we will verify subsequently. In what follows v € V' (K;) will be fixed and e will be a fixed
edge of K, that contains v.

Claim 1. W.h.p., the mizing time Tiniw of W, is O((loglog N)?log N), assuming we take
w =N in (20).

For vertices v,w € V(K;) we bound 7(v,w) by T i plus the expected time to reach w from
the steady state of W,.

Claim 2. The expected time for )7\/\6 to reach vertex v from the steady state is O(R,/m,), where
R, is as defined in .
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Fix e € F(K;). For a vertex v € V(K7) we let let N, (the neighborhood) be the subgraph of
K induced by the set of vertices on paths of length at most L = 1000loglog N in K; —e.
Then let N, be the subgraph of Ko — e that is obtained from N, through the execution of
Step 2 and the subsequent shortening of paths that creates KQ

We say that v € V(K;) is tree-like if N, (and hence N,) induces a tree.
Claim 3. W.h.p.,

(a) For all v, N, contains at most one cycle.

(b) The number of non-tree-like vertices is at most log'™ N.

In view of this claim, we will mainly focus on tree-like vertices and deal with the non-tree-like
vertices fairly crudely. Let T, denote the tree induced by N, and let T, denote the tree induced
by N,. Let B, = B, (the boundary) denote the leaves of T, (equivalently, the leaves of T,,).

Claim 4. Ifw € B\U then the expected number of visits to v from w in I?Q, in time fmix, is

o(1).

Thus, if we make E into absorbing states fgr the walk )7\/\6 then R, is the expected number of
returns before absorpuon plus o(1). So let R, be the expected number of visits to v before the
walk is absorbed into B,. Thus R, < R, + o(1). Next let pese(v) be the escape probability i.e.
the probability that a random walk started at v doesn’t return to v, before being absorbed.
Then

. 1 1

R, = and pesc(v) = ——————. (27)
pesc(v) DvReff(U7 B’U)
Recall that D, denotes the degree of vertex v. For a proof of the second equation in , see
Doyle and Snell [16], Section 1.3.4.

We now prune T,: moving level by level from the neighbors of the root v, we prune T, so
that we obtain a tree of depth L in which every vertex other than the root or the leaves has
degree three. It is possible that the root v already has degree two. Remember that we have
deleted one edge e, incident to v. We denote the pruned tree by T,. Rayleigh’s principle
and equation show that the pruning decreases the escape probability and increases the
expected number of returns which is now denoted R, (Note that the prumng can only reduce
the expected number of visits in Clann Let T;7 be the subtree of T, corresponding to 7.

An edge f € E(K;) gives rise to a path Pj in K> and let o(f) = ((P,) — 1, where £(-)
denotes [¢(-)/¢1]. Note: our definition of ¢; means that w.h.p. almost all of the paths Py
in K consist of a single edge and for these ¢ = 0. Also let P(v) = ZfeE(T;)l/J(f). Let
Wy ={v e V(K;) :¢(v) < sk}.

12



Claim 5. W.h.p., if v e V(K;) then

(0) Pr(o ¢ 7,) < exp { - esl=c o V_tomog g 07,

(b) If ve Wy and e € E(K;) and t. = v then

In summary, if éeﬁ,e(te,vo) > kk/l; then t, ¢ W, where sk/4 4+ 1/2 = kr/¢; > 1. Therefore,
for k as in (25)),

Pr(c € A | K1) < Pr(v ¢ W,) < exp {—Wm = 26)((1 — &) log N — 1000(log log N)2>}

l1loglog N
_ e—(2—o(1))l-ck‘

This would complete the proof of Lemma [12] We must now substantiate our claims.

Proof of Claim [1| For a graph G' = (V, E), let eg(S) denote the number of edges contained
in the set S C V and eg(S : S) be the number of edges with exactly one end in S. For a

graph G and S C V let $(S) = E%(Egs:Sg ) where D(S) is the sum of degrees of vertices in S.
The conductance ®¢ of G is equal to minpsy<|p| Pe(S). It is shown in [12], Lemma 3.5 that
w.h.p. @k, > ¢, for some absolute constant ¢; > 0. We need the conductance of K1 — f

where f is an arbitrary edge of K.

Claim 6. In Ky, w.h.p., e(S) < |S| for |S| < log!/2 N,

Assume this claim for now, and condition on the event in the claim. Let &(S : S) denote the
edges other than f between S and S. Then we have (S : §) > e(S: S) —1. If 2 < |S] <
log!/? N then because the minimum degree in K7 is at least 3, &(S : S) > e(S : §)—1 > | S| —1.
If |S| > log/? N then (S : §) > 3¢1|S| and then &(S : §) > (301 - 1g+N> S| and so the

conductance of K7 — f is at least ¢1/2.
The conductance of [?2,6 is at least < - m because each edge of K| — e is replaced by
a path of length at most 2loglog N. Finally note that for a random walk on a graph G,

we have that after ¢ steps max {|P15t)(x) — 7Tz|} < (1 - %

t = C(loglog N)?log N yields the claim, for C sufficiently large.
End of Proof of Claim [1]

¢
) , see for example [22]. Putting
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Proof of Claim This will follow from Lemma applied to the random walk on [?2,
once we have verified . Here T = O(logHO(l) N) and maxm, = O (bg—N) and so T, =

N
O (—log%];(l) N ) Then we have, from , that the expected time to reach v is of order
o (1 Try))t B 1 )R,
S Pr(A(v) = (eXp{_” ( +g( ) }+O(T€ ct/T)) ! +<7)T< DR,

t>T >T v v

End of Proof of Claim 2|

Proof of Claim For this claim we use the configuration model of Bollobas [3] as applied
to K;. We note that w.h.p. A = 2¢ in Step 1, see . And also that Ni>3 ~ N.

(a) If N, contains more than one cycle, then K contains a set S of at most s < 4L vertices
that contain at least s + 1 edges. The probability II of this can be bounded as follows: let

¢ = Asz% ~ @ be the probability that Poisson(A) > 3.

In the following, s is the size of S. Then 3s < D < M is the total degree of S and dy, ..., d;
are the individual degrees. Here M; ~ 2N will be a high probability bound on |E(K7)|. We

multiply by the probablity [];_, A% d’ ? B that these are the degrees. Then we choose 2s + 2
configuration points and pair them up in (2 5112) (S(ff)% %J]rvl)

the probability of the pairings. Thus

LN D (2s+2)! [s+1\""
=2 (X, T (%) 62:)es e (5)

d;j o—A D _—As .. 2542
ut (i) [T, 425 —Aqfs (i) (570) < Gy and

(111) Zd1+ +dy=D HZ 1 d' < mzdﬁ +da=D (dl 39_35573)‘ So,

.....
..... s 7"'7

<i Ne\® e~ s s+ 1 S“f: AD D2s+2 3 D —3s
=2 \s ) s+ BN 2= 6°(D — 35)! di—3,...,d,—3

d1++ds:D

ways. The final term ( bounds

di,.orydy >3
But (i) 1/¢ ~ 6/(2¢) and A ~ 2¢ and Zd1+ =D (d1 ?7::’)’;573) = sP735. So,
< Z Ne 236’ s+ 1\ %1: ((2 4 o(1))e)P D2s+25P=3s
s ) (2e)3(s+1)12st1 \ 3N 6°(D — 3s)! ‘

D=3s

((2+o(1))a)DD25+25D*35. Then,

Next let up = (D=39)1

ups1 _ (2+0(1))es (D +1 ot2 _ 2+ 0(1))6(2s+2>/D€S
up ~ D —3s D = D — 35

1
§1fD>3s+105s

14



and so if Dy = 3s + 10es we see that up, > ZD>D0 ug and then

I <5 Z Ne eo(s) s+ 1 s+1 i (28)DD28+25D_38
(2¢)33(s + 1)125+1 \ 3N — (D —23s)!

o(1) ( (3 +10 )6+205+2/s 103)5
e“\Ms Z e“(3s €S S
s=4

=o(1).
- N s (1)
(b) The number of non-tree-like vertices is at most the number of vertices that are within L
of a cycle of length at most L. We can bound the expected number of such vertices as follows:
we choose s vertices for the cycle and then another ¢ for the path in (];[) (N)s't‘ ways. We sum
over the degree sequence of the chosen vertices. The factor dl 1d’ bounds the probability the

path plus cycle exists.

L s+t _
N N Adle A z 1di
(S)(t)slt' E H( 010 X o ) where dy = d,

d;>3,i€[s+t] i=1

sit=4 \d=3
s+t
o Ad—3 )
<> (62>
sit=4 \ d—3=0 (d—3)!

The claim follows from applying the Markov inequality.
End of Proof of Claim [3]

Proof of Claim [4 We bound the number of returns as follows. Consider a random walk
X on {0,1,2,...} where we start the walk at 0 and when at 0 < i < L we go to ¢ + 1 with
probabilty 1/3 and to ¢ — 1 with probability 2/3. Whenever we are at 0 we move to 1 on the
next move. Here 0 represents an arbitrary boundary vertex and L represents v. At each point
of the walk on T, where we are at a vertex of Kj, we have probability at most 1/3 of moving
closer to v.

Now consider a time ¢ when X'(¢t) = L/2. If X(t+ L/4) > L/2 then at least L/8 of these L/4
moves must be in the increasing direction. But the Chernoff bounds then imply that

L\ _ L L1\ _L L 1 1
Pr{X(t+—=|>=)|<Prl|B > — | < —— X — » < .
r( (+4>—2>— r(m<4 3>—8>—eXp{ 12X27}_10g3N

15




It follows from this that the probability a walk from the boundary reaches v in 7' steps is at
most 7/ log® N and then the expected number of visits is at most 72/ log® N = o(1).
End of Proof of Claim (4]

Proof of Claim (a) For an edge e of T),, we have that Pr(i(e) > t) < (1 —e(1 —¢))™,
a probabilistic bound on the length of the path P, ins Step 2 of GIANTCONSTRUCTION (see
(10). The ¢ values of each such edge are independent and so as T}, contains m < 3-21000lglog N
edges then

Pr(v¢ W,) < > JJa-e@—e)n

s1+-+sm=t>sk i=1

(-

S~ I

Let u; denote the summand in . We have that if sk < m then

“ “ ke(l—e)log N\’
< . — <
g Uy < g (Qme exp { loglog N <

t=sk t=skK
i . t (ke(1 — ) log N — 700(log log N)?)
xp d —
= P loglog N
_ _ 2
< exp _ sk(ke(l —€)log N — 800(log log N)*)  (29)
log log N
And,

ke(l—e)log N1\’
< : _
Z e = Z (26 exp { loglog N })

t>max{sk,m} t>max{sk,m}
o sk(ke(l — g)log N — 800(log log N)?) (30)
X — .
= %P loglog N

Part (a) of the claim follows from and (30).

(b) Given T with ¢ (v) = s we modify it in such a way that the expected number of returns
increase and then bound this as claimed. Roughly speaking, we concentrate all the resistance
at the induced paths incident with v; by proving that this only increases effective resistance,
it allows us to reduce the problem of bounding the effective resistance to this case.

16



Suppose then that v # w € V(K;)NV(Tr) and w’s neighbors in K; are wy, wy, wy where wy is
the one closer to v than w on the tree T)*. Suppose also that ¢ ({w,w;})+¥({w,ws}) > 0. We
transform T by increasing the length of the path from w to wy by ¥({w,w1}) + ¥ ({w,ws})
and reducing the lengths of the paths joining w to w; and w to wy to be single edges so that
(w,wy) = Y(w,we) = 0. This preserves the sum of ¢ values and we claim that Reg (v, By,)
does not decrease. In this way, R, does not decrease, see ([27). To see this, let p(w), w € V(T7)
be the effective resistance between w and EU as measured in the sub-tree with root w. Let
wo, w1y, ws be as before and let w3 be the other neighbor of wy further from v (if it exists).
Before the transformation, we have

L _ ! - ! (31)
plwy) — llwg, w) + " U(wo, ws) + p(ws)

T T 1
L(wg,wy)+p(wy) ' L(wg,wa)+p(w2)

and after the transformation we have

1 1 1
= + 32
pwo) L wo, w) + l(w,wr) + {(w, wa) — 2+ ﬁ (wo, ws) + p(ws) 52
+o(wy +p(wo
The R.H.S. of is at most the R.H.S. of . This follows from the inequality
1 1
at+f+1—7- 3 — = 0. (33)
TS am T AR

After multiplying through by (a+ 8+~ +9)(y+9) we obtain an expression with only positive
terms. We apply with a = l(w,wy) — 1, 8 = L(w,we) — 1,7 = p(w1),0 = p(ws).

Proceeding in this way, we end up with a tree in which all maximal induced paths in 7} are of
length one, except for the one incident with v. Furthermore, v is unchanged and resistance is
not decreased by this transformation. The sum of the lengths of the maximal induced paths
incident with v is then 9 (v) + 2 (recall that v has degree 2 in T7)

Finally, we balance the lengths of these two paths incident with v by replacing the path lengths

at v by 1+ (@1 and 1+ {@J This increases resistance because for positive integers x, y,

1 1 1
v = Tero/m + e/

we have i +

Note next that the effective resistance between the root of a binary tree and its leaves is at
most one. To see this we let Ry be the effective resistance if the depth is d. Then we have
1 Ry +1
Ry = — g —— 5 :
Rg_1+1 Rg_1+1

It then follows that

Rure(v, B,) < ! (L r47) (o [%2)) (

1
1 1

End of Proof of Claim [5l



3e—A

Proof of Claim @ Let ¢ =~ 2¢= A ~ 2¢ be the probability that Poisson(A) > 3. For a
set S C V(K7) with |S| = s, we have

ZCCETESIED S DI | F=SELl C N

D>3sdi+-+ds=D 1=1
D s+1 AD SD
D

Explanation: Let Ml |E(K,)| and let D D(S) denote the sum of the degrees in S and
POPRTY | b d '¢
that e(S) > s+1 we have to choose some subset of the D conﬁguratlon points of size s+1 that
pair with configuration points in S. We bound the probability that such a set of configuration
points exist by 27 (%)SH. Note here that M; > 3N /2 and the probability that a configuration
point of S, pairs with another such point is bounded by (D —1)/(2M — 1), conditional on
previous pairings of points in .. Finally, we bound » 5 4> 5 1o —p I, d, by .

Letting up = 2PAP D3 =, we see that

<2xe’P % (24 0(1))e X — < 1.
o o 2+ o1 x

So,

ogt/2 N
3log2 N "~ (N ’
Pr(3|S| <log'? N :e(S) > |S|+1) < % 524 (S) (eo(l) X 8 X 3% 6 X 5—7 X <i

1og/ N

31 12 N
Og Z 150° = o(1

End of Proof of Claim [6]

This completes the proof of Lemma [12| (Because there are so few non-tree-like vertices, for
such v we will bound Reﬁe(v vg) by the diameter O (logN) of Ks.) O

3 Proof of Theorem [5

Theorem [6] allows us to work with H instead of C', and we assume from now on that H has
the following properties that have been shown or claimed to hold w.h.p. above, namely:

Assumed Properties of H: APOH
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|E(Ks)| ~ 2¢%n,
(v) |V(H)| =~ 2en,
(vi) |E(H)| = 2en

i)
ii)
i)
(iv)
)
)
)

(vii) There are between 2c; N'=7+9E) and 2¢, N1=70() trees of depth at least ve~' log N and

there are no trees of depth exceeding QIOgN

In what follows, we may write in terms of unconditional probabilities and expectations, but
these will refer to the GFF and will assume that H is a fixed graph with property APOH.
There are some places where we have to prove further properties of H, but we will be sure to
flag them.

3.1 Lower Bound

It turns out that for the lower bound, it suffices to consider the maximum over a very restricted
set, consisting just of a single vertex from each sufficiently deep tree.

Lemma 13.
log(e3n)

E (Urer‘l/azé) nv> >(1+ 0(1))W.

Proof. We first identify a subset of verties on which the GFF behaves as having independent
components and then produce a lower bound using Slepian’s comparison , combined with
. Consider the set of Galton-Watson trees attached to H of depth at least d = ic ™!, i to
be chosen. Choose one vertex at depth d from each tree to create Sy. It follows from with
v = i/log N, that there will be at least cN'™7+9() such trees for some constant ¢ > 0. Let
(Ms)ves, be a random vector with i.i.d. N(0,7e ' log N) entries. Then 7, — 7),, has variance
exactly 2ve~1'log N whereas 7, — 7, has variance at least 2ye !log N (the graph-distance
between v and w is at least 2d = 2ie™1 = 2ve~!log N) and so it follows from that

E(max{n, : v € S3}) > E(max {7, : v € Sy}). (35)
Applying we see that

E(max {7, : v € Sq}) = (1+0(1))(2log(|Sal)"/* - (v~ log N)'/?
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f, has the same distribution as a standard Gaussian multiplied by (ye~!log N)'/?). Using
S| > eN'=7OE) we obtain

E(max {7, : v € Sg}) > (1 + o(1))(2log(ecN' 7 HOENY2 . (41 og N)1/2
(291 —9))"*log N

o1z (36)
Putting v = 1/2 in and applying yields
log N
> > .
E (Urenvf%) m) > E (g}ré%icn) > (1+0(1)) 00172
Recalling that N = £3n, this finishes the proof of the lemma. O

The important task is to achieve a matching upper bound.

3.2 Upper Bound

We begin with an outline of the proof of the upper bound.

We let k = [1/e], and will write ¢y = [log,x]|. We say that v € G is a d-survivor if
it has at least one d-descendant z4(v); that is, a vertex z4(v) such that dist(Ky, xz4(v)) =
dist( Ky, v) + dist(v, 24(v)) = dist(Ks, v) + d.

Recall that we have oriented the induced paths P, from h, to t.. See the paragraph following
Remark [I] Then for each such e and v € V(F,) we let di(v) denote the distance from v to
V(K1) traversing P, in the chosen direction. Let e(v) denote the edge of Ky corresponding to
the path P, containing v.

Each v € V(H) \ V(K3) lies in a Galton-Watson tree with a root w = pgw(v) € V(K3) lying
on a path created in Step 2 from an edge e. Let d;(v) = di(w) and let

Uik = {v € V() : di(v) € [ik, (i + 1)k — 1], e(pew (v)) € Ay \ 2k+1}

and define for each 1 < j < 2log N and 0 < i,k < 2log N a set U** by choosing, for each
k-survivor in U ~1* an arbitrary s-descendant z,(v); these chosen s-descendants comprise

Uik Evidently, we have for U = Ui jxso U that
< J—
E(Ill)lea&{ M) < E(%leagi M) + E(Iir}leag(% nu(v)))v (37)

for any function v : V' — U. We will bound the two terms on the right hand side separately.

Let 1
e’log N
Ts = ———
) (26)1/2 )
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where § = max {105, bglﬁ}
Lemma 14. With the notation introduced above, we have
E(maxn,) < (1 4 o(1))T5. (38)
ue
Lemma 15. There is a function u : V — U such that

E(Tea‘;((nv - nu(v))) = O(Té)' (39)

Observe that the proof of the upper bound in Theorem [5| follows from and Lemmas
and [I5} it remains just to prove these two Lemmas.

3.2.1 Proof of Lemma [14]

We let Z; ;, = max,cpisk 1, and

E(maxn,) = E ( max Zz}j,k) <Ts+ Z E (max(Z; j, — 15,0))

vel 0<i4,j,k<2log N
0<i,5,k<2log N

2log N

=T+ ) /DT Pr(Z; . > t)dt. (40)
=15

i1j k=0
The bounds on i, j, k follow from Lemmas [7], [L0] [12] respectively.

Our task now is to bound the sum of integrals in (40). In words, the idea is that U is
partitioned into smaller pieces U%/* such that each piece is of a small enough cardinality
such that the Gaussian concentration of Z; ;; around its mean allows us to control the above
integrals.

Let a vertex of v of Ky be tree-like if the endpoint t. of the path P. containing it is a tree-like
vertex of Kj. Similarly, a vertex of a Galton-Watson tree is tree-like if its root is tree-like.
Now write

Uk = Ut o Ut
where U:ip’j’k and U]i\’,j’k are those vertices whose GW trees are attached at tree-like and non-
tree-like vertices of Ks, respectively.

Case 1: U%’j’k for ky = log!/? N < k < 2log N: tree-like vertices

Because we are bounding the sum of integrals on the RHS of it will be safe to ignore events
of probability o(log™® N). So from now on, w.h.p. will mean with probability 1 — o(log™* N).
We will work assuming that K is fixed and satisfies the conditions APOH(i) and (ii) defined
at the beginnning of Section [3] We can then focus on 0 < i, 5,k < 2log N. This is because it
follows from Lemmas , (b) and [12] that these bounds hold with probability 1 — O(N~1=oM),
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Claim 7. We have that w.h.p.
Uz*| < O (Neme0=anGHtR)  for 0 <4, j < 2log N, kg < k < 2log N. (41)

Proof. We write
i? ‘7k —_—
|U ! | - : : 1B1)7
veUi i1k

where the event B, is the that vertex v is a sk-survivor. We have

E(|UA*)) =0 (kN(1—e(1—e))™- e~ GoWrkl (1 _ g(1 —g)) U= ge”*")
= O (Ne s(-antiti+@-ob) | (49

where 0, = 1i>4, k-

Explanation: For a fixed vertex in K5, the expected number of vertices at level t of a G-W
tree rooted at this vertex will be at most (1 — (1 — ¢))’. Each vertex v in such a level has
probability Pr (B,) < Pr (L, # 0) of being a r-survivor and we use Lemma [§| to upper bound
Pr (L, # 0) by O(ece™=%). Wald’s idenity implies that the expected number of vertices in the
G-W tree rooted at a fixed vertex lying in U is thus (1 —g(1 — )"0~V . ge~e¥,

In expectation there are O(kN (1 — (1 — £))® - e~ =oM)xk0%) vertices w € K, for which
e(w) € Ay and di(w) > ki; here we have used Lemma |12| to bound the probability that a

vertex w for which d;(w) > ki has e(w) € A\k, and applied Wald’s identity as before. Applying
Wald’s idenitity a final time gives

Equation follows from the Markov inequality. (There are O(log® N) choices for i, j, k and
there is a factor el =0k > e(1=e(ko difference between the expressions in (1)), ([42).) O

Given , we proceed to bound the sum in term by term. (We wish to show that the
sum is o(7Ts).) To bound the probabilities Pr (Z; ;x > t), we will use the concentration of the
maximum of a Gaussian process around its expectation, whereas the expectations E(Z; ;)
will be simply treated with the union bound.

First we estimate the expectations.

Claim 8. Fori,7 >0,k > ko,
E(Z; ) < e */*T;. (43)

Proof. For v € U** we know that 1, has variance at most k(i + j + k& + 1) (by the definition
of U%9* the graph-distance from v to K5 is xj and x(i + k + 1) comes from the definition of
Ay. Tt then follows from in Section [2.3| and |U"/F| < O Ne=s(1=)x(i+i+k) that

E(Zi 1) < (2log(CNe sU=rGHtRN 2 (g 45 4k 1))Y2, (44)
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It follows from 2(zy)'/? < x + y that we can write

E(Zijx) < (26712 (ke(i+ j + k) /(log(CN) — e(1 = e)r(i+j + k)))"/?

O

and then B(Z; ;x) < e 2/3T; < e™0/2T;.

<

Case 2: ky < ky = logl/2 N: tree-like vertices

We first let U’ be the set of vertices v of K, for which dist(v, te)) € [ik, (i + 1)k — 1]. Given
K, and |E(K,)| ~ 2N the size of U’ is a binomial random variable with success probability
at most u™ < (1 —¢&(1 —¢))*. So, w.h.p.

(U?| < 2Ne=(1=9)F L 1og® N, for all 0 < i < 2log N.

The first term come from the Chernoff bounds and the log'® N term is there for the case
where the expectation Ne (1=9)% ig less than log? N. In which case we just use the Markov
inequality. This estimate is valid conditonal on U.

For each v € U" recall that p = (1—¢)'¢ and let p; = p*U=1.ce7%* bound the probability that
v has a descendant at level jr that is a k-survivor. Then if U* denotes the set of descendants
of such vertices v € U?, we have

E(|UY]) < |U'p; < (2Ne=(178)ir | Jog!0 N)p;.
Applying the Chernoff bounds we see that conditional on U, w.h.p.
U] < 2(2Ne *079)% 1 10g! N)p; +1og!® N
S 4Ne—8(1—8)(i+j—1)fi . e + 210g10 N.
It then follows using that for all £ < kg = logl/ 2 N that

e (14

If now 1+ j < ﬁ log N then we see that

2loglog N

log N ) (ke(i+Jj + log!/? N))1/2(log(4N) —e(l—e)r(i + j))l/Q. (45)

1/2
k/“log N < Ty

E(Z; ;r) < 5 <7
Ifi+j>-LlogN th 2(xy)1/? < d(i+i+log2N) < (i+7] _100 _
J > 155 log N then we use 2(zy)"/* < z+y and (i + j +log ) < (i+7) 1+10g1/2N ,
Applying this in gives
L) y
log/2 N e’’“log N s/
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Case 3: Non-tree-like vertices
Claim [3| says that w.h.p. there are at most log'" N non-tree-like vertices of K1, we have

E(|UL*| | Claim B) = O(log!® Ne—e(1-2)x(i+1)

and so w.h.p.
‘UZZ\}],k| — 0(10g200 Ne*E(l*E)K(iJrj)).

And then, using the bound of 2% on the diameter from [13] to bound effective resistance
in Ky, we have

E(Z ;x) = O(log(010g200 Ne—a(l—a)n(i+j)>l/2(€—1 log N)1/2)
= O((¢7 ' log Nloglog N)'/?) = o(Ty)

and we can continue as in (46)).

This completes our estimates for E(Z; ;1 ). O

We proceed to estimate the probability the probability that Z; ;, significantly exceeds its
mean.

To estimate this probability we use the Gaussian concentration for the maximum, in
Section [2.3] As already remarked, this inequality will not be affected by the conditioning and
it yields

12 12
Pr(Z,.. > E(Z t) <2 —— <2 - 4
r( gk = ( ’J’k)+ ) exp{ 2(2—1—]—1—/{:—1—1)&} exp{ 13/<¢logN} (6>

where in the last inequality we use ¢, j, k < 2log N. Thus,

~E(Zi.))
/ Pr(Z; . > t)dt S/ exp {_(t (Zijn)) }dt
t=2Ts t>Ts 13k log N

2
_ —u? _ 1/2 1/2 . (T5 - E(lek))
= +/13klog N /uZTs—E%,j,k) e “du=0 (/i log/“ N exp { Brlog N . (47)

V13klog N

Plugging into we see that

expd — (Ts — E(Zijr))? < oxpd - (1 — e 9/2)2772 <expd - (1— e 9/2)2e2 og N
13k log N - 13k log N - 26K

< N—c<52

for some universal constant ¢ > 0, as ke < 2, €2 — 1 and (1 — e%/2)? ~ §2/4.
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So,

/ Pr(Z, > t)dt < k/?log? N - N~ < N=Ty, (48)
t>Ts
Thus
2log N CIO N
/ Pr<Z’£,j,k Z t)dt S 8N7052T5 10g3 N S exp {_Tg?» + O(l) -+ log 10g N} T5
i k=0 12Ts log™® N
= o(Ty). (49)

3.2.2 Proof of Lemma 15|

To prove Lemma [15| we let W), denote the set of vertices whose distance to K5 is divisible by
k. Our goal now is to show that a general vertex v is n-close to some vertex u(v) € U, i.e.
as measured by (1, — n,); we will do this by showing that v is n-close to its H-nearest (as
measured by graph distance) ancestor y € W,; this will suffice since our choice of U ensures
that some vertex u € U has the property that y is also the n-closest ancestor of u in Wi.

(y(v2), 2(v2)) € Jia
v1 = y(v2)

W2i+1 g ng

Vg
WQi \ W2i+1

(vg, x(v9)) € J;

z(v2)

Figure 1: The sets Wy, Ji.
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We will consider sets Jo, J1, Ja, ..., Jy,, bo = [logy k] of ordered pairs of vertices in H with the
following properties (see Figure [1):

A For (vy,v9) € J;, we have that vy, vo € Wai, and that vy is a 2-descendant of v;.
B Jj is the set of all edges in H that are outside of Ko,

C For each i, we have for each 2'-survivor vy € Wai \ Wais1 belonging to my(J;), that exactly
one 2-descendant x(vy) € Wait1 of vy is paired in J;,; with its 27 -ancestor v; € Wai1.

D For all 4, mo(Ji+1) C ma(J;). (Here 7, is the projection function returning the jth coordinate
of a tuple.)

Notice that pairings Jy, J1, .. ., Ji, with these properties exist by induction; having constructed
Jo - .., Ji, we construct J;;1 by choosing pairs via properties [C| and [D} in particular, for each
2" survivor vy in mo(J;) at distance k2' from K for odd k, we choose a 2° descendant x(vs),
and add the pair (vi, z(v2)) to Ji11, where vy is the 277! ancestor of z(vy) (and the 2 ancestor
of UQ).

So we fix some choice of the pairings Jo, ..., J,. We write J; for the set of unordered pairs
which occur (in some order) in J;. The heart of our argument is the following lemma.

Lemma 16. Given any vertex v € V, let a(v) be its H-closest ancestor in W,. There is a
sequence v = Vg, U1, Vs, ..., 0 = a(v) such that:

(a) For each j =1,...,t, {vj_1,v;} € J; for some i.
(b) For each i =0,...,ly, at most 1 + 2({y — i) of the pairs {vo,v1},{vi, v}, ..., {ve_1,v:}

belong to J;.

Proof of Lemma |16, Fix a vertex v € V. Our goal is to find a chain v = vy, vy, va, ..., v =
a(v) such that its consecutive links {v;_1,v;} are all in the sets .J; and each set J; contains at
most 1+ 2(¢y — i) links. We shall do this recursively and in order to keep track of it, we need
the following parameters

d(v) =max{0<i<{ly|ve Wy}
P(v) =max {0 <i < p(v) |v € m()}.

Claim 9. Given any v, there is a vertexr a(v) such that either
(a) ¢(a(v)) > ¢(v) and (a(v),v) € Jyw), or else
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(b) ¢(a(v)) = ¢(v) and Y(a(v)) > Y(v), and there ezists z(v) such that (z(v),a(v)) and
(z(v),v) are both in Jyy)-

Proof. Consider the vertex v, and let i = ¢(v). We consider two cases:

Case 1: ¢(v) = ¢(v). In this case, by definition of ¥(v), we have that there is a vertex a(v)
such that (a(v),v) in J;. In particular, as 2° is the largest power of 2 such that v € Wy and v
is a 2" descendant of a(v), we have that a(v) € Wair1; that is, that ¢(a(v)) > i+1, as claimed.
Case 2: ¥(v) = j < ¢(v). In this case, by definition of 1(v), we have that there is a vertex
z such that (z,v) in J;. Now by Property [C| of the pairings {.J;}, z has a 2/-descendant a(v)
which is in m5(Jj41); in particular, we have that ¢ (a(v)) > j+1 > 9(v). (Note for clarity
that a(v) and v are at the same distance from K7 in Case 2 and so ¢(a(v)) = ¢(v).) And by
Property [D] a(v) € my(J;) as well, and thus (z,a(v)) € J;, completing the proof of the claim.
This concludes the proof of Claim 1, and thus also Lemma [16] n

Observe that Lemma[I6] follows from Claim [0} indeed, one can construct the claimed sequence
recursively as follows: given the partially constructed sequence v = vy, vy, ...,vs we append
either the single term a(v,) or the two terms z(v;), a(vs), according to which case of part (@)
of the claim applies, and terminate if ¢(a(vs)) = €5. Observe that a consecutive pair v,v’ in
g, ..., v; belongs (as an unordered pair) to .J; only if either

(i) v/ = a(v) and ¢(v') > ¢(v), or
(ii) v" = z(v), the term after v’ is v = a(v), and ¥ (v") > ¥ (v), or
(iii) the term before v is 0, v = 2(0), v/ = a(v), and ¥ (V") > P(0).
Since (¢(v), 1 (v)) increases lexicographically in this way along the path, we have the claimed

upper bound of 1+ 2(¢y — i) on the number of of consecutive pairs from J;. This finishes the
proof of Lemma [16] O

Now we are ready to finish the proof of Lemma (15| Thanks to Lemma (16, we can decompose
Mo = Na(w) = Z;Zl nj—1 — n; and using a chaining argument as before we get

Lo
EHJZ (IQI}ea‘;C |77v - 77a(v)|) S EH (Z(l + 2(£0 - Z))En max. |77a - 77b|>

0 {a,b}eJ;
<0 (EH (i(zo—¢+1)\/§(\/210g|Ji!)>>. (50)

Here, Eg , is expectation over the larger space of the random graph H together with the GFF,
while E, is the expectation of a fixed Gaussian Free Field and E is an expectation just over
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the random choice of H (this is to handle y/log|J;|, as we do not have a high probability
statement about |.J;| covered by APOH and we will only be able to control Eg|.J;|). The first
inequality follows from part (b) of Lemma[16]and the second inequality follows from the union
bound on the maximum, (18]).

Given (50)), our task is to bound Eg(|J;|) for 0 < i < £, and then show that the sum in (50)
is o(Ts). We have from Property [C| that

Ey(|.5]) = 0 (EHyWQiy X 21) ~0 ((5%) 3 i x 21> ~0 (%) ~o0(3)

320
. (51)
(the number of vertices on K, is €2n and p/?" bounds the expected number of vertices on level
j21.) Going back to (50)) we see that

Lo

. - En
By (sl — o) < 30— i+ 1V 2108 (53). (52

=0

Here we use that Ey(1/log|J;]) < /logE(]J;]), by Jensen’s inequality (log /2 1 is a concave
function) and (51)).

It only remains to deal with the R.H.S. of (52)). Given v € V, we let u(v) to be a closest
vertex in U to v (in the graph distance). Suppose for now that u(v) = a(v), where a(v) is
provided by Lemma

To get a high probability result, we will use the Markov inequality: if we denote Y =
E, (maxyev [Ny — Na@w)|), we have Pry (Y > (log N)/'EyY) < (log N)~"/* and this explains
the log'/* N factor in below. We check that the ratio between the terms ¢ + 1 and ¢ in

(52) equals
by —1 =i \/ 2 log 2

by—i+1 log(en) — 2ilog 2

which is strictly larger than, say % for 0 < i < /¢y —10. Thus the last 10 terms dominate this
sum and we get that w.h.p.

9200 c1/2

log¥* N
E, (max [, — fa(o)]) < O (1og1/4N x V20, [21og (ﬂ)) =0 (Og—> = o(Ty). (53)

This concludes the proof of Lemma (15 in the case u( )

= a(v
T = Nu(v) = (nv na(v)> + (na(v) - na(a(v))) + (7704 (u(v) ) by
obtain the same bound as above up to the constant 3

). If u(v) # a(v), then since
the triangle inequality we can
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