
NONLOCAL INTERACTION EQUATIONS IN ENVIRONMENTS WITH

HETEROGENEITIES AND BOUNDARIES

LIJIANG WU AND DEJAN SLEPČEV

Abstract. We study well-posedness of a class of nonlocal interaction equations with spatially

dependent mobility. We also allow for the presence of boundaries and external potentials. Such
systems lead to the study of nonlocal interaction equations on subsets M of Rd endowed with a

Riemannian metric g. We obtain conditions, relating the interaction potential and the geometry,

which imply existence, uniqueness and stability of solutions. We study the equations in the
setting of gradient flows in the space of probability measures on M endowed with Riemannian

2-Wasserstein metric.

1. Introduction

Nonlocal interaction equations serve as basic models of biological aggregation, that is collective
motion of agents under influence of long-range interactions (via sight, sound, etc.). Their basic
properties [42, 43, 32, 15, 11, 13], blowup (concentration) [10, 8, 7, 28, 30, 9], confinement [14, 5],
stability and properties of stationary states [21, 22, 18, 23, 31, 4], asymptotic behavior [12, 33, 39, 29]
and related models that incorporate further effects [6, 44] have been extensively studied. In this
paper we investigate the nonlocal interaction equation in heterogeneous environments and also allow
for the presence of domain boundaries. On the whole space (when no boundaries are present) the
equations are of the form

(1.1)
∂

∂t
µ(t, x)− div (µ(t, x)A(x)∇ (W ∗ µ(t)(x) + V (x))) = 0,

where µ describes the agent density, A is the mobility matrix (symmetric and positive definite), W
is the interaction potential and V is the external potential.

The mobility endows the subsets of Rd with Riemannian structure, which leads us to study
nonlocal interaction equations on manifolds. We study the well-posedness of the equations in the
setting of gradient flows in spaces of probability measures [2, 13]. To extend this setting to manifolds
with boundary we needed to overcome several challenges. Namely ”mass” can accumulate at the
boundary and the velocities associated to the gradient flow are not continuous at the boundary.
This also causes the problem that in general, we do not have the existence of optimal maps and
thus we have to work with optimal plans instead. Furthermore the velocities (of the gradient flows)
lack the stability properties used to prove the lower semicontinuity of the slope (see for example
Lemma 2.7 in [13]). Studying the equation on a manifold raises issues too. The curvature of the
space can cause even the quadratic potential not to be geodesically semi-convex. Thus a particular
care (and extra conditions) are needed when discussing properties like geodesic semi-convexity of
energies. Furthermore many standard tools used to study nonlocal equations rely on the linearity
of the underlying space and ability to directly identify tangent spaces at different points. Thus
these tools do not readily transfer to the manifold setting. For example the standard proof of
the characterization of the subdifferential of the interaction energy does not apply in the manifold
setting. We develop alternative proofs to handle these challenges.
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1.0.1. Motivation. The studies of the nonlocal equations on heterogeneous environments are in part
motivated by the desire to understand mechanisms which give rise to rolling swarms. Such swarms
are observed in a number biological swarms, notably the locust swarms (see [41] and references
therein). In [41], Topaz, Bernoff, Logan and Toolson propose a model which has a gradient flow
structure of an energy that combines the interaction energy and potential energy terms (to model
gravity and wind). The mobility in their system is as follows: consider the upper half plan R2

+ =
{x = (x1, x2) ∈ R2 : x2 ≥ 0}. Above the ground the mobility is constant (A(x) = I2×2), while
on the ground the mobility in the horizontal direction if zero (A(x) = diag(0, 1)). They conduct
numerical experiments and observe rolling swarms. Here we introduce a model where the change
in mobility is more gradual, and thus amenable to rigorous study. The solutions still exhibit the
rolling swarms when a smoothed out version of the mobility in [41] is considered. Moreover, rolling
forms are present if the horizontal mobility is stratified (increases with height), even if gravity is
not present. Figure 1 illustrates such a rolling swarm. The interaction potential used is among ones
considered in [31], and is given by W (z) = w(|z|) with w′(r) = tanh(3(1− r)) + 0.3. On the right,
we also show the corresponding traveling ”swarm” in the homogeneous environment. The velocities
of all particles are the same. Moreover the configuration seen in the moving coordinate frame is a
steady state of the energy E2(µ) =

∫∫
W (x− y)dµ(x)dµ(y).

� �

Figure 1. Consider gradient flows of E(µ) =
∫∫

W (x−y)dµ(x)dµ(y)+
∫
x1 dµ(x),

with respect to a stratified metric G(x) = G((x1, x2)) = diag( 1
x2
2
, 1) and Euclidean

metric. The gradient flow with respect to the stratified metric admits a rolling-wave
solution made of a finite number of particles (left). The solution is given in the
reference frame of the center of mass. The overall direction of motion is indicated by
the large arrow on top (blue). The smaller arrows indicate the velocity of particles
in the moving coordinates. The gradient flow with respect to Euclidean metric
admits a traveling wave (right). All particle velocities are the same; hence in the
moving coordinates the solution appears stationary.

1.0.2. Gradient flows in spaces of probability measures on manifolds: Background. Let us first recall
that the existence of optimal transportation maps on manifolds was first considered by McCann [35],
and subsequently generalized in [16, 20]. The regularity of these maps has been the subject of a
lot of recent activity and progress (see [24] and references therein). For our purposes however, the
results on optimal transportation plans presented in Villani’s book [45] are sufficient.
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Regarding the gradient flows there has been a significant progress in investigating the gradient
flow of entropy (i.e. the heat equation) and other internal energies on manifolds, as well spaces
with weaker geometric structure. In particular Lisini [34] considered Rd endowed with a bounded
Riemannian metric G, satisfying Λ1Id ≤ G ≤ Λ2Id, and showed the existence of solutions to the
equation

(1.2)
∂

∂t
u(t, x)− div (A(x) [∇(f(u(t, x)) + u(t, x)∇V (x)]) = 0,

on the whole space Rd with A(x) = G−1(x). In [37] Otto and Westdickenberg used an Eulerian
calculus method to give sufficient conditions for the internal and potential energy to be geodesically
convex in the space of probability measures endowed with Riemannian Wasserstein metric. In [17],
Daneri and Saveré refined the approach of [37] to include the case of geodesic semi-convexity. In
[40], Sturm gave the necessary and sufficient conditions for internal and potential energies to be
λ-geodesically convex in the space of probability measures endowed with Riemannian Wasserstein
metric. Erbar [19] used these conditions to establish well-posedness of heat equation on manifolds
in the framework of gradient flows in spaces of probability measures. Gradient flows of the internal
energy on manifolds were also discussed in in [45]. Connections with geometry and extensions to
weaker spaces have received significant attention, see [3, 26, 27, 36] and references therein. However,
to the best of our knowledge the gradient flow of nonlocal interaction energies on manifolds has not
been considered.

1.1. Description of the problem. Let M be a, possibly unbounded, d-dimensional subset of Rd
with C2 boundary. We considerM with a Riemannian metric g. Throughout the paper we assume
that (M, g) is complete under the metric induced by g and geodesically convex, that is, for any two
points in M there exists a length minimizing geodesic in M connecting them. The Riemannian
structure encodes the mobility of the agents which depends on the environment. The strength of
the interaction is not affected by the environment. To give an example, we study situations where
the properties of the terrain affect the mobility of the agents, but not their ability to see each other.
Also the density of agents at a given location is with respect to the standard Euclidean volume/area;
it is not affected by the metric g. This leads us to study equations in a mixed formulation, where the
volume and interaction are with respect to Euclidean structure, while the mobility is with respect
to the manifold structure, g.

To study the equations we use their gradient-flow structure, which enables us to write the equa-
tions in the form that at the same time applies both to discrete systems with finitely many agents
and continuum descriptions. This follows from the theory developed for studies of the nonlocal inter-
action equations in homogeneous environments [2, 13]. More precisely a configuration (distribution
of agents) is described by a measure µ supported on M. The system is assumed to be conservative
in the sense that no agents are created or leave the system during the evolution. In other words
µ(M) does not change in time. This allows us to, by renormalizing the problem if needed, assume
that configurations µ are probability measures.

The interaction is described by a symmetric interaction potential W . The corresponding inter-
action energy is

(1.3) W(µ) =
1

2

∫
M×M

W (x− y)dµ(x)dµ(y).

In addition to interaction we model the environmental influences such as gravity or food distribution
by a potential V , which defines the potential energy

(1.4) V(µ) =

∫
M
V (x)dµ(x).
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The total energy is

(1.5) E(µ) =W(µ) + V(µ).

1.1.1. Gradient flow structure. We introduce the geometry on the space of configurations first on
a formal level. In nonlocal interaction equations (with no regularizing terms) mass can accumulate
at the boundary and furthermore the velocity that describes the gradient flow can be discontinuous
at the boundary. For this reason we use a more general way to introduce the gradient flow than
is typically the case in heuristic arguments. We use a Lagrangian description of tangent vectors
at a configuration. That is tangent vectors to the space of configurations are vector fields on M.
As is standard in differential geometry of manifolds with boundary, even at x ∈ ∂M we define the
tangent space TxM to be a vector space, in other words we do allow vectors that point outside
the manifold. However since a path in the configuration space cannot take mass outside of M, not
all of the vectors in TxM are admissible as values of the tangent vector field to the path in the
configuration space. To define the set of admissible vectors for x ∈ ∂M, let T in

x M be the inward
sector, namely the closed half-space of tangent vectors that do not point outside M. That is let
T in
x M be the set of vectors ξ ∈ TxM for which there exists a differentiable curve γ : [0, δ) → M

such that γ(0) = x and γ′(0) = ξ. We note that the tangent space to ∂M , considered as a manifold,
is a subset of the inward sector: T∂M⊂ T inM.

The effort to infinitesimally move configuration µ in by a vector field v ∈ TM is∫
M
gx(v(x), v(x))dµ(x) =

∫
M
vT (x)G(x)v(x)dµ(x)

where G is the symmetric matrix which provides the metric g. However not all vector fields in
TM are admissible as tangent vectors to a path in the configuration space. Namely the tangent
vector fields must belong to the inward sector T inM. On the formal level, we consider admissible
tangent vectors to the space of configurations to be vector fields in T inM which are projections
via P of a continuous vector field in TM. This is motivated by the fact, which we later establish,
that gradient vector of energy E is given by v = Pw where w is a continuous vector field (w =
(−G−1∇(W ∗ µ+ V ))).

The differential of E in the direction v is given as the directional derivative

diff E [v] =
d

dt

∣∣∣∣
t=0

E(µt)

=
d

dt

∣∣∣∣
t=0

(
1

2

∫
M

∫
M
W (Φv[t](x)− Φv[t](y))dµ(x)dµ(y) +

∫
M
V (Φv[t](x))dµ(x)

)
=

∫
M

(∇W ∗ µ+∇V )vdµ.

Above we used that µt = Φv[t]]µ and the symmetry of W .
One can define the gradient descent of E with respect to metric given by g by defining − grad E

to be the admissible vector field v which minimizes∫
M
g(v, v)dµ+ diff E [v]

that is

(1.6)

∫
M

1

2
vTGv +∇(W ∗ µ+ V )vdµ.

To give this an interpretation of a true gradient flow we need to describe the tangent space to
the space of configurations and endow it with an inner product. The issue is that more than one
vector field can produce the same curve in the configuration space. Thus tangent vectors to the
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configuration space are defined as equivalence classes of admissible velocities which, for at least a
short time, have the same flow map. The inner product of tangent vector fields is defined as

g(v, v) = inf
ṽ

{∫
M
ṽTGṽdµ : (∃δ̃ > 0)(∀t ∈ [0, δ̃)) µt = Φṽ[t]]µ

}
.

The tangent vector field v is considered as a representative of the class of velocities which produce
the same curve. Since diff E[v] does not depend on the representative tangent vector field chosen,
we note that − grad E we defined is also a minimizer of

1

2
g (v, v) + diff E [v]

over all tangent vectors v at µ; which agrees with the standard definition of a gradient flow on a
manifold.

To determine the gradient vector we minimize the expression in (1.6). We obtain v(x) =
−G−1∇(W ∗µ+V )(x) if x is in the interior ofM and also when x ∈ ∂M and −G−1∇(W ∗µ+V )(x)
is in the interior of T in

x M. Otherwise v = Π∂M(−G−1∇(W ∗µ+V )), where Π∂M is the orthogonal
projection of TxM to Tx∂M with respect to g. Setting A = G−1 and defining

(1.7) Pξ =

{
ξ, if x 6∈ ∂M or ξ ∈ T in

x M
Π∂M(ξ), otherwise

gives that − grad E is given by the vector field

(1.8) v = P (−A∇(W ∗ µ+ V )).

The gradient flow of E is thus given by

(1.9)
∂

∂t
µ+ div(µv) = 0.

1.2. Setup and main results. We denote the usual Euclidean inner product by 〈, 〉. On manifold

(M, g), for ξ ∈ TxM we denote the norm associated to the metric g as |ξ|g =
√
gx(ξ, ξ). We denote

the Euclidean gradient and Hessian by ∇ and Hess and Riemannian gradient and Hessian by ∇M
and HessM. For a function f ∈ C0(M), we say that f is λ-geodesically convex on (M, g) if for any
x, y ∈M and any constant speed minimal geodesic γ(t) connecting x, y with γ(0) = x, γ(1) = y, we
have

f(γ(t)) ≤ (1− t)f(x) + tf(y)− λ

2
t(1− t) dist2(x, y).

Notice that if f ∈ C2(M) with HessM f(x) ≥ λG(x) for all x ∈M, then f is λ-geodesically convex
on (M, g). We make the following assumptions on manifold (M, g):

(M1) The Riemannian metric g is C2 and satisfies |ξ|2g ≥ Λ|ξ|2 for some constant Λ and all
ξ ∈ TM.

(M2) (M, g) is geodesically convex in that for all x, y ∈ M there exists a length minimizing
geodesic contained in M.

We also make the following assumptions on interaction potential W and external potential V :

(NL1) W is continuous W (0) = 0 and W (x) = W (−x).
(NL2) W (x, y) := W (x− y) is λ-geodesically convex on (M×M, g × g) for some constant λ.
(NL3) W ∈ C1(Rd) and W (x − y) ≤ C

(
1 + dist2(x, x0) + dist2(y, x0)

)
for some C > 0 and all

x, y ∈M.

(NL4) lim infdist((x,y),(x0,x0))→∞
W (x−y)

dist2(x,x0)+dist2(y,x0)
≥ 0.

(NL5) V is λ-geodesically convex of (M, g).
(NL6) V ∈ C1(M) and V (x) ≤ C

(
1 + dist2(x, x0)

)
for all x ∈M.

(NL7) lim infdist(x,x0)→∞
V (x)

dist2(x,x0)
≥ 0.
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We list some remarks and simple consequences of the conditions. One can replace the condition
(NL3) by the condition that W ∈ C1(Rd \ {0}), W has local minimum at x = 0 and satisfies the
quadratic growth condition as in [13]. In this case ∂oE = −Px (−A(x) (∂oW ∗ µ+∇V )) where
∂oW ∗ µ(x) =

∫
y 6=x∇W (x− y)dµ(y) as defined in [13].

In (NL2) and (NL5), W and V may have different constants for convexity, but we assume that
the constants are the same since we can take the minimum of the two constants if necessary.

Conditions (NL2) and (NL3) imply the following linear growth condition on ∇W ,

(1.10)
〈A(x1)∇W (x1 − y1),∇W (x1 − y1)〉+ 〈A(y1)∇W (x1 − y1),∇W (x1 − y1)〉

≤ C
(
1 + dist2(x1, x0) + dist2(y1, x0)

)
.

Similarly, (NL5) and (NL6) imply the linear growth condition on ∇V ,

(1.11) 〈A(x)∇V (x),∇V (x)〉 ≤ C(1 + dist2(x, x0)).

To see that, for ∇V we notice that

C
(
1 + dist2(x, x0) + dist2(y, x0)

)
≥ V (y)− V (x)

≥ 〈∇V (x), T (x, y)〉+
λ

2
dist2(x, y),

where T (x, y) is the tangent vector at x such that expx (T (x, y)) = y and |T (x, y)|g = dist(x, y),
which we define in (3.1) in Section 3. So

C
(
1 + dist2(x, x0) + dist2(x, y)

)
≥ 〈
√
A(x)∇V (x),

√
G(x)T (x, y)〉+

λ

2
dist2(x, y).

Note that
〈√

G(x)T (x, y),
√
G(x)T (x, y)

〉
= dist2(x, y), by taking dist(x, y) = max{1,dist(x, x0)},

we get

〈A(x)∇V (x),∇V (x)〉 ≤ C
(
1 + dist2(x, x0)

)
.

Similar calculations give the growth conditions on ∇W .

Remark 1.1. (Simple conditions for (NL2) and (NL5)) In Section 6, we give detail calculations
and precise conditions on W,V and g which guarantee λ-geodesic convexity of V and W . Here we
summarize some conclusions.

• If there exist constants c1 > 0, c2 > 0 such that the Riemannian metric g ∈ C1(M) with
c1Id ≤ G(x) ≤ 1

c1
Id , | ∂∂xkGij(x)| ≤ 1

c1
for all x ∈ M and W is twice differentiable with

|∇W (y)| ≤ c2, HessW (y) ≥ −c2Id for all y ∈M−M := {x1 − x2 : x1, x2 ∈M}, then W
is λ-geodesically convex on (M×M, g × g).

• For V , if there exists a constant c1 > 0 such that the Riemannian metric g ∈ C1(M)

satisfies c1Id ≤ G(x) ≤ 1
c1
Id,
∣∣∣ ∂
∂xk

Gij(x)
∣∣∣ ≤ 1

c1
and V ∈ C2(M) satisfies that |∇V (y)| ≤ c2,

HessV (y) ≥ −c2Id for all y ∈M, then V is λ-geodesically convex on (M, g).
• In general, the conditions on g,W, V to guarantee λ-geodesic convexity of W,V are more

stringent than in the Euclidean space. For example: assuming g ∈ C1(M) such that

c1Id ≤ G(x) ≤ 1
c1
Id,

∣∣∣ ∂
∂xk

Gij

∣∣∣ ≤ 1
c1

and HessV (y) ≥ −c2Id, HessW (y) ≥ −c2Id for some

constants c1 > 0, c2 > 0 does not imply λ-geodesic convexity of the energy. We present an
explicit example in Section 6 (Example 6.3).

For manifolds satisfying (M1) and (M2) and potentials W,V satisfying (NL1)-(NL7) we consider
(1.9) as a gradient flow of E in space of probability measures endowed with the Riemannian Wasser-
stein metric. For the general theory on gradient flows in spaces of probability measures we refer to
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[2]. Denote the space of probability measures on M by P(M) and

P2(M) =

{
µ ∈ P(M) :

∫
M

dist2(x, x0)dµ(x) <∞
}

for some x0 ∈M. Define the Riemannian 2-Wasserstein metric

(1.12) d2
W (ν, µ) = min

{∫
M×M

dist2(x, y)dγ(x, y) : γ ∈ Γ(µ, ν)

}
and the usual Euclidean 2-Wasserstein metric

d2
W,Euc(ν, µ) = min

{∫
M×M

|x− y|2dγ(x, y) : γ ∈ Γ(µ, ν)
}
,

where Γ(µ, ν) is the set of joint probability distributions onM×M with first marginal µ and second
marginal ν, i.e.,

Γ(µ, ν) = {γ ∈ P(M×M) : (π1)]γ = µ, (π2)]γ = ν} .
Denote the set of optimal transport plans between µ and ν with respect to the Riemannian 2-
Wasserstein metric dW by Γo(µ, ν), that is

(1.13) Γo(µ, ν) =

{
γ ∈ Γ(µ, ν) :

∫
M×M

dist2(x, y)dγ(x, y) = d2
W (µ, ν)

}
.

We say that a functional I : P2(M) 7→ (−∞,∞] is λ-geodesically convex if for any µ, ν ∈ P2(M)
and any constant speed geodesic γ with γ(0) = µ, γ(1) = ν, we have for any 0 ≤ t ≤ 1,

I(γ(t)) ≤ (1− t)I(µ) + tI(ν)− 1

2
λt(1− t)d2

W (µ, ν).

From calculations of Section 6, we know that if W and V are λ-geodesically convex on (M ×
M, g × g) and (M, g) respectively, then E is λ-geodesically convex on P2(M), possibly with a
different convexity constant. We now define the local slope of E with respect to the Riemannian
2-Wasserstein metric as

(1.14) |∂E|(µ) = lim sup
ν→µ

(E(µ)− E(ν))
+

dW (µ, ν)
,

where f+ = max {f, 0} is the positive part of f . For a locally absolutely continuous curve [0,+∞) 3
t 7→ µ(t) ∈ P2(M) with respect to Riemannian 2-Wasserstein metric dW , we denote its metric
derivative by

(1.15) |µ′|(t) = lim sup
s→t

dW (µ(t), µ(s))

|s− t|
.

We call a locally absolutely continuous curve [0,+∞) 3 t 7→ µ(t) ∈ P2(M) a gradient flow with
respect to the energy functional E if for a.e. t > 0,

v(t) ∈ −∂E (µ(t))

where ∂E (µ(t)) is the set of subdifferential of E at µ(t) and v(t) is the tangent velocity of the curve
at µ(t), which we define in Section 3 and Section 5.

Define the weak measure solutions to the continuity equation by

Definition 1.2. A locally absolutely continuous curve µ(t) ∈ P2(M) is a weak measure solution to
(1.9) with initial value µ0 if

P

(
−A(x)

(∫
M
∇W (x− y)dµ(t, y) +∇V (x)

))
∈ L1

loc([0,+∞);L2(g, µ(t)))
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and

∫ ∞
0

∫
M

∂φ

∂t
(t, x)dµ(t, x)dt+

∫
M
φ(0, x)dµ0(x)

= −
∫ ∞

0

∫
M

〈
∇φ(t, x), P

(
−A(x)

(∫
M
∇W (x− y)dµ(t, y) +∇V (x)

))〉
dµ(t, x)dt

(1.16)

for all φ ∈ C∞c ([0,∞)×M).

Above we consider C∞c ([0,∞)×M) to be the set of restrictions of functions in C∞c ([0,∞)×Rd)
toM. In particular we note that the values of test functions on the boundary ofM may be different
from zero. In this way the no-flux boundary conditions are imposed.

The main results of this paper are the following theorems regarding existence and stability of
gradient flows with arbitrary initial data µ0 ∈ P2(M), which we prove in Section 5,

Theorem 1.3. Assume (M1)-(M2) and (NL1)-(NL7), then for any µ0 ∈ P2(M) there exists a
locally absolutely continuous curve [0,+∞) 3 t 7→ µ(t) ∈ P2(M) such that µ(0) = µ0 and µ(t) is a
gradient flow of E with respect to the Riemannian 2-Wasserstein metric dW . µ(t) satisfies that

(1.17) |∂E|2 (µ(t)) = |µ′|2(t) =

∫
M
gx (κ(t, x), κ(t, x)) dµ(t, x)

and the energy dissipation equality, for 0 ≤ s ≤ t <∞

(1.18) E(µ(s))− E(µ(t)) =

∫ t

s

∫
M
gx (κ(r, x), κ(r, x)) dµ(r, x)dr,

where we denote κ(r, x) = −P (−A(x) (∇W ∗ µ(r)(x) +∇V (x))). Moreover, µ(t) is a weak measure
solution to (1.9) with initial data µ0.

Theorem 1.4. Suppose (M1)-(M2) and (NL1)-(NL7) hold true. Let µ1(t), µ2(t) be two gradient
flows of the energy functional E with initial data µ1

0, µ
2
0 respectively, then

(1.19) dW
(
µ1(t), µ2(t)

)
≤ e−λtdW

(
µ1

0, µ
2
0

)
for any t ≥ 0. Moreover, the gradient flow solution is characterized by the system of Evolution
Variational Inequalities:

(1.20)
1

2

d

dt
d2
W (µ(t), ν) +

λ

2
d2
W (µ(t), ν) ≤ E(ν)− E (µ(t)) ,

for a.e. t > 0 and for all ν ∈ P2(M).

1.3. Remarks and connections.

Remark 1.5. Recall that for interaction and potential energy on P2

(
Rd
)
, the gradient flow of E

with respect to the usual Euclidean 2-Wasserstein metric would be

(1.21)
∂

∂t
µ(t, x)− div

(
µ(t, x)

(∫
Rd
∇W (x− y)dµ(t, y) +∇V (x)

))
= 0.

Comparing with (1.9), we see that the projection Px is due to the boundary ofM and the mobility
A comes from geometry of M.

We define the set of admissible vector fields V at µ to be the set of L2(µ) sections of T inM. That
is

(1.22) V =

{
v :M→ TM | (∀x ∈M) v(x) ∈ T in

x M and

∫
M
gx(v(x), v(x))dµ(x) <∞

}
.
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Remark 1.6. If we assume that M has no boundary and we use the Riemannian volume form in
defining the probability measures onM, then the gradient flow of E with respect to the Riemannian
2-Wasserstein metric is

(1.23)
∂

∂t
µ(t, x) + divM

(
µ(t, x)

(∫
M
∇MW (x− y)dµ(t, y) +∇MV (x)

))
= 0,

where the divergence and gradient should be understood as the Riemannian divergence and gradient
onM, and when test against test functions, it should be integrated against the Riemannian volume
form dω(x). Write (1.23) in local coordinates, we have

∂

∂t
µ(t, x) +

1√
detG(x)

div

(
µ(t, x)

√
detG(x)A(x)

(∫
M
∇W (x− y)dµ(t, y) +∇V (x)

))
= 0,

where the divergence is the Euclidean divergence now. We note that the equation above can be
reduced to the form (1.9). Namely the measure µ̃ defined by dµ̃(t, x) =

√
detG(x)dµ(t, x) solves

∂

∂t
µ̃(t, x) + div

(
µ̃(t, x)A(x)

(∫
M
∇W (x− y)dµ̃(t, y) +∇V (x)

))
= 0,

which is exactly (1.9) without the projection P . So it is similar to consider the gradient flow of
E under the Riemannian and Euclidean volume form. Consequently, (NL1)-(NL7) also imply the
existence of the gradient flow of E with respect to the Riemannian volume form.

1.4. Outline. In Section 2, we establish some important properties of the functional E and the
manifold M, in particular the lower semicontinuity of E .

In Section 3, we give the definition of subdifferential in the manifold context, which is a natu-
ral generalization of the subdifferential in the Euclidean setting. We then identify the minimal
subdifferential of E at µ as

∂oE(µ) = −P
(
−A(x)

(∫
M
∇W (x− y)dµ(y) +∇V (x)

))
.

Section 4 is devoted to the JKO scheme. We show that the discrete scheme is well-posed and
converges to a locally absolutely continuous curve µ(t) ∈ P2(M). Together with the fact the local
slope |∂E| is lower semicontinuous, we show that the limit curve µ(t) is a curve of maximal slope.

In Section 5, we establish that the limit curve µ(t) we get from JKO scheme is actually a gradient
flow, thus a weak measure solution to the continuity equation (1.9). We then show that λ-geodesic
convexity of the functional E implies uniqueness and stability of gradient flow solutions. We remark
that the lack of existence of an appropriate flow map due to discontinuity of the velocity fields,
makes the proof of differentiability of Wasserstein metric more involved (Lemma 5.3).

In Section 6, we give some examples of manifolds (M, g), external potentials V and interaction
potentials W for which V,W are λ-geodesically convex on (M, g) and (M×M, g× g) respectively.
These imply that functional E is λ-gedesically convex on (P2 (M) , dW ).

2. Some properties of E and M

In this section, we show some basic properties of the functionals V,W and the manifold M,
which we need in the subsequent sections. First, we show the following simple relation between the
distances of two points with respect to the Euclidean and Riemannian metric:

Lemma 2.1. For any x, y ∈M,

(2.1) dist2(x, y) ≥ Λ|x− y|2.
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Proof. Assume that γ(t) is a curve which realizes the Riemannian distance between x and y and
γ(0) = x, γ(1) = y, then we have

dist2(x, y) =

∫ 1

0

gγ(t) (γ′(t), γ′(t)) dt ≥
∫ 1

0

Λ〈γ′(t), γ′(t)〉dt ≥ Λ|x− y|2.

�

We can now compare the Wasserstein distance under Euclidean and Riemannian metric,

Lemma 2.2. For two Borel probability measures µ and ν, we have

d2
W (µ, ν) ≥ Λd2

W,Euc(µ, ν).

Proof. Assume that γ is the optimal transportation plan between µ and ν, that is γ ∈ Γo(µ, ν).
Then

d2
W (µ, ν) =

∫
M×M

dist(x, y)2dγ(x, y) ≥ Λ

∫
M×M

|x− y|2dγ(x, y) ≥ Λd2
W,Euc(µ, ν).

�

Now we turn to the properties of W and V.

Proposition 2.3 (Lower semicontinuity of W). Assume (NL1)-(NL5), then

(2.2) lim inf
n→∞

W(µn) ≥ W(µ),

given that µn narrowly converge to µ and µn have uniformly bounded second moments.

Proof. By (NL4), lim inf
dist(x,x0)+dist(y,x0)→∞

W (x− y)

dist2(x, x0) + dist2(y, x0)
≥ 0, for any ε > 0, there exists

R > 0 such that
W (x− y)

dist2(x, x0) + dist2(y, x0)
> −ε

for all dist(x, x0) + dist(y, x0) ≥ R. Thus W (x − y) + ε
(
dist2(x, x0) + dist2(y, x0)

)
is continuous

and bounded from below. By Lemma 5.1.7 from [2], we know

lim inf
n→∞

∫
M×M

(
W (x− y) + ε

(
dist2(x, x0) + dist2(y, x0)

))
dµn(x)dµn(y)

≥
∫
M×M

(
W (x− y) + ε

(
dist2(x, x0) + dist2(y, x0)

))
dµ(x)dµ(y),

which implies∫
M×M

W (x− y)dµ(x)dµ(y) ≤ lim inf
n→∞

∫
M×M

W (x− y)dµn(x)dµn(y)

+ lim sup
n→∞

∫
M×M

ε
(
dist2(x, x0) + dist2(y, x0)

)
dµn(x)dµn(y)

On the other hand, ∫
M×M

ε
(
dist2(x, x0) + dist2(y, x0)

)
dµn(x)dµn(y) ≤ 2εC

where C = supn
∫
M dist2(x, x0)dµn(x) <∞. Taking ε→ 0+ yields∫
M×M

W (x− y)dµ(x)dµ(y) ≤ lim inf
n→∞

∫
M×M

W (x− y)dµn(x)dµn(y).

�
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For V the following lower semicontinuity result holds:

Proposition 2.4 (Lower semicontinuity of V). Assume (NL6)-(NL8), then

(2.3) lim inf
n→∞

V(µn) ≥ V(µ),

given that µn narrowly converge to µ and µn have uniform bounded second moments.

The proof is analogous to the proof of lower semicontinuity of W and we omit it here.

We list some properties and observations about the projection P :

• For any tangent vector field v in L2(µ), Pv ∈ V.
• In general for v, w ∈ TxM, P (c1v + c2w) 6= c1Pv + c2Pw and g(Pv,w) 6= g(v, Pw).
• For any v, w ∈ TxM, |Pv − Pw|g ≤ |v − w|g.
• P can break the continuity of the velocity field. In particular if µn and µ are absolutely

continuous curves in P2(M) and vn and v are corresponding velocities such that µn(t) con-
verges narrowly to µ(t) then in the Euclidean setting (with no boundary) vndµn converges
weakly to vdµ, as was shown in Lemma 2.7 from [13]. However this statement does not
hold when boundary is present. Thus we need to use a different method to show the lower
semicontinuity of the local slope |∂E|, which we do that in Theorem 4.4.

• Even though P is non-linear and breaks continuity, we still have that: The function M×
Rd 3 (x, ξ) 7→ gx (Pxξ, Pxξ) is lower semicontinuous and for all x ∈ M, the function
Rd 3 ξ 7→ gx (Pxξ, Pxξ) is convex. Refer to Proposition 4.6 for the proof.

3. Minimal subdifferential of E

In this section, we give the definition of subdifferetial in the Riemannian geometric setting, which
is the natural generalization of the notion in the Euclidean setting. We then identify the minimal
subdifferential of E as ∂oE(µ) = −P (−A (∇W ∗ µ+∇V )) and show that it realizes the local slope
in the sense that |∂E|(µ) = ‖∂oE(µ)‖L2(g,µ).

In order to define the subdifferential of a functional in the Riemannian setting, we introduce the
exponential map on the space of configurations first. Let expx : TxM → M be the exponential
map on M. It is understood that the domain of expx is actually a subset of TxM for which the
geodesics of appropriate length and direction exists. We note that if x is in the interior of M then
the domain of expx is an open neighborhood of 0, while if x ∈ ∂M then the domain of expx a subset
of T in

x M and may not be an open neighborhood of 0 even in T in
x M. For example if M = B(0, 1),

g is the Euclidean metric, x = (1, 0), and ξ = (0, 1), then ξ ∈ T in
x M, but exp(tξ) is not defined

for any t 6= 0. This required us to modify a number of standard arguments so that we do not use
the exponential map to generate geodesics. We only use the exponential map to parameterize the
geodesics which we know to exist.

By our assumptions on (M, g) we know that there exists a length minimizing geodesics connecting
any two points. The problem is that such geodesics may not be unique. However, by Aumann
measurable selection theorem, see [25], geodesics can be selected in a measurable way. More precisely
there exists a measurable function T :M×M→ T inM such that for all x, y ∈M

(3.1) expx(T (x, y)) = y

and such that γ(t) = expx (tT (x, y)), t ∈ [0, 1] gives a minimal geodesic connecting x and y. Note
that gx (T (x, y), T (x, y)) = dist2(x, y). Unless otherwise specified, in the remainder of the paper, by
T we denote an arbitrary measurable function satisfying the above.

Definition 3.1 (Subdifferential). Fix µ ∈ P2(M), a vector field ξ ∈ L2(g, µ) is said to be an element
of the subdifferential of E at µ, and we denote as ξ ∈ ∂E(µ), if there exists T :M×M→ TM as
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in (3.1) such that

(3.2) E(ν)− E(µ) ≥ inf
γ∈Γo(µ,ν)

∫
M×M

gx (ξ(x), T (x, y)) dγ(x, y) + o (dW (µ, ν)) ,

where Γo(µ, ν) is the optimal plan between µ and ν as defined in (1.13).

We denote the element in ∂E(µ) with minimal L2(g, µ) norm by ∂oE(µ).

Remark 3.2. Notice that Definition 3.1 reduces to the usual definition of subdifferential when g is
the Euclidean metric. It is straightforward calculation to show that if ξ ∈ ∂E(µ) then

(3.3) |∂E|(µ) ≤ ‖ξ‖L2(g,µ),

where ‖ξ‖2L2(g,µ) =
∫
M gx (ξ(x), ξ(x)) dµ(x).

We now give the following main theorem of this section regarding the existence of subdifferential
and the minimal L2(g, µ) element of the subdifferential.

Theorem 3.3. Assume (M1)-(M2), (NL1)-(NL7) hold, then ∂E(µ) 6= ∅ for any µ ∈ P2(M).
Moreover the vector field

(3.4) κ(x) = −Px
(
−A(x)

(∫
M
∇W (x− y)dµ(y) +∇V (x)

))
is the unique element of minimal L2(g, µ)-norm in ∂E(µ) with

(3.5) |∂E|(µ) = ‖κ‖L2(g,µ).

Remark 3.4. To consider interaction potentials W ∈ C1(Rd \ {0}), one needs to notice that
0 ∈ ∂W (0). The proof of the above theorem can be used to show that the minimal subdifferential
is

(3.6) ∂oE(µ) = −P (−A (∂oW ∗ µ+∇V )) ,

where ∂oW (x) = ∇W (x) if x 6= 0 and ∂oW (0) = 0.

We also remark that while in the definition of subdifferential Definition 3.1, we only require
(3.2) to hold for some measurable choice of T (x, y) and infimum over γ ∈ Γo(µ, ν), in the proof we
actually show that for any γ ∈ Γo(µ, ν) and any measurable selection T (x, y), (3.2) holds true with
that particular choice of T (x, y) and γ.

Before proving the theorem, we need the following

Lemma 3.5. Let ξ be a vector field in V such that there exists t0 > 0 for which expx (tξ(x)) ∈ M
for all 0 ≤ t ≤ t0 and x ∈M. Then

(3.7) lim sup
t→0+

dW

(
(exp(tξ))] µ, µ

)
t

≤ ‖ξ‖L2(g,µ),

where we denote exp(tξ)(x) = expx (tξ(x)).

Proof of Lemma. For 0 ≤ t < t0, notice that (id, exp(tξ))] µ ∈ Γ
(
µ, (exp(tξ))] µ

)
, so

d2
W

(
µ, (exp(tξ))] µ

)
≤
∫
M

dist2 (x, expx (tξ(x))) dµ(x)

≤
∫
M
t2gx (ξ(x), ξ(x)) dµ(x).
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Thus

lim sup
t→0+

d2
W

(
µ, (exp(tξ))] µ

)
t2

≤
∫
M
gx (ξ(x), ξ(x)) dµ(x).

�

We now prove the theorem.

Proof of Theorem. We divide the proof into two steps.
Step 1. κ ∈ ∂E(µ). We need to prove that∫

M
gx (κ(x), κ(x)) dµ(x) <∞

and

E(ν)− E(µ) ≥ inf
γ∈Γo(µ,ν)

∫
M×M

gx (κ(x), T (x, y)) dγ(x, y) + o
(
dW (µ, ν)

)
.

To prove the first claim, note that∫
M
g (κ(x), κ(x)) dµ(x)

≤
∫
M
g

(
A(x)

(∫
M
∇W (x− y)dµ(y) +∇V (x)

)
, A(x)

(∫
M
∇W (x− y)dµ(y) +∇V (x)

))
dµ(x)

=

∫
M

〈
A(x)

(∫
M
∇W (x− y)dµ(y) +∇V (x)

)
,

∫
M
∇W (x− y)dµ(y) +∇V (x)

〉
dµ(x)

≤
∫
M×M

〈A(x) (∇W (x− y) +∇V (x)) ,∇W (x− y) +∇V (x)〉 dµ(y)dµ(x)

≤
∫
M×M

C
(
1 + dist2(x, x0) + dist2(y, x0)

)
dµ(x)dµ(y)

<∞.

The first inequality above comes from the fact that projection does not increase the length of a
vector, while the third inequality holds because ∇W and ∇V have liner growth, as shown in (1.10)
and (1.11). The last inequality holds since µ has finite second moment.

To prove the second claim let µ, ν ∈ P2(M), γ ∈ Γo(µ, ν) be any optimal plan and T (x, y) be as
in (3.1). Due to λ-convexity of W and V , the function

f(t) =
W
(
expx1

(tT (x1, y1))− expx2
(tT (x2, y2))

)
−W (x1 − x2)

2t
(3.8)

+
2V
(
expx2

(tT (x2, y2))
)
− 2V (x2)

2t
− λ

2
tdist2(x2, y2)− λ

2
tdist2 ((x1, x2), (y1, y2))

is non-decreasing on [0, 1], so f(1) ≥ lim inft→0+ f(t). We remark here that the fact that the curve
t 7→ expx1

(tT (x1, y1)) − expx2
(tT (x2, y2)) is no longer a geodesic on (M, g) is the reason why we

need to assume (NL2) of W , i.e. the λ-geodesic convexity of (x, y) ∈M×M 7→W (x, y) = W (x−y)
instead of λ-geodesic convexity of x ∈M 7→W (x) as in the Euclidean setting. Note that

lim
t→0+

[
W
(
expx1

(tT (x1, y1))− expx2
(tT (x2, y2))

)
−W (x1 − x2)

2t
− λ

2
tdist2 ((x1, x2), (y1, y2))

]

=
1

2
〈∇W (x1 − x2), T (x1, y1)− T (x2, y2)〉 ,
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and

lim
t→0+

[
V
(
expx2

(tT (x2, y2))
)
− V (x2)

t
− λ

2
tdist2(x2, y2)

]
= 〈∇V (x2), T (x2, y2)〉 .

Then integrating over dγ(x1, y1)dγ(x2, y2) gives

E(ν)− E(µ) =

∫
M×M

∫
M×M

W (y1 − y2) + 2V (y2)−W (x1 − x2)− 2V (x2)

2
dγ(x1, y1)dγ(x2, y2)

≥
∫
M×M

∫
M×M

[
1

2
〈∇W (x1 − x2), T (x1, y1)− T (x2, y2)〉+ 〈∇V (x2), T (x2, y2)〉

]
dγ(x1, y1)dγ(x2, y2)

+ o (dW (µ, ν))

=

∫
M×M

∫
M×M

〈∇W (x2 − x1) +∇V (x2), T (x2, y2)〉 dγ(x1, y1)dγ(x2, y2) + o (dW (µ, ν))

=

∫
M×M

〈∫
M
∇W (x2 − x1)dµ(x1) +∇V (x2), T (x2, y2)

〉
dγ(x2, y2) + o (dW (µ, ν))

=

∫
M×M

gx2

(
A(x2)

(∫
M
∇W (x2 − x1)dµ(x1) +∇V (x2)

)
, T (x2, y2)

)
dγ(x2, y2) + o (dW (µ, ν))

≥−
∫
M×M

gx2

(
Px2

(
−A(x2)

(∫
M
∇W (x2 − x1)dµ(x1) +∇V (x2)

))
, T (x2, y2)

)
dγ(x2, y2)

+ o (dW (µ, ν))

=

∫
M×M

gx2
(κ(x2), T (x2, y2)) dγ(x2, y2) + o (dW (µ, ν))

where the second inequality comes from the fact that: If x2 6∈ ∂M, by definition of Px2 the inequality
becomes an equality while if x2 ∈ ∂M, then by definition of Px2

gx2

(
A(x2)

(∫
M
∇W (x2 − x1)dµ(x1) +∇V (x2)

)
, ξ

)
≥gx2

(
−Px2

(
−A(x2)

(∫
M
∇W (x2 − x1)dµ(x1) +∇V (x2)

))
, ξ

)

for any ξ ∈ T in
x2
M , and we notice that T (x2, y2) ∈ T in

x2
M .

Step 2. κ is the element of minimal L2(g, µ)-norm in ∂E(µ). By Remark 3.2, we only need to
show ‖κ‖L2(g,µ) ≤ |∂E|(µ). Consider first a vector field ξ as in Lemma 3.5, i.e. ξ ∈ L2(g, µ) and
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expx (tξ(x)) ∈M for all x ∈M and 0 ≤ t ≤ t0,

lim
t→0+

E
(

exp (tξ)] µ
)
− E(µ)

t

= lim
t→0+

1

2

∫
M×M

W (expx (tξ(x))− expz (tξ(z))) + 2V (expx (tξ(x)))−W (x− z)− 2V (x)

t
dµ(x)dµ(z)

=
1

2

∫
M×M

〈∇W (x− z), ξ(x)− ξ(z)〉+ 2 〈∇V (x), ξ(x)〉 dµ(x)dµ(z)

=

∫
M

〈∫
M
∇W (x− z)dµ(z) +∇V (x), ξ(x)

〉
dµ(x)

=

∫
M

〈
A(x)

(∫
M
∇W (x− z)dµ(z) +∇V (x)

)
, G(x)ξ(x)

〉
dµ(x)

=

∫
M
gx

(
A(x)

(∫
M
∇W (x− y)dµ(y) +∇V (x)

)
, ξ(x)

)
dµ(x)

given that we can prove the second equality. By the λ-convexity of W ,

t∇W (x− z) · (ξ(x)− ξ(z)) +
λ

2
t2 (g (ξ(x), ξ(x)) + g (ξ(z), ξ(z)))

≤W (expx (tξ(x))− expz (tξ(z)))−W (x− z)

≤ ∇W (expx (tξ(x))− expz (tξ(z))) t
d

dt
(expx (tξ(x))− expz (tξ(z)))

− λ

2
t2 (g (ξ(x), ξ(x)) + g (ξ(z), ξ(z))) .

Then by linear growth condition on ∇W (1.10), we know that∣∣∣∣t∇W (x− z) · (ξ(x)− ξ(z)) +
λ

2
t2 (g (ξ(x), ξ(x)) + g (ξ(z), ξ(z)))

∣∣∣∣
≤ C (1 + dist(x, x0) + dist(z, x0)) t

(
g (ξ(x), ξ(x))

1
2 + g (ξ(z), ξ(z))

1
2

)
+ |λ|t2 (g (ξ(x), ξ(x)) + g (ξ(z), ξ(z))) .

Similarly∣∣∣∇W (expx (tξ(x))− expz (tξ(z))) t
d

dt
(expx (tξ(x))− expz (tξ(z)))

− λ

2
t2 (g (ξ(x), ξ(x)) + g (ξ(z), ξ(z)))

∣∣∣
≤C (1 + dist (expx (tξ(x)) , x0) + dist (expz (tξ(z)) , x0)) t

(
g (ξ(x), ξ(x))

1
2 + g (ξ(z), ξ(z))

1
2

)
+ |λ|t2 (g (ξ(x), ξ(x)) + g (ξ(z), ξ(z)))

≤C
(

1 + dist(x, x0) + dist(z, x0) + tg (ξ(x), ξ(x))
1
2 + tg (ξ(z), ξ(z))

1
2

)
t
(
g (ξ(x), ξ(x))

1
2 + g (ξ(z), ξ(z))

1
2

)
+ |λ|t2 (g (ξ(x), ξ(x)) + g (ξ(z), ξ(z))) .

Then for V ,

(∇V (x), tξ(x)) + λt2g (ξ(x), ξ(x))

≤ V (expx (tξ(x)))− V (x)

≤ ∇V (expx (tξ(x))) t
d

dt
expx (tξ(x))− λt2g (ξ(x), ξ(x)) .
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By similar arguments, we have∣∣(∇V (x), tξ(x)) + λt2g (ξ(x), ξ(x))
∣∣ ≤ C(1 + dist(x, x0))tg (ξ(x), ξ(x))

1
2 + |λ|t2g (ξ(x), ξ(x))

and ∣∣∣∣∇V (expx (tξ(x))) t
d

dt
expx (tξ(x))− λt2g (ξ(x), ξ(x))

∣∣∣∣
≤
(

1 + dist(x, x0) + tg (ξ(x), ξ(x))
1
2

)
tg (ξ(x), ξ(x))

1
2 + |λ|t2g (ξ(x), ξ(x)) .

Dividing by t and noting that
∫
M gx (ξ(x), ξ(x)) dµ(x) < ∞ and

∫
M dist2(x, x0)dµ(x) < ∞ gives

the second equality by Lebesgue’s dominated convergence theorem.

By the definition of local slope (1.14) and Lemma 3.5

|∂E|(µ)‖ξ‖L2(g,µ) ≥ |∂E|(µ) lim inf
t→0+

dW (exp(tξ))] µ, µ)

t
(3.9)

≥ −
∫
M

〈
A(x)

(∫
M
∇W (x− z)dµ(z) +∇V (x)

)
, G(x)ξ(x)

〉
dµ(x)

=

∫
M
gx

(
−A(x)

(∫
M
∇W (x− z)dµ(z) +∇V (x)

)
, ξ(x)

)
dµ(x).

We need to plug ξ = −κ into (3.9), however it is possible that there exists x ∈ ∂M, such that
there exists no t0 > 0 with expx(−tκ(x)) ∈ M for all 0 ≤ t ≤ t0. Thus we perform the following
approximation scheme. For n ∈ N, denote Mn = {x ∈ M : dist(x, ∂M) > 1

n}, B(n) = {x ∈ M :
dist(x, x0) < n} and n(x) the outward normal direction with respect to the Rimmannian metric at
x ∈ ∂M. Define

ξn(x) =


−κ(x) if x ∈ Bn ∩Mn,

−κ(x)− 1
nn(x) if x ∈ Bn ∩ ∂M,

0 Otherwise.

We claim that ξn satisfies the conditions in Lemma 3.5 and ξn converges to −κ in L2(g, µ). Indeed, it
is straightforward to see that ξn ∈ L2(g, µ) and ξn converges to −κ in L2(g, µ). Since κ is continuous
in Mn and B(n) b M, we have ‖κ‖L∞(g,µ) ≤ C(n) on B(n) ∩Mn and thus for 0 ≤ t ≤ 1

nC(n) ,

expx (tξn(x)) ∈ M for x ∈ B(n) ∩Mn. For x ∈ B(n) ∩ ∂M, we know gx (ξn(x), n(x)) ≤ − 1
n and

B(n) ∩ ∂M is compact, so there exists t̃(n) such that expx (tξn(x)) ∈ M for all 0 ≤ t ≤ t̃(n) and

x ∈ B(n) ∩ ∂M. We can take t0 = min{ 1
nC(n) , t̃(n)} and expx (tξn(x)) ∈ M for 0 ≤ t ≤ t0 as

claimed. Using ξn in (3.9) yields

(3.10) |∂E|(µ)‖ξn‖L2(g,µ) ≥
∫
M
gx

(
−A(x)

(∫
M
∇W (x− z)dµ(z) +∇V (x)

)
, ξn(x)

)
dµ(x).

Since gx(ξ(x), P ξ(x)) = gx(Pξ(x), P ξ(x)), taking n→∞ then gives

|∂E|(µ)‖κ‖L2(g,µ) ≥
∫
M
gx

(
−A(x)

(∫
M
∇W (x− z)dµ(z) +∇V (x)

)
,−κ(x)

)
dµ(x)

=

∫
M
gx (κ(x), κ(x)) dµ(x).

Hence

(3.11) ‖κ‖L2(g,µ) ≤ |∂E|(µ),

which completes the proof. �
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4. JKO scheme: existence of minimizers and convergence

In this section, we give the definition of curves of maximal slope and show their existence.
The general framework, developed in [2], uses the JKO scheme, which we describe below. We
verify the conditions on the functional E needed to apply the general existence theorem of [2] to
get a curve of maximal slope with respect to the relaxed local slope |∂−E|. In order to show
that the limit curve is a curve of maximal slope with respect to |∂E|, we proceed to prove that

P2(M) 3 µ 7→
∫ t
s
|∂E|2 (µ(r)) dr is lower semicontinuous with respect to narrow convergence of

probability measures.
We start with the definition of curves of maximal slope.

Definition 4.1. A locally absolutely continuous curve [0,∞) 3 t 7→ µ(t) ∈ P2(M) is a curve of
maximal slope for the functional E with respect to upper gradient g, if E ◦ µ is L 1-a.e. equal to a
non-increasing function ϕ and

(4.1) ϕ′(t) ≤ −1

2
|µ′|2(t)− 1

2
g2 (µ(t))

for a.e t ∈ (0,∞). Here |µ′(t)| is the metric derivative defined in (1.15).

The general strategy of constructing curves of maximal slope is to use the JKO scheme, which
we now describe.

Fix a time step τ > 0 and define µ0
τ = µ0 where µ0 are the initial data. Then define iteratively

(4.2) µk+1
τ ∈ argminµ∈P2(M)

[
d2
W (µ, µkτ )

2τ
+ E(µ)

]
.

We denote the piecewise constant interpolation by µτ . To be more precise, µτ (0) = µ0 and

(4.3) µτ (t) = µk+1
τ ,

if kτ < t ≤ (k + 1)τ for k ≥ 0. The strategy is to show that there exists a subsequence τn → 0,
such that µ̃n = µτn converges narrowly to a curve of maximal slope µ. Here in order to show the
well-posedness of discrete scheme (4.2) and the convergence of the piecewise-constant interpolation
to a curve a maximal slope, we apply the general theory developed in [2]. We now state and check
that the conditions for the general theory to apply hold for our energy functional E .

• Lower semicontinuity. E is sequentially lower semicontinuous with respect to narrow con-
vergence of probability measures on dW bounded sets

supm,n dW (µm, µn) <∞, µn converges narrowly to µ ⇒ lim infn→∞ E(µn) ≥ E(µ).

In Section 2 we already show that E is lower semicontinuous with respect to narrow conver-
gence of probability measures with uniformly bounded second moments.

• Coercivity. There exists τ∗ > 0 and µ∗ ∈ P2(M) such that

inf
µ∈P2(M)

{
E(µ) +

1

2τ∗
d2
W (µ, µ∗)

}
> −∞.
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To prove coercivity, let T be as in (3.1) and consider x0 ∈M arbitrary. Then

E(µ) +
1

2τ
d2
W (µ, δx0

)

=

∫
M
V (x)dµ(x) +

1

2

∫
M×M

W (x− y)dµ(x)dµ(y) +
1

2τ

∫
M

dist2(x, x0)dµ(x)

≥
∫
M

(
V (x0) + 〈∇V, T (x0, x)〉+

λ

2
dist2(x, x0)

)
dµ(x)

+

∫
M×M

λ

2
dist2 ((x, y), (x0, x0)) dµ(x)dµ(y) +

1

2τ

∫
M

dist2(x, x0)dµ(x)

=

∫
M

((
3λ

2
+

1

2τ

)
dist2(x0, x) + 〈∇V (x0), T (x0, x)〉+ V (x0)

)
dµ(x).

Notice that 〈∇V (x0), T (x0, x)〉 = gx0
(A(x0)∇V (x0), T (x0, x)) and

gx0
(T (x0, x), T (x0, x)) = dist2(x0, x),

so for any τ > 0 such that 3λ
2 + 1

2τ > 0, i.e. for 3λ−τ < 1, we have

inf
µ∈P2(M)

{
E(µ) +

1

2τ
d2
W (µ, δx0

)

}
> −∞,

which implies coercivity for E .
• Compactness. Every dW bounded set contained in a sublevel of E is relatively compact with

respect to the narrow convergence of probability measures

for (µn) ⊂ P2(M) with supn E(µn) <∞ and supm,n dW (µm, µn) <∞,
there exists a narrowly convergent subsequence of (µn).

To check Compactness condition, note that by Prokhorov’s theorem, any sequence (µn) ⊂
P2(M) such that supm,n dW (µm, µn) <∞, µn has a narrowly convergent subsequence.

Thus we can apply Corollary 2.2.2 from [2] to show the existence of minimizers of (4.2).

Lemma 4.2 (Existence of the discrete solutions). Suppose (M, g) satisfies assumptions (M1)-(M2)
and W,V satisfy (NL1)-(NL7). Then there exists τ0 > 0 depending only on V,W such that for all
0 < τ < τ0 and given ν ∈ P2(M), there exists µ∞ ∈ P2(M) such that

(4.4) E(µ∞) +
1

2τ
d2
W (ν, µ∞) = inf

µ∈P2(M)

{
E(µ) +

1

2τ
d2
W (ν, µ)

}
.

Proposition 2.2.3 from [2] provides the convergence of the scheme.

Proposition 4.3 (Compactness). There exist a limit curve µ ∈ AC2
loc ([0,∞);P2(M)) and a se-

quence τn → 0+such that the piecewise constant interpolate µ̃n = µτn defined as in (4.3) satisfies
that µ̃n(t) converges narrowly to µ(t) for any t ∈ [0,∞).

Note that by Lemma 3.2.2 from [2], we actually have a uniform bound on the second moments
of µ̃n:

sup
n,τ

∫
M

dist2(x, x0)dµτn(x) <∞.

By the general theory developed in [2], the limit curve µ(t) is a curve of maximal slope with
respect to upper gradient |∂−E|, defined as

(4.5) |∂−E|(µ) = inf

{
lim inf
n→∞

|∂E|(µn) : µn ⇀ µ, sup
n
{dW (µn, µ), E(µn)} <∞

}
,
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where µn ⇀ µ means that µn converges narrowly to µ. We still need to prove the lower semicon-
tinuity of the slope to show that µ( · ) is a curve of maximal slope with respect to |∂E| instead of
|∂−E|. We denote by κn(t) the minimal subdifferential of E at µ̃n(t). Section 3 gives

(4.6) κn(t, x) = −Px
(
−A(x)

(∫
M
∇W (x− y)dµ̃n(t, y) +∇V (x)

))
.

Theorem 4.4 (Lower semicontinuity of the slope). Assume that (M1)-(M2) and (NL1)-(NL7) hold
true, then the metric slope of the piecewise constant interpolate µ̃n satisfies that for a.e. t > 0,

lim inf
n→∞

|∂E|2(µ̃n(t)) ≥ |∂E|2(µ(t)).

Remark 4.5. By Fatou’s lemma, for any T > 0

lim inf
n→∞

∫ T

0

|∂E|2 (µ̃n(t)) dt ≥
∫ T

0

lim inf
n→∞

|∂E|2(µ̃n(t))dt

≥
∫ T

0

|∂E|2(µ(t))dt

In the case ∂M = ∅ and W ∈ C1(Rd \ {0}), the lower semicontinuity of local slope can be proved
as in Lemma 2.7 from [13]. In the proof bellow, we allow that ∂M 6= ∅.

In the case ∂M 6= ∅, the argument in [13] does not work because the projection P breaks the
continuity and thus κndµn does not necessarily converge narrowly to κdµ. However, the following
useful observation holds:

Proposition 4.6. The function M×Rd 3 (x, ξ) 7→ gx (Pxξ, Pxξ) is lower semicontinuous. For all
x ∈M, the function Rd 3 ξ 7→ gx (Pxξ, Pxξ) is convex.

Proof of Proposition. We first prove the lower semincontinuity property. Assume limk→∞ xk = x
and limk→∞ ξk = ξ. If

{
xk
}∞
k=1
⊂ M̊ then

gx (Pξ, Pξ) ≤ gx(ξ, ξ)

= lim
k→∞

gxk
(
ξk, ξk

)
= lim
k→∞

gxk
(
Pξk, P ξk

)
.

So lower semicontinuity is verified for x ∈ M̊, since for such x and any limk→∞ xk = x, xk ∈ M̊
for all k large enough. For x ∈ ∂M, due to the fact above, it is enough to consider the case that
xk ∈ ∂M for all k. Let {e1, ..., ed} be a continuous orthonormal basis of TM near x, such that on
∂M, ed = ~n where ~n is the unit outer normal vector with respect to the inner product g. We expand

ξk in this basis: ξk =
∑d
i ξ

k
i ei(x

k). Then Pξk =
∑d−1
i=1 ξ

k
i ei(x

k) +
(
ξkd
)−
ed(x

k) for xk ∈ ∂M. By

the continuity of g and M, we have limk→∞ ξki = ξi for all 1 ≤ i ≤ d, thus

lim
k→∞

gxk
(
Pξk, P ξk

)
= lim
k→∞

[
d−1∑
i=1

(
ξki
)2

+
((
ξkd
)−)2

]

=

d−1∑
i=1

ξ2
i +

(
ξ−d
)2

= gx (Pξ, Pξ) .

We now turn to the convexity property. Similarly for x ∈ M̊, since Pxξ = ξ for all ξ ∈ Rd, it is
straightforward to check that ξ 7→ gx (ξ, ξ) is convex. So we assume x ∈ ∂M. For any ξ1, ξ2 ∈ Rd,
and 0 ≤ θ ≤ 1 we need to show that

gx
(
Px
(
(1− θ) ξ1 + θξ2

))
≤ (1− θ)gx(Pxξ

1, Pxξ
1) + θgx(Pxξ

2, Pxξ
2).
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Note that we only need to check that for the last coordinate, that is we only need to prove that((
(1− θ) ξ1

d + θξ2
d

)−)2

≤ (1− θ)
((
ξ1
d

)−)2

+ θ
((
ξ2
d

)−)2

,

which is a direct consequence of the fact that f(x) = (x−)2 is a convex function. The proposition
is proved. �

We now start to prove the lower semicontinuity of local slope

Proof of Theorem. Since κ is the minimal subdifferential, be Remark 3.2 and Theorem 3.3, we only
need to prove

lim inf
n→∞

∫
M
g (κn(t, x), κn(t, x)) dµ̃n(t, x) ≥

∫
M
g (κ(t, x), κ(t, x)) dµ(t, x).

Note that the non-negative function M× Rd 3 (x, ξ) 7→ gx (Pxξ, Pxξ) satisfies the lower semiconti-
nuity and convexity property. By Proposition 6.42 from [25], we know that for all (x, ξ) ∈M×Rd,

gx (Pxξ, Pxξ) = sup
i∈N
{ai(x) + bi(x)ξ}

for some bounded continuous functions ai, bi. A similar argument to one in Lemma 2.7 of [13] gives
that ∇W ∗ µn converges narrowly to ∇W ∗ µ. Thus we have for any i ∈ N,

lim inf
n→∞

∫
M
gx (κn(t, x), κn(t, x)) dµ̃n(t, x)

= lim inf
n→∞

∫
M
gx (P (−∇W ∗ µ̃n(t, x)−∇V (x)) , P (−∇W ∗ µ̃n(t, x)−∇V (x))) dµ̃n(t, x)

≥ lim inf
n→∞

∫
M

(ai(x)− bi(x) (∇W ∗ µ̃n(t)(x) +∇V (x))) dµ̃n(t, x)

=

∫
M

(ai(x)− bi(x) (∇W ∗ µ(t)(x) +∇V (x))) dµ(t, x).

Taking supremum over i ∈ N and using Lebesgue’s monotone convergence theorem then gives

lim inf
n→∞

∫
M
g (κn(t, x), κn(t, x)) dµ̃n(t, x) ≥ sup

i∈N

∫
M

(ai(x)− bi(x) (∇W ∗ µ(t)(x) +∇V (x))) dµ(t, x)

=

∫
M
g (κ(t, x), κ(t, x)) dµ(t, x).

�

We can now give the main result of this section.

Theorem 4.7 (Existence of curves of maximal slope). Suppose (M, g) satisfies (M1)-(M2) and
W,V satisfy (NL1)-(NL7). Then there exists at least one curve of maximal slope for the functional
E, i.e., there exists µ ∈ ACloc([0,∞);P2(M)) such that for all T ≥ 0

(4.7) E(µ0) ≥ E(µ(T )) +
1

2

∫ T

0

|µ′|2 (t)dt+
1

2

∫ T

0

|∂E|2 (µ(t)) dt.

Proof. We know that µ 7→ E(µ) and µ 7→
∫ T

0
|∂E|2 (µ(t)) dt are lower semicontinuous with respect

to the narrow convergence. Thus we only need to prove

lim inf
n→∞

∫ T

0

|(µ̃n)′|2 (t)dt ≥
∫ T

0

|µ′|2 (t)dt,

which comes from estimates of JKO scheme in general metric space, see for example, Corollary 3.3.4
from [2]. �
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5. Existence of the gradient flow

In this section, we first show that locally absolutely continuous curves in P2(M) with respect
to dW are solutions to continuity equations in the sense of distributions. Furthermore velocities
are in L2(g, µ) and belonging to the tangent space to the set of configurations. We then prove the
existence of gradient flow and the stability property of the gradient flow.

Lemma 5.1. Let µ(t) be an absolutely continuous curve in P2(M) and γht ∈ Γo (µ(t), µ(t+ h)) be
an optimal plan between µ(t) and µ(t + h). Denote the disintegration of γht with respect to µ(t) by

νhx , then
∫
M

T (x,y)
h dνhx (y) converges weakly in L2 (g, µ(t)) to a vector field v(t, x) for a.e. t > 0 such

that µ(t) satisfy the continuity equation

(5.1)
∂

∂t
µ(t, x) + div (µ(t, x)v(t, x)) = 0

in the sense of distributions, i.e., test against φ ∈ C∞c ([0,∞)×M), and

(5.2)

∫
M
g (v(t, x), v(t, x)) dµ(t, x) = |µ′|2 (t)

for a.e. t > 0.

Proof. For the existence of a unique minimal L2 (g, µ(t))-norm vector field v(t) such that µ(t)
satisfies (5.1) and (5.2), we refer to Theorem 2.29 from [1]. We now show that such v is given by

the limit of
∫
M

T (x,y)
h dνhx (y). Note that∫

M
gx

(∫
M

T (x, y)

h
dνhx (y),

∫
M

T (x, y)

h
dνhx (y)

)
dµ(t, x) ≤

∫
M×M

gx

(
T (x, y)

h
,
T (x, y)

h

)
dνhx (y)dµ(t, x)

=

∫
M×M

gx

(
T (x, y)

h
,
T (x, y)

h

)
dγht (x, y)

=
1

h2
d2
W (µ(t), µ(t+ h)) .

Since µ(t) is absolutely continuous, we know that 1
h2 d

2
W (µ(t), µ(t+ h)) ≤ C uniformly in h for some

constant C. Thus, uniformly in h, we have∫
M
gx

(∫
M

T (x, y)

h
dνhx (y),

∫
M

T (x, y)

h
dνhx (y)

)
dµ(t, x) ≤ C.

So there exist a vector field ṽ(t, x) and a sequence {hn} converging to 0, such that
∫
M

T (x,y)
hn

dνhnx (y)

converges weakly in L2(g, µ(t, x)) to ṽ. We claim that

lim
n→∞

∫
M φ(t, x)dµ(t+ hn, x)−

∫
M φ(t, x)dµ(t, x)

hn
=

∫
M
gx (∇φ(t, x), ṽ(t, x)) dµ(t, x),

for a.e. t > 0 and for any φ ∈ C∞c ([0,∞)× Rn).
Indeed, for the left-hand side we know,∫
M φ(t, x)dµ(t+ hn, x)−

∫
M φ(t, x)dµ(t, x)

hn
=

1

hn

∫
M×M

(φ(t, y)− φ(t, x)) dγhnt (x, y)

=
1

hn

∫
M×M

〈∇φ(t, x), T (x, y)〉 dγhnt (x, y) + o(hn)

=

∫
M

〈
∇φ(t, x),

∫
M

T (x, y)

hn
dνhnx (y)

〉
dµ(t, x) + o(hn)

=

∫
M
gx

(
A(x)∇φ(t, x),

∫
M

T (x, y)

hn
dνhnx (y)

)
dµ(t, x) + o(hn)
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Since
∫
M

T (x,y)
hn

dνhnx (y) converges weakly in L2 (g, µ(t)) to ṽ(t, x) and A(x)∇φ(t, x) ∈ L2 (g, µ(t)),
we get

lim
n→∞

∫
M φ(t, x)dµ(t+ hn, x)−

∫
M φ(t, x)dµ(t, x)

hn
=

∫
M
gx (A(x)∇φ(t, x), ṽ(t, x)) dµ(t, x)

=

∫
M
〈∇φ(t, x), ṽ(t, x)〉 dµ(t, x).

Since µ(t) satisfies (5.1) with respect to the vector field v, we know that

lim
h→0

∫
M φ(t, x)dµ(t+ h, x)−

∫
M φ(t, x)dµ(t, x)

h
=

∫
M
gx (∇φ(t, x), v(t, x)) dµ(t, x),

for a.e. t > 0. Thus
∫
M gx (∇φ(t, x), v(t, x)− ṽ(t, x)) dµ(t, x) = 0 for a.e. t > 0 and µ(t) satisfies

(5.1) with respect to ṽ(t). Now notice that∫
M
gx (ṽ(t, x), ṽ(t, x)) dµ(t, x) ≤ lim

n→∞

∫
M
gx

(∫
M

T (x, y)

hn
dνhnx (y),

∫
M

T (x, y)

hn
dνhnx (y)

)
dµ(t, x)

≤ lim
n→∞

1

h2
n

d2
W (µ(t), µ(t+ hn))

= |µ′|2 (t) =

∫
M
gx (v(t, x), v(t, x)) dµ(t, x).

Together with the minimal L2(g, µ(t))-norm property of v, we have ṽ(t) = v(t). Since for any hn → 0

such that limn→∞
∫
M

T (x,y)
hn

dνhnx (y) converges weakly in L2(g, µ(t)), the weak limit is the same v(t),

we have
∫
M

T (x,y)
h dνhx (y) converges weakly in L2(g, µ(t)) to v(t, x). The lemma is proved. �

We will call v(t) the tangent velocity field of µ(t), now we can define gradient flow by

Definition 5.2 (Gradient flows). A locally absolutely continuous curve [0,∞) 3 t 7→ µ(t) ∈ P2(M)
is a gradient flow with respect to E if for a.e. t > 0

(5.3) v(t) ∈ −∂E (µ(t)) ,

where v(t) is the tangent velocity field for µ(t).

Then we can show the proof of Theorem 1.3

Proof of Theorem 1.3. We only need to prove the following chain rule

(5.4)
d

dt
E (µ(t)) =

∫
M
gx (κ(t, x), v(t, x)) dµ(t, x),

for a.e. t > 0, where v(t) is the tangent velocity field for the absolutely continuous curve µ(t).
Indeed, the fact that µ(t) is a curve of maximal slope implies

(5.5)
d

dt
E(µ(t)) ≤ −1

2

∫
M
gx (v(t, x), v(t, x)) dµ(t, x)− 1

2

∫
M
gx (κ(t, x), κ(t, x)) dµ(t, x).

If (5.4) holds, then together with (5.5), we have v(t, x) = −κ(t, x) for a.e. t > 0 and µ(t) is a
gradient flow with respect to E . Then by Lemma 5.1, µ(t) is a weak measure solution to (1.9) with
initial data µ0.

We now prove the chain rule (5.4). Since κ(t) ∈ ∂E(µ(t)), we know

E (µ(t+ h)) ≥ E (µ(t)) +

∫
M×M

g (κ(t, x), T (x, y)) dγht (x, y) + o (dW (µ(t), µ(t+ h))) .
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For h > 0, we have

lim
h→0+

E (µ(t+ h))− E (µ(t))

h
≥
∫
M×M

gx

(
κ(t, x),

T (x, y)

h

)
dγht (x, y)

=

∫
M
gx

(
κ(t, x),

∫
M

T (x, y)

h
dνhx (y)

)
dµ(t, x)

=

∫
M
gx (κ(t, x), v(t, x)) dµ(t, x).

Similarly, for h < 0, we have

lim
h→0−

E (µ(t+ h))− E (µ(t))

h
≤
∫
M
gx (κ(t, x), v(t, x)) dµ(t, x).

Note that the function t→ E (µ(t)) is non-increasing, thus differentiable for a.e. t > 0, so

d

dt
E (µ(t)) =

∫
M
gx (κ(t, x), v(t, x)) dµ(t, x),

for a.e. t > 0 as desired. Also since ∂oE(µ(t)) = v(t, x) = −κ(t, x), (1.17) is true. To prove (1.18),
we only need to show that E(µ(t)) is locally absolutely continuous. We note that by the linear
growth conditions on ∇V (1.11) and ∇W (1.10), |V (x) − V (y)| ≤ C(1 + dist(x, y)) dist(x, y) and
|W (x−z)−W (y−w)| ≤ C(1+dist(x, y)+dist(z, w))(dist(x, y)+dist(z, w)). Then for 0 ≤ s < t <∞
and γ ∈ Γo (µ(t), µ(s)) an optimal plan,

|E(µ(t))− E(µ(s))| ≤
∫
M×M

C(1 + dist(x, y)) dist(x, y)dγ(x, y)

≤ C(1 + dW (µ(t), µ(s))dW (µ(t), µ(s)).

Thus E(µ(t)) is locally absolutely continuous since µ(t) is locally absolutely continuous in (P2(M), dW ).
�

Next, we start to prove Theorem 1.4, that λ-convexity of E implies the stability of the gradient
flow. Before proving the theorem, we need the following

Lemma 5.3. Let µ(t) be a locally absolutely continuous curve in P2(M) with tangent velocity v,
then for a.e. t > 0,

(5.6)
1

2

d

dt
d2
W (µ(t), ν) = −

∫
M×M

gx (v(t, x), T (x, y)) dγt(x, y),

for any fixed ν ∈ P2(M) and γt ∈ Γo (µ(t), ν) an optimal plan.

Proof of Lemma. We first notice that the function t 7→ d2
W (µ(t), ν) is differentiable for a.e. t > 0

since t 7→ µ(t) is locally absolutely continuous in (P2(M), dW ). In the rest of the proof, we assume
that we are working on t > 0 such that the function s 7→ 1

2d
2
W (µ(s), ν) is differentiable at t. In the

case v is locally Lipschitz in space and M has no boundary then using the flow map with velocity
field v, similar arguments as in [45, 19] imply (5.6). However, in our case, we need to deal with
the fact that since v is not continuous the flow map is not readily available and furthermore that a
geodesic in direction v may not exist at the boundary. We divide the proof into two steps.
Step 1. Consider the case that µ(t), ν have compact support for all t > 0. To show (5.6) we modify
the arguments of Theorem 8.4.7 from [2]. An issue is that, as in the proof of Theorem 3.3, there
may exist x ∈ ∂M such that there exists no t > 0 for which expx(tv(x)) ∈ M exists. To deal with
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this problem we use the following approximations. For h ∈ R with |h| small, define

vh(t, x) =


v(t, x), if x ∈ B( 1

|h| ) ∩M|h|
v(t, x)− hn(x), if x ∈ B( 1

|h| ) ∩ ∂M
0, otherwise.

It is direct to check that vh converges to v in L2(g, µ(t)). For fixed h ∈ R, same argument as in
the proof of Theorem 3.3 shows that there exists C(h) > 0 such that expx(thvh(t, x)) exists for
all 0 ≤ t ≤ C(h) and x ∈ M. Thus there exists a function f such that limh→0 f(h) = 0 and
expx(hvf(h)(t, x)) ∈M for all x ∈M. We claim that for a.e. t > 0

(5.7) lim
h→0

d2
W

((
exp

(
hvf(h)

))
]
µ(t), µ(t+ h)

)
h2

= 0.

Indeed, if the claim is true, then for a.e. t > 0, we know that d2
W (µ(t), ν) is differentiable and

d

dt
d2
W (µ(t), ν) = lim

h→0

d2
W (µ(t+ h), ν)− d2

W (µ(t), ν)

h

= lim
h→0

d2
W

((
exp(hvf(h))

)
]
µ(t), ν

)
− d2

W (µ(t), ν)

h
.

Since (exp(hvf(h)), id)]γt ∈ Γ
(
exp(hvf(h))]µ(t), ν

)
, we get

d2
W

((
exp(hvf(h))

)
]
µ(t), ν

)
≤
∫
M×M

dist2
(
expx(hvf(h)(t, x)), y

)
dγt(x, y).

Recall that by the first variation formula, for any x, y ∈M, denote

(5.8) D(x, y) =
{
v ∈ TxM : expx(tv) ∈M∀t ∈ [0, 1], expx(v) = y, gx(v, v) = dist2(x, y)

}
,

then

lim
h→0+

dist2(expx(hξ), y)− dist2(x, y)

h
= min {−2gx (ξ, v) : v ∈ D(x, y)} .

So taking h→ 0+ and using the Lebesgue’s dominated convergence theorem yields

d+

dt
d2
W (µ(t), ν) ≤ lim

h→0+

1

h

∫
M×M

(
dist2

(
expx(hvf(h)(t, x)), y

)
− dist2(x, y)

)
dγt(x, y)

≤ −2

∫
M×M

gx (v(t, x), T (x, y)) dγt(x, y).

Similarly, taking h→ 0− gives

d−

dt
d2
W (µ(t), ν) ≥ −2

∫
M×M

gx (v(t, x), T (x, y)) dγt(x, y).

Thus we have
1

2

d

dt
d2
W (µ(t), ν) = −

∫
M×M

gx (v(t, x), T (x, y)) dγt(x, y),

for a.e. t > 0.
We now prove the claim. It is enough to show that

(5.9) lim
h→0

∫
M×M

1

h2
dist2

(
expx(hvf(h)(t, x)), y

)
dγht (x, y) = 0
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where γht ∈ Γo (µ(t), µ(t+ h)). Since µ(t) has compact support for all t > 0, we only need to show
(5.9) for compact subsets of M, i.e., to show

lim
h→0

∫
K×K

1

h2
dist2

(
expx(hvf(h)(t, x)), y

)
dγht (x, y) = 0

for any compact subset K b M. On K, we have that the sectional curvature is bounded from
below say by −k, then by rescaling, we may assume the constant for the lower bounded of sectional
curvature is −1. By comparison theorem, refer to [38] Theorem 79, we have

cosh
[
dist(expx(hvf(h)(t, x)), y)

]
≤ cosh [dist(x, y)] cosh

[
h|vf(h)(t, x)|g

]
− sinh [dist(x, y)] sinh

[
h|vf(h)(t, x)|g

]
cosα,

where α is angle between vf(h)(t, x) and T (x, y), i.e., cosα =
gx(vf(h)(t,x),T (x,y))
dist(x,y)|vf(h)(t,x)|g . Note that

cosh [z] = 1 +
1

2
z2 +O(z4)

and

sinh [z] = z +O(z3).

Expanding cosh, sinh in the comparison formula, we have

1 +
1

2
dist2

(
expx(hvf(h)(t, x)), y

)
≤ cosh

[
dist(expx(hvf(h)(t, x)), y)

]
≤ 1 +

1

2
dist2(x, y) +

1

2
h2|vf(h)(t, x)|2g − hdist(x, y)|vf(h)(t, x)|g cosα+O(h3) +O(dist3(x, y)).

Thus

lim
h→0

∫
K×K

1

h2
dist2

(
expx(hvf(h)(t, x)), y

)
dγht (x, y)

≤ lim
h→0

∫
K×K

(
1

h2
dist2(x, y)− 2

1

h
dist(x, y)|vf(h)(t, x)|g cosα+ |vf(h)(t, x)|2g + o(h)

)
dγht (x, y)

= lim
h→0

∫
K×K

(
1

h2
dist2(x, y)− 2gx

(
T (x, y)

h
, vf(h)(t, x)

)
+ |vf(h)(t, x)|2g

)
dγht (x, y)

= lim
h→0

∫
K×K

gx

(
T (x, y)

h
− vf(h)(t, x),

T (x, y)

h
− vf(h)(t, x)

)
dγht (x, y)

= 0.

Step 2. (5.6) holds for general µ(t), ν ∈ P2(M). To show that, we need to perform the same approx-
imation as in the proof of Theorem 23.9 from [45], which requires that notion of dynamical coupling,
refer to [45]. Here we sketch the approximation and argument, let Ak = {γ : supt dist(z, γ(t)) ≤ k},
where γ is a random curve γ : [0, 1] → M and et is the evaluation map et(γ) = γ(t). Define

µk(t) = (et)] Πk where Πk(dγ) =
χγ∈AkΠ(dγ)

Π(Ak) and Π is a probability measure on the action minimiz-

ing curves. Denote Zk = Π(Ak) then Zk ↑ 1, Zkµ
k(t) ↑ µ(t) as k →∞. For each k µk solves

(5.10)
∂µk(t)

∂t
+ div(µk(t)v(t)) = 0,

and µn(t) has compact support in B(z, k). So by Step 1,

1

2

d

dt
d2
W

(
µk(t), νk

)
= −

∫
M×M

gx (v(t, x), T (x, y)) dγkt (x, y).
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Since d2
W (µk(t), νk) is locally absolutely continuous, integrating gives

(5.11)
d2
W

(
µk(t), νk

)
2

=
d2
W

(
µk(0), νk

)
2

−
∫ t

0

∫
M×M

gx (v(s, x), T (x, y)) dγks (x, y)ds.

The only thing left is to take k →∞. By the proof of Theorem 23.9 [45], dW
(
µk(t), µ(t)

)
= 0 and

we only need to check

lim
k→∞

∫ t

0

∫
M×M

gx (v(s, x), T (x, y)) dγks (x, y)ds =

∫ t

0

∫
M×M

gx (v(s, x), T (x, y)) dγs(x, y)ds.

Notice that ∣∣∣∣∫
M×M

gx (v(s, x), T (x, y)) dγks (x, y)

∣∣∣∣
≤
(∫
M×M

dist2(x, y)dγks (x, y)

) 1
2
(∫
M×M

gx (v(s, x), v(s, x)) dγks (x, y)

) 1
2

≤ dW
(
µk(s), νk

)( 1

Zk

∫
M
gx (v(s, x), v(s, x)) dµk(s, x)

) 1
2

≤ C
(∫
M
gx (v(s, x), v(s, x)) dµ(s, x)

) 1
2

,

and
∫
M gx (v(s, x), v(s, x)) dµ(s, x) ∈ L1([0, t]). It is then sufficient to prove that for a.e. s ∈ (0, t)

(5.12)

∫
M×M

gx (v(s, x), T (x, y)) dγks (x, y)→
∫
M×M

gx (v(x, s), T (x, y)) dγs(x, y).

Since∫
M×M

|gx (v(s, x), T (x, y))| d
∣∣γks − γs∣∣ (x, y)

≤
(∫
M×M

gx (v(s, x), v(s, x)) d
∣∣γks − γs∣∣ (x, y)

) 1
2
(∫
M×M

dist2(x, y)d
∣∣γks − γs∣∣ (x, y)

) 1
2

≤ CdW (µ(s), ν)

(∫
M
gx (v(s, x), v(s, x)) d

∣∣µk(s)− µ(s)
∣∣ (x)

) 1
2

,

and∫
M
gx (v(s, x), v(s, x)) d

∣∣µk(s)− µ(s)
∣∣ (x)

≤ (Z−1
k − 1)

∫
M
gx (v(s, x), v(s, x)) dµ(s, x) + Z−1

k

∫
M
gx (v(s, x), v(s, x)) d

∣∣Zkµk(s)− µ(s)
∣∣ (x)

≤ (Z−1
k − 1)

∫
M
gx (v(s, x), v(s, x)) dµ(s, x) + Z−1

k

∫
es(S)\es(Ak)

gx (v(s, x), v(s, x)) dµ(s, x)

≤ (Z−1
k − 1)

∫
M
gx (v(s, x), v(s, x)) dµ(s, x) + Z−1

k

∫
S\Ak

gγ(s) (v(s, γ(s)), v(s, γ(s)) dΠ(γ),

we know

lim
k→∞

∫
M×M

|gx (v(s, x), T (x, y))| d
∣∣γks − γs∣∣ (x, y) = 0.

Thus (5.12) holds true. Take k →∞ in (5.11) then gives (5.6). �

We now prove Theorem 1.4.
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Proof of Theorem 1.4. Let κ1 ∈ ∂oE(µ1(t)), κ2 ∈ ∂oE(µ2(t)) be the minimal subdifferentials and
v1, v2 be the tangent velocities of the absolutely continuous curves µ1(t), µ2(t) respectively. Also
denote γt ∈ Γo

(
µ1(t), µ2(t)

)
an optimal plan between µ1(t) and µ2(t). By the definition of subdif-

ferential, we know that

(5.13) E
(
µ2(t)

)
≥ E

(
µ1(t)

)
+

∫
M×M

g
(
κ1(t, x), T (x, y)

)
dγt(x, y) +

λ

2
d2
W

(
µ1(t), µ2(t)

)
,

and

(5.14) E
(
µ1(t)

)
≥ E

(
µ2(t)

)
+

∫
M×M

g
(
κ2(t, y), T (y, x)

)
dγt(x, y) +

λ

2
d2
W

(
µ1(t), µ2(t)

)
.

Adding together gives
(5.15)

− λd2
W

(
µ1(t), µ2(t)

)
≥
∫
M×M

(
g
(
κ1(t, x), T (x, y)

)
dγt(x, y) + g

(
κ2(t, y), T (y, x)

))
dγt(x, y).

By Lemma 4.3.4 from [2] and Lemma 5.3 we have

d

dt
d2
W

(
µ1(t), µ2(t)

)
≤ −2

∫
M×M

(
g
(
v1(t, x), T (x, y)

)
+ g

(
v2(t, y), T (y, x)

))
dγt(x, y)

= 2

∫
M×M

(
g
(
κ1(t, x), T (x, y)

)
+ g

(
κ2(t, y), T (y, x)

))
dγt(x, y)

≤ −2λd2
W

(
µ1(t), µ2(t)

)
.

We can use Gronwall’s inequality to get,

dW
(
µ1(t), µ2(t)

)
≤ e−λtdW

(
µ1

0, µ
2
0

)
.

(1.19) is proved.
Now we turn to the relationship between gradient flow and system of evolution variational inequal-
ities. If µ1(t) is a gradient flow with respect to E , then by Lemma 5.3

1

2

d

dt
d2
W

(
µ1(t), ν

)
= −

∫
M×M

gx
(
v1(t, x), T (x, y)

)
=

∫
M×M

gx
(
κ1(t, x), T (x, y)

)
≤ E(ν)− E (µ(t))− λ

2
d2
W (µ(t), ν) ,

for a.e. t > 0, which implies the system of evolution variational inequalities.
If µ1(t) satisfies the system of evolution variational inequalities (1.20), then

1

2

d

dt
d2
W (µ1(t), ν) = −

∫
M×M

gx
(
v1(t, x), T (x, y)

)
dγt(x, y)

≤ E(ν)− E(µ1(t))− λ

2
d2
W (µ1(t), ν).

By the definition of subdifferential of E , we know that v1(t) ∈ −∂E
(
µ1(t)

)
for a.e. t > 0, and thus

µ1(t) is a gradient flow with respect to E .
Thus gradient flow is characterized by the system of evolution variational inequalities. �
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6. λ-geodesic convexity of E

In this section, we present the details on obtaining conditions on g,W, V to guarantee λ-geodesic
convexity of W,V and thus E . We also give some examples of Riemannian manifold (M, g), on
which we derive explicit conditions on W,V for E to be λ-geodesically convex. In particular we
consider examples which explore how far can the conditions for λ-convexity be extended. Let us
also mention that the general conditions when only the external potential, V , is present follow from
the work of Sturm [40], who studied them together with internal energy.

We start by deriving the general formula of d2

dt2 E (µ(t)) for µ(t) geodesics in P2(M). Notice that
we only need the existence of optimal plans between µ, ν ∈ P2(M) and then the interpolation of
optimal plans is a geodesic. By [45], Corollary 7.22, we know that geodesics starting from µ in
P2(M) are of the form

µ(t) = (Ft)]µ

where Ft(x) = expx(t∇φ) is the geodesic on M. We write xt = Ft(x), for simplicity. By definition
of push forward of measures,

(6.1) E (µ(t)) =W (µ(t)) + V (µ(t)) =
1

2

∫
M×M

W (xt, yt)dµ(x)dµ(y) +

∫
M
V (xt)dµ(x).

Since xt and yt are geodesics on M, (xt, yt) is a geodesic on the product manifold M×M. When
W,V are twice differentiable direct computation shows:

d2

dt2
E (µ(t)) =

∫
M

HessM V (xt)(ẋt, ẋt)dµ(x)(6.2)

+
1

2

∫
M×M

HessM×MW (xt, yt)(ẋt, ẏt)(ẋt, ẏt)dµ(x)dµ(y)

where HessM,HessM×M are Hessian on (M, g) and (M×M, g × g). So to verify convexity it
suffices to show that there exists λ ∈ R such that for all vector fields ẋt as above that

d2

dt2
E (µ(t)) ≥ λ

∫
M
g(ẋt, ẋt)dµ(x).

So in general, λ-geodesic convexity of V on (M, g) and W on (M×M, g × g) implies λ-geodesic
convexity of E . Actually, by [40], the potential energy V is λ-geodesic convex if and only if

HessM V ≥ λg. Since M is a subset of Rd and W (x, y) = W (x− y), we can expand d2

dt2 E (µ(t)) in
local coordinates,

d2

dt2
E (µ(t)) =

1

2

∫
M×M

(
HessW (xt, yt) (ẋt, ẏt) (ẋt, ẏt)

+
∑
k,i,j

∂W

∂zk
(xt − yt)

(
−Γkij(xt)(ẋt)i(ẋt)j + Γkij(yt)(ẏt)i(ẏt)j

) )
dµ(x)dµ(y)(6.3)

+

∫
M

(
HessV (xt) (ẋt, ẏt) +

∑
k,i,j

∂V

∂zk
(xt)(−1)Γkij(xt)(ẋt)i(ẋt)j

)
dµ(x),

where Γkij are the Christoffel symbols on (M, g). This verifies the simple conditions we give in Section

1. Indeed, using that HessM Vij = HessVij − ∂V
∂zk

Γkij and Γkij = 1
2Akm

(
∂Gmi
∂xj

+
∂Gmj
∂xi

− ∂Gij
∂xm

)
, the

formula (6.3) allows us to conclude:

• If (M, g) is geodesically convex and compact with G ∈ C1(M), then any V ∈ C2(M) is
λ-geodesically convex and W ∈ C2(Rd) is λ-geodesically convex. Indeed, HessVij ,∇V and

Γkij are bounded on M, so HessM V ≥ CId ≥ C̃G for all x ∈M.
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• If g is C1 bounded from below with bounded first derivative, and V ∈ C2(M) with bounded
first and second derivative, then V is λ-geodesically convex on (M, g).

• If g is C1 bounded from below and V ∈ C2(M) with HessV ≥ cId such that Γkij
∂V
∂zk

is
bounded from above on M, then V is λ-geodesically convex.

One obtains similar conditions on W :

• If g is C1 bounded from below with bounded first derivative, and W ∈ C2(M) with bounded
first and second derivative, then W (x, y) = W (x−y) is λ-geodesically convex on (M×M, g×
g).

• If (M, g) is geodesically convex and compact with g ∈ C1(M), then for any W twice
differentiable with HessW (y) ≥ −cId for all y ∈ M−M = {x1 − x2 : x1 ∈ M, x2 ∈ M}
and some constant c > 0. Note that since M is compact, g ∈ C1(M) and W twice
differentiable imply there exist constants c1 > 0, c2 > 0 such that c1Id ≤ G(x) ≤ 1

c1
Id,

| ∂∂xkGij | ≤
1
c1

and |∇W (y)| ≤ c2 for all x ∈ M and y ∈ M −M, W is λ-geodesically

convex on (M×M, g × g). In particular, any W ∈ C2(Rd) is λ-geodesically convex on
(M×M, g × g) for (M, g) geodesically convex and compact with g ∈ C1(M).

Note that the coupling between ∇W and Γkij is of the form ∂W
∂zk

(x− y)Γkij(x), so we do not have the
same conditions as the second item for the λ-geodesic convexity of V . This coupling prevents us
from getting some simple conditions of W, g to ensure λ-geodesic convexity of W , even in the 1-D
case. It is more transparent in the 1-D examples of W , Example 6.3.

We now investigate conditions on V,W . Let us first focus on potential V :

Example 6.1. Consider d = 1 and (M, g) = (R1
+, g(x)), then conditions for λ-geodesic convexity

of V is

(6.4) V ′′(x)− g′(x)

2g(x)
V ′(x) ≥ λg(x).

• g(x) = xp for some p < 0, then V (x) = V0 +
∫ x

1
y
p
2U(y)dy is λ-geodesically convex if

U ∈ C1(R1
+) with x−

p
2U ′(x) ≥ C for all x > 0 and some constant C. Moreover, V is

geodesically convex if U ′(x) ≥ 0 for all x > 0. In particular, it is straightforward to check
V (x) = xq for q ≥ max{0, p2 + 1} or q ≤ min{0, p2 + 1} is geodesically convex. Indeed, (6.4)
becomes

V ′′(x)− p

2x
V ′(x) ≥ λxp,

which is (
x−

p
2 V ′(x)

)′
≥ λx

p
2

for x > 0. Since U(x) = x−
p
2 V ′(x), the last condition becomes U ′(x) ≥ λx

p
2 . So for any

U ∈ C1
(
R1

+

)
with x−

p
2U ′(x) ≥ C for some constant C, V (x) = V0 +

∫ x
1
y
p
2U(y)dy is

λ-geodesically convex on (M, g). If U ′(x) ≥ 0, then V is geodesically convex on (M, g).

• g(x) = e
p
x for some p > 0, then V = V0 +

∫ x
1
e
p
2yU(y)dy is λ-geodesically convex on (M, g),

if U ∈ C1
(
R1

+

)
with e−

p
2xU ′(x) ≥ C for all x > 0 and some constant C. If U ′(x) ≥ 0 for

all x > 0, then V is geodesically convex on (M, g). In particular, V (x) = xq is geodesically
convex for q ≥ 1 and λ-geodesically convex for q < 1. Similarly to the above case , the
differential inequality (6.4) becomes

V ′′(x) +
p

2x2
V ′(x) ≥ λe

p
x ,

which implies (
e−

p
2xV ′(x)

)′
≥ λe

p
2x ,
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for all x > 0. Take U(x) = e−
p
2xV ′(x), we have U ′(x) ≥ λe

p
2x and V (x) = V0+

∫ x
1
e
p
2xU(y)dy.

Notice that for any U ∈ C1 (R+) with U ′(x) ≥ C for some constant C, we have there exists

λ ∈ R such that U ′(x) ≥ λe
p
2x since e

p
2x is bounded from below. And if U ′(x) ≥ 0 we

can take λ = 0. So for any U ∈ C1(R+), such that U ′ is bounded from below, then

V (x) = V (0) +
∫ x

0
e
p
2yU(y)dy is λ-geodesically convex on (M, g).

Example 6.2. Consider the upper half space, Rd−1 × [0,∞) endowed with a Riemannian metric
given by

G(x) =

[
g(xd)Id−1 0

0 1

]
.

Then

(6.5) Γkij =


1
2g
−1(xd)g

′(xd) if {i, j} = {k, d}, k < d,

− 1
2g
′(xd) if i = j < d, k = d,

0 otherwise.

LetM be a compact, geodesically convex subset of Rd+ with C1 boundary. For any V ∈ C2(Rd+),W ∈
C2(Rd), V,W are λ-geodesically convex on (M, g) and (M×M, g × g).

Consider now d = 2 and g(x2) = xp2 with p < 0. For simplicity, we assume that M contains
portion of x2 = 0. We note that the metric is degenerate. Nevertheless investigate if V (x) = |x|2
should be λ-convex in some generalized sense. Direct computation shows

HessM V (x) =

[
2 + pxp2 −px1x

−1
2

−px1x
−1
2 2

]
.

For V to be λ-convex it is necessary that

2 ≥ λ
(2− λ) (2 + (p− λ)xp2)− p2x2

1x
−2
2 ≥ 0.and

By taking x2 → 0+ shows that no λ ∈ R can satisfy these conditions.

In general the conditions for the λ-geodesic convexity of V and W are rather restrictive, as
claimed in Remark 1.1. The next example illustrates why.

Example 6.3. Take (M, g) to be (R, g). Then the λ-geodesic convexity condition for W is[
W ′′(x− y)− 1

2W
′(x− y)g−1(x)g′(x) −W ′′(x− y)

−W ′′(x− y) W ′′(x− y) + 1
2W

′(x− y)g−1(y)g′(y)

]
≥ λ

[
g(x) 0

0 g(y)

]
.

In particular it is necessary that for all x, y ∈ R

W ′′(x− y)− 1

2
W ′(x− y)g−1(x)g′(x) ≥ λg(x).

One should contrast this condition with condition (6.4) for potential V . In particular the condition
above shows the presence of long-range effects which make it hard the condition to be satisfied. For

example, if W (z) = z2, and g(z) = 2 + sin(z)
1+z2 then the condition above becomes

2− (x− y)
(1 + x2) cos(x)− 2x sin(x)

2(1 + x2) + sinx
≥ λg(x)

taking x such that the term next to (x− y) is negative and then taking y →∞ shows that there is
no λ for which the condition is satisfied.

Nevertheless a usable sufficient condition for λ-convexity can be found. For example W ∈ C2(R),
with w even, w′, w′′ bounded, g ∈ C1(R) with g ≥ C > 0 and g′ bounded suffices.
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