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ABSTRACT. We consider point clouds obtained as random samples of a measure on a Euclidean domain.
A graph representing the point cloud is obtained by assigning weights to edges based on the distance
between the points they connect. Our goal is to develop mathematical tools needed to study the consistency,
as the number of available data points increases, of graph-based machine learning algorithms for tasks such
as clustering. In particular, we study when is the cut capacity, and more generally total variation, on these
graphs a good approximation of the perimeter (total variation) in the continuum setting. We address this
question in the setting of Γ-convergence. We obtain almost optimal conditions on the scaling, as number
of points increases, of the size of the neighborhood over which the points are connected by an edge for
the Γ-convergence to hold. Taking the limit is enabled by a transportation based metric which allows to
suitably compare functionals defined on different point clouds.

1. INTRODUCTION

Our goal is to develop mathematical tools to rigorously study limits of variational problems defined
on random samples of a measure, as the number of data points goes to infinity. The main application is
to establishing consistency of machine learning algorithms for tasks such as clustering and classifica-
tion. These tasks are of fundamental importance for statistical analysis of randomly sampled data, yet
few results on their consistency are available. In particular it is largely open to determine when do the
minimizers of graph-based tasks converge, as the number of available data increases, to a minimizer
of a limiting functional in the continuum setting. Here we introduce the mathematical setup needed to
address such questions.

To analyze the structure of a data cloud one defines a weighted graph to represent it. Points become
vertices and are connected by edges if sufficiently close. The edges are assigned weights based on the
distances between points. How the graph is constructed is important: for lower computational complex-
ity one seeks to have fewer edges, but below some threshold the graph no longer contains the desired
information on the geometry of the point cloud. The machine learning tasks, such as classification and
clustering, can often be given in terms of minimizing a functional on the graph representing the point
cloud. Some of the fundamental approaches are based on minimizing graph cuts (graph perimeter)
and related functionals (normalized cut, ratio cut, balanced cut), and more generally total variation on
graphs [7, 12, 14, 17, 18, 19, 21, 35, 36, 40, 47, 49, 52, 53]. We focus on total variation on graphs (of
which graph cuts are a special case). The techniques we introduce are applicable to rather broad range
of functionals, in particular those where total variation is combined with lower-order terms, or those
where total variation is replaced by Dirichlet energy.

The graph perimeter (a.k.a. cut size, cut capacity) of a set of vertices is the sum of the weights of
edges between the set and its complement. Our goal is to understand for what constructions of graphs
from data is the cut capacity a good notion of a perimeter. We pose this question in terms of consistency
as the number of data points increases: n→∞. We assume that the data points are random independent
samples of an underlying measure ν with density ρ supported in a set D in Rd . The question is if the
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graph perimeter on the point cloud is a good approximation of the perimeter on D (weighted by ρ2).
Since machine learning tasks involve minimizing appropriate functionals on graphs, the most relevant
question is if the minimizers of functionals on graphs involving graph cuts converge to minimizers of
corresponding limiting functionals in continuum setting, as n→ ∞. Such convergence is implied by
the variational notion of convergence called the Γ-convergence, which we focus on. The notion of
Γ-convergence has been used extensively in the calculus of variations, in particular in homogenization
theory, phase transitions, image processing, and material science. We show how the Γ-convergence can
be applied to establishing consistency of data-analysis algorithms.

1.1. Setting and the main results. Consider a point cloud V = {X1, . . . ,Xn}. Let η be a kernel, that is,
let η : Rd → [0,∞) be a radially symmetric, radially decreasing, function decaying to zero sufficiently
fast. Typically the kernel is appropriately rescaled to take into account data density. In particular, let ηε

depend on a length scale ε so that significant weight is given to edges connecting points up to distance
ε . We assign for i, j ∈ {1, . . . ,n} the weights by

(1) Wi, j = ηε(Xi−X j)

and define the graph perimeter of A⊂V to be

(2) GPer(A) = 2 ∑
Xi∈A

∑
X j∈V\A

Wi, j.

The graph perimeter (i.e. cut size, cut capacity), can be effectively used as a term in functionals which
give a variational description to classification and clustering [12, 17, 14, 19, 21, 20, 18, 35, 36, 40, 47,
52, 53].

The total variation of a function u defined on the point cloud is typically given as

(3) ∑
i, j

Wi, j|u(Xi)−u(X j)|.

We note that the total variation is a generalization of perimeter since the perimeter of a set of vertices
A⊂V is the total variation of the characteristic function of A.

In this paper we focus on point clouds that are obtained as samples from a given distribution ν .
Specifically, consider an open, bounded, and connected set D ⊂ Rd with Lipschitz boundary and a
probability measure ν supported on D. Suppose that ν has density ρ , which is continuous and bounded
above and below by positive constants on D. Assume n data points X1, . . . ,Xn (i.i.d. random points) are
chosen according to the distribution ν . We consider a graph with vertices V = {X1, . . . ,Xn} and edge
weights Wi, j given by (1), where ηε to be defined by ηε(z) := 1

εd η
( z

ε

)
. Note that significant weight is

given to edges connecting points up to distance of order ε .
Having limits as n→ ∞ in mind, we define the graph total variation to be a rescaled form of (3):

(4) GTVn,ε(u) :=
1
ε

1
n2 ∑

i, j
Wi, j|u(Xi)−u(X j)|.

For a given scaling of ε with respect to n, we study the limiting behavior of GTVn,ε(n) as the number of
points n→ ∞. The limit is considered in the variational sense of Γ-convergence.

A key contribution of our work is in identifying the proper topology with respect to which the Γ-
convergence takes place. As one is considering functions supported on the graphs, the issue is how
to compare them with functions in the continuum setting, and how to compare functions defined on
different graphs. Let us denote by νn the empirical measure associated to the n data points:

(5) νn :=
1
n

n

∑
i=1

δXi .

The issue is then how to compare functions in L1(νn) with those in L1(ν). More generally we consider
how to compare functions in Lp(µ) with those in Lp(θ) for arbitrary probability measures µ , θ on D
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and arbitrary p ∈ [1,∞). We set

T Lp(D) := {(µ, f ) : µ ∈P(D), f ∈ Lp(D,µ)},

where P(D) denotes the set of Borel probability measures on D. For (µ, f ) and (ν ,g) in T Lp we
define the distance

dT Lp((µ, f ),(ν ,g)) = inf
π∈Γ(µ,ν)

(∫∫
D×D
|x− y|p + | f (x)−g(y)|pdπ(x,y)

) 1
p

where Γ(µ,θ) is the set of all couplings (or transportation plans) between µ and θ , that is, the set of all
Borel probability measures on D×D for which the marginal on the first variable is µ and the marginal
on the second variable is θ . As discussed in Section 3, dT Lp is a transportation distance between graphs
of functions.

The T Lp topology provides a general and versatile way to compare functions in a discrete setting
with functions in a continuum setting. It is a generalization of the weak convergence of measures and of
Lp convergence of functions. By this we mean that {µn}n∈N in P(D) converges weakly to µ ∈P(D) if

and only if (µn,1)
T Lp
−→ (µ,1) as n→∞, and that for µ ∈P(D) a sequence { fn}n∈N in Lp(µ) converges

in Lp(µ) to f if and only if (µ, fn)
T Lp
−→ (µ, f ) as n→ ∞. The fact is established in Proposition 3.12.

Furthermore if one considers functions defined on a regular grid, then the standard way [23, 16], to
compare them is to identify them with piecewise constant functions, whose value on the grid cells is
equal to the value at the appropriate grid point, and then compare the extended functions using the Lp

metric. T Lp metric restricted to regular grids gives the same topology.

The kernels η we consider are assumed to be isotropic, and thus can be defined as η(x) := ηηη(|x|)
where ηηη : [0,∞)→ [0,∞) is the radial profile. We assume:

(K1) ηηη(0)> 0 and ηηη is continuous at 0.
(K2) ηηη is non-increasing.
(K3) The integral

∫
∞

0 ηηη(r)rddr is finite.

We note that the class of admissible kernels is broad and includes both Gaussian kernels and discontin-
uous kernels like one defined by ηηη of the form ηηη = 1 for r ≤ 1 and ηηη = 0 for r > 1. We remark that
the assumption (K3) is equivalent to imposing that the surface tension

(6) ση =
∫
Rd

η(h)|h1|dh,

where h1 is the first coordinate of vector h, is finite and also that one can replace h1 in the above
expression by h · e for any fixed e ∈ Rd with norm one; this, given that η is radially symmetric.

The weighted total variation in continuum setting (with weight ρ2), TV (·,ρ2) : L1(D,ν)→ [0,∞], is
given by

(7) TV (u;ρ
2) = sup

{∫
D

udiv(φ)dx : |φ(x)| ≤ ρ
2(x) ∀x ∈ D , φ ∈C∞

c (D,Rd)

}
if the right-hand side is finite and is set to equal infinity otherwise. Here and in the rest of the paper
we use | · | to denote the euclidean norm in Rd . Note that if u is smooth enough then the weighted total
variation can be written as TV (u;ρ2) =

∫
D |∇u|ρ2(x)dx.

The main result of the paper is:

Theorem 1.1 (Γ-convergence). Let D⊂ Rd , d ≥ 2 be an open, bounded, connected set with Lipschitz
boundary. Let ν be a probability measure on D with continuous density ρ , which is bounded from
below and above by positive constants. Let X1, . . . ,Xn, . . . be a sequence of i.i.d. random points chosen
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according to distribution ν on D. Let {εn}n∈N be a sequence of positive numbers converging to 0 and
satisfying

lim
n→∞

(logn)3/4

n1/2

1
εn

= 0 if d = 2,

lim
n→∞

(logn)1/d

n1/d

1
εn

= 0 if d ≥ 3.

(8)

Assume the kernel η satisfies conditions (K1)-(K3). Then, GTVn,εn , defined by (4), Γ-converge to
ση TV (·,ρ2) as n→ ∞ in the T L1 sense, where ση is given by (6) and TV (·,ρ2) is the weighted total
variation functional defined in (7).

The notion of Γ-convergence in deterministic setting is recalled in Subsection 2.4, where we also
extend it to the probabilistic setting in Definition 2.11. The fact that the density in the limit is ρ2

essentially follows from the fact that graph total variation is a double sum (and becomes more apparent
in Section 5 when we write the graph total variation in form (60)).

The following compactness result shows that the T L1 topology is indeed a good topology for the
Γ-convergence (in the light of Proposition 2.10).

Theorem 1.2 (Compactness). Under the assumptions of the theorem above, consider a sequence of
functions un ∈ L1(D,νn), where νn is given by (5). If {un}n∈N have uniformly bounded L1(D,νn) norms
and graph total variations, GTVn,εn , then the sequence is relatively compact in T L1. More precisely if

sup
n∈N
‖un‖L1(D,νn)

< ∞,

and
sup
n∈N

GTVn,εn(un)< ∞,

then {un}n∈N is T L1-relatively compact.

When An is a subset of {X1, . . . ,Xn}, it holds that GTVn,εn(χAn) =
1

n2εn
GPer(An), where GPer(An)

was defined in (2). The proof of Theorem 1.1 allows us to show the variational convergence of the
perimeter on graphs to the weighted perimeter in domain D, defined by Per(E : D,ρ2) = TV (χE ,ρ

2).

Corollary 1.3 (Γ-convergence of perimeter). Under the hypothesis of Theorem 1.1 the conclusions
hold when all of the functionals are restricted to characteristic functions of sets. That is, the (scaled)
graph perimeters Γ-converge to the continuum (weighted) perimeter Per( · : D,ρ2).

The proofs of the theorems and of the corollary are presented in Section 5. We remark that the
Corollary 1.3 is not an immediate consequence of Theorem 1.1, since in general Γ-convergence may
not carry over when a (closed) subspace of a metric space is considered. The proof of Corollary 1.3 is
nevertheless straightforward.

Remark 1.4. When one considers ρ to be constant in Theorem 1.1 the points X1, . . . ,Xn are uniformly
distributed on D. In this particular case, the theorem implies that the graph total variation converges to
the usual total variation on D (appropriately scaled by 1/Vol(D)2). Corollary 1.3 implies that the graph
perimeter converges to the usual perimeter (appropriately scaled).

Remark 1.5. The notion of Γ-convergence is different from the notion of pointwise convergence, but
often the proof of Γ-convergence implies the pointwise convergence. The pointwise convergence of the
graph perimeter to continuum perimeter is the statement that for any set A⊂D of finite perimeter, with
probability one:

lim
n→∞

GTVn,εn(χA) = Per(A : D,ρ2).

In the case that D is smooth, the points X1, . . . ,Xn are uniformly distributed on D and A is smooth,
the pointwise convergence of the graph perimeter can be obtained from the results in [39] and in [6]
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when εn is converging to zero so that (logn)1/(d+1)

n1/(d+1)
1
εn
→ 0 as n→ ∞. In Remark 5.1 we point out that

our proof of Γ-convergence implies that pointwise convergence also holds, with same scaling for εn as
in Theorem 1.1, which slightly improves the rate of pointwise convergence in [6]. Note that pointwise
convergence does not follow directly from the Γ-convergence.

Remark 1.6. Theorem 1.2 implies that the probability that the weighted graph, with vertices X1, . . . ,Xn
and edge weights Wi, j = ηεn(Xi−X j) is connected, converges to 1 as n→ ∞. Otherwise there is a
sequence nk ↗ ∞ as k→ ∞ such that with positive probability, the graph above is not connected for
all k. We can assume that nk = k for all k. Consider a connected component An ⊂ {X1, . . . ,Xn} such
that ]An ≤ n/2. Define function un =

n
]An

χAn . Note that ‖un‖L1(νn)
= 1 and that GTVn,εn(un) = 0. By

compactness, along a subsequence (not relabeled), un converges in T L1 to a function u ∈ L1(ν). Thus
‖u‖L1(ν) = 1. By lower-semicontinuity which follows from Γ-convergence of Theorem 1.1 it follows
that TV (u) = 0 and thus u = 1 on D. But since the values of un are either 0 or greater or equal to 2, it
is not possible that un converges to u in T L1. This is a contradiction.

1.2. Optimal scaling of ε(n). If d ≥ 3 then the rate presented in (8) is sharp in terms of scaling. To
illustrate, suppose that the data points are uniformly distributed on D and η has compact support. It is

known from graph theory (see [44, 32, 33]) that there exists a constant λ > 0 such that if εn < λ
(logn)1/d

n1/d

then the weighted graph associated to X1, . . . ,Xn is disconnected with high probability. Therefore, in

the light of Remark 1.6, the compactness property cannot hold if εn < λ
(logn)1/d

n1/d . It is of course,
not surprising that if the graph is disconnected, the functionals describing clustering tasks may have
minimizers which are rather different than the minimizers of the continuum functional.

While the above example shows the optimality of our results in some sense, we caution that there
still may be settings relevant to machine learning in which the convergence of minimizers of appropriate

functionals may hold even when 1
n1/d � εn < λ

(logn)1/d

n1/d .
Finally, we remark that in the case d = 2, the rate presented in (8) is different from the connectivity

rate in dimension d = 2 which is λ
(logn)1/2

n1/2 . An interesting open problem is to determine what happens

to the graph total variation as n→ ∞, when one considers λ
(logn)1/2

n1/2 � εn ≤ (logn)3/4

n1/2 .

1.3. Related work. Background on Γ-convergence of functionals related to perimeter. The notion of
Γ-convergence was introduced by De Giorgi in the 70’s and represents a standard notion of variational
convergence. With compactness it ensures that minimizers of approximate functionals converge (along
a subsequence) to a minimizer of the limiting functional. For extensive exposition of the properties of
Γ-convergence see the books by Braides [15] and Dal Maso [24].

A classical example of Γ-convergence of functionals to perimeter is the Modica and Mortola theorem
([41]) that shows the Γ-convergence of Allen-Cahn (Cahn-Hilliard) free energy to perimeter.

There is a number of results considering nonlocal functionals converging to the perimeter or to
total variation. In [3], Alberti and Bellettini study a nonlocal model for phase transitions where the
energies do not have a gradient term as in the setting of Modica and Mortola, but a nonlocal term.
In [48], Savin and Valdinoci consider a related energy involving more general kernels. Esedoḡlu and
Otto, [26] consider nonlocal total-variation based functionals in multiphase systems and show their
Γ-convergence to perimeter. Brezis, Bourgain, and Mironescu [13] considered nonlocal functionals in
order to give new characterizations of Sobolev and BV spaces. Ponce [46] extended their work and
showed the Γ-convergence of the nonlocal functionals studied to local ones. In our work we adopt the
approach of Ponce to show Γ-convergence as it is conceptually clear and efficient.

We also note the works of Gobbino [30] and Gobbino and Mora [31] where elegant nonlocal ap-
proximations were considered for more complicated functionals, like the Mumford-Shah functional.

In the discrete setting, works related to the Γ-convergence of functionals to continuous functionals
involving perimeter include [16], [59] and [23]. The results by Braides and Yip [16], can be interpreted
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as the analogous results in a discrete setting to the ones obtained by Modica and Mortola. They give
the description of the limiting functional (in the sense of Γ-convergence) after appropriately rescaling
the energies. In the discretized version considered, they work on a regular grid and the gradient term
gets replaced by a finite-difference approximation that depends on the mesh size δ . Van Gennip and
Bertozzi [59] consider a similar problem and obtain analogous results. In [23], Chambolle, Giacomini
and Lussardi consider a very general class of anisotropic perimeters defined on discrete subsets of
a finite lattice of the form δZN . They prove the Γ-convergence of the functionals as δ → 0 to an
anisotropic perimeter defined on a given domain in Rd .

Background on analysis of algorithms on point clouds as n→ ∞. In the past years a diverse set of
geometrically based methods has been developed to solve different tasks of data analysis like classifi-
cation, regression, dimensionality reduction and clustering. One desirable and important property that
one expects from these methods is consistency. That is, it is desirable that as the number of data points
tends to infinity the procedure used “converges” to some “limiting” procedure. Usually this“limiting”
procedure involves a continuum functional defined on a domain in a Euclidean space or more generally
on a manifold.

Most of the available consistency results are about pointwise consistency. Among them are works
of Belkin and Niyogi [11], Giné and Koltchinskii [29], Hein, Audibert, von Luxburg [34], Singer [51]
and Ting, Huang, and Jordan [58]. The works of von Luxburg, Belkin and Bousquet on consistency
of spectral clustering [61] and Belkin and Niyogi [10] on the convergence of Laplacian Eigenmaps,
as well as [58], consider spectral convergence and thus convergence of eigenvalues and eigenvectors,
which are relevant for machine learning. An important difference between our work and the spectral
convergence works is that in them, there is no explicit rate at which εn is allowed to converge to 0 as
n→ ∞. Arias-Castro, Pelletier, and Pudlo [6] considered pointwise convergence of Cheeger energy
and consequently of total variation, as well as variational convergence when the discrete functional is
considered over an admissible set of characteristic functions which satisfy a “regularity” requirement.
For the variational problem they show that the convergence holds essentially when n−

1
2d+1 � εn� 1.

Maier, von Luxburg and Hein [39] considered pointwise convergence for Cheeger and normalized
cuts, both for the geometric and kNN graphs and obtained an analogous range of scalings of graph
construction on n for the convergence to hold. Pollard [45] considered the consistency of the k-means
clustering algorithm.

1.4. Example: An application to clustering. Many algorithms involving graph cuts, total variation
and related functionals on graphs are in use in data analysis. Here we present an illustration of how the
Γ-convergence results can be applied in that context. In particular we show the consistency of minimal
bisection considered for example in [25, 27]. The example we choose is simple and its primary goal is
to give a hint of the possibilities. We intend to investigate the functionals relevant to data analysis in
future works.

Let D be domain satisfying the assumptions of Theorem 1.1, for example the one depicted on Figure
1. Consider the problem of dividing the domain into two clusters of equal sizes. In the continuum
setting the problem can be posed as finding Amin ⊂ D such that F(A) = TV (χA), is minimized over all
A such that Vol(D) = 2Vol(A). For the domain of Figure 1 there are exactly two minimizers (Amin and
its complement); illustrated on Figure 2.

In the discrete setting assume that n is even and that Vn = {X1, . . . ,Xn} are independent random
points uniformly distributed on D. The clustering problem can be described as finding Ān ⊂Vn, which
minimizes

Fn(An) = GTVn,εn(χAn)

among all An ⊂Vn with ]An = n/2. We can extend the functionals Fn and F to be equal to +∞ for sets
which do not satisfy the volume constraint.
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FIGURE 1. Domain D FIGURE 2. Energy minimizers

The kernel we consider for simplicity is the one given by η(x) = 1 if |x|< 1 and η(x) = 0 otherwise.
While we did not consider the graph total variation with constraints in Theorem 1.1, that extension is
of technical nature. In particular the liminf inequality of the definition of Γ-convergence of Definition
2.6 in the constraint case follows directly, while the limsup inequality follows using the Remark 5.1.

The compactness result implies that if ε(n) satisfy (8), then along a subsequence, the minimizers Ān
of Fn converge to Ā which minimizes F . Thus our results provide sufficient conditions which guarantee
the consistency (convergence) of the scheme as the number of data points increases to infinity.

Here we illustrate the minimizers corresponding to different ε on a fixed dataset. Figure 4 depicts
the discrete minimizer when ε is taken large enough. Note that this minimizer resembles the one in the
continuous setting in Figure 2. In contrast, on Figure 6 we present a minimizer when ε is taken too
small. Note that in this case the energy of such minimizer is zero. The solutions are computed using
the code of [20].

FIGURE 3. Graph with n=500, ε = 0.18 FIGURE 4. Minimizers when ε = 0.18

1.5. Outline of the approach. The proof of Γ-convergence of the graph total variation GTVn,εn to
weighted total variation TV ( · ,ρ2) relies on an intermediate object, the nonlocal functional TVε(·,ρ) :
L1(D,ν)→ [0,∞] given by:

(9) TVε(u;ρ) :=
1
ε

∫
D

∫
D

ηε(x− y)|u(x)−u(y)|ρ(x)ρ(y)dxdy.

Note that the argument of GTVn,εn , is a function un supported on the data points, while the argument
of TVε(·;ρ) is an L1(D,ν) function; in particular a function defined on D. Having defined the T L1-
metric, the proof of Γ-convergence has two main steps: The first step is to compare the graph total
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FIGURE 5. Graph with n=500, ε = 0.1 FIGURE 6. A minimizer when ε = 0.1

variation GTVn,εn , with the nonlocal continuum functional TVε(·,ρ). To compare the functionals one
needs an L1(D,ν) function which, in T L1 sense, approximates un. We use transportation maps (i.e.
measure preserving maps) between the measure ν and νn to define ũn ∈ L1(D,ν). More precisely
we set ũn = un ◦ Tn where Tn is the transportation map between ν and νn constructed in Subsection
2.3. Comparing GTVn,εn(un) with TVε(ũn;ρ) relies on the fact that Tn is chosen in such a way that it
transports mass as little as possible. The estimates on how far the mass needs to be moved were known
in the literature when ρ is constant. We extended the results to the case when ρ is bounded from below
and from above by positive constants.

The second step consists on comparing the continuum nonlocal total variation functionals (9) with
the weighted total variation (7).

The proof on compactness for GTVn,εn , depends on an analogous compactness result for the nonlocal
continuum functional TVε(·,ρ).

The paper is organized as follows. Section 2 contains the notation and preliminary results from
the weighted total variation, transportation theory and Γ-convergence of functionals on metric spaces.
More specifically, in Subsection 2.1 we introduce and present basic facts about weighted total variation.
In Subsection 2.2 we introduce the optimal transportation problem and list some of its basic properties.
In Subsection 2.3 we review results on optimal matching between the empirical measure νn and ν . In
Subsection 2.4 we recall the notion of Γ-convergence on metric spaces and introduce the appropriate
extension to random setting. In Section 3 we define the metric space T Lp and prove some basic results
about it. Section 4 contains the proof of the Γ-convergence of the nonlocal continuum total variation
functional TVε to the TV functional. The main result, the Γ-convergence of the graph TV functionals to
the TV functional is proved in Section 5. In Subsection 5.2 we discuss the extension of the main result
to the case when X1, . . . ,Xn are not necessarily independently distributed points.

2. PRELIMINARIES

2.1. Weighted total variation. Let D be an open and bounded subset of Rd and let ψ : D→ (0,∞)
be a continuous function. Consider the measure dν(x) = ψ(x)dx. We denote by L1(D,ν) the L1-space
with respect to ν and by || · ||L1(D,ν) its corresponding norm; we use L1(D) in the special case ψ ≡ 1
and || · ||L1(D) for its corresponding norm. If the context is clear, we omit the set D and write L1(ν) and
|| · ||L1(ν). Also, with a slight abuse of notation, we often replace ν by ψ in the previous expressions;
for example we use L1(D,ψ) to represent L1(D,ν).
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Following Baldi, [8], for u ∈ L1(D,ψ) define

(10) TV (u;ψ) = sup
{∫

D
udiv(φ)dx : (∀x ∈ D) |φ(x)| ≤ ψ(x) , φ ∈C∞

c (D,Rd)

}
the weighted total variation of u in D with respect to the weight ψ . We denote by BV (D;ψ) the set
of functions u ∈ L1(D,ψ) for which TV (u;ψ) < +∞. When ψ ≡ 1 we omit it and write BV (D) and
TV (u). Finally, for measurable subsets E ⊂ D, we define the weighted perimeter in D as the weighted
total variation of the characteristic function of the set: Per(E;ψ) = TV (χE ;ψ).

Throughout the paper we restrict our attention to the case where ψ is bounded from below and from
above by positive constants. Indeed, in applications we consider ψ = ρ2, where ρ is continuous and
bounded below and above by positive constants.

Remark 2.1. Since D is a bounded open set and ψ is bounded from above and below by positive
constants, the sets L1(D) and L1(D,ψ) are equal and the norms || · ||L1(D) and || · ||L1(D,ψ) are equivalent.
Also, it is straightforward to see from the definitions that in this case BV (D) = BV (D;ψ).

Remark 2.2. If u ∈ BV (D;ψ) is smooth enough (say for example u ∈C1(D)) then the weighted total
variation TV (u;ψ) can be written as ∫

D
|∇u(x)|ψ(x)dx.

If E is a regular subset of D, then Per(E;ψ) can be written as the following surface integral,

Per(E;ψ) =
∫

∂E∩D
ψ(x)dS(x).

One useful characterization of BV (D;ψ) is provided in the next proposition whose proof can be
found in [8].

Proposition 2.3. Let u ∈ L1(D,ψ), u belongs to BV (D;ψ) if and only if there exists a finite positive
Radon measure |Du|ψ and a |Du|ψ -measurable function σ : D→ Rd with |σ(x)| = 1 for |Du|ψ -a.e.
x ∈ D and such that ∀φ ∈C∞

c (D,Rd)∫
D

udiv(φ)dx =−
∫

D

φ(x) ·σ(x)
ψ(x)

d|Du|ψ(x).

The measure |Du|ψ and the function σ are uniquely determined by the previous conditions and the
weighted total variation TV (u;ψ) is equal to |Du|ψ(D).

We refer to |Du|ψ as the weighted total variation measure (with respect to ψ) associated to u. In
case ψ ≡ 1, we denote |Du|ψ by |Du| and we call it the total variation measure associated to u.

Using the previous definitions one can check that σ does not depend on ψ and that the following
relation between |Du|ψ and |Du| holds

(11) d|Du|ψ(x) = ψ(x)d|Du|(x).

In particular,

(12) TV (u;ψ) =
∫

D
ψ(x)d|Du|(x).

The function σ(x) is the Radon–Nikodym derivative of the distributional derivative of u ( denoted by
Du) with respect to the total variation measure |Du|.

Since the functional TV (·;ψ) is defined as a supremum of linear continuous functionals in L1(D,ψ),
we conclude that TV (·;ψ) is lower semicontinuous with respect to the L1(D,ψ)-metric (and thus
L1(D)-metric given the assumptions on ψ). That is, if un→L1(D,ψ) u as n→ ∞, then

(13) liminf
n→∞

TV (un;ψ)≥ TV (u;ψ).
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We finish this section with the following approximation result that we use in the proof of the main
theorem of this paper. We give a proof of this result in Appendix A.

Proposition 2.4. Let D be an open and bounded set with Lipschitz boundary and let ψ : D→ R be
a continuous function which is bounded from below and from above by positive constants. Then, for
every function u ∈ BV (D,ψ) there exists a sequence {un}n∈N with un ∈C∞

c (Rd) such that un→L1(D) u
and

∫
D |∇un|ψ(x)dx→ TV (u;ψ) as n→ ∞.

2.2. Transportation theory. In this section D is an open and bounded domain in Rd . We denote by
B(D) the Borel σ -algebra of D and by P(D) the set of all Borel probability measures on D. Given
1≤ p < ∞, the p-OT distance between µ, µ̃ ∈P(D) (denoted by dp(µ, µ̃)) is defined by:

(14) dp(µ, µ̃) := min

{(∫
D×D
|x− y|pdπ(x,y)

)1/p

: π ∈ Γ(µ, µ̃)

}
,

where Γ(µ, µ̃) is the set of all couplings between µ and µ̃ , that is, the set of all Borel probability
measures on D×D for which the marginal on the first variable is µ and the marginal on the second
variable is µ̃ . The elements π ∈ Γ(µ, µ̃) are also referred as transportation plans between µ and µ̃ .
When p = 2 the distance is also known as the Wasserstein distance. The existence of minimizers, which
justifies the definition above, is straightforward to show, see [60]. When p = ∞

(15) d∞(µ, µ̃) := inf{esssupπ{|x− y| : (x,y) ∈ D×D} : π ∈ Γ(µ, µ̃)} ,

defines a metric on P(D), which is called the ∞-transportation distance.
Since D is bounded the convergence in OT metric is equivalent to weak convergence of probability

measures. For details see for instance [60], [5] and the references therein. In particular, µn
w−→ µ (to be

read µn converges weakly to µ) if and only if for any 1 ≤ p < ∞ there is a sequence of transportation
plans between µn and µ , {πn}n∈N, for which:

(16) lim
n→∞

∫∫
D×D
|x− y|pdπn(x,y) = 0.

Since D is bounded, (16) is equivalent to limn→∞

∫∫
D×D |x− y|dπn(x,y) = 0. We say that a sequence

of transportation plans, {πn}n∈N (with πn ∈ Γ(µ,µn)), is stagnating if it satisfies the condition (16).
We remark that, since D is bounded, it is straightforward to show that a sequence of transportation
plans is stagnating if and only if πn converges weakly in the space of probability measures on D×D to
π = (id× id)]µ .

Given a Borel map T : D→D and µ ∈P(D) the push-forward of µ by T , denoted by T]µ ∈P(D)
is given by:

T]µ(A) := µ
(
T−1(A)

)
, A ∈B(D).

Then for any bounded Borel function ϕ : D→R the following change of variables in the integral holds:

(17)
∫

D
ϕ(x)d(T]µ)(x) =

∫
D

ϕ(T (x))dµ(x).

We say that a Borel map T : D→ D is a transportation map between the measures µ ∈P(D) and
µ̃ ∈P(D) if µ̃ = T]µ . In this case, we associate a transportation plan πT ∈ Γ(µ, µ̃) to T by:

(18) πT := (Id×T )]µ,

where (Id×T ) : D→ D×D is given by (Id×T )(x) = (x,T (x)). For any c ∈ L1(D×D,B(D×D) ,π)

(19)
∫

D×D
c(x,y)dπT (x,y) =

∫
D

c(x,T (x))dµ(x).
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It is well known that when the measure µ ∈P(D) is absolutely continuous with respect to the
Lebesgue measure, the problem on the right hand side of (14) is equivalent to:

(20) min

{(∫
D
|x−T (x)|pdµ(x)

)1/p

: T]µ = µ̃

}
,

and when p is strictly greater than 1, the problem (14) has a unique solution which is induced (via
(18)) by a transportation map T solving (20) (see [60]). In particular when the measure µ is absolutely
continuous with respect to the Lebesgue measure, µn

w−→ µ as n→ ∞ is equivalent to the existence of
a sequence {Tn}n∈N of transportation maps, (Tn]µ = µn) such that:

(21)
∫

D
|x−Tn(x)|dµ(x)→ 0, as n→ ∞.

We say that a sequence of transportation maps {Tn}n∈N is stagnating if it satisfies (21).
We consider now the notion of inverse of transportation plans. For π ∈ Γ(µ, µ̃), the inverse plan

π−1 ∈ Γ(µ̃,µ) of π is given by:

(22) π
−1 := s]π,

where s : D×D→ D×D is defined as s(x,y) = (y,x). Note that for any c ∈ L1(D×D,π):∫
D×D

c(x,y)dπ(x,y) =
∫

D×D
c(y,x)dπ

−1(x,y).

Let µ, µ̃, µ̂ ∈P(D). The composition of plans π12 ∈ Γ(µ, µ̃) and π23 ∈ Γ(µ̃, µ̂) was discussed
in [5][Remark 5.3.3]. In particular there exists a probability measure πππ on D×D×D such that the
projection of πππ to first two variables is π12, and to second and third variables is π23. We consider π13 to
be the projection of πππ to the first and third variables. We will refer π13 as a composition of π12 and π23
and write π13 = π23 ◦π12. Note π13 ∈ Γ(µ, µ̂).

2.3. Optimal matching results. In this section we discuss how to construct the transportation maps
which allow us to make the transition from the functions of the data points to continuum functions. To
obtain good estimates we want to match the measure ν , out of which the data points are sampled, with
the empirical measure of data points while moving the mass as little as possible.

Let D be an open, bounded, connected domain on Rd with Lipschitz boundary. Let ν be a measure
on D with density ρ which is bounded from below and from above by positive constants. Consider
(Ω,F ,P) a probability space that we assume to be rich enough to support a sequence of independent
random points X1, . . . ,Xn, . . . distributed on D according to measure ν . We seek upper bounds on the
transportation distance between ν and the empirical measures νn =

1
n ∑

n
i=1 δXi . It turned out that in the

proof of Γ-convergence it was most useful to have estimates on the infinity transportation distance

d∞(ν ,νn) = inf{‖Id−Tn‖∞ : Tn : D→ D, Tn]ν = νn},

which measures what is the least maximal distance that a transportation map Tn between ν and νn has
to move the mass.

If ν were a discrete measure with n particles, then the infinity transportation distance is the min-max
matching distance. There is a rich history of discrete matching results (see [2, 37, 50, 57, 54, 55, 56]
and references therein). In fact, let us first consider the case where D = (0,1)d and ρ is constant, that
is, assume the data points are uniformly distributed on (0,1)d . Also, assume for simplicity that n is of
the form n = kd for some k ∈ N. Consider P = {p1, . . . , pn} the set of n points in (0,1)d of the form
( i1

2k , . . . ,
in
2k ) for i1, . . . , in odd integers between 1 and 2k. The points in P form a regular k×·· ·×k array

in (0,1)d and in particular each point in P is the center of a cube with volume 1/n. As in [37] we call
the points in P grid points and the cubes generated by the points in P grid cubes.
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In dimension d = 2, Leighton and Shor [37] showed that, when ρ is constant, there exist c > 0
and C > 0 such that with very high probability (meaning probability greater than 1− n−α where α =
c1(logn)1/2 for some constant c1 > 0):

(23)
c(logn)3/4

n1/2 ≤min
π

max
i
|pi−Xπ(i)| ≤

C(logn)3/4

n1/2

where π ranges over all permutations of {1, . . . ,n}. In other words, when d = 2, with high probability

the ∞-transportation distance between the random points and the grid points is of order (logn)3/4

n1/2 .
For d ≥ 3, Shor and Yukich [50] proved the analogous result to (23). They showed that, when ρ is

constant, there exist c > 0 and C > 0 such that with very high probability

(24)
c(logn)1/d

n1/d ≤min
π

max
i
|pi−Xπ(i)| ≤

C(logn)1/d

n1/d .

The result in dimension d ≥ 3 is based on the matching algorithm introduced by Ajtai, Komlós, and
Tusnády in [2]. It relies on a dyadic decomposition of (0,1)d and transporting step by step between
levels of the dyadic decomposition. The final matching is obtained as a composition of the matchings
between consecutive levels. For d = 2 the AKT algorithm still gives an upper bound, but not a sharp
one. As remarked in [50], there is a crossover in the nature of the matching when d = 2: for d ≥ 3, the
matching length between the random points and the points in the grid is determined by the behavior
of the points locally, for d = 1 on the other hand, the matching length is determined by the behavior
of random points globally, and finally for d = 2 the matching length is determined by the behavior
of the random points at all scales. At the level of the AKT algorithms this means that for d ≥ 3 the
major source of the transportation distance is at the finest scale, for d = 1 at the coarsest scale, while
for d = 2 distances at all scales are of the same size (in terms of how they scale with n). The sharp
result in dimension d = 2 by Leighton and Shor required a more sophisticated matching procedure. An
alternative proof in d = 2 was provided by Talagrand [54] who also provided more streamlined and
conceptually clear proofs in [55, 56]. These results, can be used to obtain bounds on the transportation
distance in the continuum setting.

The results above were extended in [28] to the case of general domains and general measures with
densities bounded from above and below by positive constants. Combined with Borel-Cantelli lemma
they imply the following:

Theorem 2.5. Let D be an open, connected and bounded subset of Rd which has Lipschitz boundary.
Let ν be a probability measure on D with density ρ which is bounded from below and from above by
positive constants. Let X1, . . . ,Xn, . . . be a sequence of independent random points distributed on D
according to measure ν and let νn be the associated empirical measures (5). Then there is a constant
C > 0 such that for P-a.e. ω ∈Ω there exists a sequence of transportation maps {Tn}n∈N from ν to νn
(Tn]ν = νn) and such that:

if d = 2 then limsup
n→∞

n1/2‖Id−Tn‖∞

(logn)3/4 ≤C(25)

and if d ≥ 3 then limsup
n→∞

n1/d‖Id−Tn‖∞

(logn)1/d ≤C.(26)

2.4. Γ-convergence on metric spaces. We recall and discuss the notion of Γ-convergence in general
setting. Let (X ,dX ) be a metric space. Let Fn : X → [0,∞] be a sequence of functionals.

Definition 2.6. The sequence {Fn}n∈N Γ-converges with respect to metric dX to the functional F : X →
[0,∞] as n→ ∞ if the following inequalities hold:

1. Liminf inequality: For every x ∈ X and every sequence {xn}n∈N converging to x,

liminf
n→∞

Fn(xn)≥ F(x),
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2. Limsup inequality: For every x ∈ X there exists a sequence {xn}n∈N converging to x satisfying

limsup
n→∞

Fn(xn)≤ F(x).

We say that F is the Γ-limit of the sequence of functionals {Fn}n∈N (with respect to the metric dX ).

Remark 2.7. In most situations one does not prove the limsup inequality for all x ∈ X directly. Instead,
one proves the inequality for all x in a dense subset X ′ of X where it is somewhat easier to prove, and
then deduce from this that the inequality holds for all x ∈ X . To be more precise, suppose that the
limsup inequality is true for every x in a subset X ′ of X and the set X ′ is such that for every x ∈ X there
exists a sequence {xk}k∈N in X ′ converging to x and such that F(xk)→ F(x) as k→ ∞, then the limsup
inequality is true for every x ∈ X . It is enough to use a diagonal argument to deduce this claim.

Definition 2.8. We say that the sequence of nonnegative functionals {Fn}n∈N satisfies the compactness
property if the following holds: Given {nk}k∈N an increasing sequence of natural numbers and {xk}k∈N
a bounded sequence in X for which

sup
k∈N

Fnk(xk)< ∞

{xk}k∈N is relatively compact in X.

Remark 2.9. Note that the boundedness assumption of {xk}k∈N in the previous definition is a necessary
condition for relative compactness and so it is not restrictive.

The notion of Γ-convergence is particularly useful when the functionals {Fn}n∈N satisfy the com-
pactness property. This is because it guarantees convergence of minimizers (or approximate minimiz-
ers) of Fn to minimizers of F and it also guarantees convergence of the minimum energy of Fn to the
minimum energy of F (this statement is made precise in the next proposition). This is the reason why
Γ-convergence is said to be a variational type of convergence.

Proposition 2.10. Let Fn : X→ [0,∞] be a sequence of nonnegative functionals which are not identically
equal to +∞, satisfying the compactness property and Γ-converging to the functional F : X → [0,∞]
which is not identically equal to +∞. Then,

(27) lim
n→∞

inf
x∈X

Fn(x) = min
x∈X

F(x).

Furthermore every bounded sequence {xn}n∈N in X for which

(28) lim
n→∞

(
Fn(xn)− inf

x∈X
Fn(x)

)
= 0

is relatively compact and each of its cluster points is a minimizer of F.
In particular, if F has a unique minimizer, then a sequence {xn}n∈N satisfying (28) converges to the

unique minimizer of F.

One can extend the concept of Γ-convergence to families of functionals indexed by real numbers in
a simple way, namely, the family of functionals {Fh}h>0 is said to Γ-converge to F as h→ 0 if for every
sequence {hn}n∈N with hn → 0 as n→ ∞ the sequence {Fhn}n∈N Γ-converges to the functional F as
n→ ∞. Similarly one can define the compactness property for the functionals {Fh}h>0. For more on
the notion of Γ-convergence see [15] or [24].

Since the functionals we are most interested in depend on data (and hence are random), we need to
define what it means for a sequence of random functionals to Γ-converge to a deterministic functional.

Definition 2.11. Let (Ω,F ,P) be a probability space. For {Fn}n∈N a sequence of (random) functionals
Fn : X ×Ω→ [0,∞] and F a (deterministic) functional F : X → [0,∞], we say that the sequence of
functionals {Fn}n∈N Γ-converges (in the dX metric) to F, if for P-almost every ω ∈ Ω the sequence
{Fn(·,ω)}n∈N Γ-converges to F according to Definition 2.6. Similarly, we say that {Fn}n∈N satisfies
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the compactness property if for P-almost every ω ∈Ω, {Fn(·,ω)}n∈N satisfies the compactness property
according to Definition 2.8.

We do not explicitly write the dependence of Fn on ω understanding that we are always working
with a fixed value ω ∈Ω, and hence with a deterministic functional.

3. THE SPACE T Lp

In this section, D denotes an open and bounded domain in Rd . Consider the set

T Lp(D) := {(µ, f ) : µ ∈P(D), f ∈ Lp(D,µ)}.

For (µ, f ) and (ν ,g) in T Lp we define dT Lp((µ, f ),(ν ,g)) by

dT Lp((µ, f ),(ν ,g)) = inf
π∈Γ(µ,ν)

(∫∫
D×D
|x− y|p + | f (x)−g(y)|pdπ(x,y)

)1/p

.(29)

Remark 3.1. We remark that formally T Lp is a fiber bundle over P(D). Namely if one considers the
Finsler (Riemannian for p = 2) manifold structure on P(D) provided by the p−OT metric (see [1] for
general p and [5, 42] for p = 2) then T Lp is, formally, a fiber bundle.

In order to prove that dT Lp is a metric, we remark that dT Lp is equal to a transportation distance
between graphs of functions. To make this idea precise, let Pp(D×R) be the space of Borel probability
measures on the product space D×R whose p-moment is finite. We consider the map

(µ, f ) ∈ T Lp 7−→ (Id× f )]µ ∈Pp(D×R),

which allows us to identify an element (µ, f ) ∈ T Lp with a measure in the product space D×R whose
support is contained in the graph of f .

For γ, γ̃ ∈Pp(D×R) let dp(γ, γ̃) be given by

(dp(γ, γ̃))
p = inf

π∈Γ(γ,γ̃)

∫∫
(D×R)×(D×R)

|x− y|p + |s− t|pdπ((x,s),(y, t)).

Remark 3.2. We remark that dp is a distance on Pp(D×R) and that it is equivalent to the p-OT
distance dp introduced in Section 2.2 (the domain being D×R). Moreover, when p = 2 these two
distances are actually equal.

Using the identification of elements in T Lp with probability measures in the product space D×R
we have the following.

Proposition 3.3. Let (µ, f ),(ν ,g) ∈ T Lp. Then, dT Lp((µ, f ),(ν ,g)) = dp((µ, f ),(ν ,g)).

Proof. To see this, note that for every π ∈ Γ((µ, f ),(ν ,g)), it is true that the support of π is contained
in the product of the graphs of f and g. In particular, we can write

(30)
∫∫

(D×R)×(D×R)
|x− y|p + |s− t|pdπ((x,s),(y, t)) =

∫∫
D×D
|x− y|p + | f (x)−g(y)|pdπ̃(x,y),

where π̃ ∈ Γ(µ,ν). The right hand side of the previous expression is greater than dT Lp((µ, f ),(ν ,g)),
which together with the fact that π was arbitrary allows us to conclude that dp((µ, f ),(ν ,g))≥ dT Lp((µ, f ),(ν ,g)).
To obtain the opposite inequality, it is enough to notice that for an arbitrary coupling π̃ ∈ Γ(µ,ν), we
can consider the measure π := ((Id× f )× (Id×g))]π̃ which belongs to Γ((µ, f ),(ν ,g)). Then, equa-
tion (30) holds and its left hand side is greater than dT Lp((µ, f ),(ν ,g)). The fact that π̃ was arbitrary
allows us to conclude the opposite inequality. �

Remark 3.4. Proposition 3.3 and Remark 3.2 imply that (T Lp,dT Lp) is a metric space.
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Remark 3.5. We remark that the metric space (T Lp,dT Lp) is not complete. To illustrate this, let us
consider D = (0,1). Let µ be the Lebesgue measure on D and define fn+1(x) := signsin(2nπx) for
x ∈ (0,1). Then, it can be shown that dT Lp((µ, fn),(µ, fn+1)) ≤ 1/2n. This implies that the sequence
{(µ, fn)}n∈N is a Cauchy sequence in (T Lp,dT Lp). However, if this was a convergent sequence, in
particular it would have to converge to an element of the form (µ, f ) (see Proposition 3.12 below).

But then, by Remark 3.9, it would be true that fn
Lp(µ)−→ f . This is impossible because { fn}n∈N is not a

convergent sequence in Lp(µ).

Remark 3.6. The completion of the metric space (T Lp,dT Lp) is the space (Pp(D×R),dp). In fact,
in order to show this, it is enough to show that T Lp is dense in (Pp(D×R),dp). Since the class of
convex combinations of Dirac delta masses is dense in (Pp(D×R),dp), it is enough to show that
every convex combination of Dirac deltas can be approximated by elements in T Lp. So let us consider
δ ∈Pp(D×R) of the form

δ =
m

∑
i=1

li

∑
j=1

ai jδ(xi,t i
j)
,

where x1, . . . ,xn are n points in D; t j
i ∈ R ; ai j > 0 and ∑

m
i=1 ∑

li
j=1 ai j = 1. Now, for every n ∈ N and for

every i= 1, . . . ,m choose rn
i > 0 such that for all i: B(xi,rn

i )⊆D and for all k 6= i, B(xi,rn
i )∩B(xk,rn

k)= /0
and such that (∀i) rn

i ≤ 1
n .

For i = 1, . . . ,m consider yi,n
1 , . . . ,yi,n

li
a collection of li points in B(xi,rn

i ). We define the function

fn : D→ R given by f n(x) = t j
i if x = yi,n

j for some i, j and fn(x) = 0 if not.
Finally, we define the measure µn ∈P(D) by

µn =
m

∑
i=1

li

∑
j=1

ai jδyi,n
j
.

It is straightforward to check that (µn, fn)
dp−→ δ .

Remark 3.7. Here we make a connection between T Lp spaces and Young measures. Consider a fiber
of T Lp over µ ∈P(D), that is, consider

T Lpxµ := {(µ, f ) : f ∈ Lp(µ)} .
Let Proj1 : D×R 7→ D be defined by Proj1(x, t) = x and let

Pp(D×R)xµ :=
{

γ ∈Pp(D×R) : Proj1]γ = µ

}
.

Thanks to the disintegration theorem (see Theorem 5.3.1 in [5] ), the set Pp(D×R)xµ can be
identified with the set of Young measures (or parametrized measures), with finite p-moment which
have µ as base distribution (see [43], [22]). It is straightforward to check that Pp(D×R)xµ is a closed
subset (in the dp sense) of Pp(D×R). Hence, the closure of T Lpxµ in Pp(D×R) is contained in
Pp(D×R)xµ , that is,

T Lpxµ ⊆Pp(D×R)xµ .

In general the inclusion may be strict. For example if we let D = (−1,1) and consider µ = δ0 to be the
Dirac delta measure at zero, then it is straightforward to check that T Lpxµ is actually a closed subset
of Pp(D×R) and that T Lpxµ( Pp(D×R)xµ . On the other hand, if the measure µ is absolutely
continuous with respect to the Lebesgue measure, then the closure of T Lpxµ is indeed Pp(D×R)xµ .
This fact follows from Theorem 2.4.3 in [22]. Here we present a simple proof of this fact using the ideas
introduced in the preliminaries. Note that it is enough to show that T Lpxµ is dense in Pp(D×R)xµ .
So let γ ∈Pp(D×R)xµ . By Remark 3.6, there exists a sequence {((µn, fn)}n∈N ⊆ T Lp such that

(µn, fn)
dp−→ γ.
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In particular,

µn
dp−→ µ.

Since µ is absolutely continuous with respect to the Lebesgue measure, for every n ∈ N there exists a
transportation map Tn : D→ D with Tn]µ = µn, such that∫

D
|x−Tn(x)|pdµ(x) = (dp(µ,µn))

p→ 0, as n→ ∞.

On the other hand, the transportation map Tn induces the transportation plan πTn ∈ Γ(µ,µn) defined in
(18). Hence,

(dp((µ, fn ◦Tn),(µn, fn)))
p = (dT Lp((µ, fn ◦Tn),(µn, fn)))

p

≤
∫

D×D
|x− y|pdπTn(x,y)+

∫
D×D
| fn ◦Tn(x)− fn(y)|pdπTn(x,y)

=
∫

D
|x−Tn(x)|pdµ(x).

From the previous computations, we deduce that (dp((µ, fn ◦ Tn),(µn, fn))→ 0 as n→ ∞, and thus

(µ, fn ◦Tn)
dp−→ γ . This shows that T Lpxµ is dense in Pp(D×R)xµ , and given that Pp(D×R)xµ is a

closed subset of Pp(D×R), we conclude that T Lpxµ = Pp(D×R)xµ .

Remark 3.8. If one restricts the attention to measures µ,ν ∈P(D) which are absolutely continuous
with respect to the Lebesgue measure then

inf
T : T]µ=ν

(∫
D
|x−T (x)|p + | f (x)−g(T (x))|pdµ(x)

) 1
p

majorizes dT Lp((µ, f ),(ν ,g)) and furthermore provides a metric (on the subset of T Lp) which gives the
same topology as dT Lp . The fact that these topologies are the same follows from Proposition 3.12.

Remark 3.9. One can think of the convergence in T Lp as a generalization of weak convergence of
measures and of Lp convergence of functions. That is {µn}n∈N in P(D) converges weakly to µ ∈
P(D) if and only if (µn,1)

T Lp
−→ (µ,1) as n→ ∞ (which follows from the fact that on bounded sets p-

OT metric metrizes the weak convergence of measures [5]), and that for µ ∈P(D) a sequence { fn}n∈N

in Lp(µ) converges in Lp(µ) to f if and only if (µ, fn)
T Lp
−→ (µ, f ) as n→∞. The last fact is established

in Proposition 3.12.

We wish to establish a simple characterization for the convergence in the space T Lp. For this, we
need first the following two lemmas.

Lemma 3.10. Let µ ∈P(D) and let πn ∈ Γ(µ,µ) for all n ∈ N. If {πn}n∈N, is a stagnating sequence
of transportation plans, then for any u ∈ Lp(µ)

lim
n→∞

∫∫
D×D
|u(x)−u(y)|pdπn(x,y) = 0.

Proof. We prove the case p = 1 since the other cases are similar. Let u ∈ L1(µ) and let {πn}n∈N be a
stagnating sequence of transportation maps with πn ∈ Γ(µ,µ). Since the probability measure µ is inner
regular, we know that the class of Lipschitz and bounded functions on D is dense in L1(µ). Fix ε > 0,
we know there exists a function v : D→ R which is Lipschitz and bounded and for which:∫

D
|u(x)− v(x)|dµ(x)<

ε

3
.
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Note that: ∫∫
D×D
|v(x)− v(y)|dπn(x,y)≤ Lip(v)

∫∫
D×D
|x− y|dπn(x,y)→ 0, as n→ ∞.

Hence we can find N ∈N such that if n≥N then
∫∫

D×D |v(x)−v(y)|dπn(x,y)< ε

3 . Therefore, for n≥N,
using the triangle inequality, we obtain∫∫

D×D
|u(x)−u(y)|dπn(x,y)≤

∫∫
D×D
|u(x)− v(x)|dπn(x,y)

+
∫∫

D×D
|v(x)− v(y)|dπn(x,y)+

∫∫
D×D
|v(y)−u(y)|dπn(x,y)

=2
∫

D
|v(x)−u(x)|dµ(x)+

∫∫
D×D
|v(x)− v(y)|dπn(x,y)< ε.

This proves the result. �

Lemma 3.11. Suppose that the sequence {µn}n∈N in P(D) converges weakly to µ ∈P(D). Let
{un}n∈N be a sequence with un ∈ Lp(µn) and let u ∈ Lp(µ). Consider two sequences of stagnating
transportation plans {πn}n∈N and {π̂n}n∈N (with πn, π̂n ∈ Γ(µ,µn)). Then:

lim
n→∞

∫∫
D×D
|u(x)−un(y)|pdπn(x,y) = 0 ⇔ lim

n→∞

∫∫
D×D
|u(x)−un(y)|pdπ̂n(x,y) = 0(31)

Proof. We present the details for p = 1, as the other cases are similar. Take π̂−1
n ∈ Γ(µn,µ) the inverse

of π̂n defined in (22). We can consider πππnnn ∈P(D×D×D) as the measure mentioned at the end of
Subsection 2.2 (taking π23 = π̂−1

n and π12 = πn). In particular π̂−1
n ◦πn ∈ Γ(µ,µ). Then∫∫

D×D
|un(y)−u(x)|dπn(x,y) =

∫∫∫
D×D×D

|un(y)−u(x)|dπππn(x,y,z),

and ∫∫
D×D
|un(z)−u(y)|dπ̂n(y,z) =

∫∫
D×D
|un(y)−u(z)|dπ̂

−1
n (y,z)

=
∫∫∫

D×D×D
|un(y)−u(z)|dπππn(x,y,z),

which imply after using the triangle inequality:∣∣∣∣∫∫D×D
|un(y)−u(x)|dπn(x,y)−

∫∫
D×D
|u(z)−un(y)|dπ̂n(y,z)

∣∣∣∣
≤
∫∫∫

D×D×D
|u(z)−u(x)|dπππn(x,y,z) =

∫∫
D×D
|u(z)−u(x)|dπ̂

−1
n ◦πn(x,z).

(32)

Finally note that :∫∫
D×D
|x− z|dπ̂

−1
n ◦πn(x,z)≤

∫∫
D×D
|x− y|dπn(x,y)+

∫∫
D×D
|y− z|dπ̂n(z,y)→ 0,

as n→ ∞. The sequence
{

π̂−1
n ◦πn

}
n∈N satisfies the assumptions of Lemma 3.10, so we can deduce

that
∫∫

D×D |u(z)−u(x)|dπ̂−1
n ◦πn(x,z)→ 0 as n→ ∞. By (32) we get that:

lim
n→∞

∣∣∣∣∫∫D×D
|un(y)−u(x)|dπn(x,y)−

∫∫
D×D
|un(z)−u(y)|dπ̂n(y,z)

∣∣∣∣= 0.

This implies the result. �

Proposition 3.12. Let (µ, f ) ∈ T Lp and let {(µn, fn)}n∈N be a sequence in T Lp. The following state-
ments are equivalent:

1. (µn, fn)
T Lp
−→ (µ, f ) as n→ ∞.
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2. µn
w−→ µ and for every stagnating sequence of transportation plans {πn}n∈N (with πn ∈Γ(µ,µn))

(33)
∫∫

D×D
| f (x)− fn(y)|p dπn(x,y)→ 0, as n→ ∞.

3. µn
w−→ µ and there exists a stagnating sequence of transportation plans {πn}n∈N (with πn ∈

Γ(µ,µn)) for which (33) holds.
Moreover, if the measure µ is absolutely continuous with respect to the Lebesgue measure, the following
are equivalent to the previous statements:

4. µn
w−→ µ and there exists a stagnating sequence of transportation maps {Tn}n∈N (with Tn]µ =

µn) such that:

(34)
∫

D
| f (x)− fn (Tn(x))|p dµ(x)→ 0, as n→ ∞.

5. µn
w−→ µ and for any stagnating sequence of transportation maps {Tn}n∈N (with Tn]µ = µn)

(34) holds.

Proof. By Lemma 3.11, claims 2. and 3. are equivalent. In case µ is absolutely continuous with
respect to the Lebesgue measure, we know that there exists a stagnating sequence of transportation
maps {Tn}n∈N (with Tn]µ = µn). Considering the sequence of transportation plans {πTn}n∈N (as defined
in (18)) and using (19) we see that 2., 3., 4., and 5. are all equivalent. We prove the equivalence of 1.
and 3.

(1.⇒ 3.) Note that dp(µ,µn) ≤ dT Lp ((µ, f ) ,(µn, fn)) for every n. Consequently dp(µ,µn)→ 0 as
n→ ∞ and in particular µn

w−→ µ as n→ ∞. Furthermore, since dT Lp ((µ, f ) ,(µn, fn))→ 0 as n→ ∞,
there exists a sequence {π∗n}n∈N of transportation plans (with π∗n ∈ Γ(µ,µn)) such that:

lim
n→∞

∫∫
D×D
|x− y|pdπ

∗
n (x,y) = 0,

lim
n→∞

∫∫
D×D
| f (x)− fn(y)|pdπ

∗
n (x,y) = 0.

{π∗n}n∈N is then a stagnating sequence of transportation plans for which (33) holds.
(3.⇒ 1.) Since µn

w−→ µ as n→∞ (and since D is bounded), we know that dp(µn,µ)→ 0 as n→∞.
In particular, we can find a sequence of transportation plans {πn}n∈N with πn ∈ Γ(µ,µn) such that:

lim
n→∞

∫∫
D×D
|x− y|pdπn(x,y) = 0

{πn}n∈N is then a stagnating sequence of transportation plans. By the hypothesis we conclude that:

lim
n→∞

∫∫
D×D
| f (x)− fn(y)|pdπn(x,y) = 0

We deduce that limn→∞ dT Lp ((µ, f ),(µn, fn)) = 0. �

Definition 3.13. Suppose {µn}n∈N in P(D) converges weakly to µ ∈P(D). We say that the sequence
{un}n∈N (with un ∈ Lp(µn)) converges in the T Lp sense to u ∈ Lp(µ), if {(µn,un)}n∈N converges to

(µ,u) in the T Lp metric. In this case we use a slight abuse of notation and write un
T Lp
−→ u as n→ ∞.

Also, we say the sequence {un}n∈N (with un ∈ Lp(µn)) is relatively compact in T Lp if the sequence
{(µn,un)}n∈N is relatively compact in T Lp.

Remark 3.14. Thanks to Proposition 3.12 when µ is absolutely continuous with respect to the Lebesgue

measure un
T Lp
−→ u as n→∞ if and only if for every (or one) {Tn}n∈N stagnating sequence of transporta-

tion maps (with Tn]µ = µn) it is true that un ◦Tn
Lp(µ)−→ u as n→∞ ( this in particular implies the last part

of Remark 3.9). Also {un}n∈N is relatively compact in T Lp if and only if for every (or one) {Tn}n∈N
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stagnating sequence of transportation maps (with Tn]µ = µn) it is true that {un ◦Tn}n∈N is relatively
compact in Lp(µ).

In the light of Proposition 3.12 and Remark 3.7, we finish this section by illustrating a further con-
nection between Young measures and the T Lp space and also, we provide a geometric characterization
of Lp-convergence. These connections follow from Theorem 2.4.3 in [22], nevertheless, we decided to
present them in the context of the tools and results presented in this section. Let us consider µ to be the
Lebesgue measure. The set Lp(µ) can be identified with the fiber T Lpxµ in a canonical way:

f ∈ Lp(µ) 7→ (µ, f ) ∈ T Lpxµ .

Thus, we can endow Lp(µ) with the distance dT Lp . Note that by Remark 3.9, the topologies in Lp(µ)
generated by dT Lp and || · ||Lp(µ) are the same. However, Remark 3.5 implies that dT Lp and the distance
generated by the norm || · ||Lp(µ) are not equivalent. Note that the space Lp(µ) endowed with the norm
|| · ||Lp(µ) is a complete metric space. On the other hand, by Remark 3.7, the completion of Lp(µ)
endowed with the metric dT Lp is Pp(D×R)xµ with dp as distance. This is a characterization for the
class of Young measures with finite p-moment, namely, they can be interpreted as the completion of the
space Lp(µ) endowed with the metric dT Lp . Regarding the geometric interpretation of Lp-convergence,
we have the following.

Corollary 3.15. Let µ be the Lebesgue measure on D. Let { fn}n∈N be a sequence in Lp(µ) and let
f ∈ Lp(µ). Then, { fn}n∈N converges to f in Lp(µ) if and only if the graphs of fn converge to the graph
of f in the p-OT sense.

Proof. From Remark 3.9, the sequence { fn}n∈N converges to f in Lp(µ) if and only if the sequence
{(µ, fn)}n∈N converges to (µ, f ) in T Lp. This implies the result, because T Lp distance is equivalent to
the p-OT distance defined on Pp(D×R) (see Proposition 3.3 and Remark 3.2). �

4. Γ-CONVERGENCE OF TVε(·,ρ)

In this section we prove the Γ-convergence of the nonlocal functionals TVε(·,ρ) to the weighted
total variation with weight ρ2.

Theorem 4.1. Consider an open, bounded domain D in Rd with Lipschitz boundary. Let ρ : D→ R
be continuous and bounded below and above by positive constants. Then, {TVε(·;ρ)}

ε>0 (defined
in (9)) Γ-converges with respect to the L1(D,ρ)-metric to ση TV (·,ρ2). Moreover, the functionals
{TVε(·;ρ)}

ε>0 satisfy the compactness property (Definition 2.8) with respect to the L1(D,ρ)-metric.

Part of the proof of this result follows ideas present in the work of Ponce [46]. Specifically, Lemma
4.2 below and the first part of the proof of the liminf inequality are adaptations of results by Ponce.
The first part of the proof of the limsup inequality is a careful adaptation of the appendix of a paper by
Alberti and Bellettini [3].

We also prove compactness of the functionals {TVε(·;ρ)}
ε>0.This part required new arguments, due

to the presence of domain boundary and lack of L∞-control. Part of the proof on compactness in [3]
is used. As a corollary, we show that if one considers only functions uniformly bounded in L∞, the
compactness holds for open and bounded domains D regardless of the regularity of its boundary.

Since the definition of Γ-convergence for a family of functionals indexed by real numbers is given
in terms of sequences, in this section we adopt the following notation: ε is a short-hand notation for εn
where {εn}n∈N is an arbitrary sequence of positive real numbers converging to zero as n→ ∞. Limits
as ε → 0 simply mean limits as n→ ∞ for every such sequence.

Lemma 4.2. Let D be a bounded open subset of Rd and let ρ : D→ R be a Lipschitz function that is
bounded from below and from above by positive constants. Suppose that {uε}ε>0 is a sequence of C2
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functions such that

(35) sup
ε>0

{
||∇uε ||L∞(Rd)+ ||D

2uε ||L∞(Rd)

}
< ∞.

If ∇uε

L1(D)−→ ∇u for some u ∈C2(Rd), then

(36) lim
ε→0

TVε(uε ;ρ) = ση

∫
D
|∇u(x)|(ρ(x))2dx.

Proof. Step 1: For an arbitrary function v ∈C2(Rd) we define

Hε(v) =
1
ε

∫
D

∫
D

ηε(x− y)|∇v(x) · (y− x)|ρ(x)ρ(y)dydx.

First we show that

(37) lim
ε→0
|TVε(uε ;ρ)−Hε(uε)|= 0.

For this purpose, note that by Taylor’s theorem and by (35), for x,y ∈ D x 6= y and ε > 0∣∣∣∣uε(x)−uε(y)
|x− y|

− ∇uε(x) · (y− x)
|x− y|

∣∣∣∣≤ ||D2uε ||L∞(Rd)|x− y| ≤C|x− y|,

where ||D2uε ||L∞(Rd) denotes the L∞ norm of the Hessian matrix of the function uε and C is a positive
constant independent of ε . Using this inequality and a simple change of variables we deduce

|TVε(uε ;ρ)−Hε(uε)| ≤
C Vol(D)||ρ||2L∞(D)

ε

∫
|h|≤γ

ηε(h)|h|2dh

=C Vol(D)||ρ||2L∞(D)

∫
|ĥ|≤ γ

ε

εη(ĥ)|ĥ|2dĥ,

where γ denotes the diameter of the set D. Finally, using assumption (K3) on the kernel η , it is straight-
forward to deduce that the last term in the previous expression goes to zero as ε goes to zero, and thus
we obtain (37).

Step 2: Now, for v ∈C2(Rd) consider

(38) H̃ε(v) =
1
ε

∫
D

∫
x+h∈D

ηε(h) |∇v(x) ·h|(ρ(x))2dhdx.

We claim that

(39) lim
ε→0

∣∣Hε(uε)− H̃ε(uε)
∣∣= 0.

Indeed, using the fact that ρ is Lipschitz,∣∣Hε(uε)− H̃ε(uε)
∣∣≤ 1

ε

∫
D

∫
x+h∈D

ηε(h) |∇uε(x) ·h| |ρ(x+h)−ρ(x)|ρ(x)dhdx

≤
||∇uε ||L∞(Rd) Lip(ρ)||ρ||L∞(D)

ε

∫
D

∫
x+h∈D

ηε(h)|h|2dhdx

≤
||∇uε ||L∞(Rd) Lip(ρ)||ρ||L∞(D) Vol(D)

ε

∫
|h|<γ

ηε(h)|h|2dh,

where as in Step 1 γ denotes the diameter of the set D. The last term in the previous expression goes to
zero as ε goes to zero (as in Step 1).

Step 3: We claim that

(40) lim
ε→0

1
ε

∫
D

∫
x+h∈Rd\D

ηε(h) |∇uε(x) ·h|(ρ(x))2dhdx = 0.
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Note that,
1
ε

∫
D

∫
x+h∈Rd\D

ηε(h) |∇uε(x) ·h|(ρ(x))2dhdx

≤ ||∇uε ||L∞(Rd)||ρ||
2
L∞(D)

∫
D

∫
x+ε ĥ∈Rd\D

η(ĥ)|ĥ|dĥdx.

Using (35) and assumption (K3) on η , we deduce that the right hand side of the previous inequality
goes to zero as ε goes to zero, thus implying (40).

Step 4: Using steps 1, 2, and 3 in order to obtain (36) it is enough to prove that

(41) lim
ε→0

1
ε

∫
D

∫
Rd

ηε(h)|∇uε(x) ·h|(ρ(x))2dhdx = ση

∫
D
|∇u|(ρ(x))2dx.

Note that using the change of variables ĥ = h
ε

and the isotropy of the kernel η , imply

1
ε

∫
D

∫
Rd

ηε(h)|∇uε(x) ·h|(ρ(x))2dhdx =
∫

D

(∫
Rd

η(ĥ)|∇uε(x) · ĥ|dĥ
)
(ρ(x))2dx

= ση

∫
D
|∇uε(x)|(ρ(x))2dx.

Taking ε to zero in the previous expression we obtain (41), and consequently (36). �

4.1. Proof of Theorem 4.1: the Liminf Inequality.

Proof. Case 1: ρ is Lipschitz. Consider an arbitrary u ∈ L1(ρ) and suppose that uε

L1(ρ)−→ u as ε →

0. Recall that given the assumptions on ρ this is equivalent to uε

L1(D)−→ u as ε → 0. We want to
show that liminfε→0 TVε(uε ;ρ) ≥ ση TV (u;ρ2). Without the loss of generality we can assume that
{TVε(uε ;ρ)}

ε>0 is bounded.
The idea is to reduce the problem to a setting where we can use Lemma 4.2. The plan is to first

regularize the functions uε to obtain a new sequence of functions
{

uε,δ

}
ε>0 (δ > 0 is a parameter that

controls the smoothness of the regularized functions). The point is that regularizing does not increase
the energy in the limit, while it gains the regularity needed to use Lemma 4.2.

To make this idea precise, consider J : Rd → [0,∞) a standard mollifier. That is, J is a smooth
radially symmetric function, supported in the closed unit ball B(0,1) and is such that

∫
Rd J(z)dz = 1.

We set Jδ to be Jδ (z) =
1

δ d J
( z

δ

)
. Note that

∫
Rd Jδ (z)dz = 1 for every δ > 0.

Fix D′ an open domain compactly contained in D. There exists δ ′ > 0 such that D′′ =
⋃

x∈D′ B(x,δ
′)

is contained in D. For 0 < δ < δ ′ and for a given function v ∈ L1(D) we define the mollified function
vδ ∈ L1(Rd) by setting vδ (x) =

∫
Rd Jδ (x− z)v(z)dz =

∫
Rd Jδ (z)v(x− z)dz where we have extended v to

be zero outside of D. The functions vδ are smooth, and satisfy vδ

L1(D′)−→ v as δ → 0, see for example
[38]. Furthermore

(42) ∇vδ (x) =
∫
Rd

∇Jδ (z)v(x− z)dz =
1
δ

∫
Rd

1
δ d ∇J

( z
δ

)
v(x− z)dz.

By taking the second derivative, it follows that there is a constant C > 0 (only depending on the mollifier
J) such that

(43) ||∇vδ ||L∞(Rd) ≤
C
δ
||v||L1(D) and ||D2vδ ||L∞(Rd) ≤

C
δ 2 ||v||L1(D).

Since uε

L1(D)−→ u as ε → 0 the norms ||uε ||L1(D) are uniformly bounded. Therefore, taking v = uε in
inequalities (43) and setting uε,δ = (uε)δ , implies

sup
ε>0

{
||∇uε,δ ||L∞(Rd)+ ||D

2uε,δ ||L∞(Rd)

}
< ∞.
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Moreover, using (42) to express ∇uε,δ and ∇uδ , it is straightforward to deduce that∫
D′

∣∣∇uε,δ (x)−∇uδ (x)
∣∣dx≤ C

δ

∫
D
|uε(x)−u(x)|dx.

for some constant C independent of ε . In particular,
∫

D′
∣∣∇uε,δ (x)−∇uδ (x)

∣∣dx→ 0 as ε→ 0 and hence
we can apply Lemma 4.2 taking D to be D′) to infer that

lim
ε→0

1
ε

∫
D′

∫
D′

ηε(x− y)|uε,δ (x)−uε,δ (y)|ρ(x)ρ(y)dxdy

= ση

∫
D′
|∇uδ (x)|(ρ(x))2dxdy.

(44)

To measure the approximation error in the energy, we set

aε,δ =
1
ε

∫
D′′

∫
D′′

∫
Rd

Jδ (z)ηε(x− y)|uε(x)−uε(y)|(ρ(x)ρ(y)−ρ(x+ z)ρ(y+ z))dzdxdy,

and estimate

TVε(uε ;ρ)≥ 1
ε

∫
D′′

∫
D′′

ηε(x− y)|uε(x)−uε(y)|ρ(x)ρ(y)dxdy

=
1
ε

∫
D′′

∫
D′′

∫
Rd

Jδ (z)ηε(x− y)|uε(x)−uε(y)|ρ(x)ρ(y)dzdxdy

= aε,δ +
1
ε

∫
D′′

∫
D′′

∫
Rd

Jδ (z)ηε(x− y)|uε(x)−uε(y)|ρ(x+ z)ρ(y+ z)dzdydx

≥ aε,δ +
1
ε

∫
D′

∫
D′

∫
Rd

Jδ (z)ηε(x̂− ŷ)|uε(x̂− z)−uε(ŷ− z)|ρ(x̂)ρ(ŷ)dzdŷdx̂

≥ aε,δ +
1
ε

∫
D′

∫
D′

ηε(x̂− ŷ)
∣∣∣∣∫Rd

Jδ (z)(uε(x̂− z)−uε(ŷ− z))dz
∣∣∣∣ρ(x̂)ρ(ŷ)dŷdx̂

= aε,δ +
1
ε

∫
D′

∫
D′

ηε(x̂− ŷ)|uε,δ (x̂)−uε,δ (ŷ)|ρ(x̂)ρ(ŷ)dŷdx̂,

where the second inequality is obtained using the change of variables x̂ = x+z , ŷ = y+z, z = z together
with the choice of δ and δ ′; Jensen’s inequality justifies the third one. This chain of inequalities and
(44) imply that

(45) liminf
ε→0

TVε(uε ;ρ)≥ liminf
ε→0

aε,δ +ση

∫
D′
|∇uδ (x)|(ρ(x))2dx.

We estimate aε,δ as follows

|aε,δ | ≤
2||ρ||L∞

ε

∫
D′′

∫
D′′

∫
Rd

Jδ (z)ηε(x− y) |uε(x)−uε(y)| |ρ(x)−ρ(x+ z)|dzdxdy

≤ 2δ ||ρ||L∞ Lip(ρ)
ε

∫
D′′

∫
D′′

∫
Rd

Jδ (z)ηε(x− y) |uε(x)−uε(y)|dzdxdy

=
2δ ||ρ||L∞ Lip(ρ)

ε

∫
D′′

∫
D′′

ηε(x− y) |uε(x)−uε(y)|dxdy.

Since we had assumed that {TVε(uε ;ρ)}
ε>0 is bounded, and also that ρ is bounded from below by

a positive constant, we conclude from the previous inequalities that liminfδ→0 liminfε→0 aε,δ = 0 and
thus, by (45),

liminf
ε→0

TVε(uε ;ρ)≥ ση liminf
δ→0

∫
D′
|∇uδ |(ρ(x))2dx.

Given that uδ →L1(D′) u as δ → 0, we can use the lower semicontinuity of the weighted total varia-
tion, (13), to obtain

(46) liminf
ε→0

TVε(uε ;ρ)≥ ση liminf
δ→0

∫
D′
|∇uδ |(ρ(x))2dx≥ ση |Du|ρ2(D′).
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Given that D′ was an arbitrary open set compactly contained in D, we can take D′↗ D in the previous
inequality to obtain the desired result.

Case 2: ρ is continuous but not necessarily Lipschitz. The idea is to approximate ρ from below
by a family of Lipschitz functions {ρk}k∈N. Indeed, consider ρk : D→ R given by

(47) ρk(x) := inf
y∈D

ρ(y)+ k|x− y|.

The functions ρk are Lipschitz functions which are bounded from below and from above by the same
constants bounding ρ from below and from above. Moreover, given that ρ is continuous, for every
x ∈ D, ρk(x)↗ ρ(x) as k→ ∞.

Let u ∈ L1(D) and suppose that uε

L1(D)−→ u. Since ρk is Lipschitz, we can use Case 1 and the fact that
ρk ≤ ρ to conclude that

(48) liminf
ε→0

TVε(uε ;ρ)≥ liminf
ε→0

TVε(uε ;ρk)≥ ση TV (u;ρ
2
k ).

Using (12) and the monotone convergence theorem, we see that:

lim
k→∞

TV (u;ρ
2
k ) = lim

k→∞

∫
D

ρ
2
k (x)d|Du|(x) =

∫
D

ρ
2(x)d|Du|(x) = TV (u;ρ

2).

Combining with (48) yields the desired result. �

4.2. Proof of Theorem 4.1: The Limsup Inequality.

Proof. Case 1: ρ is Lipschitz. We start by noting that since ρ : D→ Rd is a Lipschitz function, there
exists an extension (that we denote by ρ as well) to the entire Rd which has the same Lipschitz constant
as the original ρ and is bounded below by the same positive constant. Indeed, the extended function
ρ :Rd→R can be defined by ρ(x)= infy∈D ρ(y)+Lip(ρ)|x−y|, where Lip(ρ) is the Lipschitz constant
of ρ .

To prove the limsup inequality we show that for every u ∈ L1(ρ):

(49) limsup
ε→0

TVε(u;ρ)≤ ση TV (u;ρ
2).

It suffices to show (49) for functions u ∈ BV (D) (if the right hand side of (49) is +∞ there is nothing to
prove). Since D has Lipschitz boundary, for a given u ∈ BV (D) we use Proposition 3.21 in [4] to obtain
an extension û ∈ BV (Rd) of u to the entire space Rd with |Dû|(∂D) = 0. In particular from (11) we
obtain

(50) |Dû|
ρ2 (∂D) = 0.

We split the proof of (49) in two cases:
Step 1: Suppose that η has compact support, i.e. assume there is α > 0 such that if |h| ≥ α

then η(h) = 0. Let Dε :=
{

x ∈ Rd : dist(x,D)< αε
}

. For u ∈ BV (D), Theorem 3.4 in [8] and our
assumptions on ρ provide a sequence of functions {vk}k∈N ∈C∞(Dε)∩BV (Dε) such that as k→ ∞

(51) vk
L1(Dε )−→ û and

∫
Dε

|∇vk(x)|ρ2(x)dx→ |Dû|ρ2(Dε).
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For every k ∈ N

TVε(vk;ρ) =
1
ε

∫
D

∫
D∩B(y,αε)

ηε(x− y)|vk(x)− vk(y)|ρ(x)ρ(y)dxdy

=
1
ε

∫
D

∫
B(y,αε)

ηε(x− y)
∣∣∣∣∫ 1

0
∇vk(y+ t(x− y)) · (x− y)dt

∣∣∣∣ρ(x)ρ(y)dxdy

≤ 1
ε

∫
D

∫
B(y,αε)

∫ 1

0
ηε(x− y)|∇vk(y+ t(x− y)) · (x− y)|ρ(x)ρ(y)dtdxdy

≤
∫

Dε

∫
|h|<α

∫ 1

0
η(h)|∇vk(z) ·h|ρ(z− tεh)ρ(z+(1− t)εh)dtdhdz

=
∫

Dε

∫
|h|<α

η(h)|∇vk(z) ·h|ρ(z)2dhdz+aε,k

= ση

∫
Dε

|∇vk(z)|(ρ(z))2dz+aε,k,

where the last inequality is obtained after using the change of variables (t,y,x) 7→ (t,h,z), h = x−y
ε

and
z = y+ t(x− y), noting that the Jacobian of this transformation is equal to εd and that the transformed
set D is contained in Dε . The last equality is obtained thanks to the fact that η is radially symmetric.
Finally the aε,k are given by

aε,k =
∫

Dε

∫
|h|<α

∫ 1

0
η(h)|∇vk(z) ·h|

(
ρ(z− tεh)ρ(z+(1− t)εh)−ρ(z)2)dtdhdz.

Since ρ : Rd→R is Lipschitz and since it is bounded below by a positive constant, it is straightforward
to show that there exists a constant C > 0 independent of ε and k for which

aε,k ≤Cε

∫
Dε

|∇vk(x)|ρ2(x)dx.

Using (51) in particular we obtain that vk
L1(D)−→ u as k→ ∞. This together with continuity of TVε(·;ρ)

with respect to L1-convergence implies that TVε(vk;ρ)→ TVε(u;ρ) as k→ ∞. Therefore, from the
previous chain of inequalities and from (51) we conclude that

(52) TVε(u;ρ)≤ ση |Dû|ρ2(Dε)+ limsup
k→∞

aε,k ≤ ση |Dû|ρ2(Dε)+Cε|Dû|ρ2(Dε).

Using (50), we deduce limε→0 |Dû|ρ2(Dε) = |Dû|ρ2(D) = |Dû|ρ2(D) = TV (u;ρ2) < ∞. Combining
with (52) implies the desired estimate, (49).

Step 2: Consider η whose support is not compact. The needed control of η at infinity is provided by
the condition (K3). For α > 0 define the kernel ηα(h) := η(h)χB(0,α)(h), which satisfies the conditions
of Step 1. Denote by TV α

ε (·,ρ) the nonlocal total variation using the kernel ηα . For a given u ∈ BV (D)

TVε(u;ρ) = TV α
ε (u;ρ)+

1
ε

∫
D

∫
{x∈D : |x−y|>αε}

ηε(x− y)|u(x)−u(y)|ρ(x)ρ(y)dxdy.
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The second term on the right-hand side satisfies:

1
ε

∫
D

∫
{x∈D : |x−y|>αε}

ηε(x− y)|u(x)−u(y)|ρ(x)ρ(y)dxdy

=
1
ε

∫
D

∫
{x∈D : |x−y|>αε}

ηε(x− y)|û(x)− û(y)|ρ(x)ρ(y)dxdy

≤ ||ρ||2L∞(D)

∫
|h|>α

η(h)|h|
∫
Rd

|û(y)− û(y+ εh)|
ε|h|

dydh

≤ ||ρ||2L∞(D)|Dû|(Rd)
∫
|h|>α

η(h)|h|dh,

where the first inequality is obtained using the change of variables h = x−y
ε

and the second inequality
obtained using Lemma 13.33 in [38]. By Step 1 we conclude that:

limsup
ε→∞

TVε(u;ρ)≤ limsup
ε→∞

TV α
ε (u;ρ)+ ||ρ||2L∞(Rd)

|Dû|(Rd)
∫
|h|>α

η(h)|h|dh

≤ σηα TV (u;ρ
2)+ ||ρ||2L∞(Rd)

|Dû|(Rd)
∫
|h|>α

η(h)|h|dh.

Taking α to infinity and using condition (K3) on ηηη implies (49).
Case 2: ρ is continuous but not necessarily Lipschitz. The idea is to approximate ρ from above

by a family of Lipschitz functions {ρk}k∈N. Consider ρk : D→ R given by

(53) ρk(x) := sup
y∈D

ρ(y)− k|x− y|.

The functions ρk are Lipschitz functions which are bounded from below from and above by the same
constants bounding ρ from below and from above. Moreover, given that ρ is continuous, it is simple to
verify that for every x ∈ D, ρk(x)↘ ρ(x) as k→ ∞.

As in Step 1, it is enough to consider u ∈ BV (D) and prove that:

limsup
ε→0

TVε(u;ρ)≤ ση TV (u;ρ
2).

The proof of the limsup inequality in Case 1 and the fact that ρ ≤ ρk imply that

(54) limsup
ε→0

TVε(u;ρ)≤ limsup
ε→0

TVε(u;ρk)≤ ση TV (u;ρ
2
k ).

By the dominated convergence theorem,

lim
k→∞

TV (u;ρ
2
k ) = lim

k→∞

∫
D

ρ
2
k (x)d|Du|(x) =

∫
D

ρ
2(x)d|Du|(x) = TV (u;ρ

2).

Combining with (54) provides the desired result. �

Remark 4.3. Note that using the liminf inequality and the proof of the limsup inequality we deduce the
pointwise convergence of the functionals TVε(·;ρ); namely, for every u ∈ L1(D,ρ):

lim
ε→0

TVε(u;ρ) = ση TV (u;ρ
2).

4.3. Proof of Theorem 4.1: Compactness. We first establish compactness for regular domains and
then extend it to more general ones.

Lemma 4.4. Let D be a bounded, open, and connected set in Rd , with C2-boundary. Let {vε}ε>0 be a
sequence in L1(D,ρ) such that:

sup
ε>0
‖vε‖L1(D,ρ) < ∞,
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and

sup
ε>0

TVε(vε ;ρ)< ∞.(55)

Then, {vε}ε>0 is relatively compact in L1(D,ρ).

Proof. Note that thanks to assumption (K1), we can find a > 0 and b > 0 such that the function η̃ηη :
[0,∞)→ {0,a} defined as η̃ηη(t) = a for t < b and η̃ηη(t) = 0 otherwise, is bounded above by ηηη . In
particular, (55) holds when changing η for η̃ and so there is no loss of generality in assuming that ηηη

has the form of η̃ηη . Also, since ρ is bounded below and above by positive constants, it is enough to
consider ρ ≡ 1.

We first extend each function vε to Rd in a suitable way. Since ∂D is a compact C2 manifold, there
exists δ > 0 such that for every x ∈ Rd for which d(x,∂D) ≤ δ there exists a unique closest point on
∂D. For all x ∈U := {x ∈ Rd : d(x,D)< δ} let Px be the closest point to x in D. We define the local
reflection mapping from U to D by x̂ = 2Px− x. Let ξ be a smooth cut-off function such that ξ (s) = 1
if s≤ δ/8 and ξ (s) = 0 if s≥ δ/4. We define an auxiliary function v̂ε on U , by v̂ε(x) := vε(x̂) and the
desired extended function ṽε on Rd by ṽε(x) = ξ (|x−Px|)vε(x̂).

We claim that:

(56) sup
ε>0

1
ε

∫
Rd

∫
Rd

ηε(x− y)|ṽε(x)− ṽε(y)|< ∞.

To show the claim we first establish the following geometric properties: Let W := {x ∈ Rd\D :
d(x,D)< δ/4} and V := {x ∈ Rd\D : d(x,D)< δ/8}. For all x ∈W and all y ∈ D

(57) |x̂− y|< 2|x− y|.

Since the mapping x 7→ x̂ is smooth and invertible on W , it is bi-Lipschitz. While this would be enough
for our argument, we present an argument which establishes the value of the Lipschitz constant: for all
x,y ∈W

(58)
1
4
|x− y|< |x̂− ŷ|< 4|x− y|.

By definition of δ the domain D satisfies the outside and inside ball conditions with radius δ . Therefore
if x ∈W and z ∈ D ∣∣∣∣z−(Px+δ

x−Px
|x−Px|

)∣∣∣∣≥ δ .

Squaring and straightforward algebra yield

(59) |z−Px|2 ≥ 2δ (z−Px) · x−Px
|x−Px|

.

For x ∈W and y ∈ D, using (59) we obtain

|y− x̂|2−|y− x|2 = |y−Px+(x−Px)|2−|y−Px− (x−Px)|2

= 4(y−Px) · (x−Px)≤ 2
δ
|y−Px|2 |x−Px|

≤ 1
2
|y−Px|2 ≤ |y− x|2 + |x−Px|2 ≤ 2|y− x|2.

Therefore |y− x̂|2 ≤ 3|y− x|2, which establishes (57).
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For distinct x,y ∈W using (59), with z = Py and with z = Px, follows

|x− y| ≥ (x− y) · Px−Py
|Px−Py|

= (x−Px− (y−Py)+Px−Py) · Px−Py
|Px−Py|

≥ |Px−Py|− 1
2δ

(|x−Px| |Py−Px|+ |y−Py| |Py−Px|)

≥ |Px−Py| 3
4
.

Therefore

|x̂− ŷ|= |2Px− x+2Py− y| ≤ 2|Px−Py|+ |x− y| ≤
(

8
3
+1
)
|x− y| ≤ 4|x− y|.

Since the roles on x,y and x̂, ŷ can be reversed it follows that |x−y| ≤ 4|x̂− ŷ|. These estimates establish
(58).

We now return to proving (56). For ε small enough,
1
ε

∫
Rn\D

∫
D

ηε(x− y)|ṽε(x)− ṽε(y)|dxdy =
1
ε

∫
V

∫
D

ηε(x− y)|v̂ε(x)− v̂ε(y)|dxdy

=
1
ε

∫
V

∫
D

ηε(x− y)|vε(x̂)− vε(y)|dxdy

≤ 4d

ε

∫
V

∫
D

η4ε(x̂− y)|vε(x)− vε(ŷ)|dxdy

≤ 16d

ε

∫
D

∫
D

η4ε(z− y)|vε(x)− vε(z)|dzdy,

where the first inequality follows from (57) and the second follows from the fact that the change of
variables x 7→ x̂ is bi-Lipschitz as shown in (58). Also,

1
ε

∫
Rd\D

∫
Rd\D

ηε(x− y)|ṽε(x)− ṽε(y)|dxdy

=
1
ε

∫
W

∫
W

ηε(x− y)|ξ (x)v̂ε(x)−ξ (y)v̂ε(y)|dxdy

≤1
ε

∫
W

∫
W

ηε(x− y)|ξ (x)−ξ (y)||v̂ε(x)|dxdy

+
1
ε

∫
W

∫
W

ηε(x− y)|v̂ε(x)− v̂ε(y)||ξ (y)|dxdy.

Note that for all x 6= y, ηε (x−y)
ε
≤ b
|x−y|ηε(x− y). Therefore:

1
ε

∫
W

∫
W

ηε(x− y)|ξ (x)−ξ (y)||v̂ε(x)|dxdy≤ b
∫

W

∫
W

ηε(x− y)
|ξ (x)−ξ (y)|
|x− y|

|v̂ε(x)|dxdy

≤ bLip(ξ )
∫

W

∫
W

ηε(x− y)|v̂ε(x)|dxdy

≤ 4d bLip(ξ )‖vε‖L1(D),

where we used (58) and change of variables to establish the last inequality. Also,

1
ε

∫
W

∫
W

ηε(x− y)|v̂ε(x)− v̂ε(y)||ξ (y)|dxdy≤ 4d

ε

∫
W

∫
W

η4ε(x̂− ŷ)|v̂ε(x)− v̂ε(y)|dxdy

≤ 43d

ε

∫
D

∫
D

η4ε(x− y)|vε(x)− vε(y)|dxdy.

The first inequality is obtained thanks to the fact that |ξ (y)| ≤ 1 and (58), while the second inequality
is obtained by a change of variables.
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Using that∫
D

∫
D

η4ε(x− y)|vε(x)− vε(y)|dxdy≤ 4d
∫

D

∫
D

ηε(x− y)|vε(x)− vε(y)|dxdy

by combining the above inequalities we conclude that

sup
ε>0

1
ε

∫
Rd

∫
Rd

ηε(x− y)|ṽε(x)− ṽε(y)|dxdy

≤C sup
ε>0

(∫
D

∫
D

ηε(x− y)|vε(x)− vε(y)|dxdy+‖vε‖L1(D)

)
< ∞.

Using the proof of Proposition 3.1 in [3] we deduce that the sequence {ṽε}ε>0 is relatively compact in
L1(Rd) which implies that the sequence {vε}ε>0 is relatively compact in L1(D). �

Remark 4.5. We remark that the difference between the compactness result we proved above and the
one proved in Proposition 3.1 in [3] is the fact that we consider functions bounded in L1, instead of
bounded in L∞ as was assumed in [3]. Nevertheless, after extending the functions to the entire Rd as
above, one can directly apply the proof in [3] to obtain the desired compactness result.

Proposition 4.6. Let D be a bounded, open, and connected set in Rd , with Lipschitz boundary. Suppose
that the sequence of functions {uε}ε>0 ⊆ L1(D,ρ) satisfies:

sup
ε>0
‖uε‖L1(D,ρ) < ∞,

sup
ε>0

TVε(uε ;ρ)< ∞.

Then, {uε}ε>0 is relatively compact in L1(D,ρ).

Proof. Suppose {uε}ε>0 ⊆ L1(D) is as in the statement. As in Lemma 4.4, we can assume that ρ ≡ 1.
By Remark 5.3 in [9], there exists a bi-Lipschitz map Θ : D̃→ D where D̃ is a domain with smooth
boundary. For every ε > 0 consider the function vε := uε ◦Θ and set η̂ηη(s) := ηηη (Lip(Θ) s), s ∈ R.

Since Θ is bi-Lipchitz we can use a change of variables, to conclude that there exists a constant
C > 0 (only depending on Θ) such that:∫

D̃
|vε(x)|dx≤C

∫
D
|uε(y)|dy,

and

C
∫

D

∫
D

ηε(x− y) |uε(x)−uε(y)|dxdy≥
∫

D̃

∫
D̃

ηε (Θ(x)−Θ(y)) |vε(x)− vε(y)|dxdy

≥
∫

D̃

∫
D̃

η̂ε(x− y) |vε(x)− vε(y)|dxdy.

The second inequality using the fact that η is non-increasing (assumption (K2)). We conclude that the
sequence {vε}ε>0 ⊆ L1(D̃) satisfies the hypothesis of Lemma 4.4 (taking ηηη = η̂ηη). Therefore, {vε}ε>0
is relatively compact in L1(D̃), which implies that {uε}ε>0 is relatively compact in L1(D). �

Corollary 4.7. Let D be a bounded, open, and connected set in Rd . Suppose that the sequence of
functions {uε}ε>0 ⊆ L1(D,ρ) satisfies:

sup
ε>0
‖uε‖L1(D,ρ) < ∞,

sup
ε>0

TVε(uε ;ρ)< ∞.

Then, {uε}ε>0 is locally relatively compact in L1(D,ρ).
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In particular if

sup
ε>0
‖uε‖L∞(D) < ∞,

then, {uε}ε>0 is relatively compact in L1(D,ρ).

Proof. If B is a ball compactly contained in D then the relative compactness of {uε}ε>0 in L1(B,ρ)
follows from Lemma 4.4. We note that if compactness holds on two sets D1 and D2 compactly contained
in D, then it holds on their union. Therefore it holds on any set compactly contained in D, since it can
be covered by finitely many balls contained in D.

The compactness in L1(D,ρ) under the L∞ boundedness follows via a diagonal argument. This
can be achieved by approximating D by compact subsets: Dk ⊂ D, D = ∪kDk, and using the fact that
limk→∞ supε>0 ‖uε‖L1(D\Dk,ρ)

= 0. �

5. Γ-CONVERGENCE OF TOTAL VARIATION ON GRAPHS

5.1. Proof of Theorems 1.1 and 1.2. Let D⊂ Rd , d ≥ 2 be an open, bounded and connected set with
Lipschitz boundary. Assume ν is a probability measure on D with continuous density ρ , which is
bounded from below and above by positive constants. Let {εn}n∈N be a sequence of positive numbers
converging to 0 satisfying assumption (8).

Proof of Theorem 1.1. We use the sequence of transportation maps {Tn}n∈N considered in Section 2.3.
Let ω ∈ Ω be such that (25) and (26) hold in cases d = 2 and d ≥ 3 respectively. By Theorem 2.5 the
complement in Ω of such ω’s is contained in a set of probability zero.

Step 1: Suppose first that ηηη is of the form ηηη(t) = a for t < b and ηηη = 0 for t > b, where a,b are
two positive constants. Note it does not matter what value we give to ηηη at b. The key idea in the proof
is that the estimates of the Section 2.3 on transportation maps imply that the transportation happens on
a length scale which is small compared to εn. By taking a kernel with slightly smaller ’radius’ than εn
we can then obtain a lower bound, and by taking a slightly larger radius a matching upper bound on the
graph total variation.

Liminf inequality: Assume that un
T L1
−→ u as n→ ∞. Since Tn]ν = νn, using the change of variables

(17) it follows that

(60) GTVn,εn(un) =
1
εn

∫
D×D

ηεn (Tn(x)−Tn(y)) |un ◦Tn(x)−un ◦Tn(y)|ρ(x)ρ(y)dxdy.

Note that for Lebesgue almost every (x,y) ∈ D×D

(61) |Tn(x)−Tn(y)|> bεn⇒ |x− y|> bεn−2‖Id−Tn‖∞.

Thanks to the assumptions on {εn}n∈N ((25) and (26) in cases d = 2 and d ≥ 3 respectively), for
large enough n ∈ N:

ε̃n := εn−
2
b
‖Id−Tn‖∞ > 0.

By (61), for large enough n and for almost every (x,y) ∈ D×D,

ηηη

(
|x− y|

ε̃n

)
≤ ηηη

(
|Tn(x)−Tn(y)|

εn

)
.

Let ũn = un ◦Tn. Thanks to the previous inequality and (60), for large enough n

GTVn,εn(un)≥
1

ε
d+1
n

∫
D×D

ηηη

(
|x− y|

ε̃n

)
|ũn(x)− ũn(y)|ρ(x)ρ(y)dxdy

=

(
ε̃n

εn

)d+1

TVε̃n (ũn;ρ) .
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Note that ε̃n
εn
→ 1 as n→ ∞ and that un

T L1
−→ u implies ũn

L1(D)−→ u as n→ ∞. We deduce from Theorem
4.1 that liminfn→∞ TVε̃n (ũn;ρ)≥ ση TV (u;ρ2) and hence:

liminf
n→∞

GTVn,εn(un)≥ ση TV (u;ρ
2).

Limsup inequality: By Remark 2.7 and Proposition 2.4, it is enough to prove the limsup inequality
for Lipschitz continuous functions u : D→ R. Define un to be the restriction of u to the first n data
points X1, . . . ,Xn. Consider ε̃n := εn +

2
b‖Id−Tn‖∞ and let ũn = un ◦Tn. Then note that for Lebesgue

almost every (x,y) ∈ D×D

ηηη

(
|Tn(x)−Tn(y)|

εn

)
≤ ηηη

(
|x− y|

ε̃n

)
.

Then for all n

1
ε̃

d+1
n

∫
D×D

ηηη

(
|Tn(x)−Tn(y)|

εn

)
|ũn(x)− ũn(y)|ρ(x)ρ(y)dxdy

≤ 1
ε̃n

∫
D×D

ηε̃n (x− y) |ũn(x)− ũn(y)|ρ(x)ρ(y)dxdy.
(62)

Also

1
ε̃n

∣∣∣∣∫D×D
ηε̃n(x− y)(|u(x)−u(y)|− |u◦Tn(x)−u◦Tn(y)|)ρ(x)ρ(y)dxdy

∣∣∣∣
≤ 2

ε̃n

∫
D×D

ηε̃n(x− y)|u(x)−u◦Tn(x)|ρ(x)ρ(y)dxdy

≤
2C Lip(u)||ρ||2L∞(D)

ε̃n

∫
D
|x−Tn(x)|dx,

(63)

where C =
∫
Rd η(h)dh. The last term of the previous expression goes to 0 as n→ ∞, yielding

lim
n→∞

1
ε̃n

(∫
D×D

ηε̃n(x− y)|u(x)−u(y)|ρ(x)ρ(y)dxdy

−
∫

D×D
ηε̃n(x− y)|u◦Tn(x)−u◦Tn(y)|ρ(x)ρ(y)dxdy

)
= 0.

Since εn
ε̃n
→ 1 as n→ ∞, using (62) we deduce :

limsup
n→∞

GTVn,εn(un) = limsup
n→∞

1
ε̃

d+1
n

∫
D×D

ηηη

(
|Tn(x)−Tn(y)|

εn

)
|u◦Tn(x)−u◦Tn(y)|ρ(x)ρ(y)dxdy

≤ limsup
n→∞

1
ε̃n

∫
D×D

ηε̃n(x− y) |u◦Tn(x)−u◦Tn(y)|ρ(x)ρ(y)dxdy

= limsup
n→∞

TVε̃n(u;ρ)≤ ση TV (u;ρ
2),

where the last inequality follows from the proof of Theorem 4.1, specifically inequality (49).
Step 2: Now consider ηηη to be a piecewise constant function with compact support, satisfying (K1)-

(K3). In this case ηηη = ∑
l
k=1 ηηηk for some l and functions ηηηk as in Step 1. For this step of the proof we

denote by GTV k
n,εn the total variation function on the graph using ηηηk.
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Liminf inequality: Assume that un
T L1
−→ u as n→ ∞. By Step 1:

liminf
n→∞

GTVn,εn(un) = liminf
n→∞

l

∑
k=1

GTV k
n,εn(un)

≥
l

∑
k=1

liminf
n→∞

GTV k
n,εn(un)≥

l

∑
k=1

σηk TV (u;ρ
2) = ση TV (u;ρ

2).

Limsup inequality: By Remark 2.7 it is enough to prove the limsup inequality for u : D→ R
Lipschitz. Consider un as in the proof of the limsup inequality in Step 1. Then

limsup
n→∞

GTVn,εn(un) = limsup
n→∞

l

∑
k=1

GTV k
n,εn(un)

≤
l

∑
k=1

limsup
n→∞

GTV k
n,εn(un)≤

l

∑
k=1

σηk TV (u;ρ
2) = ση TV (u;ρ

2).

Step 3: Assume ηηη is compactly supported and satisfies (K1)-(K3).
Liminf Inequality: Note that there exists an increasing sequence of piecewise constant func-

tions ηηηk : [0,∞)→ [0,∞) (η from Step 2 is used as ηk here), with ηηηk ↗ ηηη as k → ∞ a.e. Denote

by GTV k
n,εn the graph TV corresponding to ηηηk. If un

T L1
−→ u as n→ ∞, by Step 2 σηk TV (u;ρ2) ≤

liminfn→∞ GTV k
n,εn(un)≤ liminfn→∞ GTVn,εn(un) for every k ∈N. The monotone convergence theorem

implies that limk→∞ σηk = ση and so we conclude that ση TV (u;ρ2)≤ liminfn→∞ GTVn,εn(un).
Limsup inequality: As in Steps 1 and 2 it is enough to prove the limsup inequality for u Lipschitz.

Consider un as in the proof of the limsup inequality in Steps 1 and 2. Analogously to the proof of the
liminf inequality, we can find a decreasing sequence of functions ηηηk : [0,∞)→ [0,∞) (of the form con-
sidered in Step 2), with ηηηk↘ ηηη as k→∞ a.e. Proceeding in an analogous way to the way we proceeded
in the proof of the liminf inequality we can conclude that limsupn→∞ GTVn,εn(un)≤ ση TV (u;ρ2).

Step 4: Consider general ηηη , satisfying (K1)-(K3). Note that for the liminf inequality we can use
the proof given in Step 3. For the limsup inequality, as in the previous steps we can assume that u
is Lipschitz and we take un as in the previous steps. Let α > 0 and define ηηηα : [0,∞)→ [0,∞) by
ηηηα(t) := ηηη(t) for t ≤ α and ηηηα(t) = 0 for t > α . We denote by GTV α

n,εn the graph TV using ηηηα . Then

GTVn,εn(un) = GTV α
n,εn(un)+

1
ε

d+1
n

∫
|Tn(x)−Tn(y)|>αεn

ηηη

(
|Tn(x)−Tn(y)|

εn

)
|u◦Tn(x)−u◦Tn(y)|ρ(x)ρ(y)dxdy.

(64)

Let us find bounds on the second term on the right hand side of the previous equality for large n.
Indeed since for almost every (x,y) ∈ D×D it is true that |x− y| ≤ |Tn(x)−Tn(y)|+2‖Id−Tn‖∞ and
|Tn(x)−Tn(y)| ≤ |x− y|+ 2‖Id−Tn‖∞ we can use the fact that ‖Id−Tn‖∞

εn
→ 0 as n→ ∞ to conclude

that for large enough n, for almost every (x,y) ∈ D×D for which |Tn(x)−Tn(y)| > αεn it holds that
|x− y| ≤ 2|Tn(x)−Tn(y)| and |Tn(x)−Tn(y)| ≤ 2|x− y|. We conclude that for large enough n

1
ε

d+1
n

∫
|Tn(x)−Tn(y)|>αεn

ηηη

(
|Tn(x)−Tn(y)|

εn

)
|u◦Tn(x)−u◦Tn(y)|ρ(x)ρ(y)dxdy

≤
||ρ||2L∞(D)

ε
d+1
n

∫
|x−y|>αεn/2

ηηη

(
|x− y|

2εn

)
|u◦Tn(x)−u◦Tn(y)|dxdy

≤
2Lip(u)||ρ||2L∞(D)

ε
d+1
n

∫
|x−y|>αεn/2

ηηη

(
|x− y|

2εn

)
|x− y|dxdy.
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To find bounds on the last term of the previous chain of inequalities, consider the change of variables
(x,y) ∈ D×D 7→ (x,h) where x = x and h = x−y

2εn
, we deduce that:

2
ε

d+1
n

∫
|x−y|>αεn/2

ηηη

(
|x− y|

2εn

)
|x− y|dxdy≤C

∫
|h|> α

4

η(h)|h|dh,

where C does not depend on n or α . The previous inequalities, (64) and Step 3 imply that

limsup
n→∞

GTVn,εn(un)≤ limsup
n→∞

GTV α
n,εn(un)+Lip(u)||ρ||2L∞(D)C

∫
|h|> α

4

η(h)|h|dh

≤σηα
TV (u;ρ

2)+Lip(u)||ρ||2L∞(D)C
∫
|h|> α

4

η(h)|h|dh.

Finally, given assumptions (K3) on η , sending α to infinity we conclude that

limsup
n→∞

GTVn,εn(un)≤ ση TV (u;ρ
2).

�

We now present the proof of Theorem 1.2 on compactness.

Proof. Assume that {un}n∈N is a sequence of functions with un ∈ L1(D,νn) satisfying the assumptions
of the theorem. As in Lemma 4.4 and Proposition 4.6 without loss of generality we can assume that ηηη

is of the form ηηη(t) = a if t < b and ηηη(t) = 0 for t ≥ b, for some a and b positive constants.
Consider the sequence of transportation maps {Tn}n∈N from Section 2.3. Since {εn}n∈N satisfies (8),

estimates (25) and (26) imply that for Lebesgue a.e. z,y ∈ D with |Tn(z)−Tn(y)| > bεn it holds that
|z−y|> bεn−2‖Id−Tn‖∞. For large enough n, we set ε̃n := εn− 2‖Id−Tn‖∞

b > 0. We conclude that for
large n and Lebesgue a.e. z,y ∈ D:

ηηη

(
|z− y|

ε̃n

)
≤ ηηη

(
|Tn(z)−Tn(y)|

εn

)
.

Using this, we can conclude that for large enough n:

1
ε

d+1
n

∫
D

∫
D

ηηη

(
|z− y|

ε̃n

)
|un ◦Tn(z)−un ◦Tn(y)|ρ(z)ρ(y)dzdy

≤ 1
ε

d+1
n

∫
D

∫
D

ηηη

(
|Tn(z)−Tn(y)|

ε̃n

)
|un ◦Tn(z)−un ◦Tn(y)|ρ(z)ρ(y)dzdy

= GTVn,εn(un).

Thus

sup
n∈N

1
ε

d+1
n

∫
D

∫
D

ηηη

(
|z− y|

ε̃n

)
|un ◦Tn(z)−un ◦Tn(y)|ρ(z)ρ(y)dzdy < ∞.

Finally noting that ε̃n
εn
→ 1 as n→ ∞ we deduce that:

sup
n∈N

1
ε̃n

∫
D

∫
D

ηε̃n (z− y) |un ◦Tn(z)−un ◦Tn(y)|ρ(z)ρ(y)dzdy < ∞.

By Proposition 4.6 we conclude that {un ◦Tn}n∈N is relatively compact in L1(D) and hence {un}n∈N is
relatively compact in T L1. �

We now prove Corollary 1.3 on the Γ convergence of perimeter.

Proof. Note that if {An}n∈N is such that An ⊆ {X1, . . . ,Xn}n∈N and χAn
T L1
−→ χA as n→ ∞ for some

A⊆D, then the liminf inequality follows automatically from the liminf inequality in Theorem 1.1. The
limsup inequality is not immediate, since we cannot use the density of Lipschitz functions as we did in
the proof of Theorem 1.1 given that we restrict our attention to characteristic functions.
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We follow the proof of Proposition 3.5 in [23] and take advantage of the coarea formula of the
energies GTVn,εn . Consider a measurable subset A of D. By the limsup inequality in Theorem 1.1,
we know there exists a sequence {un}n∈N (with un ∈ L1(D,νn)) such that limsupn→∞ GTVn,εn(un) ≤
ση TV (χA,ρ

2). It is straightforward to verify that the functionals GTVn,εn satisfy the coarea formula:

GTVn,εn(un) =
∫

∞

−∞

GTVn,εn(χ{un>s})ds.

Fix 0 < δ < 1
2 . Then in particular:∫ 1−δ

δ

GTVn,εn(χ{un>s})ds≤ GTVn,εn(un).

For every n there is sn ∈ (δ ,1− δ ) such that GTVn,εn(χ{un>sn}) ≤
1

1−2δ
GTVn,εn(un). Define Aδ

n :=

{un > sn}. It is straightforward to show that χAδ
n

T L1
−→ χA as n→ ∞ and that limsupn→∞ GTVn,εn(A

δ
n )≤

1
1−2δ

ση TV (χA;ρ2). Taking δ → 0 and using a diagonal argument provides sets {An}n∈N such that

χAn
T L1
−→ χA as n→ ∞ and limsupn→∞ GTVn,εn(χAn)≤ ση TV (χA,ρ

2). �

Remark 5.1. There is an alternative proof of the limsup inequality above. It is possible to proceed
in a similar fashion as in the proof of the limsup inequality in Theorem 1.1. In this case, instead of
approximating by Lipschitz functions, one would approximate χA in T L1 topology by characteristic
functions of sets of the form G = E ∩D where E is a subset of Rd with smooth boundary. As in the
proof of Theorem 1.1, the key is to show that for step kernels (ηηη(r) = b if r < a and zero otherwise)

lim
n→∞

GTVn,εn(χG) = TV (χG,ρ
2).

To do so one needs a substitute for estimate (63). The needed estimate follows from the following
estimate: For all G as above, there exists δ0 such that for all n for which ||Id−Tn||∞ ≤ δ0,∫

D
|χG(x)−χG(Tn(x))|dx≤ 4Per(E) ||Id−Tn||∞.

This estimate follows from the fact that if χG(x) 6= χG(Tn(x)) then d(x,∂E) ≤ |x− Tn(x)| and the
fact that, for δ small enough, |{x ∈ Rd : d(x,∂E) < δ}| ≤ 4Per(E)δ , which follows form Weyl’s
formula [62] for the volume of the tubular neighborhood. Noting that the perimeter of any set can be
approximated by smooth sets (see Remark 3.42 in [4]) and using Remark 2.7 we obtain the limsup
inequality for the characteristic function of any measurable set.

We remark that if one restricts the functional to the class of sets with specified volume (as in Example
1.4) then each set in the class can be approximated by smooth sets satisfying the volume constraint. This
follows by a careful modification to the density argument of Remark 3.43 in [4].

5.2. Extension to different sets of points. Consider the setting of Theorem 1.1. The only information
about the points Xi that the proof requires is the upper bound on the ∞-transportation distance between
ν and the empirical measure νn. Theorem 2.5 provides such bounds when Xi are i.i.d. distributed
according to ν . Such randomness assumption is reasonable when modeling randomly obtained data
points, but in other settings points may be more regularly distributed and/or given deterministically. In
such setting, if one is able to obtain tighter bounds on transportation distance this would translate into
better bounds on ε(n) in Theorem 1.1 for which the Γ-convergence holds.

That is, if X1, . . . ,Xn, . . . are the given points, let νn still be 1
n ∑

n
i=1 δXi . If one can find transportation

maps Tn from ν to νn such that

(65) limsup
n→∞

n1/d‖Id−Tn‖∞

f (n)
≤C
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for some nonnegative function f : N→ (0,∞) then Theorem 1.1 would hold if

lim
n→∞

f (n)
n1/d

1
εn

= 0.

We remark that f must be bounded from below, since for any collection V = {X1, . . . ,Xn} in D,
supy∈D dist(y,V )≥ cn−1/d and thus n1/d‖Id−Tn‖∞ ≥ c.

One special case is when D = (0,1)d , ν is the Lebesgue measure and X1, . . . ,Xn, . . . is a sequence
of grid points on diadicaly refining grids. In this case, (65) holds with f (n) = 1 for all n and thus Γ-
convergence holds for εn→ 0 such that limn→∞

1
n1/dεn

= 0. Note that our results imply Γ-convergence

in the T L1 metric, however in this particular case, this is equivalent to the L1 -metric considered in [23]
and [16] where for a function defined on the grid points we associate a function defined on D by simply
setting the function to be constant on the grid cells. This follows from Proposition 3.12.

Acknowledgments. The authors are grateful to Thomas Laurent for many valuable discussions and
careful reading of an early version of the manuscript. They are thankful to Giovanni Leoni for valuable
advice and pointing out the paper of Ponce [46]. The authors are grateful to Michel Talagrand for
letting them know of the elegant proofs of matching results in [55] and generously sharing the chapters
of his upcoming book [56]. The authors are thankful to Bob Pego for valuable advice and to Antonin
Chambolle, Alan Frieze, James Nolen, and Felix Otto for enlightening discussions. DS is grateful
to NSF (grant DMS-1211760). The research was also supported by NSF PIRE grant OISE-0967140.
Authors are thankful to the Center for Nonlinear Analysis (NSF grant DMS-0635983) for its support.

APPENDIX A. PROOF OF PROPOSITION 2.4

Proof. Using the fact that D has Lipschitz boundary and the fact that ψ is bounded above and below
by positive constants, Theorem 10.29 in [38] implies that for any u ∈ C∞(D)∩BV (D) there exists a
sequence {un}n∈N ⊆ C∞

c (Rd) with un →L1(D) u and with
∫

D |∇u−∇un|ψ(x)dx→ 0 as n→ ∞. Using
a diagonal argument we conclude that in order to prove Proposition 2.4 it is enough to prove that
for every u ∈ BV (D) there exists a sequence {un}n∈N ⊆ C∞(D)∩BV (D) with un →L1(D) u and with∫

D |∇un|ψ(x)dx→ TV (u;ψ) as n→ ∞.
Step 1: If ψ is Lipschitz this is precisely the content of Theorem 3.4 in [8].
Step 2 If ψ is not necessarily Lispchitz we can find a sequence {ψk}k∈N of Lipschitz functions

bounded above and below by the same constants bounding ψ and with ψk↘ ψ . The functions ψk can
be defined as in (53) (replacing ρ with ψ).

Using Step 1, for a given u ∈ BV (D) and for every k ∈ N we can find a sequence
{

un,k
}

n∈N with
un,k→L1(D) u and with

∫
D |∇un,k|ψk(x)dx→ TV (u;ψk) as n→ ∞. By 12 and by the dominated conver-

gence theorem we know that TV (u;ψk) =
∫

D ψk(x)|Du|(x)→
∫

D ψ(x)|Du|(x) = TV (u;ψ) as k→ ∞.
Therefore, a diagonal argument allows us to conclude that there exists a sequence {kn}n∈N with the
property that, un,kn →L1(D) u and

∫
D |∇un|ψkn(x)dx→ TV (u;ψ) as n→∞. Taking un := un,kn and using

the fact that that ψ ≤ ψkn we obtain:

limsup
n→∞

∫
D
|∇un(x)|ψ(x)dx≤ lim

n→∞

∫
D
|∇un(x)|ψkn(x)dx = TV (u;ψ).

Since un→L1(D) u, the lower semicontinuity of TV (·,ψ) implies that liminfn→∞

∫
D |∇un(x)|ψ(x)dx ≥

TV (u;ψ). The desired result follows. �
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