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Abstract. We construct an optimal execution strategy for the purchase of a large number of
shares of a financial asset over a fixed interval of time. Purchases of the asset have a nonlinear impact
on price, and this is moderated over time by resilience in the limit-order book that determines the
price. The limit-order book is permitted to have arbitrary shape. The form of the optimal execution
strategy is to make an initial lump purchase and then purchase continuously for some period of time
during which the rate of purchase is set to match the order book resiliency. At the end of this period,
another lump purchase is made, and following that there is again a period of purchasing continuously
at a rate set to match the order book resiliency. At the end of this second period, there is a final
lump purchase. Any of the lump purchases could be of size zero. A simple condition is provided that
guarantees that the intermediate lump purchase is of size zero.
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1. Introduction. We consider optimal execution over a fixed time interval of a
large asset purchase in the face of a one-sided limit-order book. We assume that the
ask price (sometimes called the best ask price) for the underlying asset is a continuous
martingale that undergoes two adjustments during the period of purchase. The first
adjustment is that orders consume a part of the limit-order book, and this increases
the ask price for subsequent orders. The second adjustment is that resilience in
the limit-order book causes the effect of these prior orders to decay over time. In
this paper, there is no permanent effect from the purchase we model. However, the
temporary effect requires infinite time to completely disappear.

We assume that there is a fixed shadow limit-order book shape toward which
resilience returns the limit-order book. At any time, the actual limit-order book
relative to the martingale component of the ask price has this shape, but with some
left-hand part missing due to prior purchases. An investor is given a period of time and
a target amount of asset to be purchased within that period. His goal is to distribute
his purchasing over the period in order to minimize the expected cost of purchasing
the target. We permit purchases to occur in lumps or to be spread continuously over
time. We show that the optimal execution strategy consists of three lump purchases,
one or more of which may be of size zero, i.e., does not occur. One of these lump
purchases is made at the initial time, one at an intermediate time, and one at the final
time. Between these lump purchases, the optimal strategy purchases at a constant
rate matched to the limit-order book recovery rate so that the ask price minus its
martingale component remains constant. We provide a simple condition under which
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the intermediate lump purchase is of size zero (see Theorem 4.2 and Remark 4.4
below).

Bouchaud, et. al. [9] provide a survey of the empirical behavior of limit order
books. Dynamic models for optimal execution designed to capture some of this behav-
ior have been developed by several authors, including Bertsimas and Lo [8], Almgren
and Chriss [6, 7], Grinold and Kahn [15] (Chapter 16), Almgren [5], Obizhaeva and
Wang [10], and Alfonsi, Fruth and Schied [1, 4]. Trading in [8] is on a discrete-time
grid, and the price impact of a trade is linear in the size of the trade and is per-
manent. In [8], the expected-cost-minimizing liquidation strategy for an order is to
divide the order into equal pieces, one for each trading date. Trading in [6, 7] is also
on a discrete-time grid, and there are linear permanent and temporary price impacts.
In [6, 7] the variance of the cost of execution is taken into account. This leads to the
construction of an efficient frontier of trading strategies. In [15] and [5], trading takes
place continuously and finding the optimal trading strategy reduces to a problem in
the calculus of variations.

Other authors focus on the possibility of price manipulation, an idea that traces
back to Huberman and Stanzl [16]. Price manipulation is a way of starting with
zero shares and using a strategy of buying and selling so as to end with zero shares
while generating income. Gatheral et. al. [13] permit continuous trading and use an
integral of a kernel with respect to the trading strategy to capture the resilience of
the book. In such a model, Gatheral [12] shows that exponential decay of market
impact and absence of price manipulation opportunities are compatible only with
linear market impact. In [14] this result is reconciled with the nonlinear market
impact in models such as [2, 3, 4, 10] and this paper. Alfonsi, Schied and Slynko [3]
discover in a discrete-time version of the model of [13], even under conditions that
prevent price manipulation, it may still be optimal to execute intermediate sells while
trying to execute an overall buy order, and they provide conditions to rule out this
phenomenon.

For the type of model we consider in this paper, based on a shadow limit-order
book, Alfonsi and Schied [2] show that price manipulation is not possible under very
general conditions. Furthermore, it is never advantageous to execute intermediate
sells while trying to execute an overall buy order. In [2], trading takes place at
finitely many stopping times, and execution is optimized over these stopping times.
In the present paper, where trading is continuous, we do not permit intermediate sells.
This simplification of the model is justified by Remark 3.1 below, which argues that
intermediate sells cannot reduce the total cost.

The present paper is inspired by Obizhaeva and Wang [10], who explicitly model
the one-sided limit-order book as a means to capture the price impact of order exe-
cution. Empirical evidence for the model of [10] and its generalizations by Alfonsi,
Fruth and Schied [1, 4] and Alfonsi and Schied [2] are reported in [1, 2, 4, 10] . In
[10] and [1], the limit-order book has a block shape, and in this case the price impact
of a purchase is linear, the same as in [8] and [7]. However, the change of mind set
is important because it focuses attention on the shape of the limit order book as the
determinant of price impact, rather than making assumptions about the price impact
directly. This change of mind set was exploited by [2, 4], who permit more general
limit-order book shapes, subject to the condition discussed in Remark 4.4 below. In
[2, 4] trading is on a discrete-time grid and it is shown that for an optimal purchasing
strategy all purchases except the first and last are of the same size. Furthermore, the
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size of the intermediate purchases is chosen so that the price impact of each purchase
is exactly offset by the order book resiliency before the next purchase. Similar results
are obtained in [2], although here trades are executed at stopping times.

In contrast to [2, 4, 10], we permit the order book shape to be completely general.
However, in our model all price impact is transient; [4, 10] also include the possibility
of a permanent linear price impact. In contrast to [2, 4], we do not assume that the
limit order book has a positive density. It can be discrete or continuous and can have
gaps. In contrast to [2, 4, 10], we permit the resilience in the order book to be a
function of the adjustments to the martingale component of the ask price. Weiss [18]
argues in a discrete-time model that this conforms better to empirical observations.

Finally, we set up our model so as to allow for both discrete-time and continuous-
time trading, whereas [4, 10] begin with discrete-time trading and then study the limit
of their optimal strategies as trading frequency approaches infinity. The simplicity
afforded by a fully continuous model is evident in the analysis below. In particular,
we provide constructive proofs of Theorems 4.2 and 4.5 that describe the form of the
optimal purchasing strategies.

Section 2 of this paper presents our model. It contains the definition of the cost
of purchasing in our more general framework, and that is preceded by a justification
of the definition. Section 3 shows that randomness can be removed from the optimal
purchasing problem and reformulates the cost function into a convenient form. In
Section 4, we solve the problem, first in the case that is analogous to the one solved
by [4], and then in full generality. Sections 4.1 and 4.3 contain examples.

2. The model. Let T be a positive constant. We assume that the ask price of
some asset, in the absence of the large investor modeled by this paper, is a continuous
nonnegative martingale At, 0 ≤ t ≤ T , relative to some filtration {Ft}0≤t≤T satisfying
the usual conditions. We assume that

E
[

max
0≤t≤T

At
]
<∞. (2.1)

We show below that for the optimal execution problem of this paper, one can assume
without loss of generality that this martingale is identically zero. We make this
assumption beginning in Section 3 in order to simplify the presentation.

For some extended positive real numberM , let µ be an infinite measure on [0,M)
that is finite on each compact subset of [0,M). Denote the associated left-continuous
cumulative distribution function by

F (x) , µ
(
[0, x)

)
, x ≥ 0.

This is the shadow limit-order book, in the sense described below. We assume F (x) > 0
for every x > 0. If B is a measurable subset of [0,M), then in the absence of the large
investor modeled in this paper, at time t ≥ 0 the number of limit orders with prices
in B +At , {b+At; b ∈ B} is µ(B).

There is a strictly positive constantX such that our large investor must purchase
X shares over the time interval [0, T ]. His purchasing strategy is a non-decreasing right-
continuous adapted process X with XT = X. We interpret Xt to be the cumulative
amount of purchasing done by time t. We adopt the convention X0− = 0, so that
X0 = ∆X0 is the number of shares purchased at time zero. Here and elsewhere, we
use the notation ∆Xt to denote the jump Xt −Xt− in X at time t.
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The effect of the purchasing strategy X on the limit-order book is determined
by a resilience function h, a strictly increasing, locally Lipschitz function defined on
[0,∞) and satisfying

h(0) = 0, h(∞) , lim
x→∞

h(x) >
X

T
. (2.2)

The function h together with X determine the volume effect process1 E satisfying

Et = Xt −
∫ t

0

h(Es) ds, 0 ≤ t ≤ T. (2.3)

It is shown in Appendix A that there is a unique nonnegative right-continuous finite-
variation adapted process E satisfying (2.3). As with X, we adopt the convention
E0− = 0. We note that ∆Xt = ∆Et for 0 ≤ t ≤ T .

Let B be a measurable subset of [0,M). The interpretation of E is that in the
presence of the large investor using strategy X, at time t ≥ 0 the number of limit
orders with prices in B + A(t) is µt(B), where µt is the σ-finite infinite measure on
[0,M) with left-continuous cumulative distribution function (F (x)−Et)+, x ≥ 0. In
other words, Et units of mass have been removed from the shadow limit-order book
µ. In any interval in which no purchases are made, (2.3) implies d

dtEt = −h(Et).
Hence, in the absence of purchases, the volume effect process decays toward zero and
the limit-order book tends toward the shadow limit-order book µ, displaced by the
ask price A.

To calculate the cost to the investor of using the strategy X, we introduce the
following notation. We first define the left-continuous inverse of F ,

ψ(y) , sup{x ≥ 0|F (x) < y}, y > 0.

We set ψ(0) , ψ(0+) = 0, where the second equality follows from the assumption
that F (x) > 0 for every x > 0. The ask price in the presence of the large investor is
defined to be At +Dt, where

Dt , ψ(Et), 0 ≤ t ≤ T. (2.4)

This is the price after any lump purchases by the investor at time t (see Fig. 2.1).
We give some justification for calling At +Dt the ask price after the following three
examples.

Example 2.1 (Block order book). Let q be a fixed positive number. If q is the
quantity of shares available at each price, then for each x ≥ 0, the quantity available
at prices in [0, x] is F (x) = qx. This is the block order book considered by [10]. In this
case, ψ(y) = y/q and F (ψ(y)) = y for all y ≥ 0. �

Example 2.2 (Modified block order book). Let 0 < a < b < ∞ be given, and
suppose

F (x) =

 x, 0 ≤ x ≤ a,
a, a ≤ x ≤ b,
x− (b− a), b ≤ x <∞.

(2.5)

1The case that resilience is based on price rather than volume is also considered in [2, 4].
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Fig. 2.1. Limit order book at time t. The shaded region corresponds to the remaining shares.
The white area Et corresponds to the amount of shares missing from the order book at time t. The
current ask price is At +Dt.

Fig. 2.2. Density and cumulative distribution of the modified block order book

This is a block order book, except that the orders with prices between a and b
are not present (see Fig 2.2). In this case,

ψ(y) =
{
y, 0 ≤ y ≤ a,
y + b− a, a < y <∞.

(2.6)

We have F (ψ(y)) = y for all y ≥ 0. �

Example 2.3 (Discrete order book). Suppose that

F (x) =
∞∑
i=0

I(i,∞)(x), x ≥ 0, (2.7)

which corresponds to an order of size one at each of the nonnegative integers (see Fig.
2.3). Then

ψ(y) =
∞∑
i=1

I(i,∞)(y), y ≥ 0. (2.8)

For every nonnegative integer j, we have F (j) = j, F (j+) = j + 1, ψ(j + 1) = j,
ψ(j+) = j, F (ψ(j)+) = j and ψ(F (j)+) = j. �

We return to the definition of the ask price as At+Dt to provide some justifica-
tion, leading up to Definition 2.4, for the total cost of a purchasing strategy. Suppose,
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Fig. 2.3. Measure and cumulative distribution function of the discrete order book

as in Example 2.2, F is constant on an interval [a, b], but strictly increasing to the
left of a and to the right of b. Let y = F (x) for a ≤ x ≤ b. Then ψ(y) = a and
ψ(y+) = b. Suppose at time t, we have Et = y. Then Dt = a, but the measure µt
assigns mass zero to [a, b). The ask price is At +Dt, but there are no shares for sale
at this price, nor in an interval to the right of this price. Nonetheless, it is reasonable
to call At + Dt the ask price for an infinitesimal purchase because if the agent will
wait an infinitesimal amount of time before making this purchase, shares will appear
at the price At +Dt due to resilience. We make this argument more precise.

Suppose the agent wishes to purchase a small number ε > 0 shares at time t at
the ask price At + Dt. This purchase can be approximated by first purchasing zero
shares in the time interval [t, t+ δ], where δ is chosen so that

∫ t+δ
t

h(Es) ds = ε and

Es = Xt −
∫ s

0

h(Eu) du, t ≤ s < t+ δ.

In other words, Es for t ≤ s < t + δ is given by (2.3) with X held constant (no
purchases) over this interval. With δ chosen this way, E(t+δ)− = Et − ε. Resilience
in the order book has created ε shares. Suppose the investor purchases these shares
at time t + δ, which means that ∆Xt+δ = ∆Et+δ = ε and Et+δ = Et. Immediately
before the purchase, the ask price is At+δ+ψ(Et−ε); immediately after the purchase,
the ask price is At+δ + ψ(Et) = At+δ + a. The cost of purchasing these shares is

εAt+δ +
∫

[ψ(Et−ε),a]
ξ d
(
F (ξ)− Et + ε

)+
, (2.9)

Because
∫
[ψ(Et−ε),a] d

(
F (ξ)−Et + ε)+ = ε, the integral in (2.9) is bounded below by

εψ(Et − ε) and bounded above by εa. But a = ψ(Et) = Dt and ψ is left continuous,
so the cost per share obtained by dividing (2.9) by ε converges to At + a = At +Dt

as ε (and hence δ) converge down to zero.

On the other hand, an impatient agent who does not wait before purchasing
shares could choose a different method of approximating an infinitesimal purchase at
time t that leads to a limiting cost per share At + b. In particular, it is not the case
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that our definition of ask price is consistent with all limits of discrete-time purchasing
strategies. Our definition is designed to capture the limit of discrete-time purchasing
strategies that seek to minimize cost.

To simplify calculations of the type just presented, we define the functions

ϕ(x) =
∫

[0,x)

ξ dF (ξ), x ≥ 0, (2.10)

Φ(y) = ϕ
(
ψ(y)

)
+
[
y − F

(
ψ(y)

)]
ψ(y), y ≥ 0. (2.11)

We note that Φ(0) = 0, and we extend Φ to be zero on the negative half-line. In
the absence of the large investor, the cost one would pay to purchase all the shares
available at prices in the interval [A(t), A(t)+x) at time t would be A(t)+ϕ(x). The
function Φ(y) captures the cost, in excess of At, of purchasing y shares in the absence
of the large investor. The first term on the right-hand side of (2.11) is the cost less At
of purchasing all the shares with prices in the interval [At, At+ψ(y)). If F has a jump
at ψ(y), this might be fewer than y shares. The difference, y − F (ψ(y)) shares, can
be purchased at price At +ψ(y), and this explains the second term on the right-hand
side of (2.11). We present these functions in the three examples considered earlier.

Example 2.1 (Block order book, continued). We have simply ϕ(x) = q
∫ x
0
ξ dξ =

q
2x

2 for all x ≥ 0, and Φ(y) = q
2ψ

2(y) = 1
2qy

2 for all y ≥ 0. Note that Φ is convex and
Φ′(y) = ψ(y) for all y ≥ 0, including at y = 0 because we define Φ to be identically
zero on the negative half-line. �

Example 2.2 (Modified block order book, continued). With F and ψ given by
(2.5) and (2.6), we have

ϕ(x) =



1
2
x2, 0 ≤ x ≤ a,

1
2
a2, a ≤ x ≤ b,

1
2
(x2 + a2 − b2), b ≤ x <∞,

and

Φ(y) =


1
2
y2, 0 ≤ y ≤ a,

1
2
(
(y + b− a)2 + a2 − b2

)
, a ≤ y <∞.

Note that Φ is convex with subdifferential

∂Φ(y) =

 {y}, 0 ≤ y < a,
[a, b], y = a,
{y + b− a}, a < y <∞.

(2.12)

In particular, ∂Φ(y) = [ψ(y), ψ(y+)] for all y ≥ 0 (see Fig. 2.4). �

Example 2.3 (Discrete order book, continued). With F given by (2.7), we
have ϕ(x) =

∑∞
i=0 iI(i,∞)(x). In particular, ϕ(0) = 0 and for integers k ≥ 1 and
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Fig. 2.4. Functions Φ and ψ for the modified block order book with parameters a = 4 and b = 14

k − 1 < x ≤ k,

ϕ(x) =
k−1∑
i=0

i =
k(k − 1)

2
.

For 0 ≤ y ≤ 1, ψ(y) = 0 and hence ϕ(ψ(y)) = 0, [y − F (ψ(y))]ψ(y) = 0, and
Φ(y) = 0. For integers k ≥ 1 and k < y ≤ k + 1, (2.8) gives ψ(y) = k, and hence
ϕ(ψ(y)) = k(k−1)

2 . Finally, for y in this range, [y − F (ψ(y))]ψ(y) = k(y − k). We
conclude that

Φ(y) =
∞∑
k=1

k

(
y − 1

2
k − 1

2

)
I(k,k+1](y). (2.13)

For each positive integer k, Φ(k−) = Φ(k+) = 1
2k(k−1), so Φ is continuous. Further-

more, ∂Φ(k) = [k − 1, k] = [ψ(k), ψ(k+)]. For nonnegative integers k and k < y <
k+1, Φ′(y) is defined and is equal to ψ(y) = k. Furthermore Φ′(0) = ψ(0) = 0. Once
again we have ∂Φ(y) = [ψ(y), ψ(y+)] for all y ≥ 0, and because ψ is nondecreasing,
Φ is convex (see Fig. 2.5). �

We decompose the purchasing strategy X into its continuous and pure jump
parts Xt = Xc

t +
∑

0≤s≤t ∆Xs. The investor pays price At + Dt for infinitesimal

purchases at time t, and hence the total cost of these purchases is
∫ T
0

(At +Dt) dXc
t .

On the other hand, if ∆Xt > 0, the investor makes a lump purchase of size ∆Xt =
∆Et at time t. Because mass Et− is missing in the shadow order book immediately
prior to time t, the cost of this purchase is the difference between purchasing Et and
purchasing Et− from the shadow order book, i.e., the difference in what the costs of
these purchases would be in the absence of the large investor. Therefore, the cost of
the purchase ∆Xt at time t is At∆Xt + Φ(Et) − Φ(Et−). These considerations lead
to the following definition.

Definition 2.4. The total cost incurred by the investor using purchasing strat-
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Fig. 2.5. Functions Φ and ψ for the discrete order book

egy X over the interval [0, T ] is

C(X) ,
∫ T

0

(
At +Dt) dXc

t +
∑

0≤t≤T

[
At∆Xt + Φ(Et)− Φ(Et−)

]
=
∫ T

0

Dt dX
c
t +

∑
0≤t≤T

[
Φ(Et)− Φ(Et−)

]
+
∫

[0,T ]

At dXt.

Our goal is to determine the purchasing strategy X that minimizes EC(X).

3. Problem simplifications. To compute the expectation of C(X) defined by
(2.14), we invoke the integration by parts formula∫

[0,T ]

At dXt = ATXT −A0X0− −
∫ T

0

Xt dAt

for the bounded variation process X and the continuous martingale A. Our in-
vestor’s strategies must satisfy 0 = X0− ≤ Xt ≤ XT = X, 0 ≤ t ≤ T , and hence
E
∫ T
0
Xt dAt = 0 (see Appendix B) and E

∫ T
0
At dXt = XEAT = XA0. It follows that

EC(X) = E
∫ T

0

Dt dX
c
t + E

∑
0≤t≤T

[
Φ(Et)− Φ(Et−)

]
+XA0. (3.1)

Since the third term on the right-hand side of (3.1) does not depend on X, minimiza-
tion of EC(X) is equivalent to minimization of the first two terms. But the first two
terms do not depend on A, and hence we may assume without loss of generality that
A is identically zero. Under this assumption, the cost of using strategy X is

C(X) =
∫ T

0

Dt dX
c
t +

∑
0≤t≤T

[
Φ(Et)− Φ(Et−)

]
. (3.2)

But with A ≡ 0, there is no longer a source of randomness in the problem.
Consequently, without loss of generality we may restrict the search for an optimal



10 PREDOIU, SHAIKHET and SHREVE

strategy to nonrandom functions of time. Once we find a nonrandom purchasing
strategy minimizing (3.4) below, then even if A is a continuous non-zero nonnegative
martingale, we have found a purchasing strategy that minimizes the expected value
of (2.14) over all (possibly random) purchasing strategies.

Remark 3.1. We do not allow our agent to make intermediate sells in order to
achieve the ultimate goal of purchasing X shares because doing so would not decrease
the cost, at least when the total amount of buying and selling is bounded. Indeed,
in addition to the purchasing strategy X, suppose the agent has a selling strategy Y ,
which we take to be a non-decreasing right-continuous adapted process with Y0− = 0.
We assume that both X and Y are bounded. For each t, Xt represents the number
of shares bought by time t and Yt is the number of shares sold. These processes must
be chosen so that XT −YT = X. We have not modeled the limit buy order book, but
if we did so in a way analogous to the model of the limit sell order book, then the
bid price at each time t would be less than or equal to At. Therefore, the net cost of
executing the strategy (X,Y ) would satisfy

C(X,Y ) ≥
∫ T

0

Dt dX
c
t +

∑
0≤t≤T

[
Φ(Et)− Φ(Et−)

]
+
∫

[0,T ]

At dXt −
∫

[0,T ]

At dYt.

The integration by parts formula implies∫
[0,T ]

At dXt −
∫

[0,T ]

At dYt = AT (XT − YT )−A0(X0− − Y0−)−
∫ T

0

(Xt − Yt) dAt

= ATX −
∫ T

0

(Xt − Yt) dAt.

Because we can apply Lemma B.1 to bothX and Y , the expectation of
∫ T
0

(Xt−Yt) dAt
is zero and

EC(X,Y ) ≥ E
∫ T

0

Dt dX
c
t + E

∑
0≤t≤T

[
Φ(Et)− Φ(Et−)

]
+XA0. (3.3)

The right-hand side of (3.3) is the formula (3.1) obtained for the cost of using the
purchasing strategy X alone, but the X in inequality (3.3) makes a total purchase of
XT = X + YT ≥ X. If we replace X by min{X,X}, we obtain a feasible purchasing
strategy whose total cost is less than or equal to the right-hand side of (3.3). �

Theorem 3.2. Under the assumption (made without loss of generality) that
A is identically zero, the cost (3.2) associated with a nonrandom nondecreasing right
continuous function Xt, 0 ≤ t ≤ T , satisfying X0− = 0 and XT = X is equal to

C(X) = Φ(ET ) +
∫ T

0

Dth(Et) dt. (3.4)

Proof. The proof proceeds in two steps. In Step 1 we show that, as we have
seen in the examples, Φ is a convex function with subdifferential

∂Φ(y) = [ψ(y), ψ(y+)], y ≥ 0. (3.5)

In Step 2 we justify the integration formula

Φ(ET ) =
∫ T

0

D−Φ(Et) dEct +
∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
, (3.6)
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where D−Φ(Et) denotes the left-hand derivative ψ(Et) = Dt of Φ at Et, and Ec is
the continuous part of E: Ect = Et −

∑
0≤s≤t ∆Es. From (2.3) and (3.6) we have

immediately that

Φ(ET ) =
∫

[0,T ]

Dt dX
c
t −

∫ T

0

Dth(Et) dt+
∑

0≤t≤T

[
Φ(Et)− Φ(Et−)

]
,

and (3.4) follows from (3.2).

Step 1. Using the integration by parts formula xF (x) =
∫
[0,x)

ξ dF (ξ) +
∫ x
0
F (ξ) dξ,

we write

Φ(y) =
∫

[0,ψ(y))

ξ dF (ξ) + [y − F (ψ(y))]ψ(y)

=
∫ ψ(y)

0

(
y − F (ξ)

)
dξ

=
∫ ψ(y)

0

∫ y

F (ξ)

dη dξ

=
∫ y

0

∫ ψ(η)

0

dξdη,

where the last step follows from the fact that the symmetric difference of the sets
{(η, ξ)|ξ ∈ [0, ψ(y)], η ∈ [F (ξ), y]} and {(η, ξ)|η ∈ [0, y], ξ ∈ [0, ψ(η)]} is at most a
countable union of line segments and thus has two-dimensional Lebesgue measure 0.
Therefore,

Φ(y) =
∫ y

0

ψ(η) dη, (3.7)

and by Problem 3.6.20, p. 213 of [17], with ψ and Φ extended to be 0 for the negative
reals, we conclude that Φ is convex and that ∂Φ(y) = [ψ(y), ψ(y+)], as desired.

Step 2. We mollify ψ, taking ρ to be a nonnegative C∞ function with support on
[−1, 0] and integral 1, defining ρn(η) = nρ(nη), and defining

ψn(y) =
∫

R
ψ(y + η)ρn(η) dη =

∫
R
ψ(ζ) ρn(ζ − y) dζ.

Then each ψn is a C∞ function satisfying 0 ≤ ψn(y) ≤ ψ(y) for all y ≥ 0. Further-
more, ψ(y) = limn→∞ ψn(y) for every y ∈ R. We set Φn(y) =

∫ y
0
ψn(η) dη, so that

each Φn is also a C∞ function and limn→∞ Φ′
n(y) = D−Φ(y).

Because Φn(E0−) = Φ(0) = 0, we have

Φn(ET ) =
∫ T

0

Φ′
n(Et) dE

c
t +

∑
0≤t≤T

[Φn(Et)− Φn(Et−)]; (3.8)

see, e.g., [11], p. 78. The function Et, 0 ≤ t ≤ T , is bounded. Letting n→∞ in (3.8)
and using the bounded convergence theorem, we obtain

Φ(ET ) =
∫ T

0

D−Φ(Et) dEct + lim
n→∞

∑
0≤t≤T

[
Φn(Et)− Φn(Et−)

]
. (3.9)
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To conclude the proof of (3.6), we divide the sum in (3.9) into two parts. Given
δ > 0, we define Sδ = {t ∈ [0, T ] : 0 < ∆Et ≤ δ} and S′δ = {t ∈ [0, T ] : ∆Et > δ}. The
sum in (3.9) is over t ∈ Sδ ∪ S′δ, and because E has finite variation,

∑
t∈Sδ∪S′δ

∆Et <
∞. Let ε > 0 be given. We choose δ > 0 so small that

∑
t∈Sδ

∆Et ≤ ε. Because
ψ and hence each ψn is bounded on [0, ET ], the function Φ and each Φn is Lipschitz
continuous on [0, ET ] with the same Lipschitz constant L = ψ(ET ). It follows that∑

t∈Sδ

[
Φ(Et)− Φ(Et−)

]
≤ L

∑
t∈Sδ

∆Et ≤ Lε,

∑
t∈Sδ

[
Φn(Et)− Φn(Et−)

]
≤ L

∑
t∈Sδ

∆Et ≤ Lε, n = 1, 2, . . . .

Hence the difference between
∑
t∈Sδ

[
Φ(Et)−Φ(Et−)

]
and any limit point as n→∞

of
∑
t∈Sδ

[
Φn(Et)−Φn(Et−)

]
is at most 2Lε. On the other hand, the set S′δ contains

only finitely many elements, and thus

lim
n→∞

∑
t∈S′δ

[
Φn(Et)− Φn(Et−)

]
=
∑
t∈S′δ

[
Φ(Et)− Φ(Et−)

]
.

Since ε > 0 is arbitrary, (3.9) reduces to (3.6). �

4. Solution of the Optimization Problem. In view of Theorem 3.2, we want
to minimize Φ(ET )+

∫ T
0
Dth(Et) dt over the set of deterministic purchasing strategies.

The main result of this paper is that there exists an optimal strategy X under which
the trader buys a lump quantity X0 = E0 of shares at time 0, then buys at a constant
rate dXt = h(E0) dt up to time t0 (so as to keep Et = E0 for t ∈ [0, t0)), then buys
another lump quantity of shares at time t0, subsequently trades again at a constant
rate dXt = h(Et0) dt until time T (so as to keep Et = Et0 for t ∈ [t0, T )), and finally
buys the remaining shares at time T . We shall call this strategy a Type B strategy.
We further show that if the nonnegative function

g(y) , yψ
(
h−1(y)

)
(4.1)

is convex, then the purchase at time t0 consists of 0 shares (so X has only jumps at
times 0 and T ). We call such a strategy a Type A strategy. Clearly the latter is a
special case of the former.

Although g is naturally defined on [0, h(∞)) by (4.1), we will want it to be
defined on a compact set. Therefore we set

Y = max
{
h(X),

X

T

}
(4.2)

and note that because of assumption (2.2), h−1 is defined on [0, Y ]. We specify the
domain of the function g to be [0, Y ]. For future reference, we make three observations
about the function g. First,

lim
y↓0

g(y) = g(0) = 0. (4.3)

Secondly, using the definition (2.4) of Dt, we can rewrite the cost function formula
(3.4) as

C(X) = Φ(ET ) +
∫ T

0

g
(
h(Et)

)
dt. (4.4)
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Lemma A.1(iv) in the appendix shows that 0 ≤ Et ≤ X, so the domain [0, Y ] of g is
large enough in order for (4.4) to make sense. Because h−1 is strictly increasing and
continuous and ψ is nondecreasing and left continuous, the function g is nondecreasing
and left continuous, hence lower semicontinuous. In particular,

g
(
Y ) = lim

y↑Y
g(y). (4.5)

4.1. Convexity and Type A Strategies.

Remark 4.1. A Type A strategy XA can be characterized in terms of the
terminal value EAT of the process EA related to XA by (2.3), and the cost of using a
Type A strategy can be written as a function of EAT . It is this function of EAT we will
minimize. To see that this is possible, let XA be a Type A strategy and let EA be
related to XA via (2.3), so that EAt = XA

0 for 0 ≤ t < T . Then

XA
T− = EAT− +

∫ T

0

h(EAt ) dt = XA
0 + h(XA

0 )T, (4.6)

∆XA
T = X −XA

T− = X −XA
0 − h(XA

0 )T, (4.7)

EAT = EAT− + ∆XA
T = X − h(XA

0 )T. (4.8)

A Type A strategy is fully determined by its initial condition XA
0 , and from (4.8),

we now see that choosing XA
0 is equivalent to choosing EAT . According to (4.4) and

(4.8), the cost of this strategy

C(XA) = Φ(EAT ) + Tg
(
h(XA

0 )
)

= Φ(EAT ) + Tg

(
X − EAT

T

)
(4.9)

can be written as a function of EAT .

We conclude this remark by determining the range of values that EAT can take
for a Type A strategy. We must choose XA

0 so that XA
0 ≥ 0 and XA

T− given by
(4.6) does not exceed X. The function k(x) , x + h(x)T is strictly increasing and
continuous on [0,∞), and k(X) > X. Therefore, there exists a unique e ∈ (0, X) such
that k(e) = X. i.e.,

e+ h(e)T = X. (4.10)

The constraint on the initial condition of Type A strategies that guarantees that the
strategy is feasible is 0 ≤ XA

0 ≤ e. From (4.8) and (4.10) we see that the corresponding
feasibility condition on EAT for Type A strategies is

e ≤ EAT ≤ X. (4.11)

�

Theorem 4.2. If g given by (4.1) is convex on [0, Y ], then there exists a Type
A purchasing strategy that minimizes C(X) over all purchasing strategies X. If g is
strictly convex, this is the unique optimal strategy.

Proof. Assume that g is convex and let X be a purchasing strategy. Jensen’s
inequality applied to (4.4) yields the lower bound

C(X) = Φ(ET ) + T

∫ T

0

g
(
h(Et)

)dt
T
≥ Φ(ET ) + Tg

(∫ T

0

h(Et)
dt

T

)
.
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From (2.3) we further have
∫ T
0
h(Et) dt = X − ET , and thus the lower bound can be

rewritten as

C(X) ≥ Φ(ET ) + Tg

(
X − ET

T

)
. (4.12)

Recall that 0 ≤ ET ≤ X, so the argument of g in (4.12) is in [0, Y ].

This leads us to consider minimization of the function

G(e) , Φ(e) + Tg

(
X − e

T

)
over e ∈ [0, X]. By assumption, the function g is convex on [0, Y ] and hence continuous
on (0, Y ). Equations (4.3) and (4.5) show that g is also continuous at the endpoints
of its domain. Because Φ has the integral representation (3.7), it also is convex and
continuous on [0, X]. Therefore, G is a convex continuous function on [0, X], and
hence the minimum is attained.

We show next that the minimum of G over [0, X] is attained in [e,X]. For this,
we first observe that because g is convex,

D+g(y) ≥ g(y)− g(0)
y

= ψ
(
h−1(y)

)
, 0 < y ≤ Y .

This inequality together with (3.5) and (4.10) implies

D−G(e) = ψ(e)−D+g(y)
∣∣∣
y= X−e

T

≤ ψ(e)− ψ

(
h−1

(
X − e

T

))
= 0. (4.13)

Therefore, the minimum of the convex function G over [0, X] is obtained in [e,X].

Let e∗ ∈ [e,X] attain the minimum of G over [0, X]. The Type A strategy XA

with initial condition XA
0 = h−1(X−e

∗

T ) satisfies EAT = e∗ (see (4.8)), and hence the
strategy is feasible (see (4.11)). The cost associated with this strategy is less than or
equal to the right-hand side of (4.12) (see (4.9)). This strategy is therefore optimal.

If g is strictly convex at the point X−e∗
T , where e∗ minimizes G, then G is

strictly convex at e∗, and this point is thus the unique minimizer of G. Therefore,
every optimal strategy strategy must satisfy ET = e∗. By strict convexity of g, a
strategy that does not keep h(E) equal to X−e∗

T almost everywhere in (0, T ), would
result in strict inequality in (4.12). Since h is strictly increasing and a process E does
not have negative jumps, we conclude that the only optimal strategy is the Type A
strategy constructed above. �

If g is not strictly convex at the point X−e∗
T found in the proof of Theorem 4.2,

then G might still be strictly convex at e∗, in which case there would be only one
optimal strategy of Type A, but there could be optimal strategies that are not of
Type A. We demonstrate this phenomenon with an example.

Example 4.3 (Non-uniqueness of optimal purchasing strategy). Suppose

F (x) =


x, 0 ≤ x ≤ 2,

4
4−x , 2 ≤ x ≤ 3,
4 + 1

8 (x− 3), x ≥ 3.
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This function is continuous and strictly increasing, and hence

ψ(y) =


y, 0 ≤ y ≤ 2,
4− 4

y , 2 ≤ y ≤ 4,
8y − 29, y ≥ 4,

is also continuous and strictly increasing. This implies that

Φ(y) =
∫ y

0

ψ(η)dη =


1
2y

2, 0 ≤ y ≤ 2,
4y − 6− 4 log y

2 , 2 ≤ y ≤ 4,
4y2 − 29y + 62− 4 log 2, y ≥ 4.

We take h(x) = x, so that

g(y) = yψ(y) =

 y2, 0 ≤ y ≤ 2,
4y − 4, 2 ≤ y ≤ 4,
8y2 − 29y, y ≥ 4,

and

g′(y) =

 2y, 0 ≤ y ≤ 2,
4, 2 ≤ y < 4,
16y − 29, y > 4,

Note that g′ is nondecreasing, so g is convex, but g is affine on the interval [2, 4].
Finally, we take X = 10 1

8 and T=2.

In the notation of the proof of Theorem 4.2, we have e∗ = 4 1
8 and hence X−e∗

T =
3. Indeed, G′

(
4 1

8

)
= ψ

(
4 1

8

)
− g′(3) = 0, and because ψ is strictly increasing, G is

strictly convex, and hence 4 1
8 is the unique minimizer of G.

The Type A strategy with EAT = 4 1
8 begins with an initial purchase of XA

0 = 3
and then consumes at rate 3 over the interval [0, 2], so that EAt = 3 for 0 ≤ t < T . At
the final time T = 2, there is an additional lump purchase of 1 1

8 , so that EAT = 4 1
8 .

The total cost of this strategy is

Φ(EAT ) +
∫ T

0

g(EAt ) dt = Φ
(

4
1
8

)
+
∫ 2

0

(
4EAt − 4

)
dt = Φ

(
4
1
8

)
+ 16.

In particular,
∫ 2

0
EAt dt = 6.

In fact, any policy that satisfies 2 ≤ Et ≤ 4, 0 ≤ t < 2, and
∫ 2

0
Et dt = 6 will

result in the same cost. Indeed, for such a policy we will have

ET = XT −
∫ T

0

Et dt = 10
1
8
− 6 = 4

1
8

= EAT

and ∫ T

0

g(Et) dt =
∫ T

0

(4Et − 4) dt = 16 =
∫ T

0

g(EAt ) dt,

so Φ(ET ) +
∫ T
0
g(Et) dt = Φ(EAT ) +

∫ T
0
g(EAt ) dt. There are infinitely many policies

like this. One such is to make an initial lump purchase of size 2, then purchase at
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rate 2 up to time 1
2 so that Et = 2, 0 ≤ t < 1

2 , make a lump purchase of size 1 at
time 1

2 , then purchase at rate 3 up to time 3
2 so that Et = 3, 1

2 ≤ t < 3
2 , make a lump

purchase of size 1 at time 3
2 , then purchase at rate 4 up to time 2 so that Et = 4,

3
2 ≤ t < 2, and conclude with a lump purchase of size 1

8 at time 2 so that E2 = 4 1
8 . �

Remark 4.4. Alfonsi, Fruth and Schied [4] consider the case that the measure µ
has a strictly positive density f . In this case, the function F (x) =

∫ x
0
f(ξ) dξ is strictly

increasing and continuous with derivative F ′(x) = f(x), and its inverse ψ is likewise
strictly increasing and continuous with derivative ψ′(y) = 1/f(ψ(y)). Furthermore,
in [4] the resilience function is h(x) = ρx, where ρ is a positive constant. In this case,

g′(y) = ψ(y/ρ) +
y/ρ

f
(
ψ(y/ρ)

) ,
and Theorem 4.2 guarantees the existence of a Type A strategy under the assumption
that g′ is nondecreasing. This is equivalent to the condition that

ψ(y) +
y

f
(
ψ(y)

)
is nondecreasing.

Alfonsi, Fruth and Schied [4] obtain a discrete-time version of a Type A strategy
under the assumption that

h1(y) , ψ(y)− e−ρτψ(e−ρτy)

is strictly increasing, where τ is the time between trading dates. In order to study
the limit of their model as τ ↓ 0, they observe that

lim
τ↓0

h1(y)/(1− e−ρτ ) = ψ(y) +
y

f
(
ψ(y)

) ,
which is thus nondecreasing. Thus g given by (4.1) is convex in their model.

To find a simpler formulation of the hypothesis of Theorem 4.2 under the as-
sumption that µ has a strictly positive density f and h(x) = ρx for a positive constant
ρ, we compute

d

dy

(
ψ(y) +

y

f
(
ψ(y)

)) =
2

f
(
ψ(y)

) − yf ′
(
ψ(y)

)
f3
(
ψ(y)

) .
This is nonnegative if and only if 2f2

(
ψ(y)

)
≥ yf ′

(
ψ(y)

)
. Replacing y by F (x), we

obtain the condition

2f2(x) ≥ F (x)f ′(x), x ≥ 0.

This is clearly satisfied under the assumption of [10] that f is a positive constant. �

Example 2.1 (Block order book, continued) In the case of the block order
book with h(x) = ρx, where ρ is a strictly positive constant,

g(y) =
yh−1(y)

q
=
y2

ρq
,
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which is strictly convex. Theorem 4.2 implies that there is an optimal strategy of
Type A, and this is the unique optimal strategy. From the formula Φ(e) = 1

2q e
2, we

have

G(e) =
e2

2q
+

(X − e)2

ρqT
.

The minimizer is e∗ = 2X
2+ρT , which lies between e = X

1+ρT and X, as expected.
According to Remark 4.1, the optimal strategy of Type A is to make an initial purchase
of size

XA
0 = h−1

(
X − e∗

T

)
=

X

2 + ρT
,

then purchase continuously at rate dXA
t = h(XA

0 ) dt = ρX
2+ρT dt over the time interval

[0, T ], and conclude with a lump purchase

e∗ −XA
0 =

X

2 + ρT

at the final time T . In particular, the initial and final lump purchases are of the same
size, and there is no intermediate lump purchase.

4.2. Type B Strategies.

Theorem 4.5. In the absence of the assumption that g given by (4.1) is convex,
there exists a Type B purchasing strategy that minimizes C(X) over all purchasing
strategies X.

The proof of Theorem 4.5 depends on the following lemma, whose proof is given
in Appendix C.

Lemma 4.6. The convex hull of g, defined by

ĝ(y) , sup
{
`(y) : ` is an affine function and `(η) ≤ g(η)∀η ∈ [0, Y ]

}
, (4.14)

is the largest convex function defined on [0, Y ] that is dominated by g there. It is
continuous and nondecreasing on [0, Y ], ĝ(0) = g(0) = 0, and ĝ(Y ) = g(Y ). If
y∗ ∈ (0, Y ) satisfies ĝ(y∗) < g(y∗), then there exists a unique affine function ` lying
below g on [0, Y ] and agreeing with ĝ at y∗. In addition, there exist numbers α and β
satisfying

0 ≤ α < y∗ < β ≤ Y , (4.15)
`(α) = ĝ(α) = g(α), `(β) = ĝ(β) = g(β), (4.16)

`(y) = ĝ(y) < g(y), α < y < β. (4.17)

Proof of Theorem 4.5. Using ĝ in place of g in (4.4), we define the modified cost
function

Ĉ(X) , Φ(ET ) +
∫ T

0

ĝ
(
h(Et)

)
dt.
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For any purchasing strategy X, we obviously have Ĉ(X) ≤ C(X). Analogously to
(4.12), for any purchasing strategy X the lower bound

Ĉ(X) ≥ Φ(ET ) + T ĝ

(
X − ET

T

)
holds. This leads us to consider minimization of the function

Ĝ(e) , Φ(e) + T ĝ

(
X − e

T

)
(4.18)

over e ∈ [0, X]. As in the proof of Theorem 4.2, this function attains its minimum at
some e∗ ∈ [0, X].

For the remainder of the proof, we use the notation

y∗ =
X − e∗

T
, x∗ = h−1(y∗), (4.19)

where it is assumed without loss of generality that e∗ is the largest minimizer of Ĝ
in [0, X]. There are two cases. In both cases, we construct a strategy that satisfies
EBT = e∗ and

C(XB) = Ĝ(e∗). (4.20)

In the first case, the strategy is a Type A strategy, and it is Type B in the second
case. In both cases, we exhibit the strategy explicitly.

Case I. ĝ(y∗) = g(y∗).

It is tempting to claim that we are now in the situation of Theorem 4.2 with
the convex function ĝ replacing g. However, the proof needed here that e∗ ≥ e, where
e is determined by (4.10), cannot follow the proof of Theorem 4.2. In the proof of
Theorem 4.2, this inequality was a consequence of (4.13), which ultimately depended
on the definition (4.1) of g(e). But we only have ĝ(e) ≤ eψ(h−1(e)); we do not have an
equation analogous to (4.1) for ĝ. We thus provide a different proof, which depends
on e∗ being the largest minimizer of Ĝ in [0, X].

If x∗ = 0, then y∗ = 0, e∗ = X, and Ĝ(e∗) = G(e∗). The Type A strategy
that waits until the final time T and then purchases X is optimal. In particular, this
strategy satisfies the initial condition XA

0 = x∗.

If x∗ > 0, we must consider two subcases. It could be that 0 < x∗ ≤ F (0+).
In this subcase, ĝ(y∗) = g(y∗) = y∗ψ(x∗) = 0 because ψ ≡ 0 on [0, F (0+)]. But
ĝ(0) = 0 and ĝ is nondecreasing, so ĝ ≡ 0 on [0, y∗]. Furthermore, x∗ is positive,
so e∗ < X. For e ∈ (e∗, X), the number X−e

T is in (0, y∗), and by (3.5), D+Ĝ(e) =
D+Φ(e) = ψ(e+). On the other hand, e∗ is the largest minimizer of Ĝ in [0, X], which
implies D+Ĝ(e) > 0. This shows that ψ(e+) > 0 for every e ∈ (e∗, X), which implies
that ψ(e) > 0 for every e ∈ (e∗, X) and further implies that e ≥ F (0+) for every
e ∈ (e∗, X). We conclude that e∗ ≥ F (0+). Applying h to this inequality and using
the subcase assumption x∗ ≤ F (0+), we obtain

h(e∗) ≥ h
(
F (0+)

)
≥ h(x∗) =

X − e∗

T
. (4.21)
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In other words, e∗+h(e∗)T ≥ X, and by the defining equation (4.10) of e, we conclude
that e∗ ≥ e. The corresponding optimal strategy, which is Type A, satisfies XA

0 = x∗

and EAT = e∗. The proof of optimality of this strategy follows the proof of Theorem
4.2 with ĝ replacing g.

Finally, we consider the subcase x∗ > F (0+). Because y∗ = h(x∗) is positive,
the left-hand derivative of ĝ at y∗ is defined, and it satisfies

D−ĝ(y∗) ≥ ĝ(y∗)− ĝ(0)
y∗

=
g(y∗)
y∗

= ψ(x∗). (4.22)

In fact, the inequality in (4.22) is strict. It it were not, the affine function

`(y) = ψ(x∗)
(
y − y∗

)
+ ĝ(y∗) = yψ(x∗)

would describe a tangent line to the graph of ĝ at (y∗, ĝ(y∗)) lying below ĝ(y), and
hence below g(y), for all y ∈ [0, Y ]. But the resulting inequality yψ(x∗) ≤ g(y) =
yψ(h−1(y))) yields ψ(x∗) ≤ ψ(h−1(y)) for all y ∈ (0, Y ], and letting y ↓ 0, we would
conclude ψ(x∗) = 0. This violates the subcase assumption x∗ > F (0+). We conclude
that D−ĝ(y∗) > ψ(x∗). The strict inequality, the fact that e∗ minimizes Ĝ, and (3.5)
further imply

0 ≤ D+Ĝ(e∗) = D+Φ(e∗)−D−ĝ(y∗) < ψ(e∗+)− ψ(x∗).

But ψ(x∗) < ψ(e∗+) implies x∗ ≤ e∗. Consequently, h(e∗) ≥ h(x∗) = X−e∗
T . This

is the essential part of inequality (4.21), and we conclude as above, constructing an
optimal Type A strategy with XA

0 = x∗ and EAT = e∗.

Case II. ĝ(y∗) < g(y∗).

Recall from Lemma 4.6 that this case can occur only if 0 < y∗ < Y . In particular,
x∗ > 0. We let ` to be the affine function and α and β be numbers as described in
Lemma 4.6, and we construct a Type B strategy. To do this, we define t0 ∈ (0, T ) by

t0 =

(
β − y∗

)
T

β − α
, (4.23)

so that αt0 + β(T − t0) = y∗T . Consider the Type B strategy that makes an initial
purchase XB

0 = h−1(α), then purchases at rate dXB
t = αdt for 0 ≤ t < t0 (so

EBt = h−1(α) for 0 ≤ t < t0), follows this with a purchase ∆XB
t0 = h−1(β)− h−1(α)

at time t0, thereafter purchases at rate dXB
t = β dt for t0 ≤ t < T (so EBt = h−1(β)

for t0 ≤ t < T ), and makes a final purchase X −XB
T− at time T . According to (2.3),

XB
t =


h−1(α) + αt, 0 ≤ t < t0,
h−1(β) + αt0 + β(t− t0), t0 ≤ t < T,
X, t = T.

In particular,

∆XB
T = X − h−1(β)− αt0 − β(T − t0) = X − h−1(β)− y∗T = e∗ − h−1(β). (4.24)

We show at the end of this proof that

h−1(β) ≤ e∗. (4.25)
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This will ensure that ∆XB
T is nonnegative, and since XB is obviously nondecreasing

on [0, T ), this will establish that XB is a feasible purchasing strategy.

Accepting (4.25) for the moment, we note that (4.24) implies

EBT = EBT− + ∆EBT = h−1(β) + ∆XB
T = e∗. (4.26)

Using (4.4), (4.26), (4.16), the linearity of `, and (4.17) in that order, we compute

C(XB) = Φ(EBT ) +
∫ T

0

g
(
h(EBt )

)
dt

= Φ(e∗) + g(α)t0 + g(β)(T − t0)
= Φ(e∗) + `(α)t0 + `(β)(T − t0)

= Φ(e∗) + T`

(
αt0 + β(T − t0)

T

)
= Φ(e∗) + T`(y∗)
= Φ(e∗) + T ĝ(y∗)

= Ĝ(e∗),

This is (4.20).

Finally, we turn to the proof of (4.25). Because e∗ is the largest minimizer of the
convex function Ĝ in [0, X] and e∗ < X (because x∗ > 0), the right-hand derivative
of Ĝ at e∗ must be nonnegative. Indeed, for all e ∈ (e∗, X), this right-hand derivative
must in fact be strictly positive. For e greater than but sufficiently close to e∗, X−e

T

is in (α, y∗), where ĝ is linear with slope g(β)−g(α)
β−α . For such e,

0 < D+Ĝ(e)

= D+Φ(e+)−D−ĝ(y)
∣∣∣
y= X−e

T

= ψ(e+)− g(β)− g(α)
β − α

= ψ(e+)−
βψ
(
h−1(β)

)
− αψ

(
h−1(α)

)
β − α

≤ ψ(e+)−
βψ
(
h−1(β)

)
− αψ

(
h−1(β)

)
β − α

= ψ(e+)− ψ
(
h−1(β)

)
.

This inequality ψ
(
h−1(β)

)
< ψ(e+) for all e greater than but sufficiently close to e∗

implies (4.25). �

Remark 4.7 (Uniqueness). In Case I of the proof of Theorem 4.5, when ĝ(y∗) =
g(y∗), strict convexity of ĝ at y∗ implies uniqueness of the optimal purchasing strategy.
The proof is similar to the uniqueness proof in Theorem 4.2.

However, in Case II ĝ is not strictly convex at y∗. In this case, if ψ is strictly
increasing at e∗ and if the affine function ` of Lemma 4.6 agrees with g only at α and
β, then the optimal purchasing strategy is unique. Indeed, if ψ is strictly increasing at
e∗, then Φ and hence Ĝ are strictly convex at e∗, which implies that e∗ is the unique
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minimizer of Ĝ. In order to be optimal, a purchasing strategy must satisfy the two
inequalities ∫ T

0

g
(
h(Et)

)
dt ≥

∫ T

0

ĝ
(
h(Et)

)
dt ≥ T ĝ

(∫ T

0

h(Et)
dt

T

)
(4.27)

with equality, as we explain below, and must also satisfy ET = e∗. When the inequal-
ities (4.27) hold, we can use (2.3) to obtain a lower bound on the cost of an arbitrary
purchasing strategy X by relations

C(X) = Φ(ET ) +
∫ T

0

g(h(Et))dt

≥ Φ(ET ) + T ĝ

(∫ T

0

h(Et)
dt

T

)

= Φ(ET ) + T ĝ

(
X − ET

T

)
= Ĝ(ET ).

The minimal cost is Ĝ(e∗) = Φ(e∗)+T ĝ(X−e
∗

T ) = Φ(e∗)+T ĝ(y∗), and hence optimality
of a strategy requires that equality hold in both parts of (4.27). The second inequality
in (4.27) is Jensen’s inequality, and equality holds if and only if h(Et), 0 ≤ t < T ,
stays in the region in which ĝ is affine. But the average value of h(Et), 1

T

∫ T
0
h(Et)dt,

is equal to y∗, and hence we cannot have h(Et) < y∗ for all t ∈ [0, T ), nor can we
have h(Et) > y∗ for all t ∈ [0, T ). Hence the region in which h(Et) stays must be the
region in which ĝ agrees with `. To get an equality in the first inequality in (4.27),
h(Et), 0 ≤ t < T , must stay in the region where ĝ agrees with g. If ` agrees with g
only at the two points α and β, then h(Et), 0 ≤ t < T , must stay in the two-point set
{α, β}. Because ∆Et = ∆Xt ≥ 0 for all t, there must be some initial time interval
[0, t0) on which h(Et) = α and there must be some final time interval [t0, T ) on which
h(Et) = β. In order to achieve this and to also have 1

T

∫ T
0
h(Et) = y∗, t0 must be

given by (4.23). �

4.3. Examples of Type B optimal strategies.

Example 2.2 (Modified block order book, continued). We continue Example
2.2 under the simplifying assumptions T = 1 and h(x) = x for all x ≥ 0, so h−1(y) = y
for all y ≥ 0 and Y = X. Recalling (2.6) and (4.1), we see that

g(y) =
{
y2, 0 ≤ y ≤ a,
y2 + (b− a)y, a < y <∞.

The convex hull of g over [0,∞), given by (4.14), is

ĝ(y) =

 y2, 0 ≤ y ≤ a,
(2β + b− a)(y − a) + a2, a ≤ y ≤ β,
y2 + (b− a)y, β ≤ y <∞,

where

β = a+
√
a(b− a) (4.28)
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Fig. 4.1. Function g for the modified block order book with parameters a = 4 and b = 14. The
convex hull bg is constructed by replacing a part {g(y) , y ∈ (a, β)} by a straight line connecting g(a)
and g(β). Here β = 10.3246.

(see Fig. 4.1). We take X = Y > β so that this is also the convex hull of g over [0, Y ].

For a < y∗ < β, we have ĝ(y∗) < g(y). For constants α and β from the statement
of Lemma 4.6 (see (C.1)–(C.2) in Appendix C), we have α of (C.1) is a, and β of (C.2)
is given by (4.28). In order to illustrate a case in which a Type B purchasing strategy
is optimal, we assume

a+ 2β < X < 3β. (4.29)

The function Ĝ of (4.18) is minimized over [0, X] at e∗ if and only if

0 ∈ ∂Ĝ(e∗) = ∂Φ(e∗)− ∂ĝ(X − e∗),

which is equivalent to ∂Φ(e∗) ∩ ∂ĝ(X − e∗) 6= ∅. We show below that the largest
value of e∗ satisfying this condition is e∗ = 2β. According to (4.29), e∗ = 2β is in
(X − β,X − a). Because β > a, e∗ is also in (a,∞). We compute (recall (2.12))

∂Φ(e) =

 {e}, 0 ≤ e < a,
[a, b], e = a,
{e+ b− a}, a < e <∞,

∂ĝ(X − e) =


{
2(X − e) + b− a

}
, 0 ≤ e ≤ X − β,{

2β + b− a
}
, X − β ≤ e < X − a,

[2a, 2β + b− a], e = X − a,{
2(X − e)

}
, X − a < e ≤ X,

and then evaluate

∂Φ(e∗) = {e∗ + b− a} = {2β + b− a} = ∂ĝ(X − e∗).

Therefore, Ĝ attains its minimum at e∗.

To see that there is no e ∈ (2β,X] where Ĝ attains its minimum, we observe
that for e ∈ (2β,X − a), ∂Φ(e) ∩ ∂ĝ(X − e) = {e + b − a} ∩ {2β + b − a} = ∅. For
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e ∈ [X−a,X], all points in ∂ĝ(X−e) lie in the interval [0, 2a], whereas the only point
in ∂Φ(e), which is e + b − a, lies in the interval [X + b − 2a,X + b − a]. Because of
(4.29), we have 2a < X + b− 2a, and hence ∂Φ(e)∩ ∂ĝ(X − e) = ∅ for e ∈ [X − a,X].

As in the proof of Theorem 4.5, we set y∗ = X − e∗ = X − 2β, x∗ = h−1(y∗) =
X − 2β. Condition (4.29) is equivalent to a < y∗ < β, which in turn is equivalent to
ĝ(y∗) < g(y∗). The first inequality in (4.29) shows that x∗ > 0, and we are thus in
Case II of the proof of Theorem 4.5. In this case, we define

t0 =
β − y∗

β − a
=

3β −X

β − a
.

The optimal purchasing strategy is

XB
t =


a(t+ 1), 0 ≤ t < t0,
at0 + β(t+ 1− t0), t0 ≤ t < 1,
X, t = 1.

In particular, ∆X0 = a, ∆Xt0 = β − a, ∆X1 = β (see (4.24) for the last equality).
The corresponding EB process is

EBt =

 a, 0 ≤ t < t0,
β, t0 ≤ t < 1,
2β, t = 1.

The initial lump purchase moves the ask price to the left endpoint a of the gap
in the order book. Purchasing is done to keep the ask price at a until time t0, when
another lump purchase moves the ask price to β, beyond the right endpoint b of the
gap in the order book. Purchasing is done to keep the ask price at β until the final
time, when another lump purchase is executed. �

Example 2.3 (Discrete order book, continued). We continue Example 2.3 under
the simplifying assumptions that T = 1 and h(x) = x for all x ≥ 0, so that h−1(y) = y
for all y ≥ 0 and Y = X. From (2.8) and (4.1) we see that g(0) = 0, and g(y) = ky
for integers k ≥ 0 and k < y ≤ k + 1. In particular, g(k) = (k − 1)k for nonnegative
integers k. The convex hull of g interpolates linearly between the points (k, (k− 1)k)
and (k + 1, k(k + 1)), i.e., ĝ(y) = k(2y − (k + 1)) for k ≤ y ≤ k + 1, where k ranges
over the nonnegative integers (see Fig. 4.2).

Therefore,

∂ĝ(y) =

 {0}, y = 0,
[2(k − 1), 2k], y = k and k is a positive integer,
{2k}, k < y < k + 1 and k is a nonnegative integer.

Recall from the discussion following (2.13) that

∂Φ(y) =

 {0}, y = 0,
[k − 1, k], y = k and k is a positive integer,
{k}, k < y < k + 1 and k is a nonnegative integer.

We seek the largest number e∗ ∈ [0, X] for which ∂Φ(e∗)∩∂ĝ(X− e∗) 6= ∅. This
is the largest minimizer of Ĝ(e) = Φ(e) + ĝ(X − e) in [0, X]. We define k∗ to be the
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Fig. 4.2. Function g for the discrete order book. The convex hull bg interpolates linearly between
the points (k, (k − 1)k) and (k + 1, k(k + 1)).

largest integer less than or equal to X
3 , so that

3k∗ ≤ X < 3k∗ + 3.

We divide the analysis into three cases:

Case A: 3k∗ ≤ X ≤ 3k∗ + 1,
Case B: 3k∗ + 1 < X < 3k∗ + 2,
Case C: 3k∗ + 2 ≤ X < 3k∗ + 3.

We show below that in Cases A and B, the optimal strategy makes an initial lump
purchase of size k∗, which executes the orders at prices 0, 1, . . . , k∗ − 1. In Case A
the optimal strategy then purchases at rate k∗ over the interval (0, 1), and at time 1
makes a final lump purchase of size X−2k∗, which is in the interval [k∗, k∗+1]. This
is a Type A strategy. In Case B there is an intermediate lump purchase of size one
at time 3k∗ + 2 − X. Before this intermediate purchase, the rate of purchase is k∗

and after this purchase, the rate of purchase is k∗ + 1. In Case B at time 1 there is a
final lump purchase of size k∗. In Case B we have a Type B strategy. In Case C, the
optimal strategy makes a lump purchase of size k∗ + 1 at time 0, which executes the
orders at prices 0, 1, . . . , k∗−1, k∗. The optimal strategy then purchases continuously
at rate k∗ + 1 over the interval (0, 1), and at time 1 makes a final lump purchase of
size X − 2k∗ − 2, which is in the interval [k∗, k∗ + 1). This is a Type A strategy.

Case A: 3k∗ ≤ X ≤ 3k∗ + 1.

We define e∗ = X − k∗, so that 2k∗ ≤ e∗ ≤ 2k∗ + 1 and k∗ = X − e∗. Then
2k∗ ∈ ∂Φ(e∗) and ∂ĝ(X − e∗) = [2(k∗ − 1), 2k∗], so the intersection of ∂Φ(e∗) and
∂ĝ(X − e∗) is nonempty, as desired. On the other hand, if e > e∗, then ∂Φ(e) ⊂
[2k∗, X] and ∂ĝ(X − e) ⊂ [0, 2(k∗− 1)], so the intersection of these two sets is empty.

In this case, y∗ and x∗ defined by (4.19) are both equal to k∗ and hence ĝ(y∗) =
g(y∗). If k∗ = 0, we are in the first subcase of Case I of the proof of Theorem 4.5.
The optimal purchasing strategy is to do nothing until time 1, and then make a lump
purchase of size X. If k∗ = 1, which is equal to F (0+), we are in the second sub-case
of Case I of the proof of Theorem 4.5. We should make an initial purchase of size
x∗ = 1, purchase continuously over the time interval (0, 1) at rate 1 so that that
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Et ≡ 1 and Dt ≡ 0, and make a final purchase of size X − 2. If k∗ ≥ 2, we are in
the third subcase of Case I of the proof of Theorem 4.5. We should make an initial
purchase of size k∗, purchase continuously over the time interval (0, 1) at rate k∗ so
that Et ≡ k∗ and Dt ≡ k∗ − 1, and make a final purchase of size X − 2k∗.

Case B: 3k∗ + 1 < X < 3k∗ + 2.

We define e∗ = 2k∗ + 1, so that k∗ < X − e∗ < k∗ + 1. Then ∂Φ(e∗) =
[2k∗, 2k∗ + 1] and 2k∗ ∈ ∂ĝ(X − e∗), so the intersection of ∂Φ(e∗) and ∂ĝ(X − e∗) is
nonempty, as desired. On the other hand, if e > e∗, then ∂Φ(e) ⊂ [2k∗ + 1, X] and
∂ĝ(X − e) ⊂ [0, 2k∗], so the intersection of these two sets is empty.

In this case, y∗ and x∗ defined by (4.19) are both equal to X − e∗. Hence
k∗ < y∗ < k∗+1, ĝ(y∗) < g(y∗), and we are in Case IIof the proof of Theorem 4.5 with
α = k∗ and β = k∗ + 1 (see (4.14)–(4.17) and (C.1)–(C.2)).The optimal purchasing
strategy is Type B. In particular, with t0 = β − y∗ = k∗ + 1− x∗ = 3k∗ + 2−X, the
optimal purchasing strategy makes an initial lump purchase α = k∗, which executes
the orders at prices 0, 1,. . . ,k∗−1, then purchases continuously over the interval (0, t0)
at rate k∗ so that Et ≡ k∗ and Dt ≡ k∗ − 1, at time t0 makes a lump purchase of
size β − α = 1, which consumes the order at price k∗, then purchases continuously
over the interval (t0, 1) at rate k∗ + 1 so that Et ≡ k∗ + 1 and Dt ≡ k∗, and finally
executes a lump purchase of size e∗−β = k∗ (see (4.24)) at time 1. The total quantity
purchased is

k∗ + k∗t0 + 1 + (k∗ + 1)(1− t0) + k∗ = X,

as required.

Case C: 3k∗ + 2 ≤ X < 3k∗ + 3.

We define e∗ = X − k∗− 1, so that 2k∗ + 1 ≤ e∗ < 2k∗ + 2 and X − e∗ = k∗ + 1.
Then 2k∗ + 1 ∈ ∂Φ(e∗) and ĝ(X − e∗) = [2k∗, 2k∗ + 2], and the intersection of
∂Φ(e∗) and ∂ĝ(X − e∗) is nonempty, as desired. On the other hand, if e > e∗, then
∂Φ(e) ⊂ [2k∗ + 1, X] and ∂ĝ(X − e) ⊂ [0, 2k∗], so the intersection of these two sets
is empty. In this case, y∗ and x∗ are both equal to k∗ + 1. The optimal purchasing
strategy falls into either second (if k∗ = 0) or third (if k∗ ≥ 1) subcases of Case I of
the proof of Theorem 4.5. �

Appendix A. The process E. In this appendix we prove that there exists
a unique adapted process E satisfying (2.3) pathwise, and we provide a list of its
properties.

Lemma A.1. Let h be a nondecreasing, real-valued, locally Lipschitz function
defined on [0,∞) such that h(0) = 0. Let X be a purchasing strategy. Then there
exists a unique bounded adapted process E depending pathwise on X such that (2.3)
is satisfied. Furthermore,

(i) E is right continuous with left limits;
(ii) ∆Et = ∆Xt for all t;
(iii) E has finite variation on [0, T ];
(iv) E takes values in [0, X].

Proof. Because we do not know a priori that E is nonnegative, we extend h to
all of R by defining h(x) = 0 for x < 0. This extended h is nondecreasing and locally
Lipschitz.
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In Section 2 we introduced the filtration {Ft}0≤t≤T . The purchasing strategy
X is right-continuous and adapted to this filtration, and hence is an optional process,
i.e., (t, ω) 7→ Xt(ω) is measurable with respect to the optional σ-algebra, the σ-algebra
generated by the right-continuous adapted processes. For any bounded optional pro-
cess Y , h(Y ) and

∫ ·
0
h(Ys) ds are also bounded optional processes. Optional processes

are adapted, and hence
∫ t
0
h(Ys) ds is Ft-measurable for each t ∈ [0, T ].

We first prove uniqueness. If E and Ê are bounded processes satisfying (2.3),
then there is a local Lipschitz constant K, chosen taking the bounds on E and Ê into
account, such that

|Et − Êt| =
∣∣∣∣∫ t

0

(
h(Es)− h(Ês)

)
ds

∣∣∣∣ ≤ K

∫ t

0

|Es − Ês| ds.

Gronwall’s inequality implies E = Ê.

For the existence part of the proof, we assume for the moment that h is globally
Lipschitz with Lipschitz constant K, and we construct E as a limit of a recursion.
Let E0

t ≡ X0. For n = 1, 2, . . . , define recursively

Ent = Xt −
∫ t

0

h(En−1
s ) ds, 0 ≤ t ≤ T.

Since X is bounded and optional, each En is bounded and optional. For n = 1, 2, . . . ,
let Znt = sup0≤s≤t |Ens − En−1

s |. A proof by induction shows that

Znt ≤
Kn−1tn−1

(n− 1)!
max

{
X,Th(X0) +X0

}
.

Because this sequence of nonrandom bounds is summable, En converges uniformly in
t ∈ [0, T ] and ω to a bounded optional process E that satisfies (2.3). In particular, Et
is Ft-measurable for each t, and since X is nondecreasing and right-continuous with
left limits and the integral in (2.3) is continuous, (i), (ii) and (iii) hold.

It remains to prove (iv). For ε > 0, let Xε
t = Xt + εt and define tε0 = inf{t ∈

[0, T ] : Eεt < 0}. Assume this set is not empty. Then the right-continuity of Eε

combined with the fact that Eε has no negative jumps implies that Eεtε0 = 0. Let
tεn ↓ tε0 be such that Eεtεn < 0 for all n. Then∫ tεn

tε0

h(Eεs) ds = Xε
tεn
−Xε

tε0
− (Eεtεn − Eεtε0) > Xε

tεn
−Xε

tε0
≥ ε(tεn − tε0).

But since ∫ tεn

tε0

h(Eεs) ds ≤ K( max
tε0≤s≤tεn

Eεs)(t
ε
n − tε0),

there must exist sεn ∈ (tε0, t
ε
n) such that Eεsε

n
≥ ε

K . This contradicts the right continuity
of Eε at tε0. Consequently, the set {t ∈ [0, T ] : Eεt < 0} must be empty. We conclude
that Eεt ≥ 0 for all t ∈ [0, T ].

Now notice that for 0 ≤ t ≤ T ,

Eεt − Et = εt−
∫ t

0

(h(Eεs)− h(Es)) ds,
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and hence

|Eεt − Et| ≤ εt+K

∫ t

0

|Eεs − Es| ds.

Gronwall’s inequality implies that Eε → E as ε ↓ 0. Since Eεt ≥ 0, we must have
Et ≥ 0 for all t. Equation (2.3) now implies that Et ≤ Xt, and therefore Et ≤ X.
The proof of (iv) is complete.

When h is locally but not globally Lipschitz, we let h̃ be equal to h on [0, X],
h̃(x) = 0 for x < 0, and h̃(x) = h(X) for x > X. We apply the previous arguments to
h̃, and we observe that the resulting Ẽ satisfies the equation corresponding to h. �

Remark A.2. The pathwise construction of E in the proof of Lemma A.1 shows
that if X is deterministic, then so is E.

Appendix B. E
∫ T
0
Xt dAt = 0.

Lemma B.1. Under the assumptions that 0 ≤ Xt ≤ X, 0 ≤ t ≤ T , and that the
continuous nonnegative martingale A satisfies (2.1), we have E

∫ T
0
Xt dAt = 0.

Proof. The Burkholder-Davis-Gundy inequality implies that the continuous local
martingale Mt =

∫ t
0
Xs dAs satisfies

E
[

max
0≤t≤T

|Mt|
]
≤ CE

[
〈M〉1/2T

]
= CE

(∫ T

0

X2
t d〈A〉t

)1/2


≤ CXE
[
〈A〉1/2T

]
= C ′XE

[
max

0≤t≤T
At
]
,

where C and C ′ are positive constants. By virtue of being a local martingale, M has
the property that EMτn

= 0 for a sequence of stopping times τn ↑ T . The dominated
convergence theorem implies EMT = 0. �

Appendix C. Convex hull of g.

Proof of Lemma 4.6. Recall the definition

ĝ(y) , sup
{
`(y) : ` is an affine function and `(η) ≤ g(η)∀η ∈ [0, Y ]

}
(4.14)

of the convex hull of g, defined for y ∈ [0, Y ]. The function ĝ is the largest convex
function defined on [0, Y ] that is dominated by g there.

For each 0 ≤ y < Y , the supremum in (4.14) is obtained by the support line of ĝ
at y. For y = 0 the zero function is such a support line, and hence 0 ≤ ĝ(0) ≤ g(0) = 0
(recall (4.3)). At y = Y the only support line might be vertical, in which case the
supremum in (4.14) is not attained. Because ĝ(0) = 0, ĝ is nonnegative, and ĝ is
convex, we know that ĝ is also nondecreasing. Being convex, ĝ is continuous on
(0, Y ), upper semi-continuous on [0, Y ], and we have continuity at 0 because of (4.3).
We also have continuity of ĝ at Y , as we now show. Given ε > 0, the definition of ĝ
implies that there exists an affine function ` ≤ g such that `(Y ) ≥ ĝ(Y )−ε. But ĝ ≥ `,
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and thus lim infy↑Y ĝ(y) ≥ limy↑Y `(y) = `(Y ) ≥ ĝ(Y ) − ε. Since ε > 0 is arbitrary,
we must in fact have lim infy↑Y ĝ(y) ≥ ĝ(Y ). Coupled with the upper semicontinuity
of ĝ at Y , this gives us continuity.

We next argue that ĝ(Y ) = g(Y ). Suppose, on the contrary, we had ĝ(Y ) <
g(Y ). The function g is continuous at Y (see (4.5)) and ĝ is upper semicontinuous.
Therefore, there is a one-sided neighborhood [γ, Y ] of Y (with γ < Y ) on which g− ĝ
is bounded away from zero by a positive number ε. The function

ĝ(y) +
ε(y − γ)
Y − γ

, 0 ≤ y ≤ Y ,

is convex, lies strictly above ĝ at Y , and lies below g everywhere. This contradicts
the fact that ĝ is the largest convex function dominated by g. We must therefore have
ĝ(Y ) = g(Y ).

Finally, we describe the situation when for some y∗ ∈ [0, Y ], we have ĝ(y∗) <
g(y∗). We have shown that this can happen only if 0 < y∗ < Y . Let ` be a support
line of ĝ at y∗,which is an affine function that attains the maximum in (4.14) at the
point y∗. In particular, ` ≤ ĝ ≤ g and `(y∗) = ĝ(y∗). Define

α = sup{η ∈ [0, y∗] : g(η)− `(η) = 0}, (C.1)
β = inf{η ∈ [y∗, Y ] : g(η)− `(η) = 0}. (C.2)

Because g is continuous, the minimum of g− ` over [0, Y ] is attained. This minimum
cannot be a positive number ε, for then `+ ε would be an affine function lying below
g. Therefore, either the supremum in (C.1) or the infimum in (C.2) is taken over a
nonempty set. In the former case, we must have g(α) = `(α), whereas in the latter
case g(β) = `(β).

Let us consider first the case that g(α) = `(α). Define γ = 1
2 (α + y∗). Like α,

γ is strictly less than y∗. The function g − ` attains its minimum over [γ, Y ]. If this
minimum were a positive number ε, then the affine function

`(y) +
ε
(
y − γ

)
Y − γ

, 0 ≤ y ≤ Y ,

would lie below g but have a larger value at y∗ than `, violating the choice of `. It
follow that g − ` attains the minimum value zero on [γ, Y ], and since this function is
strictly positive on [γ, y∗], the minimum is attained to the right of y∗. This implies
that g(β) = `(β). Similarly, if we begin with the assumption that g(β) = `(β), we
can argue that g(α) = `(α).

In conclusion, α and β defined by (C.1) and (C.2) satisfy (4.15) and (4.16).
Finally, (4.16) shows that ` restricted to [α, β] is the largest affine function lying
below g on this interval, and hence (4.17) holds.

Because of (4.16), every affine function lying below g on [0, Y ] must lie below `
on [α, β]. If such an affine function agrees with ĝ and hence with ` at y∗, it must in
fact agree with ` everywhere. Hence, ` is the only function lying below g on [0, Y ]
and agreeing with ĝ at y∗.

�
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