Recommended Problems for the Lectures from 11/23/15 through 12/9/15

(1) (Øksendal exercise 5.11 on page 79). For a fixed $a, b \in \mathbb{R}$ consider the following 1-dimensional equation

$$dY_t = \frac{b - Y_t}{1 - t}dt + dB_t; \qquad 0 \le t < 1, Y_0 = a.$$

where B is a standard 1-dimensional Brownian motion. Y is called the *Brownian Bridge* from on [0, 1] from a to b.

(a) Verify that

$$Y_t = a(1-t) + bt + (1-t) \int_0^t \frac{1}{1-s} dB_s \qquad 0 \le t < 1.$$

- (b) Prove that $\lim_{t \uparrow 1} Y_t = b$ with probability one.
- (c) Using the density for the passage times τ_b for B show that $M_t = \max_{s < t} B_s$ is distributed like $|B_t|$.
- (d) Set $M_1^{a,b} = \max_{s \le 1} Y_s$ as the maximum of the Brownian bridge from a to b on [0,1] (here, we have defined $Y_1 = b$ in view of part (b)). Show that $M^{a,b}$ has density

$$f^{a,b}(y) = 2(2y - b - a)e^{-2(y-a)(y-b)}, \qquad y > \max\{a, b\}.$$

(2) (Taken from Prof. Iyer). Let b, σ be uniformly Lipschitz on R^d. Note that this implies b, σ are of linear growth. As such, let X be the corresponding solution starting at x under the measure P^x.
(a) Show that

$$\lim_{t \downarrow 0} \frac{1}{t} E^x \left[X_t - x \right] = b(x)$$
$$\lim_{t \downarrow 0} \frac{1}{t} E^x \left[(X_t^i - x^i) (X_t^j - x^j) \right] = \Sigma^{ij}(x)$$

where $\Sigma = \sigma \sigma^{\mathrm{T}}$.

1

- (b) Show for each $\varepsilon > 0$ that $\lim_{t \downarrow 0} \frac{1}{t} \mathbb{P}^x \left[|X_t x| > \varepsilon \right] = 0.$
- (c) Now, assume that $\sigma(x) = 1_d$ is the identity matrix and that b is bounded (as well as Lipschitz). For any $\delta > 0$ set $\tau_{\delta} = \inf \{t \ge 0 \mid |X_t x| \ge \delta\}$. Show that $\lim_{t \ge 0} \frac{1}{t} \mathbb{P}^x [\tau_{\delta} > t] = 0$.
- (3) Let X and Y be solutions to the respective SDE's

$$dX_t = b(X_t)dt + \sigma(X_t)dW_t;$$

$$dY_t = \tilde{b}(Y_t)dt + \sigma(Y_t)d\tilde{W}_t;$$

Here, we assume that b, \tilde{b}, σ are locally Lipschitz and such that the X and Y are non-explosive. We also assume that $\sigma = \sqrt{\Sigma}$ in that $\Sigma(x) > 0$ for each $x \in \mathbb{R}^d$ (though not uniformly elliptic) and σ is the unique positive definite square root of Σ . In fact, σ will be locally Lipschitz once Σ is, thus we are actually assuming Σ is locally Lipschitz and locally elliptic. Thus, strong existence and uniqueness hold for X and Y.

Denote by \mathbb{P}^x and \mathbb{Q}^y the probability on path-space induced by X and Y respectively, where $X_0 = x$ and $Y_0 = y$. On this space the filtration \mathbb{F} is the one generated by the coordinate mapping process.

- (a) For each $T \ge 0$ and $x \in \mathbb{R}^d$ show that \mathbb{P}^x is equivalent to \mathbb{Q}^x on \mathcal{F}_T . (**Hint:** employ a localization argument where you can use Novikov's condition and then unwind the localization).
- (b) Assume $\sigma(x) = 1_d$, b = 0 and \tilde{b} is such that $|b(x)| \ge \delta > 0$ for some $\delta > 0$ and all $x \in \mathbb{R}^d$. Show that \mathbb{P}^x and \mathbb{Q}^x are mutually singular on \mathcal{F}_{∞} .
- (4) Problem $3.6.12^*$ on page 209 and $3.6.13^*$ on page 209.

Things to Read and Understand. Please read carefully the following items.

- Section 5.3 D on pages 308-311 where it is shown that weak existence and path-wise uniqueness imply strong existence.
- \cdot Theorem 3.6.11 on pages 207-208.