
Math 21-880 Final: SOLUTIONS

December 14, 2015

This is a closed book, closed notes exam. No calculators or smart phones are
allowed. You have 3 hours to complete the exam. Please mark your answers
clearly and put your name on each piece of paper you submit. There are five
questions on the exam.

The first two questions concern time changed solutions of stochastic differen-
tial equations. More precisely, let W be a standard one-dimensional Brownian
motion with W0 = 0 and let FW be the augmented filtration generated by W .
Let f : [0,∞) 7→ (0,∞) be a (deterministic) strictly increasing smooth function
with f(0) = 0 and limt↑∞ f(t) = ∞.

Next, let b : [0,∞) × R be bounded and globally Lipschitz in x (uniformly
for t ≥ 0), and let Y be the corresponding strong solution to the stochastic
differential equation (SDE)

dYt = b(t, Yt)dt+ dWt; Y0 = y ∈ R.

Define the f -time changed process X by

Xt = Yf(t); t ≥ 0; X0 = Yf(0) = Y0 = y.

(1) 20 Points. Assume for some t0 > 0 we have f(t0) > t0. Show that for any
drift and diffusion functions b̃(t, x), σ̃(t, x), X cannot be a strong solution
to an SDE with b̃, σ̃ and driving Brownian motion W .

Hint: There is more to do here than you might initially think. Use Gir-
sanov’s theorem and properties of Brownian motion to contradict the strong
solution nature of X.

(2) 25 Points. Here, you will show that X can be identified as a weak solution
to a certain SDE. Do this in the following steps:

a) 5 Points. Let g = f−1 be the inverse of f . For any continuous function
h and t ≥ 0 show that

∫ f(t)

0

h(v)

(

d

dv

√

ġ(v)

)

dv =

∫ t

0

h((f(u))





d

du

1
√

ḟ(u)



 du.
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b) 15 Points. Consider the processes

Zt = Wf(t); Bt =

∫ f(t)

0

√

ġ(v)dWv; t ≥ 0.

Find a filtration F so that so that B is an F Brownian motion, and show
that

P

[

Zt =

∫ t

0

√

ḟ(u)dBu; ∀ t ≥ 0

]

= 1. (1)

Hint: Recall that if B̂ is a Brownian motion under some filtration F̂

and h is a smooth deterministic function of t then we can define the
stochastic integral

∫ ·

0
h(t)dB̂t path-wise via

(∫ ·

0

h(t)dB̂t

)

(ω) ,

(

h(·)B̂· −
∫ ·

0

ḣ(t)B̂tdt

)

(ω)

c) 5 Points. Find b̃, σ̃ so that (Ω,F ,P), F, (X,B) is a weak solution to
the SDE with drift b̃ and diffusion σ̃.

The next two problems deal with explosions and Martingales. In particular,
when stochastic exponential local Martingales are defined in terms of solutions
to SDEs, we seek to weaken the Novikov condition.

3) 15 Points. Let Z be a strictly positive local martingale with respect
to some probability space (Ω,F ,P) and filtration F satisfying the usual
conditions. Assume that {τn} is an increasing sequence of stopping times
such that τn ↑ ∞ almost surely and such that the stopped process Zn

defined by Zn = Zt∧τn is a Martingale for each n.

Prove the following: let T > 0 and define the measure Qn on FT via

dQn

dP

∣

∣

∣

∣

FT

= Zn
T .

If, for each T > 0 we have limn↑∞ Qn [T ≤ τn] = 1 then Z is a true
martingale.

4) 20 Points. The CIR (Cox-Ingersoll-Ross) process is popular in math
finance for modeling the interest rate. We say X is a CIR process if it has
dynamics

dXt = κ(θ −Xt)dt+ ξ
√

XtdWt; X0 = x > 0.

Here, W is a standard d-dimensional Brownian motion with respect to
some filtration satisfying the usual conditions, and κ, θ, ξ > 0 are con-
stants. The state space for the process is D = (0,∞) and the process is
said not to explode if for all T > 0 we have that

P [Xt ∈ D, 0 ≤ t ≤ T | X0 = x] = 1.
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It can be shown (you do not have to do this) that if κ > 0, κθ > ξ2/2
then the process does not explode. Now, let A,B ∈ R. Find parameter
restrictions upon A,B so that the process

Zt = E
(∫ ·

0

(

A√
Xt

+B
√

Xt

)

dWt

)

t

; t ≥ 0,

is a Martingale.

5) 20 Points. Let W,B be two independent Brownian motions and let
−1 < ρ < 1. Fix x, y > 0 and define the processes

Xx
t , x+Wt; Y y

t , y + ρWt +
√

1− ρ2Bt; t ≥ 0.

Set τx = inf {t ≥ 0 | Xx
t = 0} and σy = inf {t ≥ 0 | Y y

t = 0} and note
that τx, σy < ∞ almost surely for all x, y > 0, since the sample paths of
Brownian motions are unbounded.

Let D = (0,∞)2. We say a function u ∈ C2(D) if u is twice differentiable
with continuous derivatives which are bounded on all compact subsets of
D. However, we do not necessarily know the behavior of the derivatives
of u near the boundary of D. For example, u(x, y) = (xy)−1 ∈ C2(D) but
clearly u is blowing up near x = 0 or y = 0.

Identify a partial differential equation (differential expression plus spa-
tial boundary conditions) such that if u ∈ C2(D) is a bounded solution of
the PDE then u admits the representation

u(x, y) = P [τx < σy] .

Be careful when dealing with the local Martingales here (e.g. make sure to
stop the processes before you lose control over the stochastic integrands!).

Solutions

(1) Recall that if X is a strong solution (for any b̃, σ̃) with driving Brownian
motion W and deterministic starting point y then X must be adapted to
FW and hence for the t0 so that f(t0) > t0 we have that Xt0 = Yf(t0) is F

W
t0

measurable. Now, since f(t0) > t0 this should not be possible. However,
we have to prove this rigorously. To do this, note that since b is bounded,
for some T > t0 we may define a measure Q on FW

T by

dQ

dP

∣

∣

∣

∣

FW
T

= E
(

−
∫ ·

0

b(u, Yu)dWu

)

T

and that WQ
t = Wt +

∫ t

0
b(u, Yu)du = Yt, t ≤ T is a Q Brownian motion.

Thus, we have i) Yf(t0) − Yt0 is FW
t0 measurable (if X is a strong solution)
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and ii) Yf(t0) − Yt0 is Q independent of FW
t0 which in turn implies (note

EQ
[

Yf(t0) − Yt0

]

= 0):

Q
[

Yf(t0) = Yt0

]

= 1,

and hence this equality holds with P probability one as well. Coming back
to the SDE for Y this implies with P probability one

Wf(t0) −Wt0 = −
∫ f(t0)

t0

b(u, Yu)du ≤ K(f(t0)− t0),

where K is any bounding constant for b. But, this is a contradiction since
Wf(t0) −Wt0 is normally distributed under P. Thus, X cannot be adapted
to FW and hence there can be no strong solution.

(2) a) Since g(f(u)) = u we have that

ġ(f(u)) =
1

ḟ(u)
; g̈(u) = − f̈(u)

ḟ(u)3
.

Thus, making the substitution u = g(v) or v = f(u) we have

∫ f(t)

0

h(v)

(

d

dv

√

ġ(v)

)

dv =

∫ f(t)

0

h(v)
g̈(v)

2
√

ġ(v)
dv

= −
∫ t

0

h(f(u))
f̈(u)

2ḟ(u)5/2
ḟ(u)du

=

∫ t

0

h(f(u))





d

du

1
√

ḟ(u)



 du

b) For the filtration we take Ft = FW
f(t) and note that Z,B are F adapted

continuous processes starting at 0. We first show B is an F Brown-

ian motion, but this is easy since for any 0 ≤ a < b,
∫ b

a

√

ġ(v)dWv is
independent of FW

a and normally distributed with mean 0 and variance

∫ b

a

ġ(v)dt = g(b)− g(a).

So, with a = f(s), b = f(t), s < t we have Bt − Bs is independent
of FW

f(s) = Fs and normally distributed with mean 0 and variance

g(f(t))− g(f(s)) = t− s. Thus, B is a F Brownian motion.

Now, regarding Z, note that Z is a F martingale: indeed, for s < t
we have

E
[

Zt − Zt

∣

∣ Fs

]

= E
[

Wf(t) −Wf(s)

∣

∣ FW
f(s)

]

= 0.
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As for (1), we have to work around the fact that we don’t really know
the dynamics for B in terms of W . To this end we claim that

√

ḟ(t)Bt = Zt −
√

ḟ(t)

∫ t

0

Zu





d

du

1
√

ḟ(u)



 du. (2)

Admitting this equality and using the hint we have

Mt , Zt −
∫ t

0

√

ḟ(u)dBu = Zt −
(
√

ḟ(t)Bt −
∫ t

0

Bu

(

d

du

√

ḟ(u)

)

du

)

=

√

ḟ(t)

∫ t

0

Zu





d

du

1
√

ḟ(u)



 du+

∫ t

0

Bu

(

d

du

√

ḟ(u)

)

du

The right hand side above is a finite variation process and hence 〈M〉t = 0
for the continuous martingale M . Thus, M is indistinguishable from 0
and the result follows. To prove (2) note that by integration by parts:

√

ġ(τ)Wτ =

∫ τ

0

√

ġ(v)dWv +

∫ τ

0

Wv
d

dv

(

√

ġ(v)
)

dv

so that

Bt =
√

ġ(f(t))Wf(t) −
∫ f(t)

0

Wv

(

d

dv

√

ġ(v)

)

dv

=
Zt

√

ḟ(t)
−
∫ t

0

Zu





d

du

1
√

ḟ(u)



 du

where the last equality follows by part a). Thus, the result is proved.

c) To find b̃, σ̃ we simply note:

Xt = Yf(t) = y +

∫ f(t)

0

b(u, Yu)du+Wf(t) (v = g(u) or u = f(v))

= y +

∫ t

0

b(f(v), Xv)ḟ(v)dv +

∫ t

0

√

ḟ(v)dBv

so that (Ω,F ,P), F, (B,X) is a weak solution with

b̃(t, x) = b(f(t), x)ḟ(t); σ̃(t, x) =

√

ḟ(t).

(3) Since Z is a non-negative local martingale it is a super-martingale and hence
to prove that Z is a Martingale, it suffices to show that E [ZT ] = 1 for all
T ≥ 0. To this end we have

1 ≥ E [ZT ] = E [ZT (1T>τn + 1T≤τn)]

≥ E [ZT∧τn1T≤τn ]

= Qn [T ≤ τn]
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Thus, if limn↑∞ Qn [T ≤ τn] = 1 for all T ≥ 0 then E [ZT ] = 1 and the
result follows.

(4) Set τn = inf {t ≥ 0 | Xt 6∈ (1/n, n)} and since X does not explode we have
that τn → ∞ almost surely. Next, define Ψn

t = A/
√

Xt∧τn +B
√

Xt∧τn and
Ψt = A/

√
Xt +B

√
Xt. Note that

|Ψn
t | ≤

√
n|A|+

√
n|B|

for all t ≥ 0. Furthermore if we set Zn
t = Zt∧τn then

Zn
t = e

∫
t∧τn
0

ΨsdWs−
1

2

∫
t∧τn
0

Ψ2

sds = e
∫

t

0
Ψn

s 1s≤τndWs−
1

2

∫
t

0
(Ψn

s 1s≤τn )2ds; t ≥ 0.

Thus, by the Novikov condition we have that Zn is a Martingale, and that
for each T > 0 if we define Qn on FT via dQn/dP|FT

= Zn
T then from

Girsanov’s theorem we have

Wn
t = Wt −

∫ t

0

(Ψn
s 1s≤τn) ds = Wt −

∫ t∧τn

0

Ψsds,

is a Qn Brownian motion. Thus, on {t ≤ τn}, X has Qn dynamics

dXt = κ(θ −Xt)dt+ ξ
√

Xt (dW
n
t +Ψtdt)

= (κ− ξB)

(

κθ + ξA

κ− ξB
−Xt

)

dt+ ξ
√

XtdW
n
t

Since for any constants κ̃, θ̃ the functions κ̃(θ̃ − x) and ξ
√
x are locally

Lipschitz it follows that the law of X under Qn on t ≤ τn coincides with
the law of X̂ up to the first hitting time of (1/n, n)C under any measure P̂,
supporting a Brownian motion Ŵ , of the process

dX̂t = (κ− ξB)

(

κθ + ξA

κ− ξB
−Xt

)

dt+ ξ
√

XtdWt

As such we haveQn [T ≤ τn] = P̂ [T ≤ τ̂n] where τ̂n = inf
{

t ≥ 0 | X̂t 6∈ (1/n, n)
}

.

Thus, if A and B are such that

κ− ξB > 0 =⇒ B <
κ

ξ

κθ + ξA >
1

2
ξ2 =⇒ A > −1

ξ

(

κθ − 1

2
ξ2
)

we have that the process under P̂ does not explode: i.e. limn↑∞ P̂ [T ≤ τ̂n] =
1 and hence limn↑∞ Qn [T ≤ τn] = 1, giving that Z is a Martingale.

(5) The PDE is

uxx(x, y) + 2ρuxy(x, y) + uyy(x, y) = 0; (x, y) ∈ D

u(0, y) = 1; y > 0

u(x, 0) = 0; x > 0
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Indeed, assume that u ∈ C2(D) is a bounded solution of the above PDE.
For each n define the stopping times

τxn = inf {t ≥ 0 | Xx
t = 1/n} ,

σy
n = inf {t ≥ 0 | Y y

t = 1/n} ,
Rx,y

n = inf {t ≥ 0 | max {Xx
t , Y

y
t } = n} ,

Sx,y
n = τxn ∧ σy

n ∧Rx,y
n

Note that almost surely

lim
n↑∞

Sx,y
n = τx1τx<τy + σy1τx≥τy .

Now, we have for n so large that 1/n < x, y < n

u
(

Xt∧Sx,y
n

, Yt∧Sx,y
n

)

= u(x, y) +

∫ t∧Sx,y
n

0

(ux(Xs, Ys) + ρuy(Xs, Ys)) dWs

+
√

1− ρ2
∫ t∧Sx,y

n

0

uy(Xs, Ys)dBs

Since u ∈ C2(D) its first derivatives are bounded when (x, y) ∈ (1/n, n)2,
as is the case here since we have stopped things appropriately. Thus, taking
expectations gives

u(x, y) = E
[

u
(

Xt∧Sx,y
n

, Yt∧Sx,y
n

)]

.

We have assumed u was bounded. Thus, taking t ↑ ∞ and using the
bounded convergence theorem gives

u(x, y) = E
[

u
(

XSx,y
n

, YSx,y
n

)]

.

Taking n ↑ ∞ and using the bounded convergence theorem again yields

u(x, y) = E [u(0, Yτx)1τx<σy + u(Xσy , 0)1τx≥σy ]

Using the boundary conditions (along with τx, σy being almost surely finite
the processes being continuous) gives

u(x, y) = E [1τx<σy ] = P [τx < σy]

which is what we wanted to show.
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