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transition probability function P(i, -), also has support in N°. Thus
PG, j); G, /) € N® x N%)

is an infinite matrix called the “transition matrix”. Show that P} as a matrix
is just the nth power of P(!). Express the probability 22(X,, = i, 1 < k < n}
in terms of the elements of these matrices. [This is the case of homogeneous
Markov chains.]

12. A process {X,,n € N%) is said to possess the “rth-order Markov
property”, where r > 1, iff (6) is replaced by

‘@{XH-H € B | Xo, --',Xn}=gn{Xn+l €B !Xn:---an—r-i-l}

for n > r — 1. Show that if r < s, then the rth-order Markov property implies
the sth. The ordinary Markov property is the case r = 1.

13. Let Y, be the random vector (X,,Xns1,...,Xner—1). Then the
vector process {¥,,n € N% has the ordinary Markov property (trivially
generalized to vectors) if and only if {X,, n € N°} has the rth-order Markov
property.

14. Let {X,,n € N% be an independent process. Let

n n

1) _ 1y (]

=3k, s =3 s,
Jj=0 =0

for r > 1. Then {S{, n € N} has the rth-order Markov property. For r = 2,
give an example to show that it need not be a Markov process.

15. If {Sn, n € N} is a random walk such that 2?{S; s 0}>0, then for
any finite interval [a, b] there exists an € < 1 such that -

P{S;ela,bl,1 <j<n}<e€.

This is just Exercise 6 of Sec. 5.5 again.]

16. The same conclusion is true if the random walk above is replaced
by a homogeneous Markov process for which, e.g., there exist 6>0 and n>0
such that P(x, &' — (x — &, x + 8)) > n for every x.

9.3 Basic properties of smartingales
The sequence of sums of independent r.v.’s has motivated the generalization

to a Markov process in the preceding section; in another direction it will now
motivate a martingale. Changing our previous notation to conform with later
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usage, let {x,,n € N} denote independent r.v.’s with mean zero and write
Xn = 3 j=1 x; for the partial sum. Then we have

(r.‘:(X,I.{.] | X1, .- .,x,.,) = (E(Xn +x,,+1 ]xl, . .,x,,)

= er + f’@'(xn+l I Alssues xn) = Xu + (’-E'E“(xn-l-l) = Xn-

Note that the conditioning with respect to xi,...,X, may be replaced by
conditioning with respect to Xy, ..., X, (why?). Historically, the equation
above led to the consideration of dependent r.v.’s {x,} satisfying the condition

(1) éa(xn+1 [xl,...,x,l)m(}.

It is astonishing that this simple property should delineate such a useful class
of stochastic processes which will now be infroduced. In what follows, where
the index set for n is not specified, it is understood to be either N or some
initial segment N,, of N.

DEFINITION OF MARTINGALE. The sequence of r.v.’s and B.F.’s (X,,, #,} is
called a martingale iff we have for each n:

(@) # C Fq and X, € F;
(by E(1Xnl) < oo;
) Xp = €Xpy1 | F), ae.

It is called a supermartingale iff the “=" in (c) above is replaced by “>", and
a submartingale iff it is replaced by “<". For abbreviation we shall use the
" term smartingale to cover all three varieties. In case %, = ,,) as defined in
Sec. 9.2, we shall omit %, and write simply {X,}; more frequently however
we shall consider {%} as given in advance and omitted from the notation.

Condition (a) is nowadays referred to as: {X,,} is adapted to {%,}. Condi-
tion (b) says that all the r.v.’s are integrable; we shall have to impose stronger
conditions to obtain most of our results. A particularly important one is the
uniform integrability of the sequence {X,}, which is discussed in Sec. 4.5. A
weaker condition is given by

(2) sup £(1X,[) < o0;
n
when this is satisfied we shall say that {X,,} is L'-bounded. Condition (c) leads
at once to the more general relation:
(3) ' n<m= X, =&Xn | %)
This follows from Theorem 9.1.5 by induction since

EXm | F) = E(E X | T | T} = EX -y | P ).
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An equivalent form of (3) is as follows: for each A € #, and n < m, we have

@ / X, dP = / Xy dP.
A A

It is often safer to use the explicit formula (4) rather than (3), because condi-
tional expectations can be slippery things to handle. We shall refer to (3) or
(4) as the defining relation of a martingale; similarly for the “super” and “sub”
varieties.

Let us observe that in the form (3) or (4), the definition of a smartingale
is meaningful if the index set N is replaced by any linearly ordered set, with
“<” as the strict order. For instance, it may be an interval or the set of
rational numbers in the interval. But even if we confine ourselves to a discrete
parameter (as we shall do) there are other index sets to be considered below.

It is scarcely worth mentioning that {X,} is a supermartingale if and
only if {—X,} is a submartingale, and that a martingale is both, However the
extension of results from a martingale to a smartingale is not always trivial, nor
is it done for the sheer pleasure of generalization. For it is clear that martingales
are harder to come by than the other varieties. As between the super and sub
cases, though we can pass from one to the other by simply changing signs,
our force of habit may influence the choice. The next proposition is a case in
point.

Theorem 9.3.1. Let {X,, 34;} be a submartingale and let ¢ be an increasing
convex function defined on R&!, If ¢(X,) is integrable for every n, then
{p(X,), #]} is also a submartingale,

PROOF. Since ¢ is increasing, and
| Xy S EXns1 | )
we have
(3) P(Xn) < 9(E{Xug1 [ F))

By Jensen’s inequality (Sec. 9.1), the right member above does not exceed
E{@p(Xp41) | #}; this proves the theorem. As forewarned in 9.1, we have left
out some “a.e.” above and shall continue to do so.

Corollary 1. If {X,, %} is a submartingale, then so is {X], %}. Thus £(X)
as well as &(X,;) is increasing with n.

Corollary 2. If {X,,#,) is a martingale, then (|X,|, %,} is a submartingale;
and {|X,|?, %}, 1 < p < oo, is a submartingale provided that every X,, € L7,
similarly for {|X,|log* |X,|, %} where log* x = (logx) v 0 for x > 0.
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PROOF. For a martingale we have equality in (5) for any convex ¢, hence
we may take @(x) = |x|, |x|” or |x|log™ x| in the proof above.

Thus for a martingale {X,)}, all three transmutations: {X;"}, {X;} and
{|X.|} are submartingales. For a submartingale {X,}, nothing is said about the
- last two.

Corollary 3. If {X,, #} is a supermartingale, then so is {X, A A, %} where
A is any constant.

PROOF. We leave it to the reader to deduce this from the theorem, but
here is a quick direct proof:

Xp ANA 2 EXpr1 | )N EA | F) 2 EXnp1 AALF).

It is possible to represent any smartingale as a martingale plus or minus
something special. Let us call a sequence of r.v.’s {Z,, n € N} an increasing
process iff it satisfies the conditions:

(DZ1=0,2Z2, <Zpyy forn=>1;
(ii) &Z,) < oo for each n.

Tt follows that Z, = lim,_cc 1 Z, exists but may take the value +00;Zx
is integrable if and only if {Z,} is L'-bounded as defined above, which
means here lim,— 1 €(Z,) < 0o. This is also equivalent to the uniform
integrability of {Z,} because of (i). We can now state the result as follows.

Theorem 9.3.2. Any submartingalé {X,, %} can be written as
(6) Xn - Yn -+ Zns
where {Y,, 7} is a martingale, and {Z,} is an increasing process.

PROOF. From {X,} we define its difference sequence as follows:
(7) Xy =X1: Xn :Xrl _XH—I’ n ..>_21

so that X, = E’}=1x »n > 1 (cf. the notation in the first paragraph of this
section). The defining relation for a submartingale then becomes

"(‘{Xn l%—l} > 0,

with equality for a martingale. Furthermore, we put

’ n
Y1 =Xy, Yo =Xg — {2y | Fi ), Y, = Z}’j;
j=1

n
= 0, in = (}?‘{x" ‘;V'i'l—l}’ Z,= sz'
. =
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Then clearly x, = y, + z, and (6) follows by addition. To show that {Y,,, %)
is a martingale, we may verify that &{y, | %_;} = 0 as indicated a moment
ago, and this is trivial by Theorem 9.1.5. Since each z, > 0, it is equally

obvious that {Z,} is an increasing process. The theorem is proved.

Observe that Z, € %, for each n, by definition. This has important
consequences; see Exercise 9 below. The decomposition (6) will be called
Doob’s decomposition. For a supermartingale we need only change the “4”
there into “~7, since {~Y,,#,} is a martingale. The following complement
is useful.

Corollary. If {X,} is L1-bounded [or uniformly integrable], then both {¥,}
and {Z,} are L'-bounded [or uniformly integrable].

PROOF. We have from (6):
EZy) < é”(lX D— &)

since g(Y )= &(¥1). Since Z, > 0 this shows that if {X,]} is L’-bounded
then so is {Z,}; and {Y,} is too because

E(I¥nD) < E(Xa]) + 6(Z0).

Next if {X,} is uniformly integrable, then it is L!-bounded by Theorem 4.5.3,
hence {Z,} is L'-bounded and therefore uniformly integrable as remarked
before. The uniform integrability of {¥,} then follows from the last-written
inequality.

‘We come now to the fundamental notion of optional sampling of a
smartingale. This consists in substituting certain random variables for the orig-
inal index n regarded as the time parameter of the process. Although this kind
of thing has been done in Chapter 8, we will reintroduce it here in a slightly
different way for the convenience of the reader. To begin with we adjoin a last

index oo to the set N and call it N, = {1, 2, ..., oo}. This is an example of
a linearly ordered set mentioned above. Next, adjoin %, = ;";1 Z, to {#].

A r.v. a taking values in N, is called optional (relative to {%;, n € Ny })
iff for every n € Ny we have

® fa<n}ed,.

Since %, increases with n, the condition in (8) is unchanged if {o < n} is
replaced by {a¢ = n}. Next, for an optional ¢, the pre-o field %, is defined
to be the class of all subsets A of 97 satisfying the following condition: for
each n € No, we have

®) ANfa<n}eF,
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where again {a < n} may be replaced by {@ = n}. Writing then
(10 Ap=ANn{ae=n},

we have A, € %, and

A=Jan={Jlle=n1na,l

where the index n ranges over N,. This is (3) of Sec. 8.2. The reader should
now do Exercises 1-4 in Sec. 8.2 to get acquainted with the simplest proper-
ties of optionality. Here are some of them which will be needed soon: &, is
a B.F. and o € %,; if « is optional then so is ¢An foreachn e N; if a < B
where B is also optional then %, C %; in particular Zp, C % N%, and in
fact this inclusion is an equation. ,

Next we assume X, has been defined and X, € %,. We then define X,
as follows:

(11) Xe(w) = Xow)(@);
‘in other words,
Xo@)=X,(w) on {a=n}, n &€ Ng.

This definition makes sense for any « taking values in N, but for an optional
« we can assert moreover that '

(12) Xy €%

This is an exercise the reader should not miss; observe that it is a natural
but nontrivial extension of the assumption X,, € %, for every n. Indeed, all
the general propositions concerning optional sampling aim at the same thing,
namely to make optional times behave like constant times, or again to enable
us to substitute optional r.v.’s for constants. For this purpose conditions must
sometimes be imposed either on o or on the smartingale {X, }. Let us however
begin with a perfect case which turns out to be also very important. '

We infroduce a class of martingales as follows. For any integrable r.v. ¥
we put

(13) Xo =X | %), n€Ne.
By Theorem 9.1.5,iff n < m:
(14) Xy = E{EX | F) | T} = X | Fa}

which shows {X,, %) is a martingale, not only on N but also on Ny, The
following properties extend both (13) and (14) to optional times.
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Theorem 9.3.3. For any optional ¢, we have
(15) Xo =&Y | F).

If o < B where B is also optional, then {X,,%;X;, #) forms a two-term
martingale.

PrOOF. Let us first show that X, is integrable. It follows from (13) and
Jensen's inequality that
Xnl = SUY1 1 A).

Since {&¢ = n} € %, we may apply this to get

lea]df E/{a_n} X, idf<Zf{

a=n}

¥|dP = fn Y|P < oo.

Next if A € %, we have, using the notation in (10):

X, dP = X, dP = de.@:de@,

where the second equation holds by (13) because A, € %,. This establishes
(15). Now if a < B, then #, C % and consequently by Theorem 9.1.5.

Xy = SEW | ) | ) = 6(X5 | Fa),
which proves the second assertion of the theorem.

As an immediate corollary, if {«,} is a sequence of optional r.v.’s such
that

-— L)

(16) oy <ap <<y <---

then {X,,, #,} is a martingale. This new martingale is obtained by sampling
the original one at the optional times {o;}. We now proceed to extend the
second part of Theorem 9.3.3 to a supermartingale. There are two important
cases which will be discussed separately.

Theorem 9.34. Let o and B be two bounded optional r.v.’s such that
« < f. Then for any [super]martingale {X,}, {X,, %:Xg, %} forms a
[super]martingale.

PROCF. Let A € 7,; using (10) again we have for each £ > j:

AjN{B>kleF
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because A; € % C %, whereas {8 > k} = {8 < k]° € #. It follows from the
defining relation of a supermartingale that

/ Xy d9P > / Xy d?
AN{B>k} A N>k}

and consequently

f Xkd.‘?’z/ X dP + Xy dP
Ajn{Bzk) A ;N p=k} Aj{p=>k}

Rewriting this as

/ Xy dP — Xp41d4P = / Xﬁd.@;
AjN{B=k) AN{Bzk+1) AN p=k]

summing over k from j to m, where m is an upper bound for §; and then
replacing X; by X, on A;, we obtain

an XodP — X1 d@z/ XgdP.
A Bzl Ajn{pzm+1) An{jspsm}

f X, dP > Xﬁ da,
Aj Aj

Another summation over j from 1 to m yields the desired result. In the case
of a martingale the inequalities above become equations.

A particular case of a bounded optional r.v. is &, = ¢An where « is
an arbitrary optional r.v. and n is a positive integer. Applying the preceding
theorem to the sequence {«,} as under Theorem 9.3.3, we have the following
corollary. '

Corollary. If {X,, %} is a [superjmartingale and « is an arbitrary optional
r.v., then {X anZuan} is a [superlmartingale.

In the next basic theorem we shall assume that the [super]martingale
is given on the index set No. This is necessary when the optional r.v.
can take the value 400, as required in many applications; see the typical
example in (5) of Sec. 8.2. It turns out that if {X,} is originally given only
for n € N, we may take Xoo = lim, 00 X,; to extend it to N, under certain
conditions, see Theorems 9.4.5 and 9.4.6 and Exercise 6 of Sec. 9.4. A trivial
case occurs when {X,, %;n € N} is a positive supermartingale; we may then
take X oo = 0.

Theorem 9.3.5. Let o and B be two arbitrary optional r.v.’s such that « < B.
Then the conclusion of Theorem 9.3.4 holds true for any supermartingale
{Xn.Zin € N} |
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Remark. For a martingale {X,, #,;n € Ny} this theorem is contained
in Theorem 9.3.3 since we may take the Y in (13) to be X, here.

PROOF. (a) Suppose first that the supermartingale is positive with X, = 0
a.e. The inequality (17) is true for every m € N, but now the second integral
there is positive so that we have

XodP > / XpdP.
Aj An(B<m)

Since the integrands are positive, the integrals exist and we may let m — oo
and then sum over j € N. The result is

/ X, dP > f Xﬂ dP
Anfa<oo) AN{f<o0}

which falls short of the goal. But we can add the inequality

/- XodP = XoodP = XoodP = XpgdP
ANfa=co} AN{ae=co] AN =00} AN B=00}

which is trivial because X, = 0 a.e. This yields the desired

(18) fXadf/?zfXﬁd@.
A A

Let us show that X, and X4 are in fact integrable. Since X, > X, we have
Xo < lim,_, o Xaan so that by Fatou’s lemma,

bt

(19) (f(Xa) = m é'D(XaAn)'
n=r0Q
Since 1 and aAn are two bounded optional r.v.’s satisfying 1 < aAn; the
right-hand side of {19) does not exceed £(X;) by Theorem 9.3.4. This shows
X, is integrable since it is positive.
' (b) In the general case we put

X, =Ko | F}), X, =X,—-X,.
Then {X), Z;n € Ny} is a martingale of the kind introduced in (13), and

Xp=zX :,nby the defining property of supermartingale applied to X, and X .
Hence the difference {X|,, 7,;n € N} is a positive supermartingale with X7 =
0 a.e. By Theorem 9.3.3, {X, #; X}, 75} forms a martingale; by case (a), .
Xz, ;/Z,;Xg, #g} forms a supermartingale. Hence the conclusion of the theorem

follows simply by addition.

The two preceding theorems are the basic cases of Doob’s optional
sampling theorem. They do not cover all cases of optional sampling (see e.g.
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Exercise 11 of Sec. 8.2 and Exercise 11 below), but are adequate for many
applications, some of which will be given later.

Martingale theory has its intuitive background in gambling. If X,, is inter-
preted as the gambler’s capital at time n, then the defining property postulates
that his expected capital after one more game, played with the knowledge of
the entire past and present, is exactly equal to his current capital. In other
words, his expected gain is zero, and in this sense the game is said to be
“fair”. Similarly a smartingale is a game consistently biased in one direc-
tion. Now the gambler may opt to play the game only at certain preferred
~ times, chosen with the benefit of past experience and present observation,
but without clairvoyance into the future. {The inclusion of the present status
in his knowledge seems to violate raw intuition, but examine the example
below and Exercise 13.] He hopes of course to gain advantage by devising
such a “system” but Doob’s theorem forestalls him, at least mathematically.
We have already mentioned such an interpretation in Sec. 8.2 (see in partic-
ular Exercise 11 of Sec. 8.2; note that oo+ 1 rather than « is the optional
time there.) The present generalization consists in replacing a stationary inde-
pendent process by a smartingale. The classical problem of “gambler’s ruin”
illustrates very well the ideas involved, as follows.

- Let{S,, n € N% be arandom walk in the notation of Chapter 8, and let S;
have the Bernoullian distribution 38; + 38_y. It follows from Theorem 8.3.4,
or the more elementary Exercise 15 of Sec. 9.2, that the walk will almost
certainly leave the interval [~a, b], where a and b are strictly positive integers;
and since it can move only one unit a time, it must reach either —a or b. This
means that if we set '

(20) o =min{n > 1:§, = —a}, B=min{n > 1:5, =>b},

then y = ¢ApB is a finite optional r.v. It follows from the Corollary to
Theorem 9.3.4 that {S,A,} is a martingale. Now
(21) lim Syr, =8, ae.

=00

and clearly S, takes only the values —a and b. The question is: with what
probabilities? In the gambling interpretation: if two gamblers play a fair coin-
tossing game and possess, respectively, @ and b units of the constant stake as
initial capitals, what is the probability of ruin for each?

The answer is immediate (“without any computation”!) if we show first
that the two r.v.’s {§;, S,} form a martingale, for then

(22) #(Sy) = £ =0,
which is to say that
—aP{S, = —a) + bP(S, = b} =0,
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so that the probability of ruin is inversely proportional to the initial capital of
the gambler, a most sensible solution.

To show that the pair {S7, S, } forms a martingale we use Theorem 9.3.5
since {Syan,n€No} is a bounded martingale. The more elementary
Theorem 9.3.4 is inapplicable, since y is not bounded. However, there is
a simpler way out in this case: (21) and the boundedness just mentioned
imply that

£(Sy) = lim &(Syan),
0D

and since ¢ (Sya1) = £(S1), (22) follows directly.

The ruin problem belonged to the ancient history of probability theory,
and can be solved by elementary methods based on difference equations (see,
e.g., Uspensky, Introduction to mathematical probability, McGraw-Hill, New
York, 1937). The approach sketched above, however, has all the main ingredi-
ents of an elaborate modern theory. The litile equation (22) is the prototype of
a “harmonic equation”, and the problem itself is a “boundary-value problem”.
The steps used in the solution—to wit: the introduction of a martingale,
its optional stopping, its convergence to a limit, and the extension of the
martingale property to include the limit with the consequent convergence of
expectations —are all part of a standard procedure now ensconced in the
general theory of Markov processes and the allied potential theory.

EXERCISES

1. The defining relation for a martingale may be generalized as follows.
For each optional r.v. @ < n, we have &{X, | %} = X,. Similarly for a
smartingale.

*2. If X is an integrable r.v., then the collection of (equivalence classes
of) r.v.’s £(X | &) with ¢ ranging over all Borel subfields of %, is uniformly
integrable. '

3. Suppose {X f,’”, ), k =1, 2, are two [super]martingales, « is a finite
optional r.v., and X\ = [>]XP. Define X, = X1 (n<q) + X P 1jnsq5; show
that {X,, %} is a [super]martingale. [m~nT: Verify the defining relation in (4)
form=n++1] ‘

4. Suppose each X, is integrable and

EXnpr [ X1, Xnd =071 X0+ + Xp)

then {(n~1)(X; +---+X,), n € N} is 2 martingale.

5. Every sequence of integrable r.v.’s is the sum of a supermartingale
and a submartingale.

6. If {X., %} and (X', %) are martingales, then so is {X, + X,,%].

n?

But it may happen that {X,} and {X/,} are martingales while {X, + X} is not.
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[HNT: Let x; and x] be independent Bernoullian r.v.'s; and x; = xy =41 or
—1 according as x; + x] = 0 or 5 0; notation as in (7).]

7. Find an example of a positive martingale which is not uniformly inte-
grable. [HINT: You win 27 if it’s heads n times in a row, and you lose everything
as soon as it’s tails.}

8. Find an example of a martingale {X,} such that X,, — —o0 a.e. This
implies that even in a “fair” game one player may be bound to lose an
arbitrarily large amount if he plays long enough (and no limit is set to the
liability of the other player). [EnT: Try sums of independent but not identically
distributed r.v.’s with mean 0.]

*9, Prove that if {Y,,%,} is a martingale such that ¥, € %_,, then for
every n, ¥, = Y a.e. Deduce from this result that Doob’s decomposition (6)
is unique (up to equivalent r.v.’s) under the condition that Z,, € %,_, for every
n > 2. If this condition is not imposed, find two different decompositions.

10. If {X,} is a uniformly integrable submartingale, then for any optional
r.v. & we have

(1) {XyAn} is a uniformly integrable submartingale;
(i) £(Xy) £ €(Xy) < sup, £(X,).

[HINT: lXaAnl = lXal + |Xn|]
*11. Let {X,,, %;n € N} be a [super]martingale satisfying the following
condition: there exists a constant M such that for every n > 1:

é?{an _Xn—l II‘L?}:I—I} < Mae.

where Xo =0 and % is trivial. Then for any two optional r.v.’s o and B
such that ¢ < 8 and &(B) < o0, {X,, %; Xg, F3} is a [superjmartingale. This
is another case of optional sampling given by Doob, which includes Wald’s
equation (Theorem 5.5.3) as a special case. [HINT: Dominate the integrand in
the second integral in (17) by Yg where Xo =0and ¥,,, = 3 /_; 1X, — Xl
We have

(=3 [ = Xeld? <MEP)

n=1

12. Apply Exercise 11 to the gambler’s ruin problem discussed in the
text and conclude that for the o in (20) we must have &(a) = +o0. Verify

- this by elementary computation.

*13. In the gambler’s ruin problem take b = 1 in (20). Compute £(S Ban)
for a fixed n and show that {Sg, Sga,} forms a martingale. Observe that {Sg, Sz}
does not form a martingale and explain in gambling terms the effect of stopping
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g at n. This example shows why in optional sampling the option may be taken
even with the knowledge of the present moment under certain conditions. In
the case here the present (namely § A n) may leave one no choice!

14. In the gambler’s ruin problem, suppose that §; has the distribution
phi+(—p¥_, p#h

and let d = 2p — 1. Show that £(§,) = d&(y). Compute the probabilities of
ruin by using difference equations to deduce &(y), and vice versa.
15. Prove that for any L!-bounded smartingale {X,,%,n € Ny}, and
any optional o, we have &([X,|) < 0o. [HINT: Prove the result first for a
martingale, then use Doob’s decomposition.]
*16. Let {X,,%,} be a martingale: x; = X1, x, = X, — X, for n > 2;
let vy € -1 for n > 1 where % = %; now put

n
T,,= E ViXj.
j=1

Show that {T',, %,] is a martingale provided that T, is integrable for every n.
The martingale may be replaced by a smartingale if v, > 0 for every n. As
a particular case take v, = l{,<,) Where « is an optional r.v. relative to {#].
What then is T,,7 Hence deduce the Corollary to Theorem 9.3 4.

17. As in the preceding exercise, deduce a new proof of Theorem 9.3.4

9.4 Inequalities and convergence

We begin with two inequalities, the first of which is a generalization of
Kolmogorov's inequality (Theorem 5.3.1),

Theorem 9.4.1. If {X;, %, j € N} is a submartingale, then for each real A
we have

(1) AZ?{ max X;> Al < / X, dP < é”(X:);
! {maxy<jen X;24)

=j=n

1<jsn

(2) AZ?{ min XjS—A}Séa(Xn—X;)wf X, d?
{miny gjcn X;=—4)

< X)) — EX).

PROOF. Let « be the first j such that X; > A if there is such a j in N,

otherwise let o = n (optional stopping at n). It is clear that « is optional;
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since it takes only a finite number of values, Theorem 9.3.4 shows that the
pair {X,, X,} forms a submartingale. If we write

M={max X; > A},

1<j%n

then M € %, (why?) and X, > A on M, hence the first inequality follows
from

A@(M)stad@Sand@;
M M

the second is just a cruder consequence.
Similarly let 8 be the first j such that X; < —A if there is such a j in
N, otherwise let 8 = n. Put also

M, = {lréljlgka < -A}.
Then {X,, Xg} is a submartingale by Theorem 9.3.4, and so

E(X1) < EXp) = / Xpd? + X, dP + f X, dP
{B=n—1} M; M, My

< —APM,) + EXy) — f X, d,

which reduces to (2).

Corollary 1. If {X,} is a martingale, then for each A>0:

1
®  Plmax =<y [
: <jsn

{max)gj<p [XjI=4)

1
IXnId@S Ié‘z(lxnf) ‘

If in addition é”(Xﬁ) < ¢o for each n, then we have also
1 @2
4) ?{f«_’:‘f‘s"n 1X;| = A} < F@(X,,,).

These are obtained by applying the theorem to the submartingales {{X,|}
and {Xﬁ}. In case X, is the S, in Theorem 5.3.1, (4) is precisely the Kolmo-
gorov inequality there.

Corollary 2. letl <m=<n, A, € %, and M = {max,<;j<, Xj = A}, then

AP A, M) < f X, dP.
ApPM

This is proved just as (1) and will be needed later.
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We now come to a new kind of inequality, which will be the tool for
proving the main convergence theorem below. Given any sequence of r.v.’s
{X;}, for each sample point w, the convergence properties of the numerical
sequence {X ;(w)} hinge on the oscillation of the finite segments {X ;(w), j €
N,}as n — oc. In particular the sequence will have a limit, finite or infinite, if
and only if the number of its oscillations between any two [rational] numbers a
and b is finite (depending on a, b and w). This is a standard type of argument
used in measure and integration theory (cf. Exercise 10 of Sec. 4.2). The
interesting thing is that for a smartingale, a sharp estimate of the expected
number of oscillations is obtainable.

Let a < b. The number v of “upcrossings” of the interval [a, &] by a
numerical sequence {x, ..., x,} is defined as follows. Set

oy =min{j:1 < j<n,x <a},
oy =min{j:a; < j <n,x; > b};

if either &y or o, is not defined because no such j exists, we define v=0. In
general, for k > 2 we set

A2k—1 = min{j:oe—2 < j < n,x; < al,
oy = min{jian—y < j <n,x; > b};

if any one of these is undefined, then all the subsequent ones will be undefined.
Let o, be the last defined one, with £ = 0 if o is undefined, then v is defined
to be [£/2]. Thus v is the actual number of successive times that the sequence
crosses from < a to > b. Although the exact number is not essential, since a
couple of crossings more or less would make no difference, we must adhere
to a rigid way of counting in order to be accurate below.

Theorem 9.4.2. Let {X;, %, j € N} be a submartingale and ~c0 < a <

b < 0o. Let v{ﬂ,l (ew) denote the number of upcrossings of [a, b] by the sample

sequence {X ;(w); j € N,}. We have then

HNXy —a)t) — (X, ~ a)t} < "?{X:} + lal
b—a T b—a

PROOF. Consider first the case where X; > O for every jand 0 =a < b,

so that ufg),,] (w) becomes v[((')"),,] (w), and X, {w) = 0 if j is odd, where ¢; =

o j(w) is defined as above with x; = X ;(w). For each w, the sequence o (w)
is defined only up to £(w), where 0 < £(w) < n. But now we modify the
definition so that «;(w) is defined for 1 < j < n by setting it to be equal to n
wherever it was previously undefined. Since for some w, a previously defined
o j{w) may also be equal to n, this apparent confusion will actually simplify

G) <
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the formulas below. In the same vein we set ag = 1. Observe that ¢, = n in
any case, so that '

n—1

Xn=X)=Xa, ~Xoy = )_Kep = Xa)= D+ .

Jj=0 Jjeven  jodd
If jis odd and j + 1 < £(w), then
Xc,,jJrl ()= b>0= Xo, (w);
If j is odd and j = {(w), then
Xo:;ﬂ (ﬂ)) = Xn (CI)) ->— O = Xctj (Q));

if j is odd and £(w) < j, then

X(I_H.; (Ct)) = Xﬂ‘ (Cl)) = Xa’j(w)-
Hence i_n all cases we have

(6) Y Ky (@) = X (@) = D Koy, (@) = Xoy (@)
7 odd i

[
Next, observe that {a;, 0 < j < n} as modified above is in general of the form
l=gp<oj<am<- - <@y =:-=0a, =n, and since constants
are optional, this is an increasing sequence of optional r.v.’s. Hence by
Theorem 9.3.4, {X,,,0 < j < n} is a submartingale so that for each j,0 <
j <n—1, we have #{X,,41 — X4,} = 0 and consequently

LD (Xay — X)) | 2 0.

J even

Adding to this the expectations of the extreme terms in (6), we obtain
@) X —X1) = EOG5)E,

which is the particular case of (5) under consideration.

In the general case we apply the case just proved to {(X; — a)™, j € N,},
which is a submartingale by Corollary 1 to Theorem 9.3.1. It 1s clear that
the number of upcrossings of [a, b] by the given submartingale is exactly
that of [0, & — a] by the modified one. The inequality (7) becomes the first
inequality in (5) after the substitutions, and the second one follows since
(X, —a)* < X} + |al. Theorem 9.4.2 is proved.
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The corresponding result for a supermartingale will be given below; but
after such a painstaking definition of upcrossing, we may leave the dual defi-
nition of downcrossing to the reader.

Theorem 9.4.3. Let {X;, #;, j € N,} be a supermartingale and let —oo <

ab < 0o. Let vf") be the number of downcrossings of [a, ] by the sample

~ sequence {X;(w), j € N,}. We have then
cr=(n Xy A b}~ E{X, A b}
®) Tt < T
PROCF. {—X;, j € N,} is a submartingale and v[a b 18 v[(_j, —q) for this
submartingale. Hence the first part of (5) becomes |
S} < X 00 — (X1 +8)7) &b —X) - (b -X)t)
{Via,p —a—(—b) - b—a '
Since (b — x)t = b — (b A x) this is the same as in (8).

Corollary. For a positive supermartingale we have for 0 <a <b < ©
2 b
“b-

éfv

'G. Letta proved the sharper “dual™

a
S} < T

(Martingales et intégration stochastique, Quaderni, Pisa, 1984, 48-49.)
The basic convergence theorem is an immediate consequence of the
upcrossing inequality.

Theorem 9.4.4. If {X,,%;n € N} is an L'-bounded submartingale, then
{X,} converges a.e. to a finite limit.

Remark. Since
F(Xa) =286 — £X,) < 28X = EX),
the condition of L!-boundedness is equivalent to the apparently weaker one
below:
) sup X < oo

PROOF. Let vy, p = lim, v[a »- Our hypothesis 1mplles that the last term
in (5) is bounded in n; letting n —» oo, we obtain &{v[gp} < o0 for every a
and b, and consequently vy, ) is finite with probability one. Hence, for each
pair of rational numbers ¢ < b, the set

Afﬂ,b] = {l_i._ID,Xn <a<b< Ti?ﬁX,,} '
L] n
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is a null set; and so is the union over all such pairs. Since this union contains
the set where lim, X, < lim, X, the limit exists a.e. It must be finite a.e. by
. Fatow’s lemma applied to the sequence [X,|.

Corollary. Every uniformly bounded smartingale converges a.e. Every posi-
tive supermartingale and every negative submartingale converge a.e.

It may be instructive to sketch a direct proof of Theorem 9.4.4 which is
done “by hand”, so to speak. This is the original proof given by Doob (1940)
for a martingale.

Suppose that the set Ay, ;; above has probability > 5>0. For each w in
Apgp), the sequence {X,{w), »n € N} takes an infinite number of values < g
and an infinite number of values > b. Let 1 =ng < n; < ... and put -

Agja={ min X;<a}, Ayyj={ max X;>b}

nyj_p<ighz;g Ry <i<Hy;

Then for each k it is possible to choose the #;’s successively so that the differ-
ences n; — n;—1 for 1 <i < 2k are so large that “most” of A, is contained

in %, Ay, so that )
2
QD{HAI} > 7.

i=l

Fixing an n > ny and applying Corollary 2 to Theorem 9.4.1 to {—X;} as
well as {X;}, we have

i=1

2j~1
a.J? ( A!) Z_ }_‘i—l X”Zj-—l d{/? = i1 Xn d'gﬁ’
. n n A
i=1

i=1

2j
bP (ﬂA,-) < / Xy, dP = [y XudP,
i=1 nAi ﬂA.-
i=1

i=]
where the equalities follow from the martingale property. Upon subtraction
we obtain

2j 2j—1
b—a)? (ﬂ A,-) —a? ( N A,—Ag,.) <- f, X, dP,
i=1 =1 BRI

i=l
and consequently, upon summing over 1 < j < k:
k(b — a)n — la| < &(1Xp)).

This is impossible if k is large enough, since {X,} is L'-bounded.
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Once Theorem 9.4.4 has been proved for a martingale, we can extend it
easily to a positive or uniformly integrable supermartingale by using Doob’s
decomposition. Suppose {X,} is a positive supermartingale and X, =Y, — Z,
as in Theorem 9.3.2. Then 0 < Z,, < Y, and conseguently

£@o0) = lim £Z,) < EF1);

next we have
EY )= X))+ EZ,) S EX )+ E(Zw)

Hence {Y,} is an L!-bounded martingale and so converges to a finite limit
as n — 00. Since Z, 1 Z, < 00 a.e., the convergence of {X,} follows. The
case of a uniformly integrable supermartingale is just as easy by the corollary
to Theorem 9.3.2.

It is trivial that a positive submartingale need not converge, since the
sequence {n} is such a one. The classical random walk {S,.} (coin-tossing
game) is an example of a martingale that does not converge (why?). An
interesting and not so trivial consequence is that both £(S7) and &(|S,}) must
diverge to +oo! (Cf. Exercise 2 of Sec. 6.4.) Further examples are furnished
by “stopped random walk”. For the sake of concreteness, let us stay with the
classical case and define y to be the first time the walk reaches 1. As in our
previous discussion of the gambler’s-ruin problem, the modified random walk
{5‘,,}, where S, = Syan, is still a martingale, hence in particular we have for
each n;

EG) = €G1) = f

S]d@—l-/' §:1dP = £(51)=0.
(y=1) {

-
As in (21) of Sec. 9.3 we have, writing So, = 5, = 1,
limS‘,, = S‘oo a.e.,
n
since y < o a.e., but this convergence now also follows from Theorem 9.4 .4,
since §; < 1. Observe, however, that

EGD)=0<1=ESu)

Next, we change the definition of y to be__the first time (> 1) the walk “ret_urns”
to 0, as usual supposing Sy = 0. Then S = 0 and we have indeed £(5,) =
€(Ss). But for each n,

f_ §,dP>0= |  §0dP,
{$a>0) {S>0}

so that the “extended sequence” {Si, ooy Suy ..., 80} is no longer a martin-
gale. These diverse circumstances will be dealt with below.
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Theorem 9.4.5. The three propositions below are equivalent for a sub-
martingale {X,, #;;n € N}:

(a) it is a uniformly integrable sequence;

(b) it converges in L!;

(c) it converges a.e. to an integrable X, such that {X,,%;n € Ny} is
a submartingale and &(X,) converges t0 §(Xo).

PROOF. (a) => (b): under (a) the condition in Theorem 9.4.4 is satisfied so
that X,, — X a.e. This together with uniform integrability implies X, — X,
in L! by Theorem 4.5.4 with r = 1.

(b) = (c): under (b) let X, — Xo in LY, then (X)) = (X)) <
o and s0 X, = X a.e. by Theorem 9.4.4. For each A € %, and n < n/,

we have
] Xn d.@ S / Xn’ d-('_/’/-)
A A

by the defining relation. The right member converges to [, Xood% by L!-
convergence and the resulting inequality shows that {X,, % ;n € Ny} is a
submartingale. Since L'-convergence also implies convergence of expecta-
tions, all three conditions in (c) are proved.

(¢} = (a); under (c), {X}, %;n € Ny} is a submartingale; hence we
have for every A>0:

(10) f XHd? < / xtd,
{X3>A) (X7 >2)

which shows that {X}, n € N} is uniformly integrable. Since X — X% ae.,
this implies £(X;')— £(XT). Since by hypothesis £(X,)— §(X ), it follows
that € (X)) = £(XZ,). This and X, — X, a.e. imply that {X]'} is uniformly
~ integrable by Theorem 4.5.4 for r = 1. Hence so is {X,}.

Theorem 9.4.6, In the case of a martingale, propositions (2) and (b) above
are equivalent to (¢’) or (d) below:

(c’) it converges a.e. to an integrable X, such that {X,,%;n € Ny} is
a martingale;

(d) there exists an integrable r.v. ¥ such that X, = (Y | #;) for each
neN. '

PROOF. {b) => (¢’) as before; (¢’) => (a) as before if we observe that
F(Xn) = £(Xs ) for every n in the present case, or more rapidly by consid-
ering }X,| instead of X as below. (¢} = (d) is trivial, since we may take
the ¥ in (d) to be the Xo in (c'). To prove (d) = (a), let n < n’, then by



354 | CONDITIONING. MARKOV PROPERTY, MARTINGALE

Theorem 9.1.5:
EXp | F)=EEX | F) | F)=EX | FH) =X,

hence {X,,%,n €N;Y,#} is a martingale by definition. Consequently
{IXx], %, n € N;|Y|, 57} is a submartingale, and we have for each A>0:

f IXnIdg"s/ Y1 deP,
{[Xnl=4}) {IXnl=A}

PXal > A} < —@(Ian) <= cf"(!Yi),
which together imply (a).

Corollary. Under (d), {X,,,./,,, neN:Xo %)Y, F } is a martingale, where
X oo 1s given in (c).

Recall that we have introduced martingales of the form in (d) earlier in
(13) in Sec. 9.3. Now we know this class coincides with the class of uniformly
integrable martingales.

We have already observed that the defining relation for a smartingale
is meaningful on any linearly ordered (or even partially ordered) index set.
The idea of extending the latter to a limit index is useful in applications to
continuous-time stochastic processes, where, for example, a martingale may
be defined on a dense set of real numbers in (71, #;) and extended to 1.
This corresponds to the case of extension from N to No. The dual extension
corresponding to that to #; will now be considered. Let —N denote the set of
strictly negative integers in their natural order, let —oo precede every element
in —N, and denote by ~N the set {—oo} U (—N) in the prescribed order.
If {#,,n € —N} is a decreasing (with decreasing n) sequence of Borel fields,
their intersection (),._y % will be denoted by # .

The convergence results for a submartingale on —N are simpler because
the right side of the upcrossing inequality (5) involves the expectation of the
r.v. with the largest index, which in this case is the fixed —1 rather than the
previous varying n. Hence for mere convergence there is no need for an extra

condition such as (9).

Theorem 9.4.7. Let {X,,n € —N} be a submartingale. Then

(11) lim X, =X .0, Where —00<X_, <00 ae.
n—>-—0C

The following conditions are equivalent, and they are automatically satisfied
in case of a martingale with “submartingale” replaced by “martingale” in (c):
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(a) {X,} is uniformly integrable;

(b) X, = X_x in Ll;

() {Xn,n € =N} is a submartingale;
(d) limn—r—oc ~L f’p(Xn) > —0CC.

PROOF. Let vf;'_fb] be the number of upcrossings of [a, b] by the sequence
{X-n...x_}. We have from Theorem 9.4.2:

(g’(Xi-l) + }al

& v(") <
{ [a,b]} - b—a

Letting n — oo and arguing as the proof of Theorem 9.4.4, we conclude (11)
by observing that

EX*) <lim £(XF,) < £(X*)) < oo,
n

The proofs of (a) = (b) = (c) are entirely similar to those in Theorem 9.4.5.
(c) = (d) is trivial, since —00 < £(X_5) < &£(X_,) for each n. If remains
to prove (d) = (a). Letting C denote the limit in (d), we have for each A>0:
(12) AP{X,| > A} < (X, D) = 28(XF) — £(X,) < 26(XF,) — C < o0,

It follows that 2°{|X | > A} converges to zero uniformly in n as A — 0o. Since

f Xrdo < f Xt d,
(Xr=>2) X7>2)

this impiies that {X}} is uniformly integrable. Next if n < m, then

03/ X,,d?/”’:cfX,,)—~/ X, d9
{Xn“’-"}'} {Xni'._l}

Zé’a(Xn)""/ Xmd?P

[Xn..}."'l}

= (‘(‘B(Xn —Xm)+ fgl(Xm) - / Xm d7
. {Xuz_'l}

= &(Xp — Xm) + / X dP.
{Xp<—A}

By (d), we may choose —m so large that £(X,, — X,,) > —e for any given e>0
and for every n < m. Having fixed such an m, we may choose A so large that

sup/ | Xmld?P < €
lX,,<--—l]

n
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by the remark after (12). It follows that {X} is also uniformly integrable, and
therefore (a) is proved.

The next result will be stated for the index set N of all integers in their
natural order:

N={..,-n...,-2,-1,0,1,2,...,n,...}.

Let {#,} be increasing B.F.’s on N, namely: %, C %, if n <m. We may
“close” them at both ends by adjoining the B.F.’s below:

= NG Too=\/%.
n n

Let {Y,} be r.v.’s indexed by N. If the B.F.’s and r.v.’s are only given on N
or —N, they can be trivially extended to N by putting %, =%, Y, =¥, for
all n <0, 0r &% =#4,Y, =Y_; for all n > 0. The following convergence
theorem is very useful.

Theorem 9.4.8. Suppose that the Y,’s are dominated by an integrable r.v.Z:

(13) sup {Ya| < Z;

and lim, ¥, =Y or Y_o as n — 00 or —co. Then we have

(142) lim (Y, | %) = &Yoo | Fool;
(146) lm ST, | %) = 6V 0 | Focol:

In particular for a fixed integrable r.v. ¥, we have

(15a) Jim &Y | Z} = EY | Fool
(15b) lim S{Y | F) = Y | Tl

where the convergence holds also in L' in both cases.

PROOF. We prove (15) first. Let X, = &{Y | %4 ). For n e N, {X,, %}
is a martingale already introduced in (13) of Sec. 9.3; the same is true for
n € —N. To prove (15a), we apply Theorem 9.4.6 to deduce (c') there. It
remains to identify the limit X, with the rlght member of (15a). For each

A € %, we have
deg»=andy7)=[degi).
A A A '
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Hence the equations hold also for A € %, (why?), and this shows that X,
has the defining property of £(Y | Zy, since Xoo € Fp. Similarly, the limit
X oo in (15b) exists by Theorem 9.4.7; to identify it, we have by (c¢) there,

for each A € F !
]qudga:/Xnd@:de.@.
A A - A

This shows that X_, is equal to the right member of (15b).
We can now prove (14a). Put for m € N:

=t
then [W,,| < 2Z and lim,,_, oo W.,, = 0 a.e. Applying (152a) to W,, we obtain
im &Y, — Yool|%) < lim &(Wn | Z} = (W | Zo).
n—rod n—=o00

As m — 00, the last term above converges to zero by dominated convergence
(see (vii) of Sec. 9.1). Hence the first term must be zero and this clearly
implies (14a). The proof of (14b) is completely similar.

Although the corollary below is a very special case we give it for histor-
ical interest. It is called Paul Lévy’s zero-or-one law (1935) and includes
Theorem 8.1.1 as a particular case.

Corollary. If A € #,, then
(16) . lim P(A | %)=14 ae.
H~—+00
The reader is urged to ponder over the intuitive meaning of this result and

judge for himself whether it is “obvious” or “incredible”.

EXERCISES

*1. Prove that for any smartingale, we have for each A>0:

AP {sup |Xp| = A} < 3sup E(IX,1).

For a martingale or a positive or negative smartingale the constant 3 may be
replaced by 1.

2. Let {X,} be a positive supermartingale. Then for almost every o,
Xi(w) =0 implies X,(w) =0 for all n > k. [This is the analogue of a
minimum principle in potential theory.]

3. Generalize the upcrossing inequality for a submartingale {X,, %} as

foll :
oros BXn — a)t | F) = () — a)t
b—a '

Evany | A <
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Similarly, generalize the downcrossing inequality for a positive supermartin-
gale {X,, #,} as follows:
Xinb

oo | A < 5.

*4. As a sharpening of Theorems 9.4.2 and 9.4.3 we have, for a positive
supermartingale {X,, %,, n € N} '

e Xy Ana) rank-l
‘J?{Ufa,)b] > k} S.. _-S“‘]——— (_) Sy

b b
o E(X1 AB)Y rank-1
Py 21y s SXLD (4

These inequalities are due to Dubins. Derive Theorems 9.3.6 and 9.3.7 from
them. [HINT:

b7 ag; < n} < /

{era;<n)

X, dP < f Xoy, AP

fen i <n}

< f Xon;., AP < aPlogj1 < n}
{azj—r <n}

since {azj1 < n} € F,,.,-]

*5. Every L'-bounded martingale is the difference of two positive L!-
bounded martingales. This is due to Krickeberg. [ninT: Take one of them to
be limk._,oc (cr{XE‘ } 5/?,}]

*6. A smartingale {X,,%,;n € N} is said to be closable [on the right]
iff there exists a r.v. X such that {X,, %;n € Ny} is a smartingale of the
same kind. Prove that if so then we can always take X o, == lim,_, o0 X;. This
supplies a missing link in the literature. [HINT: For a supermartingale consider
Xo=¢Xac | )+ Y,, then {¥,,#]} is a positive supermartingale so we
may apply the convergence theorems to both terms of the decomposition.]

7. Prove a result for closability [on the left] which is similar to Exercise 6
but for the index set —N. Give an example to show that in case of N we may
have limy,—o € (Xy) # ¢ (Xoo), whereas in case of —N closability implies
lim, e ¢ (Xy) = ¢ (Xooc)-

8. Let {X,, %, n € N} be a submartingale and let o be a finite optional
r.v. satisfying the conditions: (a) ¢(]X,|) < oo, and (b)

lim f X, d:7 = 0.
{a=n)

R OO

Then {Xonn: Zannt € Noo} is a submartingale. [HINT: for A € #,,, bound
Sy Xa = Xann)d? below by interposing Xam where n < m.]
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9. Let {X,,#%;n € N} be a supermartingale satisfying the condition
lim,_, « ¢(X,) > —oc. Then we have the representation X,, = X|, + X/, where
{X,. #) is a martingale and {X,, %} is a positive supermartingale such that
limye X;, =0 in L! as well as ae. This is the analogue of F. Riesz’s
decomposition of a superharmonic function, X/, being the harmonic part and
X, the potential part. [HINT: Use Doob’s decomposition X, = ¥, —Z, and
put X, =Y, — &(Zeo | %).)

10. Let {X,, #,) be a potential; namely a positive supermartingale such
that lim, e, €(X,)=0; and let X, =Y, — Z, be the Doob decomposition
fcf. (6) of Sec. 9.3]. Show that

Xu = (‘G(Zoo I%)_Zn

*11. If {X,} is a martingale or positive submartingale such that
sup, £(X2) < oo, then {X,} converges in L? as well as a.e.

12. Let {&,,n € N} be a sequence of independent and identically
distributed r.v.’s with zero mean and unit variance; and S, = }’7_; &;.
Then for any optional r.v. a relative to {£,} such that £(/@) < oo, we
have &(|Sq]) < v2&(/@) and £(S,) = 0. This is an extension of Wald’s
equation due to Louis Gordon. (umNT: Truncate o and put ng = (S,%/\/l?) -

(S7_,/~k — 1); then

{82/ o} =
>,

o0
md? <y Plaz kv < 26 (),
a>k} k=1
now use Schwarz’s inequality followed by Fatou’s lemma.]
The next two problems are meant to give an idea of the passage from
discrete parameter martingale theory to the continuous parameter theory.
13. Let {X,, #;t € [0, 1]} be a continuous parameter supermartingale.
For each t € [0, 1] and sequence {r,} decreasing to t, {X,, } converges a.e. and
in L'. Foreacht € [0, 1] and sequence {t,} increasing to t, {X,, } converges a.e.
but not necessarily in L!. [HiNT: In the second case consider X, — £{X, | 7, }.]
*14. In Exercise 13 let O be the set of rational numbers in [0, 1]. For
gach r € (0, 1) both limits below exist a.e.:

limX,, limX;.
it sif

ve() sef}

[HINT: Let {Q,,, n > 1} be finite subsets of Q such that @, 1 Q; and apply the
-upcrossing inequality to {X;, s € Q). then let n — co.]



