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ABSTRACT. We consider the problem of identifying current coupons for Agency backed To-be-Announced

pools of residential mortgages. Such coupons, or mortgage originationrates, ensure par valued pools. In a dou-

bly stochastic reduced form model which allows for prepayment intensities to depend upon both current and

origination mortgage rates, as well as underlying investment factors, weidentify the current coupon with solu-

tions to a degenerate elliptic, non-linear fixed point problem. Using Schaefer’s theorem we prove existence of

current coupons. We also provide an explicit approximation to the fixed point, valid for compact perturbations

off a baseline factor-based intensity model. Numerical examples are provided which show the approximation

performs well in estimating the current coupon.

1. INTRODUCTION

The goal of this paper is to prove existence ofendogenousmortgage origination rates, defined as those

which yield par-valued mortgage pools. For Agency backed (e.g. FNMA,FHLMC, GNMA) To-be-

Announced (TBA) pools of residential mortgages, such rates are also calledcurrent coupons. In addition

to proving existence of current coupons, we wish to provide a fast, easy to implement, and accurate way of

computing current coupons, as it is well known (see [12, 10]) that iterative, monte-carlo or partial differen-

tial equation based methods are prohibitively time-consuming to implement.

The residential mortgage market is currently the largest segment of the US fixed income market (see

[19]) and the problem of pricing Mortgage Backed Securities (MBS) is ofsignificant financial interest.

The primary difficulty in pricing MBS, however, is the fact that the home buyer has, at any time prior

to maturity of the loan, the right to prepay all or part of her mortgage with few,if any, penalties. In

particular, the mortgagor may refinance (multiple times) her loan in order to take advantage of current

market conditions. Adding to the complication is the well known fact that individual borrowers vary in

their financial sophistication and often do not prepay optimally. For example many mortgagors delay their

refinancing decisions even when interest rates decline to a level such that it is financially optimal to refinance

(see [27]).

Agency backed MBS has been the major component of the MBS market sincethe financial crisis. Is-

suance of agency MBS has remained robust since 2007 while mortgage securitization by private financial

institutions has declined to very low levels (see [26]). A well-known featureof agency MBS is that each

bond carries either an explicit government credit guarantee, or is perceived to carry an implicit one. Agency
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MBS investors are thus protected from credit losses in case of borrower default, and as such, for valuation

purposes, defaults appear to the pool holder nearly identical to prepayments.

Another less well-recognized feature of agency MBS is that more than 90 percent of agency MBS trading

volume occurs in a liquid forward market, known as the TBA market (see [25]). The distinguishing feature

of a TBA trade is that the actual identity of the securities to be delivered on thesettlement date is not

specified on the trade date. Instead, the buyer and the seller agree upongeneral parameters of the securities

to be delivered, such as issuer, maturity, coupon, price, par amount and settlement date. Closely related

to TBA mortgage-backed securities is the secondary-market MBS rate, known as the current coupon. The

current coupon is a coupon rate interpolated from the observed TBA prices that makes the price of a TBA

with current delivery month equal to par. As such, the current couponis an endogenous rate, and current

coupon rates are widely used as a benchmark for MBS pool valuation, playing a key role in the secondary

mortgage market.

Broadly speaking, within the academic literature, there are two methods used tovaluate MBS: the “option

theoretic” and “reduced form” methods (see [12, 9] for a more thoroughintroduction and literature review).

The option theoretic method treats the right to prepay as an American style embedded option and MBS

valuation is performed using options pricing theory. Early results along this linewere obtained in [3, 16, 15].

However, it was quickly recognized that option theoretic methods suffer due to the non-optimal prepayment

behavior of borrowers, and hence the option theoretic approach has not been widely adopted by mortgage

market practitioners.

Alternatively, the reduced form method borrows from the theory of credit derivative valuation and as-

sumes prepayments are driven by an underlying intensity process which may be estimated from historical

data. Here, the non-optimality of prepayment behavior is built into the intensity function. Reduced form

methods have been studied in [22, 21, 16, 2, 12, 11, 9, 10, 29] amongstothers. In this paper, we consider

the reduced form method. We pay particular attention to [12], which computesrates when the intensity is

driven by one (or many) economic factors and [11], which considers similar intensities to those we treat.

Aside from the amortizing nature of a mortgage loan, the key difference between MBS and credit deriv-

ative valuation is the dependence of the mortgage pool value on the mortgageorigination rate. Indeed, one

has the heuristic relationship

Mortgage Rate:m0 =⇒ Prepayment Time:τ(m0) =⇒ Pool Value:M(m0).

Thus, there is a natural and delicate fixed point problem in findingm0 so thatM(m0) = P0 is par valued,

whereP0 is the initial loan amount. In reduced form models, this circular dependence iscaptured in the

prepayment intensity function. This is in contrast to credit valuation, whereone typically expresses the

default intensityγ as a function of the underlying economic factor, or state variable, process X. Indeed,

whereas an intensity specificationγt = γ(Xt) may be appropriate for credit derivatives, for MBS valua-

tion, it is desirable to allowγ to additionally depend upon both the mortgage origination ratem0 and the

current mortgage ratemt available for refinancing: i.e.γt = γ(Xt,m0,mt). Thus, in a time-homogeneous

Markovian setting one hypothesizes thatmt = m(Xt) is a function of the underlying economic factors and
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hence

(1.1) γt = γ(Xt,m(X0),m(Xt)).

With this specification, our goal is to find acurrent coupon functionm so that the pool valueM(m(X0)) =

P0 for all valuesX0. The main result of the paper (Theorem 3.9) provides natural conditionsonX, γ under

which such functionsm exist.

[21] and [9, 11] first incorporated the endogenous mortgage rate into an intensity-based framework,

taking into account the dependence ofγ on bothm0 andmt. In particular, [11] presented a proof of

the existence of a current coupon in a diffusion model similar to that presently considered. However, the

existence proof in [11], based on a so-called "Lebesgue set method",is highly non-standard, contains a

questionable result in one of its supporting propositions∗, and is only able to yield measurable solutionsm.

By contrast, our method of proof, in using standard topological fixed point theorems, has the advantages

that it both provides a clear road-map to extending results to more elaborate models (e.g. taking into account

heterogeneous borrowers and default), and enables us to proveα-Hölder regularity in the current coupon

function.

Equally important as identifying existence of current coupons is actually computing the current coupon.

Indeed, a naive application of the contraction principle where one fixes an initial functionm0 and then

setsmn(X0) = M(mn−1(X0)), n = 1, 2, ... with the idea thatmn → P0, while not only theoretically

unjustified, is also prohibitively slow. To overcome this problem, [12] writes the intensity as solely a

function of the underlying factors with the idea that this captures the bulk of prepayments. Then, for CIR

interest rates, the endogenous rate is rapidly computed using eigen-function expansions. In [10] a non-

iterative method is proposed borrowing ideas from partial differential equations theory. In the current paper

we take an alternate approach, approximating the current coupon via perturbation analysis. Thus uses the

well known fact (see [11]) that unique current coupon functions exist whenγt = γ(Xt) only depends upon

the factors. Next, we note that forγ = γ(x,m, z) as in (1.1), we may always write

(1.2) γ(x,m, z) = γ0(x) + γ1(x,m, z),

by takingγ0(x) ≡ 0, but also in the case where the full intensity takes the form in (1.2) (see Section 5 for a

commonly used example). We then embed this decomposition via

γε(x,m, z) = γ0(x) + εγ1(x,m, z); ε > 0.

For ε = 0, there is a unique current coupon functionm0(x): see Proposition 4.1 below. Sendingε → 0

we obtain a unique, explicit, closed form expression form1(x) so thatmε(x) = m0(x) + εm1(x) + o(ε).

With this decomposition, valid for any continuous fixed pointmε, we naturally consider the numerical

approximation (atε = 1) of m(x) ≈ m0(x) + m1(x). It turns out this approximation does very well in

practice: differing by less than10 basis points (on absolute rate levels of4% − 12%) from the theoretical

fixed point determined by naive contraction: see Section 5.

∗See [11, Proposition 4.1], and using the notation therein, takeγe
≡ 0, γr

≡ 1, f ≡ 1 andδ > 0 for a counter-example.
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The rest of the paper is organized as follows. In Section 2 we give a heuristic derivation of the fixed point

problem. Section 3 specifies the fixed point problem to a Markovian framework whereX is a non-explosive

locally elliptic diffusion on a general domain inRd, making precise assumptions on the model coefficients,

as well as the intensity function. Section 3 culminates with Theorem 3.9 which proves existence of a current

coupon function, under the assumption thatγ(x,m, z) is approximately constant inm for large values of

m (see Remark 3.7 for more discussion on our main assumption). Section 4 performs the perturbation

analysis with Theorem 4.3 explicitly identifying the leading order terms in the expansion. Section 5 gives

a numerical example where the current coupon approximated via perturbation analysis is compared to the

function obtained through naive contraction. Appendices A – D contain theproofs. In particular, as the

mortgage market is typically incomplete, a rigorous construction of the particular risk neutral measures

used here for pricing is given. Aside being done for the sake of mathematical rigor, we show that when

pricing the mortgage pool, one may assume the intensity processes coincide between the physical and risk

neutral measures and hence can be estimated using observed prepayment data.

2. ENDOGENOUSCURRENT COUPONS

Consider a level-payment, fully amortizedT -year fixed rate mortgage which is originated at timet =

0. The mortgagor thus takes a loan ofP0 dollars at origination and pays a continuous coupon stream at

the constant rate ofc > 0 dollars per annum during the lifetime of the mortgage[0, T ]. The interest is

compounded at the constant mortgage ratem > 0 fixed at origination. In the absence of prepayments, the

scheduled outstanding principal of the mortgage, denoted byp(t,m) for 0 ≤ t ≤ T andm > 0, satisfies

the following ordinary differential equation:

(2.1) pt(t,m) = mp(t,m)− c; p(0,m) = P0, p(T,m) = 0,

wherept is the partial derivative with respect tot. (2.1) has solution

(2.2) p(t,m) = P0
1− e−m(T−t)

1− e−mT
.

SinceP0 factors out of the above equation, we assumeP0 = 1 throughout so that

(2.3) p(t,m) =
1− e−m(T−t)

1− e−mT
.

From (2.1) and (2.3) we can express the coupon stream paymentc in terms ofm andT as well:

(2.4) c = c(m) =
m

1− e−mT
.

We first informally derive a fixed point equation for the current couponm. This argument will be made

rigorous in Section 3 and Appendix D below. In the absence of prepayments, the mortgage balancep(t,m)

evolves according to (2.3). Consider now when there is a (random) prepayment timeτ under a pricing

measureQ (here, the underlying probability space is(Ω,G,Q)). In other words, ifτ ≤ T , the owner of
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the mortgage at timeτ prepays the remaining balancep(τ,m). Assuming an interest rater = {rt}t≤T the

value of the mortgage is

(2.5) M(m) = EQ




∫ τ∧T

0
c(m)e−

∫ t

0 rududt

︸ ︷︷ ︸
Coupon Payments

+1τ≤T p(τ,m)e−
∫ τ

0 rudu

︸ ︷︷ ︸
Prepayment


 .

Next, assume that the interest rate process is adapted to a filtrationF = {Ft}t≤T whereF = ∨t≤TFt ⊂ G
and thatτ has an intensityγ = {γt}t≤T with respect to(Q,F):

(2.6) Q

[
τ > t

∣∣∣∣F
]
† = Q

[
τ > t

∣∣∣∣Ft

]
= e−

∫ t

0 γudu t ≥ 0,

for some non-negative, integrable, adapted processγ. From this, we obtain (see [11, 12]) the value of the

mortgage as

(2.7) M(m) = 1 + EQ

[∫ T

0
p(t,m)(m− rt)e

−
∫ t

0 (ru+γu)dudt

]
.

The mortgage ratem is said to beendogenousif M(m) = P0 = 1. In view of 2.7, we seekm so that

(2.8) 0 = EQ

[∫ T

0
p(t,m)(m− rt)e

−
∫ t

0 (ru+γu)dudt

]
.

3. THE MODEL AND FIXED POINT PROBLEM

The above analysis is now specified to a doubly stochastic, intensity based model for the mortgage

prepayment timeτ . To make this precise, fix a probability space(Ω,G,Q). We first remark:

Remark3.1. The measureQ is interpreted as a pricing, or risk neutral, measure and we writeE [·] for

EQ [·] throughout. In Appendix D we offer two rigorous constructions ofQ: one valid for a “large” pool

and one valid for a single loan pool. In particular we will show that when estimating the prepayment

intensity functionγ described in Assumption 3.6 below, one may use observed prepayment datarather than

estimating prepayments under the particular risk neutral measureQ. For ease of exposition, however, we

delay this construction, simply assuming a mortgage ratem is the current coupon if it satisfies (2.8).

LetW be a standard, d-dimensional Brownian motion underQ. The underlying economic factors which

affect prepayments are governed by the processX satisfying the stochastic differential equation (SDE)

(3.1) dXt = b(Xt)dt+ a(Xt)dWt.

The state space ofX is an open, connected regionD ⊆ Rd which satisfies

Assumption 3.2. D = ∪∞
n=1Dn where for eachn, Dn is open and bounded with smooth boundary. Fur-

thermore,D̄n ⊂ Dn+1.

†This equality requires an additional hypotheses on howτ is constructed and will be shown to hold in the current setup.
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Regarding the coefficients in (3.1) we assume thatb : D 7→ Rd and letA : D 7→ Sd++, the space of

symmetric positive definited × d matrices. We then takea =
√
A, the unique positive definite symmetric

square root ofA. We assumeb, A satisfy the following regularity and local-ellipticity assumptions

Assumption 3.3.

1) A is locally elliptic: i.e. for eachn there existsK1(n) > 0 so that for allξ ∈ Rd \ {0} andx ∈ Dn we

haveξ′A(x)ξ ≥ K1(n)ξ
′ξ.

2) b andA are locally Lipschitz with Lipschitz constantK2(n).

Assumption 3.3 implies existence of a local solution solution to the SDE in (3.1). To ensure existence of

a global solution we assume the process does not explode: i.e.

Assumption 3.4. For all x ∈ D andT > 0, we haveQx [Xt ∈ D, ∀ t ≤ T ] = 1, whereQx denotes the

conditional probability givenX0 = x.

Under Assumptions 3.3, 3.4 it follows thatX has a unique strong solution. Furthermore, since the short

term interest rater plays a key role in the mortgage evaluation, we assume the first coordinate ofX is the

interest rate: i.e.X(1)
t = rt and that the state space ofX(1) is (0,∞): i.e.

Assumption 3.5. The state space ofr := X(1) is (0,∞).

To precisely define the intensityγ in (2.8) we adopt the following methodology. Letm : D 7→ [0,∞) be

a given candidate current coupon function, in that we wish form(x) to be the endogenous current coupon

givenX0 = x ∈ D. As mentioned in the introduction, we hypothesizeγ is a function of

• The underlying factor processX.

• The contract mortgage ratem(x).

• The current mortgage rate available via refinancingm(X)‡.

Thus, at timet ≤ T we haveγt = γ(Xt,m(x),m(Xt)), whereγ : D × [0,∞)× [0,∞) is an exogenously

defined function. To facilitate our main assumption onγ we first define the auxiliary function

(3.2) Ξ(x) := inf
0<β<1

βe−βx

(1− β)(1− e−βx)
; x > 0.

Straightforward analysis shows thatΞ is decreasing withx and

(3.3) Ξ(x) =
1

x
for x ≤ 2; lim

x↑∞

Ξ(x)

xe−(x−1)
= 1.

With this definition, we make the following assumptions regardingγ. To ease presentation, defineE :=

D × (0,∞)× (0,∞) andEn := Dn × (0, n)× (0, n), n ∈ N.

Assumption 3.6. Assumeγ : E 7→ [0,∞) satisfies

‡Technically we should allowm to be time-dependent as well: i.e.mt = m(t,Xt) but, due to the time-homogeneity of the

diffusionX, it suffices to considermt = m(Xt).
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1) γ ∈ C2(E) and for eachn, the derivatives of order≤ 2 can be continuously extended tōEn
§, and are

Lipschitz continuous on̄En with Lipschitz constantLγ(n).

2) γ(x,m, z) andγm(x, 0, z) are locally bounded inx, uniformly in (m, z) andz respectively. I.e. for each

n there is aBγ(n) > 0 so that

(3.4) sup
x∈Dn,m,z≥0

γ(x,m, z) ≤ Bγ(n); sup
x∈Dn,z≥0

γm(x, 0, z) ≤ Bγ(n).

3) WithΞ as in (3.2), it holds that

0 ≤ γm(x,m, z) ≤ Ξ(mT ); x ∈ D,m, z ≥ 0.(3.5)

Remark3.7. Regarding Assumption 3.6, thatγ ≥ 0 is standard. The local regularity conditions are not

overly restrictive since we do not require global bounds on the derivatives’ size and (3.4) is an extension of

the case whenγ is uniformly bounded.

However, condition3) deserves comment. First of all, it automatically holds whenγ is independent of the

time 0 contract ratem = m(X0). Whenγ does depend uponm, thatγm ≥ 0 is natural since prepayments

should rise with the origination rate. Next, under the given regularity assumptions we have (see (3.4)):

(3.6) γm(x,m, z) ≤ Bγ(n) + Lγ(n)m; x ∈ Dn;m, z ∈ [0, n].

SinceΞ(mT ) = 1/(mT ) for smallm we see that in fact, (3.5) is not restrictive for smallm. But, form

large it does imply thatγ is approximately constant inm. Note that forT = 30 the thresholdmT ≤ 2 is

satisfied form ≤ 6.67%.

With the following assumptions in place we define what it means form to be a current coupon function:

Definition 3.8. m : D 7→ [0,∞) is acurrent coupon functionif (2.8) holds under the measureQx for all

x ∈ D: i.e.

(3.7) 0 = Ex

[∫ T

0
p(t,m(x))(m(x)− rt)e

−
∫ t

0 (ru+γ(Xu,m(x),m(Xu)))dudt

]
; x ∈ D.

A current coupon function is a fixed point of a non-linear operatorA. To see this, note thatm(x) is

deterministic and hence we can write (3.7) as

(3.8) m(x) = A[m](x) :=
Ex
[∫ T

0 p(t,m(x))rte
−
∫ t

0 (ru+γ(Xu,m(x),m(Xu)))dudt
]

Ex
[∫ T

0 p(t,m(x))e−
∫ t

0 (ru+γ(Xu,m(x),m(Xu))dudt
] .

The complicating features of the above operator are the non-linearity ofA in m, and the joint dependence

of γ on bothm(x),m(Xt). Indeed, the first feature means that it is prohibitively difficult to verify ifA is

a contraction, and hence we we will have to appeal to a topological fixed point theorem for existence of

solutions. Second, due to the presence ofm(x) within the expectation,a-priori we do no expect any

smoothing of the mapm 7→ A[m], or thatA possesses the compactness properties necessary to invoke any

§Henceforth we will assumeγ and its derivatives of order≤ 2 are defined onD× [0,∞)× [0,∞) with the values at zero being

the continuous extensions.
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classical topological fixed point theorem. However, through a delicate localization argument, fixed points

do exist under the current assumptions, as Theorem 3.9 now shows. The lengthy proof is given in Appendix

A below.

Theorem 3.9. Let Assumptions 3.2 – 3.6 hold. Then, there exists a strictly positive currentcoupon function

m: i.e. (3.7)holds. The functionm is locallyα-Hölder continuous for allα ∈ (0, 1).

4. PERTURBATION ANALYSIS

Theorem 3.9 asserts the existence of current coupon function. However, since our method of proof does

not use the contraction principle, we do not know if solutions are unique and do not automatically have a

method to compute them. One may certainly try an iterative procedure in (3.8), starting with an arbitrary

functionm0 on D and, definingmn = A[mn−1], n = 1, 2, . . . , but absent a contraction, it is not clear

if this procedure converges. Thus, in this section, we offer a perturbation analysis where the intensityγ

is perturbed off of a baseline intensityγ0 which only depends upon the factors processX. The goal is to

uniquely identifym up to leading orders of the perturbation. With this identification, we then in the next

section provide a numerical approximation to the fixed point and compare its performance.

As a starting point, we present a proposition, similar to [11, Lemma 2.1], which shows that whenγ0 =

γ0(X) only depends upon the factor processX, there is a unique current coupon function.

Proposition 4.1. Let Assumptions 3.2 – 3.5 hold. Assumeγ(x,m, z) = γ0(x): and thatγ0 satisfies1)− 2)

in Assumption 3.6. Then there exists a unique fixed pointm(x) solving(3.7), which in this instance reduces

to

(4.1) 0 = Ex

[∫ T

0
p(t,m(x))(m(x)− rt)e

−
∫ t

0 (ru+γ0(Xu))dudt

]
.

The functionm is locallyα-Hölder continuous onD for anyα ∈ (0, 1).

Proof of Proposition 4.1.Fix x ∈ D. For t ≤ T define

f(t) := Ex
[
e−
∫ t

0 (ru+γ(Xu))du
]
; F (t) :=

∫ t

0
f(u)du,

g(t) := Ex
[
rte

−
∫ t

0 (ru+γ(Xu))du
]
; G(t) :=

∫ t

0
g(u)du.

(4.2)

Next, define

h(T,m) := emT

∫ T

0

(
1− e−m(T−t)

)
(mf(t)− g(t)) dt; T > 0,m > 0.

Note that we will have a solution to (4.1) if for eachx ∈ D,T > 0 we can find a numberm = m(x) > 0

such thath(T,m) = 0. Indeed, this follows by plugging inp(t,m) from (2.3) and noting thatemT , 1 −
e−m(T−t) are strictly positive. To find such anm, note thath(0,m) = 0 and

∂

∂T
h(T,m) = memT

∫ T

0
(mf(t)− g(t)) dt = memT (mF (T )−G(T )),
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so thath(T,m) =
∫ T
0 memt(mF (t)−G(t)) dt. Now, forG from (4.2) we have

G(t) = Ex

[∫ t

0
(ru ± γ(Xu)) e

−
∫ u

0 (rv+γ(Xv))dvdu

]
;

= 1− Ex

[∫ t

0
γ(Xu)e

−
∫ u

0 (rv+γ(Xv))dvdu

]
− Ex

[
e−
∫ t

0 (rv+γ(Xv))dv
]
;

= H(t)− Ḟ (t),

where we have setH(t) := 1− Ex
[∫ t

0 γ(Xu)e
−
∫ u

0 (rv+γ(Xv))dvdu
]
. Sincer > 0:

(4.3) H(t) > 1− Ex

[∫ t

0
(ru + γ(Xu)) e

−
∫ u

0 (rv+γ(Xv))dvdu

]
= Ḟ (t) > 0.

Coming back toh we have

h(T,m) =

∫ T

0
memt

(
mF (t) + Ḟ (t)−H(t)

)
dt = m

(
emTF (T )−

∫ T

0
emtH(t) dt

)
.

Hence,h(T,m) = 0 is equivalent toF (T ) −
∫ T
0 e−m(T−t)H(t)dt = 0. Using (4.3) it is clear that, as a

function ofm, the left hand side is strictly increasing, takes the valueF (T ) −
∫ T
0 H(t)dt < 0 at 0, and

limits to F (T ) > 0 asm ↑ ∞. Thus, there is a uniquem so thath(T,m) = 0. The statement regarding the

regularity ofm follows from Theorem 3.9 since fixed points are unique in this case.

�

Having established existence and uniqueness in the baseline case, we nowperform the perturbation anal-

ysis. To do so, assume

Assumption 4.2. γ(x,m, z) = γ0(x) + εγ1(x,m, z) whereγ0 satisfies parts1), 2) of Assumption 3.6 and

γ1 ∈ C2(E) is compactly supported with derivatives which are continuously extendabletoD×{0}× {0}.

Under Assumptions, 3.2 – 3.5 and 4.2 it follows from Theorem 3.9 that forε > 0 small enough, there

exists a continuous current coupon functionmε. In fact,mε is unique up to leading orders ofε as well as

explicitly identifiable, as the following theorem shows:

Theorem 4.3. Let Assumptions 3.2–3.5 and 4.2 hold. Forε > 0 small enough, letmε be any current

coupon function, continuous onD. Then we have

(4.4) mε(x) = m0(x) + εm1(x) + o(ε).

Above, the convergence is locally uniform forx ∈ D. The functionm0 is the unique fixed point from

Proposition 4.1 and, forx ∈ D

(4.5)

m1(x) =
Ex
[∫ T

0 (m0(x)− rt) p(t,m0(x))
(∫ t

0 γ1(Xu,m0(x),m0(Xu))du
)
e−
∫ t

0 (ru+γ0(Xu))dudt
]

Ex
[∫ T

0 ((m0(x)− rt)pm(t,m0(x)) + p(t,m0(x))) e
−
∫ t

0 (ru+γ0(Xu))dudt
] .



10 ZHE CHENG AND SCOTT ROBERTSON

Though the formula form1 is lengthy, the point of Theorem 4.3 is that it isexplicitly identifiablegiven

m0, the unique fixed point in the baseline case. Additionally, as will be used in thefollowing section,

we point out that the formula form1 makes perfect sense as long as the relevant random variables and

expectations are well defined. In particular,γ1 need not be compactly support andγ0, γ1 need not beC2 in

order for the above formula to make sense.

Proof of Theorem 4.3.For ε > 0 small enough, letmε(x) beanycontinuous solution of (3.7) (or equiva-

lently (3.8)) withγ = γ0 + εγ1. From Theorem 3.9 we know at least one such function exists. First, since

p(t,m) ≤ 1, γ ≥ 0, r ≥ 0 the numerator in (3.8) is bounded above by

(4.6) Ex

[∫ T

0
rte

−
∫ t

0 rududt

]
≤ 1.

Second, using thatγ1 is compactly supported (and hence bounded above by someCγ1) and Lemma C.1

below it follows for anyε0 > 0 small enough, the denominator in (3.8) is bounded below by, forε < ε0:

1

2
e−ε0Cγ1TEx

[∫ T/2

0
e−
∫ t

0 rudtdt

]
.

As a function ofx the above is continuous and strictly positive inD, where this latter fact follows from

the elliptic Harnack inequality: see [20, Chapter 4]. Thus,mε is locally bounded onD, uniformly in

0 < ε < ε0. Now, recall (3.7), specified to the current setup:

0 = Ex

[∫ T

0
(mε(x)− rt) p(t,m

ε(x))e−
∫ t

0 (ru+γ0(Xu)+εγ1(Xu,mε(x),mε(Xu)))dudt

]
.(4.7)

We first claim that for eachx ∈ D, limε↓0m
ε(x) = m0(x). Indeed, sincemε is locally bounded in

D, uniformly in 0 < ε < ε0, it follows for eachx ∈ D that {mε(x)}ε<ε0
is uniformly bounded. Let

εn → 0 and assumemεn(x) → m̃(x) for somem̃(x). Sinceγ1 is continuous and compactly supported, the

dominated convergence theorem yields

0 = Ex

[∫ T

0
(m̃(x)− rt)p(t, m̃(x))e−

∫ t

0 (ru+γ0(Xu))dudt

]
,

and so by the uniqueness ofm0 from Proposition 4.1 we know that̃m(x) = m0(x). Since this works for

all subsequencesεn → 0 the convergence result holds. Next, definem through

(4.8) mε(x) = m0(x) + εm(x, ε); x ∈ D, ε < ε0.

Using Taylor’s theorem we have

mε(x)− rt = m0(x)− rt + εm(x, ε);

p(t,mε(x)) = p(t,m0(x)) + εm(x, ε)pm(t,m0(x)) +
1

2
ε2m(x, ε)2pmm(t, ξ(x, ε));

e−ε
∫ t

0 γ1(Xu,mε(x),mε(Xu))du = 1− ε

∫ t

0
γ1(Xu,m

ε(x),mε(Xu))du

+
1

2
ε2
(∫ t

0
γ1(Xu,m

ε(x),mε(Xu))du

)2

ξ̂(x, ε, t),
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where

|ξ(x, ε)| ≤ ε|m(x, ε)|; 0 ≤ ξ̂(x, ε, t) ≤ eε
∫ t

0 γ1(Xu,mε(x),mε(Xu))du.

Plugging these expansions back into (4.7) and collecting terms by explicit powers ofε, the zeroth order

term is

Ex

[∫ T

0
(m0(x)− rt)p(t,m0(x))e

−
∫ t

0 (ru+γ0(Xu))dudt

]
= 0,

where the equality follows from Proposition 4.1. The first order (inε) terms, within the expectation and

time integral, are

m(x, ε)p(t,m0(x)) +m(x, ε)(m0(x)− rt)pm(t,m0(x))

− (m0(x)− rt)p(t,m0(x))

∫ t

0
γ1(Xu,m

ε(x),mε(Xu))du.

Using the given regularity, local boundedness and compactly supportedassumptions, all higher order terms

together areO(ε2), uniformly on compact subsets ofD. Since the zeroth order term vanishes, we may

divide (4.7) byε > 0 to obtain

0 = m(x, ε)Ex

[∫ T

0
(p(t,m0(x)) + (m0(x)− rt)pm(t,m0(x))) e

−
∫ t

0 (ru+γ0(Xu))dudt

]

+ Ex

[∫ T

0
(m0(x)− rt)p(t,m0(x))

∫ t

0
γ1(Xu,m

ε(x),mε(Xu))du e−
∫ t

0 (ru+γ0(Xu))dudt

]
+

O(ε2)

ε
,

which can be re-written as

m(x, ε) =
Ex
[∫ T

0 (m0(x)− rt)p(t,m0(x))
∫ t
0 γ1(Xu,m

ε(x),mε(Xu))du e−
∫ t

0 (ru+γ0(Xu))dudt
]
+ O(ε2)

ε

Ex
[∫ T

0 (p(t,m0(x)) + (m0(x)− rt)pm(t,m0(x))) e
−
∫ t

0 (ru+γ0(Xu))dudt
] ;

= m1(x) +
Ex
[∫ T

0 (m0(x)− rt)p(t,m0(x)R(t;x, ε)e−
∫ t

0 (ru+γ0(Xu))dudt
]
+ O(ε2)

ε

Ex
[∫ T

0 (p(t,m0(x)) + (m0(x)− rt)pm(t,m0(x))) e
−
∫ t

0 (ru+γ0(Xu))dudt
] ,

where

R(t;x, ε) :=

∫ t

0
(γ1(Xu,m

ε(x),mε(Xu))− γ1(Xu,m0(x),m0(Xu))) du.

We have already shown thatmε(x) → m0(x). Sincemε is continuous,mε converges tom0 uniformly

on compact subsets ofD. Sinceγ1 is C2 and compactly supported it thus follows by the dominated con-

vergence theorem thatlimε↓0m(x, ε) − m1(x) = 0 with uniform convergence on compact subsets ofD,

finishing the result.

�

5. A NUMERICAL APPROXIMATION

Theorem 4.3 offers a natural numerical approximation for computing current coupon functions. Namely,

for a given intensity functionγ we first identify if there is a decomposition

(5.1) γ(x,m, z) = γ0(x) + γ1(x,m, z),
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and then we computem0 from γ0, definem1 as in (4.5) and output the approximation from Theorem 4.3 at

ε = 1: i.e.

(5.2) m(x) ≈ m0(x) +m1(x).

Note that this approximation is obtainable as long asm0,m1 are well defined, and does not necessarily

requireγ0, γ1 to satisfy the regularity and growth conditions in Assumption 3.6. Computationally,the

advantage of this approximation over naive contraction is clear: there is only one Monte Carlo simulation

(for eachx ∈ D along a give mesh) needed to computem1.

Next, we point out that a decomposition (5.1) is always possible since one may takeγ0 = 0. In this

instance,m0(x) from Proposition 4.1 solves

(5.3)
1− e−m0(x)T

m0(x)T
=

1

T

∫ T

0
EQx

[
e−
∫ t

0 rudu
]
dt; x ∈ D.

For many models of interest (e.g. see [24, Example 6.5.2] for whenr ∼ CIR), the expectation on the right

hand size is explicitly computable andm0 is easily obtained by inverting the strictly decreasing function

y 7→ (1− e−y)/y. Alternatively, if there is someγ > 0 so thatγ(x,m, z) ≥ γ then one can takeγ0(x) = γ

andγ1(x,m, z) = γ(x,m, z)− γ. Here, for constantγ0 = γ calculation shows thatm0 satisfies

(5.4)
1− e−m0(x)T

m0(x)
=

∫ T

0
e−γtEQx

[
e−
∫ t

0 rudu
](

1 + γ
1− e−m0(x)(T−t)

m0(x)

)
dt,

which is easy to obtain numerically given an explicit formula forEx
[
e−
∫ t

0 ru
]
. Oncem0 is known, one

then may computem1 using Monte Carlo simulation.

5.1. An Example. We now take an example similar to that in [12, Section 6] and assumeX is a CIR

process (i.e.d = 1, D = (0,∞) andX(1) = r is a CIR process) andγ takes the form

(5.5) γ(x,m, z) = γ + k(m− z)+.

Thus, there is a constant baseline prepayment intensityγ (reflecting turnover: i.e. prepayments not related to

refinancing) which is adjusted upwards (reflecting the refinancing incentive) by the difference between the

contract ratem and refinancing ratez, when this value is positive. This adjustment is then scaled by a factor

k > 0. As in [12], we will assumek = 5 so this is not necessarily a small perturbation off the baseline case.

Here, we perform two approximations. The first setsγ0(x) = 0, γ1(x) = γ + k(m − z)+, computesm0

from (5.3), and thenm1 from (4.5). The second approximation takesγ0(x) = γ, γ1(x,m, z) = k(m− z)+

computesm0 from (5.4) and thenm1 from (4.5). For each approximation we comparem0 + m1 to the

’‘theoretical fixed point”m obtained by naive contraction, which in this instance converges rapidly (e.g.

after approximately five iterations) to a fixed function for a given initial guessm(0). The model parameters

are the same in [12]: ifdrt = κ(θ − rt)dt + σ
√
rtdWt thenκ = 0.25, θ = 0.06, σ = 0.1. Additionally,

γ = 0.045 andk = 5.

Figure 1 comparesm0 +m1 to m whenγ0(x) = 0. As shown in the right plot, the approximation does

very well, differing by less than20 basis points (for an absolute level of4%−12%)within the(2.5%, 97.5%)
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FIGURE 1. Current coupon functions (left plot) and errors (right plot) as a function of the

underlying CIR factor. In the left plot, the solid line is the current coupon functionm

obtained through naive contraction. The thick-dash plot is the approximation m0 + m1

while the thin dash plot ism0. Values are given in percentage points. For the right plot, the

error is the difference (in basis points) betweenm andm0+m1. Also in the right plot is the

invariant pdf for the CIR processr. m0 is calculated withγ0(x) = 0 andm1 is calculated

with γ1(x,m, z) = γ + k(m− z)+. Parameters areκ = 0.25, θ = 0.06, σ = 0.1, T = 30,

k = 5 andγ = 0.045. Computations were performed usingMatlab, Mathematicaand the

code can be found on the author’s websitewww.math.cmu.edu/users/scottrob/research.

percentiles of the CIR invariant distribution. In the “middle” of the invariant distribution, the approximation

is virtually identical to the naive fixed point, with errors consistently between0− 5 basis points.

Figure 2 makes a similar comparison, usingγ0(x) = γ. Here, the performance is significantly improved

with the(2.5%, 90%) percentiles in that the approximationm0 +m1 is nearly identical to the functionm

obtained through niave contraction. Indeed, the difference betweenm0 + m1 andm is less than3 basis

points. However, for large values ofr the error is a bit larger than in the previous method, approaching

approximately7 basis points.

APPENDIX A. PROOF OFTHEOREM 3.9

A.1. Outline of the Proof. The goal is to show the existence of a functionm : D 7→ (0,∞) so that (3.8)

is satisfied. To do this, we will use Schaefer’s Fixed Point Theorem, statedhere for the convenience of the

reader

Theorem A.1 (Schaefer: [4]). LetK be a closed, convex subset of a Banach spaceX with 0 ∈ K. Assume

A : K 7→ K is continuous, compact and such that{u ∈ K | u = λA[u], 0 ≤ λ ≤ 1} is bounded. ThenA
has a fixed point inK.

It is thus necessary to define the Banach spaceX, closed convex subsetK and verify the given assump-

tions regardingA. ForX we would like to choose the space ofα-Hölder continuous functions onD and

haveK be the subspace of non-negative functions. However, asD is not necessarily bounded, and the co-

variance matrixa is not necessarily uniformly elliptic onD, we will have a difficult verifying the requisite
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FIGURE 2. Current coupon functions (left plot) and errors (right plot) as a function of the

underlying CIR factor. In the left plot, the solid line is the current coupon functionm

obtained through naive contraction. The thick-dash plot is the approximation m0 + m1

while the thin dash plot ism0. Values are given in percentage points. For the right plot, the

error is the difference (in basis points) betweenm andm0+m1. Also in the right plot is the

invariant pdf for the CIR processr. m0 is calculated withγ0(x) = γ andm1 is calculated

with γ1(x,m, z) = k(m − z)+. Parameters areκ = 0.25, θ = 0.06, σ = 0.1, T = 30,

k = 5 andγ = 0.045. Computations were performed usingMatlab,Mathematicaand the

code can be found on the author’s websitewww.math.cmu.edu/users/scottrob/research.

continuity and compactness of the operatorA. Thus, we must first localize the problem. At the localized

level we will obtain a fixed point using Schaefer’s theorem. We will then unwind the localization to get the

result. As such, the plan is:

1) Define an operatorAn related toA and show thatAn has a fixed pointmn > 0 defined onDn which is

α-Hölder continuous for allα ∈ (0, 1).

2) For eachm, obtain uniform (inn) Hölder norm estimates onDm for the fixed pointsmn, n ≥ m+ 1.

3) Show thatmn has convergent subsequence with limitm which solves the full fixed point problem.

As a first step in the above plan, we need to obtaina-prioi Hölder norm estimates on solutions to certain

partial differential equations (PDE) which are defined through expectations.

A.2. A Priori Estimates of Hölder norms. We first recall the standard definitions of the elliptic and

parabolic Hölder spaces. For a more thorough introduction to such spaces see [8] for the elliptic case and

[6, 17, 4] for the parabolic case.

Fix n ∈ N and recall the domain (i.e. open connected region)Dn is bounded with smooth boundary.

Fork ∈ N, denote byCk(Dn) the collection of functionsu onDn such that all partial derivatives of order

≤ k are continuous, and byCk(Dn) the subspace of functions with partial derivatives of order≤ k that are

continuously extend-able to∂Dn. Next, for a given functionu onDn andα ∈ (0, 1] set

|u|Dn := sup
x∈Dn

|u(x)|; [u]α,Dn := sup
x,y,∈Dn,x 6=y

|u(x)− u(y)|
|x− y|α .
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The spaceCk,α(Dn) is defined as the subset ofCk(Dn) consisting of those functionsu, whose partial

derivatives of order≤ k have finite| · |Dn norm and whose partial derivatives of orderk have finite[·]α,Dn

norm. On the spaceCk,α(Dn) define the norm

(A.1) ‖u‖k,α,Dn
:= |u|Dn +

k∑

j=1

sup
|β|=j

|Dβu|Dn + sup
|β|=k

[Dβu]α,Dn ,

whereβ is a multi-index consisting ofd non-negative integersβ1, ..., βd and |β| = ∑d
i=1 βi andDβu =

∂
|β|
β1,...,βd

. It is well known thatCk,α(Dn) with norm‖ · ‖k,α,Dn
is a Banach space. Lastly, whenk = 0 write

Cα(Dn) for C0,α(Dn) and‖ · ‖α,Dn
for ‖ · ‖0,α,Dn

.

For the parabolic Hölder norms, define the domainQn := (0, T )×Dn. A typical pointP ∈ Qn takes the

form P = (t, x), 0 < t < T, x ∈ Dn. ForP1 = (t, x), P2 = (t̄, x̄) ∈ Qn, the parabolic distance between

P1, P2 is d(P1, P2) = (|x− x̄|2+ |t− t̄|) 1
2 . Now, letα ∈ (0, 1]. We recall the definitions of standard Hölder

norms of a functionu defined onQn:

|u|0,n := sup
P∈Qn

|u(P )|; [u]α,n := sup
P1,P2∈Qn,P1 6=P2

|u(P1)− u(P2)|
d(P1, P2)α

;

|u|α,n := |u|0,n + [u]α,n ;

|u|2+α,n = |u|0,n +

d∑

i=1

|Diu|0,n +

d∑

i,j=1

|D2
iju|α,n + |Dtu|α,n.

(A.2)

Above,Diu = D1
0,...,1,...,0 andD2

iju = D2
0,...,1,...,1,...0u with the ones ati andi, j respectively.

We now prove three lemmas which establisha priori estimates (both local and global) for the‖ · ‖α,Dn

norm and‖·‖2,α,Dn
norm of some conditional expectation expressions, which will be essentialin the proofs

below. For eachn, denote byτn the the first exit time of the processX fromDn. Each of the lemmas below

concern the functionu : Dn 7→ R defined by

(A.3) u(x) := Ex

[∫ T∧τn

0
g(t,Xt)e

−
∫ t

0 h(u,Xu)dudt

]
; x ∈ Dn,

whereg(t, x) andh(t, x) are functions defined onQn. To ease presentation, the bounding constants below

may change from line to line, and then in the constants is assumed to absorbK1(n),K2(n), Bγ(n), Lγ(n)

of Assumptions 3.2–3.6, as well as the dimensiond, parabolic domainQn, and horizonT . We will keep the

dependence upon the Hölder parameterα explicit.

Lemma A.2 (GlobalC2,α estimate). Letu : Dn 7→ R be defined in(A.3) and assume for someα ∈ (0, 1],

g andh satisfy

|g|α,n < ∞; |h|α,n ≤ K3(n),

lim
y→x,t→T

g(t, y) = 0; x ∈ ∂Dn

for some positive constantK3(n). Then

‖u‖2,α,Dn
≤ C(n,K3(n), α) · |g|α,n.
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Proof. Clearlyu(x) = U(0, x), where

U(t, x) := Ex

[∫ T∧τn

t
g(s,Xs)e

−
∫ t

s
h(θ,Xθ)dθ dt

]
; t ≤ T, x ∈ Dn.

Under the given regularity and ellipticity assumptions, [6, Theorem 3.7] impliesU is the unique solution to

the Cauchy-Dirichlet problem

(A.4)





Ut + LU − h(t, x)U = −g(t, x), (t, x) ∈ Qn,

u(T, x) = 0, x ∈ Dn,

u(t, x) = 0, (t, x) ∈ [0, T ]× ∂Dn.

The boundary Schauder estimate (see [6, Theorems 3.6, 3.7] and note thecondition ong ast ↑ T, y → x is

the compatibility condition therein) for parabolic equations yields

‖u‖2,α,Dn
≤ |U |2+α,n ≤ C(n,K3(n), α)|g|α,n.

�

Lemma A.3 (GlobalCα estimate). Letu : Dn 7→ R be defined in(A.3) and assume for someα0 ∈ (0, 1]

thatg, h satisfy

|g|α0,n < ∞, |h|α0,n < ∞, |h|0,n ≤ K4(n),

for some positive constantK4(n). Then for allα ∈ (0, 1)

‖u‖α,Dn
≤ C(n,K4(n), α, α0) · |g|0,n.

Proof. Sinceg, h areα0-Hölder continuous, we can invoke [7, Theorem 5.2] regarding stochastic represen-

tations of solutions to parabolic PDEs to writeu(x) = U(0, x) whereU satisfies the linear parabolic PDE

in (A.4). Using the boundary BoundaryW 2,1
p estimate for parabolic equations in [17, Theorem 7.3.2] we

obtain for allp > 1,

‖U‖Lp(Qn) + ‖DU‖Lp(Qn) + ‖Ut‖Lp(Qn) ≤ C(n,K4(n), α0)|g|0,n.

Now, let α ∈ (0, 1). SinceQn is a Lipschitz domain we can apply the Sobolev embedding (Morrey’s

inequality) to get, for a sufficiently largep depending uponα (as well as the model coefficients, domain,

α0, etc.)

‖u‖α,Dn
≤ |U |α,n ≤ C(n,K4(n), α, α0)‖U‖W 1,p(Qn) ≤ C(n,K4(n), α, α0)|g|0,n.

�

Lemma A.4 (InteriorCα estimate). Letu : Dn 7→ R be defined in(A.3) and assume for someα0 ∈ (0, 1]

thatg, h satisfy

|g|α0,n < ∞, |h|α0,n < ∞, |h|0,n ≤ K4(n),

for some positive constantK4(n). Letα ∈ (0, 1). We then have for allm < n that

‖u‖α,Dm
≤ C(m,K4(m+ 1), α, α0) · (|g|0,m+1 + |U |0,m+1) ,
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whereU is satisfies the linear parabolic PDE(A.4).

Proof. Againu(x) = U(0, x), whereU satisfies (A.4). Set

Q′
m :=

(
0,

T

2

)
×Dm.

Forp ≥ 2, the interiorW 2,1
p estimate for parabolic equations [17, Theorem 7.22] yields

‖U‖Lp(Q′
m) + ‖DU‖Lp(Q′

m) + ‖Ut‖Lp(Q′
m) ≤ C(m,K4(m+ 1), α0) (|g|0,m+1 + |U |0,m+1) .

SinceQ′
m is a Lipschitz domain, Sobolev embedding yields for anyα ∈ (0, 1) by takingp large enough

that

‖u‖α,Dm
≤ ‖U‖α,Q′

m
≤ C(m,K4(m+ 1), α, α0)‖U‖W 1,p(Q′

m)

≤ C(m,K4(m+ 1), α, α0) (|g|0,m+1 + |U |0,m+1) ,

where above we have set‖ · ‖α,Q′
m

as theα-Hölder norm on the regionQ′
m.

�

A.3. The localized problem. Throughout this section, Assumptions 3.2–3.6 are in force. We first seek

functionsm = mn onDn satisfying (compare with (3.7)), for eachx ∈ Dn:

(A.5) Ex

[∫ T∧τn

0
(m(x)− rt)p(t,m(x))e−

∫ t

0 (ru+γ(Xu,m(x),m(Xu)))dudt

]
+

m(x)2

n(1− e−m(x)T )
= 0.

The second term above is a correction term introduced to establish local regularity of solutionsm, and will

vanish asn ↑ ∞. To establish existence of solutions, letα ∈ (0, 1) and fix a functionη ∈ Kn where

(A.6) Kn :=
{
η ∈ Cα(Dn) : η ≥ 0

}
,

and look for functionsm = mn,η solving, forx ∈ Dn:

(A.7) Ex

[∫ T∧τn

0
(m(x)− rt)p(t,m(x))e−

∫ t

0 (ru+γ(Xu,m(x),η(Xu)))dudt

]
+

m(x)2

n(1− e−m(x)T )
= 0.

I.e. we substituteη(Xt) for mn(Xt) in γ. Since limm↓0m
2/(1 − e−mT ) = 0 we define the second

term above to be0 whenm(x) = 0. Proposition A.7 below establishes existence and uniqueness of such

functionsmn,η. This defines the mapAn[η] := mn,η. Using thea-prioi estimates established in the

previous section we then verify this map satisfies the hypotheses of Schaefer’s theorem A.1 and hence there

is a fixed pointmn satisfyingmn = An[mn] which is equivalent tomn solving (A.5).

Before proving Proposition A.7 we state two technical lemmas, proved in Appendix B. First, define

(A.8) C(1)
n := sup

{
x(1) : x ∈ Dn

}
; Cn := sup {|x| : x ∈ Dn} ,

and note that any solution of (A.5) musta-priori satisfy 0 ≤ mn(x) < C
(1)
n . Additionally, as in the

previous section, the bounding constants below may change from line to line and their dependence onn is

understood to absorb the dependence upon the constantsK1(n),K2(n), Lγ(n), Bγ(n) of Assumptions 3.3,
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3.6, as well as the regionDn, dimensiond and maturityT . To state the lemmas, forη ∈ Kn define the

functionkn(m,x; η) for x ∈ Dn,m > 0 by

(A.9) kn(m,x; η) :=
1

m
Ex

[∫ T∧τn

0
(m− rt)

(
1− e−m(T−t)

)
e−
∫ t

0 (ru+γ(Xu,m,η(Xu)))dudt

]
+

m

n
,

and note from (2.3) that (A.7) holds if for eachx ∈ Dn we can findm = m(x) = mn,η(x) > 0 so that

kn(m,x; η) = 0. The first technical lemma establishes regularity ofkn in (x,m) for a fixedη.

Lemma A.5. Letα ∈ (0, 1) andη ∈ Kn and definekn as in(A.9). Then

1) For a fixedx ∈ Dn, kn(·, x; η) is continuously differentiable on(0,∞). Furthermore, there exists a

constantA(n) such that for allη ∈ Kn, m > 0 andx ∈ Dn:

(A.10)
1

n
≤ ∂mkn(x,m; η) ≤ A(n).

2) For a fixedm > 0, kn(m, ·; η) ∈ C2,α(Dn) and there exists a constantΛ(n, ‖η‖α,Dn
) such that for all

0 < m ≤ C
(1)
n

(A.11) ‖kn(m, ·; η)‖2,α,Dn
≤ Λ(n, ‖η‖α,Dn

).

For R > 0, Λ(n, ‖η‖α,Dn
) can be made uniform (i.e. depending only uponn,R) for ‖η‖α,Dn

≤ R.

The second lemma establishes regularity ofkn with respect to changes in bothm andη.

Lemma A.6. For η1, η2 ∈ Kn and0 < m1,m2 ≤ C
(1)
n there exists a constantΛ′(n, ‖η1‖α,Dn

, ‖η2‖α,Dn
)

so that

‖kn(m1, ·; η1)− kn(m2, ·; η2)‖2,α,Dn

≤ Λ′(n, ‖η1‖α,Dn
, ‖η2‖α,Dn

)
(
‖η1 − η2‖α,Dn

+ |m1 −m2|+ ‖η1 − η2‖α,Dn
|m1 −m2|

)
.

(A.12)

and

sup
x∈Dn

|∂mkn(m1, x; η1)− ∂mkn(m2, x; η2)|

≤ Λ′(n, ‖η1‖α,Dn
, ‖η2‖α,Dn

)
(
|m1 −m2|+ ‖η1 − η2‖α,Dn

)
.

(A.13)

The constantΛ′ can be made uniform for all‖η1‖α,Dn
, ‖η2‖α,Dn

≤ R for R > 0.

Having established regularitykn we now present:

Proposition A.7. For α ∈ (0, 1) and η ∈ Kn, there exists a unique functionm = mn,η that is strictly

positive inDn and solves(A.7) in Dn. mn,η is continuously differentiable inDn with gradient

(A.14) ∇xm
n,η(x) = −∇xk

n(m,x; η)

∂mkn(m,x; η)

∣∣∣∣
m=mn,η(x)

.

Furthermore,∀β ∈ (α, 1), m satisfies the following a priori estimate of theβ-Hölder norm:

(A.15) ‖mn,η‖β,Dn
≤ C(n, β),
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whereC(n, β) does notdepend uponη.

Proof of Proposition A.7.As mentioned above, it suffices for eachx ∈ Dn to findm = m(x) = mn,η(x)

so thatkn(m,x; η) = 0. From Lemma A.5 we know thatkn is strictly increasing inm. Additionally, by

the dominated convergence theorem and thatγ ≥ 0, rt ≤ C
(1)
n , t ≤ τn we have

lim
m↓0

kn(m,x; η) = −Ex

[∫ T∧τn

0
rt(T − t)e−

∫ t

0 (ru+γ(Xu,0,η(Xu)))dudt

]
< 0;

lim
m↑∞

kn(m,x; η) = ∞.

So for anyx ∈ Dn there exists an uniquem(x) > 0 such thatkn(m(x), x; η) = 0 and this defines the map

m = mn,η : Dn 7→ (0,∞). We next show thea priori estimate for the Hölder norm ofm in (A.15). By

definition,∀x, y ∈ Dn,

(A.16) kn(m(x), x; η) = kn(m(y), y; η) = 0,

which implies

(A.17) kn(m(y), y; η)− kn(m(x), y; η) = kn(m(x), x; η)− kn(m(x), y; η).

Sincey is fixed, the mean value theorem applied tom 7→ kn(m, y; η) (which isC1 in m from Lemma A.5)

asserts the existence ofξ betweenm(x) andm(y) such that

(A.18) ∂mkn(ξ, y; η) · (m(y)−m(x)) = kn(m(x), x; η)− kn(m(x), y; η).

By Lemma A.5 we thus have

(A.19) |m(x)−m(y)| ≤ n|kn(m(x), x; η)− kn(m(x), y; η)|.

Now, fix x (think of this as a parameter) and note thatkn(m(x), ·; η) = um(x),η whereum,η is defined

in (B.7) below. Noting thatm(x) ≤ C
(1)
n it follows from (B.8), (B.9), (B.10) below, as well as0 ≤

y(1) + γ(y,m(x), η(y) ≤ C
(1)
n +Bγ(n) onDn that we may apply Lemma A.3 to obtain for allβ ∈ (α, 1)

that

‖um(x),η‖β,Dn
≤ C(n,K4(n), β, α) sup

(t,y)∈Qn

∣∣∣m(x)− y(1)
∣∣∣ 1− e−m(x)(T−t)

m(x)
≤ C(n,K4(n), β, α),

where the constantK4(n) does not depend uponη. Thus, from (A.19) we obtain

|m(x)−m(y)| ≤ n|kn(x,m(x); η)− kn(y,m(x); η)| ≤ C(n,K4(n), β, α0)|x− y|β .

Since it is clear from (A.7) thatmn,η < C
(1)
n , the estimate in (A.15) holds. Lastly, (A.14) follows immedi-

ately from the implicit function theorem since Lemmas A.5, A.6 imply that for a fixedη ∈ Kn, kn(m,x; η)

is C1 in (0, C
(1)
n )×Dn. �

In light of Proposition A.7 we define the mapAn : Kn 7→ Kn by

(A.20) An[η] = mn,η; η ∈ Kn.

The following lemma will be needed in the proof of the continuity of the operatorAn.
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Lemma A.8. Let α ∈ (0, 1) and η1, η2(x) ∈ Kn. Let m1 = An[η1], m2 = An[η2]. Then, there is a

constant̃Λ(n, ‖η1‖α,Dn
, ‖η2‖α,Dn

) which can be bade uniform for‖η1‖α,Dn
, ‖η2‖α,Dn

≤ R such that

sup
x∈Dn

|m1(x)−m2(x)| ≤ Λ̃(n, ‖η1‖α,Dn
, ‖η2‖α,Dn

)‖η1 − η2‖α,Dn
,

sup
x∈Dn

|∇xk
n(x,m1(x); η1)−∇xk

n(x,m2(x); η2)| ≤ Λ̃(n, ‖η1‖α,Dn
, ‖η2‖α,Dn

)‖η1 − η2‖α,Dn
,

sup
x∈Dn

|∂mkn (x,m1(x); η1)− ∂mkn (x,m2(x); η2)| ≤ Λ̃(n, ‖η1‖α,Dn
, ‖η2‖α,Dn

)‖η1 − η2‖α,Dn
.

Proof of Lemma A.8.By definition of m1,m2 we have for allx ∈ Dn that 0 = kn(m1(x), x; η1) =

kn(m2(x), x; η2) and hence

kn(m2(x), x; η2)− kn(m1(x), x; η2) = kn(m1(x), x; η1)− kn(m1(x), x; η2).

By the mean value theorem applied to the mapm 7→ kn(m,x; η2) (which is C1 from Lemma A.5)

there is someξ betweenm1(x),m2(x) so that∂mkn(ξ, x; η2)(m2(x) − m1(x)) = kn(m2(x), x; η2) −
kn(m1(x), x; η2). It thus follows that

|m2(x)−m1(x)| =
|kn(m1(x), x; η2)− kn(m1(x), x; η1)|

|∂mkn(ξ, x; η2)|
,

≤ nΛ′
(
n, ‖η1‖α,Dn

, ‖η2‖α,Dn

)
‖η1 − η2‖α,Dn

,

= Λ̃(n, ‖η1‖α,Dn
, ‖η2‖α,Dn

)‖η1 − η2‖α,Dn
.

where the inequality follows from (A.12) in Lemma A.6 since0 < m1(x) < C
(1)
n on Dn. The second

inequality follows immediately from the first by (A.12) of Lemma A.6. Similarly, the thirdinequality

follows from the first by (A.13) of Lemma A.6. �

The following Proposition establishes a fixed point inKn:

Proposition A.9. Letα ∈ (0, 1). There existsmn ∈ Kn that is strictly positive forx ∈ Dn and solves the

fixed point equationmn = An[mn] in Dn. Equivalently,mn satisfies(A.5). Furthermore,∀β ∈ (α, 1), mn

satisfies the following a priori estimate of theβ-Hölder norm onDn:

‖m‖β,Dn
≤ C(n, β).

Proof of Proposition A.9.The existence of a fixed pointmn will follow from Theorem A.1 by verifying the

steps below. Here, the Banach space isX = Cα(Dn), the closed convex subset containing0 is Kn and the

operatorA is An from (A.20).

1) The mappingAn : Kn 7→ Kn is continuous.For anyη1, η2 ∈ Kn, letm1 = An[η1] andm2 = An[η2].

In light of the first part of Lemma A.8, we need only consider the[m1 −m2]α,n semi-norm, and clearly,

it suffices to show thatsupx∈Dn
|∇x(m1(x)−m2(x))| ≤ C(n, ‖η1‖α,Dn

, ‖η2‖α,Dn
)‖η1− η2‖α,Dn

. To
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this end, we have from Proposition A.7 that fori = 1, ..., d andx ∈ Dn:

∂xi
(m1(x)−m2(x)) = −

(
∂xi

kn (m1(x), x; η1)

∂mkn(m1(x), x; η1)
− ∂xi

kn (m2(x), x; η2)

∂mkn(m2(x), x; η2)

)
,

= −∂xi
kn (m1(x), x; η1)− ∂xi

kn (m2(x), x; η2)

∂mkn(m1(x), x; η1)

+
∂xi

kn(m2(x), x; η2)× (∂mkn (m1(x), x; η1)− ∂mkn (m2(x), x; η2))

∂mkn(m1(x), x; η1)∂mkn(m2(x), x; η2)
,

and so from Lemmas A.5, A.8 we have

|∂xi
(m1(x)−m2(x)) | ≤ n |∂xi

kn (m1(x), x; η1)− ∂xi
kn (m2(x), x; η2)|

+ n2Λn(n, ‖η2‖α,Dn
) |∂mkn (m1(x), x; η1)− ∂mkn (m2(x), x; η2)| ,

≤ Λ̃(n, ‖η1‖α,Dn
, ‖η2‖α,Dn

)
(
n+ n2Λ(n, ‖η2‖α,Dn

)
‖η1 − η2‖α,Dn

,

proving continuity.

2) The mappingAn : Kn → Kn is compact.Let us fix someβ ∈ (α, 1). Given any bounded sequence

{ηi}i∈N in Kn, Proposition A.7 yields,∀i ∈ N,

‖An[ηi]‖Cβ(Dn)
≤ C(n, β).

By the standard compact embeddings of Hölder spaces, there exists a subsequence{An[ηik ]}k∈N of

{An[ηi]}i∈N such that{An[ηik ]}k∈N converges in‖ · ‖Cα(Dn)
norm to some limit inKn.

3) The set{m ∈ Kn : m = λAn[m] for some0 ≤ λ ≤ 1} is bounded.Supposem ∈ Kn satisfies

m = λAn[m] for some0 ≤ λ ≤ 1. We have from Proposition A.7

‖m‖Cα(Dn)
= λ‖An[m]‖Cα(Dn)

≤ C(n, α).

Schaefer’s Theorem thus asserts that the operatorAn has a fixed pointmn in Kn. By Proposition A.7,mn

is strictly positive. Moreover,mn satisfies the followinga priori estimate of theβ-Hölder norm onDn:

‖m‖Cβ(Dn)
≤ C(n, β), ∀β ∈ (α, 1).

�

A.4. Global existence of a fixed point.For an arbitraryα ∈ (0, 1) andn ∈ N we now choosemn ∈ Kn

such thatmn is a fixed point of the operatorAn in Kn, whereAn is from (A.20). Let us now fix an arbitrary

ñ ∈ N. The following lemma establishesa priori estimates for theα-Hölder norms of{mn(x)}n>ñ in Dñ.

We adopt the notationΛ(ñ) to denote some positive constant that changes from line to line and may depend

on the dimensiond, the model coefficientsK1(ñ+1),K2(ñ+1) from Assumption 3.3, the local Lipschitz

constantLγ(ñ + 1) and local bounded constantBγ(ñ + 1) from Assumption 3.6, and the time horizonT

and domainsDñ, Dñ+1. If additionally, the constant depends upon the Hölder exponentβ we will write

Λ(ñ, β) to stress this dependence. As such when we writeΛ(ñ) the constantdoes notdepend uponβ.



22 ZHE CHENG AND SCOTT ROBERTSON

Lemma A.10. Let β ∈ (0, 1). For any ñ ∈ N there exists a positive constantΛ(ñ, β) such that∀n > ñ,

‖mn‖Cβ(Dñ)
≤ Λ(ñ, β).

Proof of Lemma A.10.Let α ∈ (0, β). Sincemn solves (A.7) we have, formn(x) > 0, rearranging terms

that for alln ≥ ñ+ 1 andx ∈ Dñ:

mn(x) =
Ex
[∫ T∧τn

0 rtp(t,m
n(x))e−

∫ t

0 (ru+γ(Xu,mn(x),mn(Xu)))dudt
]

Ex
[∫ T∧τn

0 p(t,mn(x))e−
∫ t

0 (ru+γ(Xu,mn(x),mn(Xu)))dudt
]
+ mn(x)

n(1−e−mn(x)T )

,

≤ 2

inf
x∈Dñ

Ex
[∫ T/2∧τñ+1

0 e−
∫ t

0 (rudu+Cγ(ñ+1))dudt
] ≤ Λ(ñ).

(A.21)

Above, the second inequality has used (4.6), Lemma C.1 and the elliptic Harnack inequality. We next turn

to theβ-Hölder semi-norm. From (A.18), for allx, y ∈ Dñ we have

(A.22) |mn(x)−mn(y)| =
∣∣∣∣
kn(mn(x), x;mn)− kn(mn(x), y;mn)

∂mkn(ξ, y;mn)

∣∣∣∣ ,

whereξ is some number betweenmn(x) andmn(y). From (B.2), (B.3) and (B.6) below, we obtain

∂kn

∂m
(ξ, y;mn)

≥ EQy

[∫ T∧τn

0
rte

−
∫ t

0 (ru+γ(Xu,mn(x),mn(Xu)))du 1− e−ξ(T−t) − ξ(T − t)e−ξ(T−t)

ξ2
dt

]
;

≥ EQy

[∫ T/2∧τñ+1

0
rte

−
∫ t

0 (ru+γ(Xu,mn(x),mn(Xu)))du 1− e−m(T−t) −m(T − t)e−m(T−t)

m2

∣∣∣∣
m=mn(x)∨mn(y)

dt

]
;

≥ 1− e−mT/2 −m(T/2)e−m(T/2)

m2

∣∣∣∣
m=mn(x)∨mn(y)

EQy

[∫ T/2∧τñ+1

0
rte

−
∫ t

0 (ru+γ(Xu,mn(x),mn(Xu)))dudt

]
;

≥ Λ(ñ)EQy

[∫ T/2∧τñ+1

0
rte

−
∫ t

0 rududt

]
;

≥ Λ(ñ).

Above, the second and third inequalities follow sincem 7→ m−2(1− e−m(T−u) −m(T − u)e−m(T−u)) is

strictly positive and decreasing inm. The fourth inequality uses (A.21) and thatγ(Xu,m
n(x),mn(Xu)) ≤

Bγ(ñ + 1) almost surely fort ≤ T/2 ∧ τñ+1. The last inequality follows by taking the infimum of

EQy
[∫ T/2∧τñ+1

0 rte
−
∫ t

0 rududt
]

overy ∈ Dñ and noting that by Harnack’s inequality this value is strictly

positive givenDñ is strictly contained inDñ+1. For the numerator in (A.22) we have

kn(mn(x), x;mn)− kn(mn(x), y;mn) = um
n(x),mn

(x)− um
n(x),mn

(y),

whereum,η is from (B.7) below. Note thatum
n(x),mn

is of the form (A.3) withg = gm
n(x) andh =

hm
n(x),mn

from (B.8) below. Specifically, we have

gm
n(x)(t, y) = (mn(x)− y(1))

1− e−mn(x)(T−t)

mn(x)
; hm

n(x),mn

(y) = y(1) + γ(y,mn(x),mn(y)).
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Since0 < mn(x) < C
(1)
n we have from (B.9) and (B.10) that the assumptions of Lemma A.4 are satisfied

(with α0 = α sincemn ∈ Cα(Dn) for the given, arbitraryα ∈ (0, β)) and hence for allβ ∈ (0, 1) by

takingα ∈ (0, 1), α < β:

‖umn(x),mn‖Cβ(Dñ)
≤ Λ(ñ, β)

(
|gmn(x)|0,ñ+1 + |umn(x),mn |0,Dñ+1

)

≤ Λ(ñ, β)
(
Λ(ñ+ 1) + C

(1)
ñ+1 + |umn(x),mn |0,Dñ+1

)
.

Now, for y ∈ Dñ:

|umn(x),mn

(y)| = |kn(mn(x), y;mn|

≤
∫ T

0

(
1− e−mn(x)(T−t)

)
EQy

[
1t≤τne

−
∫ t

0 (ru+γ(Xu,mn(x),mn(Xu)))du
]
dt

+ EQy

[∫ T∧τn

0
rt
1− e−mn(x)(T−t)

mn(x)
e−
∫ t

0 (ru+γ(Xu,mn(x),mn(Xu)))dudt

]
+

mn(x)

n

≤ T + TEQy

[∫ T∧τn

0
rte

−
∫ t

0 rududt

]
+

Λ(ñ+ 1)

n

≤ 2T +
Λ(ñ+ 1)

ñ

= Λ(ñ+ 1).

Hence we conclude that|umn(x),mn |0,Dñ+1
≤ Λ(ñ, β) and thus

|kn(mn(x), x;mn)− kn(mn(x), y;mn)| ≤ Λ(ñ, β)|x− y|β .

Putting these two estimates together in (A.22) gives

|mn(x)−mn(y)| ≤ Λ(ñ, β)|x− y|β , ∀x, y ∈ Dñ,

finishing the proof, in view of (A.21). �

With all these preparations, we are now ready to prove Theorem 3.9.

Proof of Theorem 3.9.Note that (3.7) is equivalent to

m(x) =
Ex
[∫ T

0 rtp(t,m(x))e−
∫ t

0 (ru+γ(Xu,m(x),m(Xu)))dudt
]

Ex
[∫ T

0 p(t,m(x))e−
∫ t

0 (ru+γ(Xu,m(x),m(Xu)))dudt
] ; x ∈ D.

Let α ∈ (0, 1). From Lemma A.10, there exists a positive constantΛ(1, α) such that∀n > 1, we have

‖mn‖α,D1
≤ Λ(1, α). The Arzelà-Ascoli theorem asserts the existence of a subsequence of {mn(x)}n>1,

which we denote by
{
mn

(1)
k (x)

}
k∈N

, and somem(1) ∈ K1 such that for eachn(1)
k , mn

(1)
k satisfies the

equality in (A.21) forx ∈ D1 and such thatmn
(1)
k (x) converge tom(1)(x) uniformly inD1 ask → ∞, with

‖m(1)‖α,D1
≤ Λ(1, α).

Applying Lemma A.10 again, we have that there exists a positive constantΛ(2, α) such that∀n(1)
k > 2,

we have‖mn
(1)
k ‖α,D2

≤ Λ(2, α). The Arzelà-Ascoli theorem again assures the existence of a subsequence
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of
{
mn

(2)
k (x)

}
k∈N

and somem(2) ∈ K2 such thatmn
(2)
k converge tom(2) uniformly inD2 ask → ∞, with

‖m(2)‖α,D2
≤ Λ(2, α). Note that by construction,m(2)(x) = m(1)(x) for x ∈ D1.

The above procedure can be carried out iteratively and we conclude that ∀l ∈ N, there exists a subse-

quence of{mn
(l)
k }k>1, denoted by{mn

(l+1)
k }k∈N, and functionm(l+1) ∈ Kl+1, such thatmn

(l+1)
k converge

to m(l+1) uniformly in Dl+1 ask → ∞, and‖m(l+1)‖α,Dl+1
≤ Λ(l + 1, α). Moreover, by construction,

m(l+1)(x) = m(l)(x) for x ∈ Dl.

Now, for allx ∈ D, there is somel ∈ N such thatx ∈ Dk, ∀k ≥ l. We definem : D → [0,∞) by

(A.23) m(x) := m(l)(x),

and note that by construction,m is well defined andm(x) ∈ Cα
loc(D), ∀α ∈ (0, 1). We claim thatm is the

desired fixed point. Indeed, fixl and note that forx ∈ Dl we have thatm(x) = limk→∞mn
(l′)
k (x) for any

l′ ≥ l. Thus, for anyl′ ≥ l we can write, using (A.21),

m(x) =

lim
k→∞

Ex



∫ T∧τ

n
(l′)
k

0 rtp(t,m
n
(l′)
k (x))e

−
∫ t

0

(
ru+γ(Xu,m

n
(l′)
k (x),m

n
(l′)
k (Xu))

)
du

dt




lim
k→∞

Ex



∫ T∧τ

n
(l′)
k

0 p(t,mn
(l′)
k (x))e

−
∫ t

0

(
ru+γ(Xu,m

n
(l′)
k (x),m

n
(l′)
k (Xu))

)
du

dt


+ m

n
(l′)
k (x)

n
(l′)
k

(
1−e−m

n
(l′)
k (x)

)

=:
A(l′)

B(l′)
,

(A.24)

where, (recallx ∈ Dl andl is fixed)

A(l′) = lim
k→∞

Ex



∫ T∧τl′

0
rtp(t,m

n
(l′)
k (x))e

−
∫ t

0

(
ru+γ(Xu,m

n
(l′)
k (x),m

n
(l′)
k (Xu))

)
du




+ lim
k→∞

Ex



∫ T∧τ

n
(l′)
k

T∧τl′

rtp(t,m
n
(l′)
k (x))e

−
∫ t

0

(
ru+γ(Xu,m

n
(l′)
k (x),m

n
(l′)
k (Xu))

)
du

dt




= Ex

[∫ T∧τl′

0
rtp(t,m(x))e−

∫ t

0 (ru+γ(Xu,m(x),m(Xu)))dudt

]

+ lim
k→∞

Ex



∫ T∧τ

n
(l′)
k

T∧τl′

rtp(t,m
n
(l′)
k (x))e

−
∫ t

0

(
ru+γ(Xu,m

n
(l′)
k (x),m

n
(l′)
k (Xu))

)
du

dt


 ,

The second equality above follows from the bounded convergence theorem since0 ≤ p ≤ 1, 0 ≤ rt ≤ C
(1)
l′ ,

γ ≥ 0 and sincemn
(l′)
k (Xu) → m(Xu) almost surely foru ≤ τl′ , and also, sincel′ ≥ l, fromx ∈ Dl ⊂ Dl′
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somn
(l′)
k (x) → m(x). As for the second term we have

0 ≤ Ex



∫ T∧τ

n
(l′)
k

T∧τl′

rtp(t,m
n
(l′)
k (x))e

−
∫ t

0

(
ru+γ(Xu,m

n
(l′)
k (x),m

n
(l′)
k (Xu))

)
du

dt


 ,

≤ Ex

[∫ T

T∧τl′

rte
−
∫ t

0 rududt

]
.

Taking l′ ↑ ∞ and using the non-explosivity ofX along with the monotone convergence theorem it thus

follows that

lim
l′↑∞

A(l′) = Ex

[∫ T

0
rtp(t,m(x))e−

∫ t

0 (ru+γ(Xu,m(x),m(Xu)))dudt

]
.

Repeating the same calculation forB(l′) and noting the only difference is a) the absence ofrt which is

bounded fort ≤ τl′ , and b) the fractionmn
(l′)
k (x)/(n

(l′)
k (1 − e−m

n
(l′)
k (x)) which clearly goes away as

k ↑ ∞, it similarly follows that forx ∈ Dl:

lim
l′↑∞

B(l′) = Ex

[∫ T

0
p(t,m(x))e−

∫ t

0 (ru+γ(Xu,m(x),m(Xu)))dudt

]
.

Thus, sincem(x) on the left hand side of (A.24) did not depend uponl′ the result follows.

�

APPENDIX B. SUPPLEMENTARY PROOFS FROMSECTION A.3

Proof of Lemma A.5.Note thatrt, γ(Xt,m, η(Xt) are non-negative and uniformly bounded above byC
(1)
n +

Bγ(n) for t ≤ τn. Additionally, from (3.4) and (3.5) we have that for allx ∈ Dn,m, z ≥ 0 that

(B.1) γm(x,m, z) ≤ min {Bγ(n) + Lγ(n)m,Ξ(mT )} ≤




Bγ(n) + Lγ(n) m ≤ 1

Ξ(T ) m > 1
:= M(n),

so thatγm(Xt,m, η(Xt)) is almost surely bounded above ont ≤ τn by a constant depending only uponn.

It thus follows by the bounded convergence theorem that we may pull the differential operator (with respect

to m) within the expected value and integral in (A.9) to obtain

∂mkn(m,x, T ; η) = Ex

[∫ T∧τn

0
∂m

((
1− rt

m

)(
1− e−m(T−t)

)
e−
∫ t

0 (ru+γ(Xu,m,η(Xu)))du
)
dt

]
+

1

n
.

(B.2)
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By differentiating and collecting terms (again all interchanges of the integraland derivative are allowed

given the current hypotheses) we obtain

e
∫ t

0 (ru+γ(Xu,m,η(Xu)))du × ∂m

((
1− rt

m

)(
1− e−m(T−t)

)
e−
∫ t

0 (rn+γ(Xu,m,η(Xu)))du
)

= rt

(
1− e−m(T−t)

m2
− (T − t)e−m(T−t)

m
+

1− e−m(T−t)

m

∫ t

0
γm(Xu,m, η(Xu))du

)

+ (T − t)e−m(T−t) − (1− e−m(T−t))

∫ t

0
γm(Xu,m, η(Xu))du.

(B.3)

For allm > 0, t ≤ T calculation shows

(B.4) 0 ≤ 1− e−m(T−t)

m2
− (T − t)e−m(T−t)

m
≤ 1

2
(T − t)2; 0 ≤ 1− e−m(T−t)

m
≤ (T − t).

Since0 ≤ γm(x,m, z) ≤ M(n) and0 ≤ rt ≤ C
(1)
n almost surely inDn it follows that the right hand side

of (B.3) is bounded below by

(B.5) (T − t)e−m(T−t) − (1− e−m(T−t))

∫ t

0
γm(Xu,m, η(Xu))du,

and from above by

C(1)
n

(
1

2
(T − t)2 + (T − t)tM(n)

)
+ (T − t).

The upper bound in (A.10) readily follows. As for the lower bound, from(3.5) we have

(T − t)e−m(T−t) − (1− e−m(T−t))

∫ t

0
γm(Xu,m, η(Xu))du

≥ (T − t)e−m(T−t) − Ξ(mT )t(1− e−m(T−t));

≥ 0.

(B.6)

To see the third inequality note that (writingβ = 1 − t/T and multiplying numerator and denominator by

T )

Ξ(mT ) = inf
β∈(0,1)

βe−βmT

(1− β)(1− e−βmT )
= inf

t∈(0,T )

(T − t)e−m(T−t)

t(1− e−m(T−t))
,

It thus follows from (B.3) that almost surely for allm > 0 andt ≤ T ∧ τn that

∂m

((
1− rt

m

)(
1− e−m(T−t)

)
e−
∫ t

0 (rn+γ(Xu,m,η(Xu)))du
)
≥ 0

which yields the upper bound in (A.10). Lastly, it is evident from (B.3) thatthe map

m 7→ ∂m

((
1− rt

m

)(
1− e−m(T−t)

)
e−
∫ t

0 (rn+γ(Xu,m,η(Xu)))du
)

is almost surely continuous inm and non-negative with upper bound

C(1)
n

(
1

2
T 2 + T 2M(n)

)
+ T,
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and hence by the bounded convergence theorem the mapm 7→ ∂mkn(m,x; η) is continuous and each

m > 0. Turning to (A.11), writekn(m, ·; η) = um,η where

um,η(x) := Ex

[∫ T∧τn

0
(m− rt)

1− e−m(T−t)

m
e−
∫ t

0 (ru+γ(Xu,m,η(Xu)))dudt

]
; x ∈ Dn(B.7)

um,η is of the form (A.3) with

gm(t, x) := (m− x(1))
1− e−m(T−t)

m

hm,η(t, x) = hm,η(x) := x(1) + γ(x,m, η(x)).

(B.8)

Calculation shows for0 < m ≤ C
(1)
n that

(B.9) lim
t↑T,y→x

gm(t, y) = 0, x ∈ ∂Dn; |gm|0,n ≤ C(1)
n T ; [gm]α,n ≤ C(1)

n T 1−α/2 + T (C(1)
n )1−α

and

|hm,η|0,n ≤ C(1)
n +Bγ(n);

[hm,η]α,n ≤ (C(1)
n )1−α + Lγ(n ∨ C(1)

n ∨ ‖η‖α,Dn
)
(
(2Cn)

1−α + ‖η‖α,Dn

)
,

(B.10)

Note that the above can be made uniform for all‖η‖α,Dn
≤ R for anyR > 0. Thus, Lemma A.2 yields the

upper bound in (A.11).

�

Proof of Lemma A.6.We havekn(m1, ·; η1)− kn(m2, ·; η2) = um1,η1 − um2,η2 whereum,η is from (B.7).

For0 < m1,m2 ≤ C
(1)
n , from (B.9), (B.10) (applied for the respectivemi, ηi), it follows from Lemma A.2

that forumi,ηi = Umi,ηi(0, ·) whereUmi,ηi solves the linear parabolic PDE given in (A.4). Furthermore,

|Umi,ηi |2,α,Dn
≤ C(n, ‖ηi‖α,Dn

) where the bounded constant can be made uniform for‖ηi‖α,Dn
≤ R.

DefineV := Um1,η1 − Um2,η2 . ThenV solves the linear parabolic PDE

(B.11)





Vt + LV − hm1,η1V = −g̃, (t, x) ∈ Qn,

V (T, x) = 0, x ∈ Dn,

V (t, x) = 0, (t, x) ∈ [0, T ]× ∂Dn,

where we have set (recall (B.8)):

g̃(t, x) := gm1(t, x)− gm2(t, x) + Um2,η2(t, x)(hm2,η2 − hm1,η1)(x).(B.12)

From (B.10) we have that|hm1,η1 |α,n is bounded from above by a constant which only depends upon

n, ‖η1‖α,Dn
(which can be made uniform if‖η1‖α,Dn

≤ R). A lengthy, though direct, calculation shows

|gm1 − gm2 |0,n ≤
(
T +

1

2
C(1)
n T 2

)
|m2 −m1|,

|hm1,η1 − hm2,η2 |0,n ≤ Lγ(n ∨ C(1)
n ∨ ‖η1‖α,Dn

∨ ‖η2‖α,Dn
)
(
‖η2 − η1‖α,Dn

+ |m2 −m1|
)
.
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Note the above, again, can be made uniform for‖ηi‖α,Dn
≤ R. Lemma B.1 below shows that there is a

constant̃Λ(n, ‖η1‖α,Dn
, ‖η2‖α,Dn

) (uniform for‖η1‖α,Dn
, ‖η2‖α,Dn

≤ R) so that

[gm1 − gm2 ]α,n ≤
(
(1 + 2TC(1)

n )T 1−α/2 +
1

2
T 2(C(1)

n )1−α

)
|m2 −m1|,

[hm1,η1 − hm2,η2 ]α,n ≤ Λ̃(n, ‖η1‖α,Dn
, ‖η2‖α,Dn

)
(
|m1 −m2|+ ‖η2 − η1‖α,Dn

+ |m1 −m2|‖η2 − η1‖α,Dn

)
.

(B.13)

From (B.12), it easily follows since|Um2,η2 |2,α,Dn
≤ C(n, ‖η2‖α,Dn

) that (by potentially enlargingΛ′′)

|g̃|α,n ≤ Λ̃(n, ‖η1‖α,Dn
, ‖η2‖α,D)

(
|m1 −m2|+ ‖η1 − η2‖α,Dn

+ |m1 −m2|‖η1 − η2‖α,Dn

)
.

The result then follows from Lemma A.2 sincegm andUm2,η2 take the value zero ont = T, x ∈ ∂Dn, and

hence the compatibility condition holds.

We next prove (A.13). As follows from (B.2) and (B.3) we have

∂mkn(m1, x; η1)− ∂mkn(k2, x; η2)

= Ex

[∫ T∧τn

0
(A1(t) (B(t)C1(t) +D1(t))−A2(t) (B(t)C2(t) +D2(t))) dt

]
,

(B.14)

where fori = 1, 2

Ai(t) = e−
∫ t

0 (ru+γ(Xu,mi,ηi(Xu)))du; B(t) = rt,

Ci(t) =
1

m2
i

(
1− e−mi(T−t) −mi(T − t)e−mi(T−t)

)
+

1− e−mi(T−t)

mi

∫ t

0
γm(Xu,mi, ηi(Xu))du,

Di(t)) = (T − t)e−mi(T−t) − (1− e−mi(T−t))

∫ t

0
γm(Xu,mi, ηi(Xu))du.

Using the elementary estimate

|A1(BC1 +D1)−A2(BC2 +D2)| ≤ |A1||B||C1 −C2|+ (|B||C2|+ |D2|)|A1 −A2|+ |A1||D1 −D2|,

we will obtain the upper bound in (A.13). First, we have the almost sure inequalities

|A1(t)| ≤ 1; |B(t)| ≤ C(1)
n ,

|C2(t)| ≤ T 2

(
1

2
+M(n)

)
; |D2(t)| ≤ T (1 +M(n)).
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Above, we have used thatγ ≥ 0, 0 ≤ rt ≤ C
(1)
n on t ≤ τn, (B.4), and (B.1). Next, we have

|C1(t)− C2(t)|

≤
∣∣∣∣∣
1− e−m1(T−t) −m1(T − t)e−m1(T−t)

m2
1

− 1− e−m2(T−t) −m2(T − t)e−m2(T−t)

m2
2

∣∣∣∣∣

+
1− e−m1(T−t)

m1

∫ T

0
|γm(Xu,m1, η1(Xu))− γm(Xu,m2, η2(Xu))| du

+

∫ T

0
γm(Xu,m2, η2(Xu))du

∣∣∣∣∣
1− e−m1(T−t)

m1
− 1− e−m2(T−t)

m2

∣∣∣∣∣ .

The mapm 7→ (1− e−m(T−t)−m(T − t)e−m(T−t))/m2 has derivative−(2/m3)(1− e−m(T−t)−m(T −
t)e−m(T−t) − (1/2)m2(T − t)2e−m(T−t)) which is non-positive and is bounded in absolute value of(T −
t)3/3 ≤ T 3/3. Thus,
∣∣∣∣∣
1− e−m1(T−t) −m1(T − t)e−m1(T−t)

m2
1

− 1− e−m2(T−t) −m2(T − t)e−m2(T−t)

m2
2

∣∣∣∣∣ ≤
T 3

3
|m1 −m2|.

For the second term we have

1− e−m1(T−t)

m1

∫ T

0
|γm(Xu,m1, η1(Xu))− γm(Xu,m2, η2(Xu))| du

≤ T 2Lγ(n ∨ C(1)
n ∨ ‖η1‖α,Dn

∨ ‖η2‖α,Dn
)
(
|m1 −m2|+ ‖η1 − η2‖α,Dn

)
.

For the third term we have

∫ T

0
γm(Xu,m2, η2(Xu))du

∣∣∣∣∣
1− e−m1(T−t)

m1
− 1− e−m2(T−t)

m2

∣∣∣∣∣

≤ 1

2
T 3M(n)|m1 −m2|,

sincem 7→ (1 − e−m(T−t))/m has a derivative bounded by(T − t)2/2. Thus, we can find a constant

C(n, ‖η1‖α,Dn
, ‖η2‖α,Dn

) so that almost surely fort ≤ T

|C1(t)− C2(t)| ≤ C(n, ‖η1‖α,Dn
, ‖η2‖α,Dn

)
(
|m1 −m2|+ ‖η1 − η2‖α,Dn

)
.

We next have, by the non-negativity ofr, γ and the fact that|e−a − e−b| ≤ |a− b| for a, b ≥ 0, that almost

surely fort ≤ T ∧ τn:

|A1(t)−A2(t)| ≤
∫ T

0
|γ(Xu,m1, η1(Xu))− γ(Xu,m2, η2(Xu))| du,

≤ TLγ(n ∨ C(1)
n ∨ ‖η1‖α,Dn

∨ ‖η2‖α,Dn
)
(
|m1 −m2|+ ‖η1 − η2‖α,Dn

)
,

= C(n, ‖η1‖α,Dn
, ‖η2‖α,Dn

)
(
|m1 −m2|+ ‖η1 − η2‖α,Dm

)
.
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Lastly, we have

|D1(t)−D2(t)|

≤ T
∣∣∣e−m1(T−t) − e−m2(T−t)

∣∣∣+ (1− e−m2(T−t))

∫ T

0
|γm(Xu,m1, η1(Xu))− γm(Xu,m2, η2(Xu))| du

+

∫ T

0
γm(Xu,m2, η2(Xu))du

∣∣∣e−m2(T−t) − e−m1(T−t)
∣∣∣ ,

≤ T 2|m1 −m2|+ TLγ(n ∨ C(1)
n ∨ ‖η1‖α,Dn

∨ ‖η2‖α,Dn
)
(
|m1 −m2|+ ‖η1 − η2‖α,Dn

)

+M(n)T 2|m1 −m2|,

≤ C(n, ‖η1‖α,Dn
, ‖η2‖α,Dn

)
(
|m1 −m2|+ ‖η1 − η2‖α,Dn

)
.

Putting this all together in (B.14) gives for allx ∈ Dn that

|∂mkn(m1, x; η1)− ∂mkn(m2, x; η2)| ≤ C(n, ‖η1‖α,Dn
, ‖η2‖α,Dn

)
(
|m1 −m2|+ ‖η1 − η2‖α,Dn

)
,

which is the desired result. �

Lemma B.1. For 0 < m1,m2 ≤ C
(1)
n , η1, η2 ∈ Kn andgm, hm as in(B.8) the inequalities in(B.13)hold.

Proof. The proof is a lengthy calculation based off of Taylor’s formula, using thefact thatγ is bothC2,

with derivatives of order≤ 2 which can be continuously extended toD × {0} × {0}, as well as such that

all derivatives of order≤ 2 are Lipschitz continuous in̄Dn × [0, n]× [0, n] with Lipschitz constantLγ(n).

In particular, for any partial derivativeu of γ with order≤ 2, anyn and constantsmn, zn > 0

sup
x∈Dn,m≤mn,z≤zn

|u(x,m, z)| < ∞,

sup
x,x′∈Dn;m,m′≤mn;z,z′≤zn

|u(x,m, z)− u(x′,m′, z′)| ≤ Lγ(n ∨mn ∨ zn)
(
|x− x′|+ |m−m′|+ |z − z′|

)
.

The above inequalities are used repeatedly in the sequel. Also,C(n, ‖η1‖α,Dn
, ‖η2‖α,Dn

) is a constant

which may change from line to line and can always be made uniform inη1, η2 for ‖η1‖α,Dn
, ‖η2‖α,Dn

≤ R.

Now, for s, t < T, x, y ∈ Dn we have

gm1(t, x)− gm2(t, x)− (gm1(s, y)− gm2(s, y))

= (m1 − x(1))
1− e−m1(T−t)

m1
− (m2 − x(1))

1− e−m2(T−t)

m2

−
(
(m1 − y(1))

1− e−m1(T−s)

m1
− (m2 − y(1))

1− e−m2(T−s)

m2

)
,

=

∫ m1

m2

(
(T − t)e−m(T−t) +

x(1)

m2

(
1− e−m(T−t) −m(T − t)e−m(T−t)

))
dm

−
∫ m1

m2

(
(T − s)e−m(T−s) +

y(1)

m2

(
1− e−m(T−s) −m(T − s)e−m(T−s)

))
dm.
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We have
∣∣∣∣
∫ m1

m2

(
(T − t)e−m(T−t) − (T − s)e−m(T−s)

)
dm

∣∣∣∣ =
∣∣∣∣
∫ m1

m2

∫ t

s
e−m(T−τ)(m(T − τ)− 1)dτdm

∣∣∣∣

≤ (1 + C(1)
n T )|t− s||m1 −m2|.

Next, we have
∣∣∣∣∣
x(1)

m2

(
1− e−m(T−t) −m(T − t)e−m(T−t)

)
− y(1)

m2

(
1− e−m(T−s) −m(T − s)e−m(T−s)

)∣∣∣∣∣

≤ x(1)

∣∣∣∣∣
1− e−m(T−t) −m(T − t)e−m(T−t)

m2
− 1− e−m(T−t) −m(T − t)e−m(T−t)

m2

∣∣∣∣∣

+ |x(1) − y(1)|1− e−m(T−s) −m(T − s)e−m(T−s)

m2
.

For anyk ≥ 0 the functionm 7→ m−2
(
1− e−km − kme−km

)
is non-negative and deceasing inm > 0

with limit asm → 0 of (1/2)k2. Using this we have

|x(1) − y(1)|1− e−m(T−s) −m(T − s)e−m(T−s)

m2
≤ 1

2
(T − s)2|x(1) − y(1)| ≤ T 2

2
|x(1) − y(1)|.

Next, for anym > 0 the mapm 7→ m−2
(
1− e−m(T−τ) −m(T − τ)e−m(T−τ)

)
has derivative−(T −

τ)e−m(T−τ) which is bounded above in absolute value onτ ≤ T by T . This implies

x(1)

∣∣∣∣∣
1− e−m(T−t) −m(T − t)e−m(T−t)

m2
− 1− e−m(T−t) −m(T − t)e−m(T−t)

m2

∣∣∣∣∣ ≤ C(1)
n T |t− s|.

Putting these two terms together gives
∣∣∣∣∣

∫ m1

m2

(
x(1)

m2

(
1− e−m(T−t) −m(T − t)e−m(T−t)

)
− y(1)

m2

(
1− e−m(T−s) −m(T − s)e−m(T−s)

))
dm

∣∣∣∣∣

≤
(
T 2

2
|x(1) − y(1)|+ C(1)

n T |t− s|
)
|m1 −m2|.

Therefore

|gm1(t, x)− gm2(t, x)− (gm1(s, y)− gm2(s, y))|

≤ |m1 −m2|
(
(1 + 2C(1)

n T )|t− s|+ T 2

2
|x(1) − y(1)|

)
,

and hence

[gm1 − gm2 ]α,n ≤ |m1 −m2|
(
(1 + 2C(1)

n T )T 1−α/2 +
T 2

2
(C(1)

n )1−α

)
,

which is (B.13) forg. Turning toh, writeai(x) := (x,mi, ηi(x)) for i = 1, 2 andx ∈ Dn. Set

(B.15) Mn := n ∨ C(1)
n ∨ ‖η1‖α,Dn

∨ ‖η2‖α,Dn
,

and note that

(B.16) ai(x) ∈ ĒMn = D̄Mn × [0,Mn]× [0,Mn] ; x ∈ Dn.
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We have, from the second order Taylor formula

hm1,η1(x)− hm2,η2(x)− (hm1,η1(y)− hm1,η1(y))

= γ(a1(x))− γ(a2(x))− (γ(a1(y))− γ(a2(y))) ,

= (m1 −m2) (γm(a2(x))− γm(a2(y)))

+ γz(a2(x))(η1(x)− η2(x))− γz(a2(y))(η1(y)− η2(y))

+ (m1 −m2)
2
(
Rmm(a1(x)

∣∣a2(x))−Rmm(a1(y)
∣∣a2(y))

)

+Rzz(a1(x)
∣∣a2(x))(η1(x)− η2(x))

2 −Rzz(a1(y)
∣∣a2(y))(η1(y)− η2(y))

2

+ 2(m1 −m2)
(
Rmz(a1(x)

∣∣a2(x))(η1(x)− η2(x))−Rmz(a1(y)
∣∣a2(y))(η1(y)− η2(y))

)
.

(B.17)

Here, fora1(x),a2(x), x ∈ Dn we have set

Rmm(a1(x)
∣∣a2(x)) =

∫ 1

0
(1− u)γmm (a1(x) + u(a2(x)− a1(x))) du,

=

∫ 1

0
(1− u)γmm (x,m2 + u(m1 −m2), η2(x) + u(η1(x)− η2(x))) du,

with analogous formulas forRzz andRmz. Sincem2 + u(m1 − m2) is in betweenm1 andm2, and

η2(x) + u(η1(x)− η2(x)) is in betweenη1(x) andη2(x) this formula immediately gives (recall (B.16))

∣∣Rmm(a1(x)
∣∣a2(x))

∣∣ ≤ 1

2
sup

(x,m,z)∈En

|γmm(x,m, z)| = C(n, ‖η1‖α,Dn
, ‖η2‖α,Dn

),(B.18)

(with analogous formulas forRmz, Rzz) as well as

∣∣Rmm(a1(x)
∣∣a2(x))−Rmm(a1(y)

∣∣a2(y))
∣∣

≤ Lγ(Mn)

∫ 1

0
(1− u) (|x− y|+ |(1− u)(η2(x)− η2(y)) + u(η1(x)− η1(y))|) du,

≤ 1

2
Lγ(Mn)

(
|x− y|+ ‖η2‖α,Dn

|x− y|α + ‖η1‖α,Dn
|x− y|α

)
,

= C(n, ‖η1‖α,Dn
, ‖η2‖α,Dn

)|x− y|α,

(B.19)

(with analogous formulas forRzz, Rmz as well). We now use (B.18), (B.19) to bound the five terms on the

right hand side of (B.17) separately. First,

|(m1 −m2) (γm(a2(x))− γm(a2(y)))|

≤ |m1 −m2|Lγ(Mn)
(
|x− y|+ ‖η2‖α,Dn

|x− y|α
)
,

≤ C(n, ‖η1‖α,Dn
, ‖η2‖α,Dn

)|m1 −m2||x− y|α.
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Second

|γz(a2(x))(η1(x)− η2(x))− γz(a2(y))(η1(y)− η2(y))|

≤ |γz(a2(x))| |η1(x)− η2(x)− (η1(y)− η2(y))|+ |η1(y)− η2(y)| |γz(a2(x))− γz(a2(y))| ,

≤ sup
(x,m,z)∈ĒMn

|γz(x,m, z)|‖η1 − η2‖α,Dn
|x− y|α

+ ‖η1 − η2‖α,Dn
Lγ(Mn)

(
|x− y|+ ‖η2‖α,Dn

|x− y|α
)
,

= C(n, ‖η1‖α,Dn
, ‖η2‖α,Dn

)‖η1 − η2‖α,D|
x− y|α.

Third, from (B.19) we get

(m1 −m2)
2
(
Rmm(a1(x)

∣∣a2(x))−Rmm(a1(y)
∣∣a2(y))

)

≤ C(1)
n C(n, ‖η1‖α,Dn

, ‖η2‖α,Dn
)|m1 −m2||x− y|α,

= C(n, ‖η1‖α,Dn
, ‖η2‖α,Dn

)|m1 −m2||x− y|α.

Fourth (recall (B.18),(B.19) anda2 − b2 = (a− b)(a+ b))
∣∣Rzz(a1(x)

∣∣a2(x))(η1(x)− η2(x))
2 −Rzz(a1(y)

∣∣a2(y))(η1(y)− η2(y))
2
∣∣

≤
∣∣Rzz(a1(x)

∣∣a2(x))
∣∣ ∣∣(η1(x)− η2(x))

2 − (η1(y)− η2(y))
2
∣∣

+ (η1(y)− η2(y))
2
∣∣Rzz(a1(x)

∣∣a2(x))−Rzz(a1(y)
∣∣a2(y))

∣∣ ,

≤ 2C(n, ‖η1‖α,Dn
, ‖η2‖α,Dn

)‖η1 − η2‖α,Dn
|x− y|α

+ ‖η1 − η2‖2α,Dn
C(n, ‖η1‖α,Dn

, ‖η2‖α,Dn
)|x− y|α,

= C(n, ‖η1‖α,Dn
, ‖η2‖α,Dn

)‖η1 − η2‖α,D|
x− y|α.

Lastly, or fifth
∣∣2(m1 −m2)

(
Rmz(a1(x)

∣∣a2(x))(η1(x)− η2(x))−Rmz(a1(y)
∣∣a2(y))(η1(y)− η2(y))

)∣∣

≤ 2|m1 −m2||Rmz(a1(x)
∣∣a2(x))| |η1(x)− η2(x)− (η1(y)− η2(y))|

+ 2|m2 −m2| |η1(y)− η2(y)|
∣∣Rmz(a1(x)

∣∣a2(x))−Rmz(a1(y)
∣∣a2(y))

∣∣ ,

≤ 2|m1 −m2|
(
C(n, ‖η1‖α,Dn

, ‖η2‖α,Dn
)‖η1 − η2‖α,Dn

|x− y|α + C(n, ‖η1‖α,Dn
, ‖η2‖α,Dn

)|x− y|α
)

= C(n, ‖η1‖α,Dn
, ‖η2‖α,Dn

)|m1 −m2|‖η1 − η2‖α,D|
x− y|α.

Putting together the five estimates above in (B.17) we obtain

|hm1,η1(x)− hm2,η2(x)− (hm1,η1(y)− hm1,η1(y))|

≤ C(n, ‖η1‖α,Dn
, ‖η2‖α,Dn

)
(
|m1 −m2|+ ‖η1 − η2‖α,Dn

+ |m1 −m2|‖η1 − η2‖α,Dn

)
|x− y|α,

from which the result in (B.13) follows.

�
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APPENDIX C. TECHNICAL RESULTS

The following lemma shows that for allm ≥ 0, the first time the balancep(t,m) falls at or below1/2 is

at leastT/2:

Lemma C.1. For all m > 0, inf
{
t ∈ [0, T ] : p(t,m) ≤ (1/2)

}
≥ T/2.

Proof. Assume for somem > 0, t ∈ [0, T ], p(t,m) = 2. Then

t = T +
1

m
log

(
1

2

(
1 + e−mT

))
.

It is clear that

t >
T

2
⇐⇒ 1

m
log

(
1

2
(1 + e−mT )

)
> −T

2
⇐⇒ 1

2

(
1 + e−mT

)
> e−mT/2.

The last inequality holds for allm > 0 andT > 0, finishing the proof. �

APPENDIX D. ON THE CONSTRUCTION OF THERISK NEUTRAL MEASUREQ

Let D be as in Assumption 3.2 and letb̃ : D 7→ Rd andA : D 7→ Sd be given functions satisfying

Assumption 3.3. Assume thatD, b̃ andA are so that there exists a (necessarily unique) solution to the

Martingale problem (see [28]) for the second order linear operatorL̃ associated to(b̃, A) onD.

Now, fix a probability space(Ω,G,P) and denote bỹW ad-dimensional Brownian motion underP. Set

FW̃ as theP-augmented version of the right continuous enlargement of the natural filtration forW̃ , so that

FW̃ satisfies the usual conditions. Since the Martingale problem forL̃ is well posed, there exists a unique

strong solution to the SDE

(D.1) dXt = b̃(Xt)dt+ a(Xt)dW̃t.

wherea =
√
A. Next letµ : D 7→ Rd, Σ : D 7→ Sd also satisfy Assumption 3.3. Withσ =

√
Σ, the market

is formed via trading instruments(S, S0) whereS = (S1, ..., Sd) have dynamics

dSi
t

Si
t

= µi(Xt)dt+

k∑

j=1

σij(Xt)dW̃
j
t ; i = 1, ..., d,

andS0
t = exp

(∫ t
0 rudu

)
is the money market wherer = X(1). Defineb : D 7→ Rd by

(D.2) b(x) = b̃(x)− a(x)σ(x)−1 (µ(x)− r1) ,

where1 ∈ Rd is the vector of ones. Note thatb satisfies Assumption 3.3. Lastly, assume the Martingale

problem forL associated to(b, A) is also well posed onD. Under these hypotheses it is well known (see

[24, Ch. 5], [20, 1]) the above market (withFW̃ adapted,S-integral trading strategies) is complete, and the

unique risk neutral measureQ onFW̃
T has Radon-Nikodym derivative

(D.3)
dQ

dP

∣∣∣∣
FW̃

T

= ZT ; Zt := E
(
−
∫ ·

0
(µ(Xt)− rt1)

′ σ−1(Xt)dW̃t

)

t

, t ≤ T.
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In particular,Z is a(P,FW̃ ) martingale. WithQ being well-defined onFW̃
T , we recall (see [24, Ch. 5]) that,

provided the requisite integrability holds, ifC = {C(t)}t≤T is a cumulative cash-flow stream, adapted to

FW̃ and with rateC(t) = Ċ(t), then the unique price for the stream is given byEQ
[∫ T

0 C(t)e−
∫ t

0 rududt
]
.

With this notation in place, we now derive the mortgage price in two instances.

D.1. Large Pool. ¶ Assume that in addition tõW , (Ω,G,P) supports anP-i.i.d. sequence ofU(0, 1)

random variables{Ui}i=1,... which are alsoP independent of̃W . Let γ be any non-negative, integrable,

FW̃ adapted process. Givenγ, the random times{τi}i=1,... are constructed via

(D.4) τi = inf
{
t ≥ 0 | Ui = e−

∫ t

0 γudu
}
; i = 1, . . . .

Note that the{τi}i∈I areP conditionally i.i.d. givenFW
T , each with commonP - intensityγ.

Now, consider a large pool, consisting of infinitely many loans which are (uniformly) infinitely small.

More precisely, fixN and for i = 1, ..., N set τi as the prepayment time of theith loan in anN -loan

pool, with each loan of size1/N . The pool has common contract ratem and hence the respective principal

balances and coupons arepi(t,m) = (1/N)p(t,m) (wherep is from (2.3) andci = (1/N)m/(1−e−mT ) =

(1/N)c(m) for i = 1, ..., N ). The cumulative cash flows of the pools is thus:

CN (t) =
1

N

N∑

i=1

c(t ∧ τi) +
1

N

N∑

i=1

p(τi,m)1τi≤t.

By the conditional law of large numbers (see, for example [18, Theorem 4.2]) it follows for eacht ≤ T that

CN (t) → C(t) almost surely where forτ a generic copy ofτi:

C(t) = cE
[
t ∧ τ

∣∣FW̃
T

]
+ E

[
p(τ,m)1τ≤t

∣∣FW̃
T

]
,

= cte−
∫ t

0 γudu + c

∫ t

0
uγue

−
∫ u

0 γvdtdu+

∫ t

0
p(u,m)γue

−
∫ u

0 γvdvdu.

By first considering the countable set of rationals in[0, T ] then using the facts that a)CN (t) is non-

decreasing int and b)C is continuous int, it follows that almost surely one hasCN (t) → C(t) for all

t ≤ T . The cash flow rate forC is

C(t) = ce−
∫ t

0 γudu + p(t,m)γte
−
∫ t

0 γudu.

It thus follows that the price of the large pool is given by

EQ

[∫ T

0
(c+ p(t,m)γt)e

−
∫ t

0 (ru+γu)dudt

]
= 1 + EQ

[∫ T

0
(m− rt)p(t,m)e−

∫ t

0 (ru+γu)dudt

]
,

where the last inequality follows by using (2.1) and integration by parts. Thisyields (2.7) andγ is theP

prepayment intensity.

¶This derivation is alluded to, if not explicitly given, in [11, 12] and uses anargument similar to that in [14].
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D.2. Single Loan Pool. Here, we assume that in addition tõW , (Ω,G,P) supports aU(0, 1) random

variableU which isP - independent of̃W . The random timeτ is created as in (D.4) whereγ is again

a non-negative, integrable,FW̃ adapted process. Associated toτ is the indicator processH = {Ht}t≥0

with Ht = 1τ>t. H generates the filtrationFH = {Ht}t≥0 via Ht = σ(Hs; s ≤ t) andτ is clearly an

FH -stopping time. The enlarged filtrationG is that generated by bothFW̃ and theP-augmented versions

of FH , and is right continuous [13, Theorem 1]. Now, letA ∈ FW̃ and t ≥ 0. We clearly have that

EP [1τ>t1A] = EP
[
(1− e−

∫ t

0 γudu)1A

]
and hence

PP

[
τ > t

∣∣∣∣F
W̃

]
= PP

[
τ > t

∣∣∣∣F
W̃
t

]
= 1− e−

∫ t

0 γudu,

so thatγ is the(P,FW̃ ) intensity ofτ . Enlarge the market described above to allow forG adapted trading

strategies. Though this market is now incomplete, it follows that the minimal martingale measureQ (see

[5, 23] and note we are using the same notation as above) satisfies

dQ

dP

∣∣∣∣
GT

= ZT ; T ≥ 0.

We next claim thatγ is theQ intensity ofτ as well. To see this note thatU ∼ U(0, 1) underQ since

Q [U ≤ u] = EP [1U≤uZT ] = P [U ≤ u] = u. Next,U is Q independent ofFW̃ since for allA ∈ FW̃
T for

anyT ≥ 0:

Q [U ≤ u,A] = EP [1U≤u1AZT ] = P [U ≤ u]Q [A] = Q [U ≤ u]Q [A] ,

and hence theQ independence follows. Thus, for allA ∈ FW̃ andt ≥ 0:

Q [τ > t,A] = EQ
[
1AE

Q
[
1
U>e−

∫ t
0 γudu

∣∣FW̃
]]

= EQ
[
1A

(
1− e−

∫ t

0 γudu
)]

,

proving thatγ is theQ intensity ofτ . Now, starting with the price for the mortgage as in (2.5) whereQ is

now the minimal measure in the enlarged market, equation (2.7) still holds (see (2.6)) and hence (2.7) and

(2.8) hold.
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