ENDOGENOUS CURRENT COUPONS
ZHE CHENG AND SCOTT ROBERTSON

ABSTRACT. We consider the problem of identifying current coupons for Ageraxgkbd To-be-Announced
pools of residential mortgages. Such coupons, or mortgage originates) ensure par valued pools. In a dou-
bly stochastic reduced form model which allows for prepayment inteagiielepend upon both current and
origination mortgage rates, as well as underlying investment factorsleméfy the current coupon with solu-
tions to a degenerate elliptic, non-linear fixed point problem. Using Sehséfieorem we prove existence of
current coupons. We also provide an explicit approximation to the figéut,pralid for compact perturbations
off a baseline factor-based intensity model. Numerical examples avédpd which show the approximation
performs well in estimating the current coupon.

1. INTRODUCTION

The goal of this paper is to prove existencesoflogenousnortgage origination rates, defined as those
which yield par-valued mortgage pools. For Agency backed (e.g. FNMA,MC, GNMA) To-be-
Announced (TBA) pools of residential mortgages, such rates are alsal current coupons In addition
to proving existence of current coupons, we wish to provide a fast,tedsplement, and accurate way of
computing current coupons, as it is well known (see [12, 10]) thattieranonte-carlo or partial differen-
tial equation based methods are prohibitively time-consuming to implement.

The residential mortgage market is currently the largest segment of thexétBificome market (see
[19]) and the problem of pricing Mortgage Backed Securities (MBS) isighificant financial interest.
The primary difficulty in pricing MBS, however, is the fact that the home buhyas, at any time prior
to maturity of the loan, the right to prepay all or part of her mortgage with feany, penalties. In
particular, the mortgagor may refinance (multiple times) her loan in order to thkantage of current
market conditions. Adding to the complication is the well known fact that ind&fidorrowers vary in
their financial sophistication and often do not prepay optimally. For examphy martgagors delay their
refinancing decisions even when interest rates decline to a level sudhigHimancially optimal to refinance
(see [27]).

Agency backed MBS has been the major component of the MBS marketthimdmancial crisis. Is-
suance of agency MBS has remained robust since 2007 while mortgagéization by private financial
institutions has declined to very low levels (see [26]). A well-known featiragency MBS is that each
bond carries either an explicit government credit guarantee, or igigedcto carry an implicit one. Agency
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MBS investors are thus protected from credit losses in case of bardefault, and as such, for valuation
purposes, defaults appear to the pool holder nearly identical to pregdsy.

Another less well-recognized feature of agency MBS is that more thaer@@t of agency MBS trading
volume occurs in a liquid forward market, known as the TBA market (sep.[Zhe distinguishing feature
of a TBA trade is that the actual identity of the securities to be delivered osdtilement date is not
specified on the trade date. Instead, the buyer and the seller agregenmyal parameters of the securities
to be delivered, such as issuer, maturity, coupon, price, par amodrgegiblement date. Closely related
to TBA mortgage-backed securities is the secondary-market MBS raiejnkas the current coupon. The
current coupon is a coupon rate interpolated from the observed TiBAspthat makes the price of a TBA
with current delivery month equal to par. As such, the current coigpan endogenous rate, and current
coupon rates are widely used as a benchmark for MBS pool valuatigringla key role in the secondary
mortgage market.

Broadly speaking, within the academic literature, there are two methods usddate MBS: the “option
theoretic” and “reduced form” methods (see [12, 9] for a more thoranigbduction and literature review).
The option theoretic method treats the right to prepay as an American style @adbegtion and MBS
valuation is performed using options pricing theory. Early results along thisviéme obtained in [3, 16, 15].
However, it was quickly recognized that option theoretic methods suffet@the non-optimal prepayment
behavior of borrowers, and hence the option theoretic approachoh&dsen widely adopted by mortgage
market practitioners.

Alternatively, the reduced form method borrows from the theory ofitietivative valuation and as-
sumes prepayments are driven by an underlying intensity process whicherestimated from historical
data. Here, the non-optimality of prepayment behavior is built into the intensigtiin. Reduced form
methods have been studied in [22, 21, 16, 2, 12, 11, 9, 10, 29] amathgss. In this paper, we consider
the reduced form method. We pay particular attention to [12], which compaiies when the intensity is
driven by one (or many) economic factors and [11], which considerss intensities to those we treat.

Aside from the amortizing nature of a mortgage loan, the key differencesleetMBS and credit deriv-
ative valuation is the dependence of the mortgage pool value on the modggigation rate. Indeed, one
has the heuristic relationship

Mortgage Ratemy, == Prepayment Timet(my) == Pool Value:M (my).

Thus, there is a natural and delicate fixed point problem in findiggo thatM (mg) = Py is par valued,
where P, is the initial loan amount. In reduced form models, this circular dependerwaptared in the
prepayment intensity function. This is in contrast to credit valuation, whaeetypically expresses the
default intensityy as a function of the underlying economic factor, or state variable, pgo€edndeed,
whereas an intensity specification = ~(X;) may be appropriate for credit derivatives, for MBS valua-
tion, it is desirable to allowy to additionally depend upon both the mortgage origination sateand the
current mortgage ratex; available for refinancing: i.ey, = (X, mo, m;). Thus, in a time-homogeneous
Markovian setting one hypothesizes that = m(X;) is a function of the underlying economic factors and
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hence
(1.1) vt = y(Xe, m(Xo), m(Xy)).

With this specification, our goal is to findcairrent coupon functiom: so that the pool valué/ (m(Xy)) =
P, for all valuesX,. The main result of the paper (Theorem 3.9) provides natural condiois v under
which such functionsn exist.

[21] and [9, 11] first incorporated the endogenous mortgage rate imiotansity-based framework,
taking into account the dependence~obn bothmg andm;. In particular, [11] presented a proof of
the existence of a current coupon in a diffusion model similar to that pilgssmsidered. However, the
existence proof in [11], based on a so-called "Lebesgue set metisodighly non-standard, contains a
guestionable result in one of its supporting propositipaad is only able to yield measurable solutions
By contrast, our method of proof, in using standard topological fixedtgbaorems, has the advantages
that it both provides a clear road-map to extending results to more elaboragsr{ed. taking into account
heterogeneous borrowers and default), and enables us to @fbi#der regularity in the current coupon
function.

Equally important as identifying existence of current coupons is actuathpoting the current coupon.
Indeed, a naive application of the contraction principle where one firgsital function my and then
setsm,(Xo) = M(mp—1(Xo)),n = 1,2,... with the idea thatn,, — P, while not only theoretically
unjustified, is also prohibitively slow. To overcome this problem, [12] writes ititensity as solely a
function of the underlying factors with the idea that this captures the bulkegfgyments. Then, for CIR
interest rates, the endogenous rate is rapidly computed using eigdifuagpansions. In [10] a non-
iterative method is proposed borrowing ideas from partial differentiadtigns theory. In the current paper
we take an alternate approach, approximating the current coupon Wimhaion analysis. Thus uses the
well known fact (see [11]) that unique current coupon functionstexheny, = v(X;) only depends upon
the factors. Next, we note that for= ~(x, m, z) as in (1.1), we may always write

(1.2) V(2 m, z) =q0(x) + n(z,m, 2),

by taking~o(z) = 0, but also in the case where the full intensity takes the form in (1.2) (se®Sé&dor a
commonly used example). We then embed this decomposition via

7 (w,m, 2) = 90(@) +enlwm,z); &> 0.

Fore = 0, there is a unique current coupon functien(z): see Proposition 4.1 below. Sendiag— 0
we obtain a unique, explicit, closed form expressionfarx) so thatm®(z) = mo(z) + emy(z) + o(e).
With this decomposition, valid for any continuous fixed point, we naturally consider the numerical
approximation (at = 1) of m(z) ~ mg(x) + mi(x). It turns out this approximation does very well in
practice: differing by less thatD basis points (on absolute rate levelsiéf — 12%) from the theoretical
fixed point determined by naive contraction: see Section 5.

*See [11, Proposition 4.1], and using the notation therein,4ake 0,~+" = 1, f = 1 andé > 0 for a counter-example.
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The rest of the paper is organized as follows. In Section 2 we givergstieulerivation of the fixed point
problem. Section 3 specifies the fixed point problem to a Markovian framkemtoereX is a non-explosive
locally elliptic diffusion on a general domain ¢, making precise assumptions on the model coefficients,
as well as the intensity function. Section 3 culminates with Theorem 3.9 whigkgsxistence of a current
coupon function, under the assumption that, m, z) is approximately constant im for large values of
m (see Remark 3.7 for more discussion on our main assumption). Sectionotnperthe perturbation
analysis with Theorem 4.3 explicitly identifying the leading order terms in therestpa. Section 5 gives
a numerical example where the current coupon approximated via peaiturbaalysis is compared to the
function obtained through naive contraction. Appendices A — D contaipithefs. In particular, as the
mortgage market is typically incomplete, a rigorous construction of the partidalaneutral measures
used here for pricing is given. Aside being done for the sake of mathahetor, we show that when
pricing the mortgage pool, one may assume the intensity processes coirngigem¢he physical and risk
neutral measures and hence can be estimated using observed prepigtaen

2. ENDOGENOUSCURRENT COUPONS

Consider a level-payment, fully amortiz€dyear fixed rate mortgage which is originated at time:
0. The mortgagor thus takes a loan &f dollars at origination and pays a continuous coupon stream at
the constant rate of > 0 dollars per annum during the lifetime of the mortgdgerl’]. The interest is
compounded at the constant mortgage rate- 0 fixed at origination. In the absence of prepayments, the
scheduled outstanding principal of the mortgage, denotgahyn) for 0 < ¢t < T andm > 0, satisfies
the following ordinary differential equation:

(2.1) pt(tvm) = mp(t, m) -G p(O,m) = I, p(T, m) =0,

wherep; is the partial derivative with respect to(2.1) has solution

1 — e—m(T-1)

(22) p(tv m) = PO 1_ e‘mT

SinceP, factors out of the above equation, we assurpe= 1 throughout so that

1— efm(Tft)
(2.3) p(t,m) =

1—eml °
From (2.1) and (2.3) we can express the coupon stream payrnreterms ofm and7 as well:

m

(2.4) c=c(m)= =

We first informally derive a fixed point equation for the current coupanThis argument will be made
rigorous in Section 3 and Appendix D below. In the absence of prepagitbe mortgage balanggt, m)
evolves according to (2.3). Consider now when there is a (randomaymremnt timer under a pricing
measure) (here, the underlying probability space(i3, G, Q)). In other words, ifr < T, the owner of
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the mortgage at time prepays the remaining balangér, m). Assuming an interest raie= {rt}tg the
value of the mortgage is

TAT
(2.5) M(m) = E¢ / c(m)e™Jo Tt 4 1, pp(r,m)e Jo rude
0

~~ Prepayment
Coupon Payments

Next, assume that the interest rate process is adapted to a filtfatiofF: }, . whereF = Vi< 7 C G
and thatr has an intensity; = {~;},., with respect tqQ, F):

(2.6) Q |:T > t’]—"] f=Q |:7' > t’]—"t] — ¢ Jo udu t>0,

for some non-negative, integrable, adapted progegsom this, we obtain (see [11, 12]) the value of the
mortgage as

T
(2.7) M(m)=1+E®? [/ p(t,m)(m —ry)e” fg(r“'*'”“)d“dt] .
0
The mortgage rate: is said to beendogenoud M (m) = Py = 1. In view of 2.7, we seekn so that

T t
(2.8) 0=E" [/ p(t,m)(m —r)e” Jo (T“+7“)d“dt} .
0

3. THE MODEL AND FIXED POINT PROBLEM

The above analysis is now specified to a doubly stochastic, intensity bas#el foo the mortgage
prepayment time. To make this precise, fix a probability spaée G, Q). We first remark:

Remark3.1 The measurd) is interpreted as a pricing, or risk neutral, measure and we \rjtg for
EQ [] throughout. In Appendix D we offer two rigorous constructiongQofone valid for a “large” pool
and one valid for a single loan pool. In particular we will show that when estigidhe prepayment
intensity functiony described in Assumption 3.6 below, one may use observed prepaymerattigtathan
estimating prepayments under the particular risk neutral me&sufer ease of exposition, however, we
delay this construction, simply assuming a mortgagewats the current coupon if it satisfies (2.8).

Let W be a standard, d-dimensional Brownian motion uri@eim he underlying economic factors which
affect prepayments are governed by the procésatisfying the stochastic differential equation (SDE)

(31) dXt = b(Xt)dt + a(Xt)th.
The state space of is an open, connected regidh C R? which satisfies

Assumption 3.2. D = U2, D,, where for each, D,, is open and bounded with smooth boundary. Fur-
thermore,D,, C D, ;1.

TThis equality requires an additional hypotheses on fhiagvconstructed and will be shown to hold in the current setup.
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Regarding the coefficients in (3.1) we assume thatD — R? and let4 : D — S%_, the space of
symmetric positive definitd x d matrices. We then take = /A, the unique positive definite symmetric
square root ofd. We assumé, A satisfy the following regularity and local-ellipticity assumptions

Assumption 3.3.

1) Ais locally elliptic: i.e. for eachn there exists(; (n) > 0 so that for allé € R\ {0} andx € D,, we
have¢’A(z)¢ > Ki(n)¢'€.
2) bandA are locally Lipschitz with Lipschitz constatifs(n).

Assumption 3.3 implies existence of a local solution solution to the SDE in (3.1)nJure existence of
a global solution we assume the process does not explode: i.e.

Assumption 3.4. For allz € D andT > 0, we haveQ” [X; € D, Vt < T]| = 1, whereQ" denotes the
conditional probability givernX, = x.

Under Assumptions 3.3, 3.4 it follows that has a unique strong solution. Furthermore, since the short
term interest rate plays a key role in the mortgage evaluation, we assume the first coordin&tesahe

interest rate: i.eX\") = r, and that the state space st is (0, 00): i.e.

Assumption 3.5. The state space of := X is (0, c0).

To precisely define the intensityin (2.8) we adopt the following methodology. Let: D — [0, 00) be
a given candidate current coupon function, in that we wishi¢r) to be the endogenous current coupon
given Xy = = € D. As mentioned in the introduction, we hypothesizis a function of

e The underlying factor process.

e The contract mortgage rate(x).

e The current mortgage rate available via refinaneingy)*.

Thus, attime < T we havey, = y(X, m(z), m(X¢)), wherey : D x [0,00) x [0, 00) is an exogenously
defined function. To facilitate our main assumptionowe first define the auxiliary function

et

(3.2) E(x) = 0<1%f<1 A=) e*ﬁw); x> 0.
Straightforward analysis shows tHais decreasing with: and
1 ) E(x)
. Z(x)=—f < 2 1 =1.
(3.3) (z) . orx < 2; xlTrgo po sy

With this definition, we make the following assumptions regardingio ease presentation, defifk :=
D x (0,00) x (0,00) @andE,, := D,, x (0,n) x (0,n),n € N,

Assumption 3.6. Assumey : E — [0, 00) satisfies

Technically we should allown to be time-dependent as well: i.e2; = m(t, X;) but, due to the time-homogeneity of the
diffusion X, it suffices to considein; = m(X).
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1) v € C?(E) and for each, the derivatives of ordex 2 can be continuously extended i, ¢, and are
Lipschitz continuous o, with Lipschitz constanL., (n).
2) y(xz,m, z) and~,,(z,0, z) are locally bounded im, uniformly in (m, z) andz respectively. |.e. for each
n there is aB,(n) > 0 so that
(3.4) sup  y(xz,m,z) < By(n); sup  Ym(z,0,2) < By(n).
2€D,,m,z>0 2E€D,,2>0

3) With = asin (3.2), it holds that

(3.5) 0 <ym(z,m,z) <E(mT); x€ D,m,z>0.

Remark3.7. Regarding Assumption 3.6, that > 0 is standard. The local regularity conditions are not
overly restrictive since we do not require global bounds on the dem& size and (3.4) is an extension of
the case when is uniformly bounded.

However, conditior8) deserves comment. First of all, it automatically holds whénindependent of the
time 0 contract raten = m(Xy). When~ does depend upom, thatv,, > 0 is natural since prepayments
should rise with the origination rate. Next, under the given regularity assomspyve have (see (3.4)):

(3.6) Ym(x,m, 2) < By(n) + Ly(n)m; x € Dpym, z € [0,n].

Since=(mT) = 1/(mT) for smallm we see that in fact, (3.5) is not restrictive for small But, for m
large it does imply thay is approximately constant im. Note that forl” = 30 the thresholdnT < 2 is
satisfied form < 6.67%.

With the following assumptions in place we define what it means{@o be a current coupon function:

Definition 3.8. m : D — [0, 00) is acurrent coupon functioif (2.8) holds under the measu@” for all
x € D:ie.

T t
(3.7) 0=FE" [/ p(t,m(z))(m(z) —r e Jo (T"JW(X“7m(x)’m(X“)))d“dt] ; x € D.
0

A current coupon function is a fixed point of a non-linear operadorTo see this, note thah(z) is
deterministic and hence we can write (3.7) as

B [ p(t, m(a) e w1 ume)m(X) e
(3.8) m(z) = Am](z) :=

B [ plt. m(x))e ot (Xum(o) (K)o

The complicating features of the above operator are the non-linearityrofn, and the joint dependence
of v on bothm(z), m(X}). Indeed, the first feature means that it is prohibitively difficult to verifydifs
a contraction, and hence we we will have to appeal to a topological fixied {m@orem for existence of
solutions. Second, due to the presencerdf:) within the expectationa-priori we do no expect any
smoothing of the map: — A[m], or that.A possesses the compactness properties necessary to invoke any

$Henceforth we will assume and its derivatives of ordet 2 are defined oD x [0, co) x [0, o) with the values at zero being
the continuous extensions.
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classical topological fixed point theorem. However, through a delicatditation argument, fixed points
do exist under the current assumptions, as Theorem 3.9 now showerigthy proof is given in Appendix
A below.

Theorem 3.9. Let Assumptions 3.2 — 3.6 hold. Then, there exists a strictly positive caapbn function
m: i.e. (3.7)holds. The functiom: is locally a«-Holder continuous for alkv € (0, 1).

4. PERTURBATION ANALYSIS

Theorem 3.9 asserts the existence of current coupon function. téoveiwce our method of proof does
not use the contraction principle, we do not know if solutions are unigdedamot automatically have a
method to compute them. One may certainly try an iterative procedure in (3.@ngtaith an arbitrary
function mg on D and, definingm,, = A[m,_1],n = 1,2,..., but absent a contraction, it is not clear
if this procedure converges. Thus, in this section, we offer a petiarbanalysis where the intensity
is perturbed off of a baseline intensity which only depends upon the factors procé&ssThe goal is to
uniquely identifym up to leading orders of the perturbation. With this identification, we then in tke ne
section provide a humerical approximation to the fixed point and compareritspance.

As a starting point, we present a proposition, similar to [11, Lemma 2.1], whiclvs that wheny, =
~0(X) only depends upon the factor proceésthere is a unique current coupon function.

Proposition 4.1. Let Assumptions 3.2 — 3.5 hold. Assunie, m, z) = v (z): and thaty, satisfiesl) — 2)
in Assumption 3.6. Then there exists a unique fixed po{at) solving(3.7), which in this instance reduces
to

T t
(4.1) 0=FE" {/ p(t,m(z))(m(z) — re)eJo (T“JFFYO(X“))d“dt} .
0
The functionmn is locally a-Holder continuous orD for any« € (0, 1).

Proof of Proposition 4.1Fix x € D. Fort < T define

. t
o) 1= B [ 08T ey = [ G
(4.2) °
g(t) := E* {rte_ ftf(”“‘W(X“))d“}; G(t) := / g(u)du.
0

Next, define
T
h(T,m) = emT/ (1 - e—m<T—t>) (mf(t) — gt)) dt; T >0,m > 0.
0

Note that we will have a solution to (4.1) if for eache D, T > 0 we can find a numbetn, = m(xz) > 0
such thath(T,m) = 0. Indeed, this follows by plugging ip(¢,m) from (2.3) and noting that™? 1 —
e~™T—1) are strictly positive. To find such an, note that:(0,m) = 0 and

0 h(1,m) = mT/T( F(t) = g(t) dt = me™ (mF(T) - G(T))
T ,m) =me ; m g = me m ,
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so thath(T',m) = foT me™(mF (t) — G(t)) dt. Now, for G from (4.2) we have
t
G(t) = E” [/ (ro £ (X)) e o (Tv+’y(Xv))dvdu:| ;
0

t
=1—-F* [/ y(Xy)e™ IO“(TUH(XU))dvdu] _E* [e— fot(mﬂ(Xv))dv] :
0
= H(t) - F(1),

where we have seif (t) := 1 — E® [J}f Y(Xu)e™ fou(“ﬂ(Xv))d”du}. Sincer > 0:

(4.3) H(t)>1-E" [ / t (1w +7(Xy)) e” f£<rv+v<Xv>>dvdu] = F(t) > 0.
0

Coming back tch we have
h(T,m) = /O " nemt (mF(t) 4 R(t) — H(t)) dt =m (emTF(T) - /0 ! ™ H (1) dt) .

Hence,h(T,m) = 0 is equivalent toF (T') — [} e-™T-DH(t)dt = 0. Using (4.3) it is clear that, as a
function of m, the left hand side is strictly increasing, takes the vaii@’) — fOT H(t)dt < 0 at0, and
limits to F/(T') > 0 asm 1 co. Thus, there is a unique so thath(7', m) = 0. The statement regarding the
regularity ofm follows from Theorem 3.9 since fixed points are unique in this case.

O

Having established existence and uniqueness in the baseline case, werfmm the perturbation anal-
ysis. To do so, assume

Assumption 4.2. y(z,m, z) = yo(z) + ey1(z, m, z) where~y, satisfies part$), 2) of Assumption 3.6 and
y1 € C%(E) is compactly supported with derivatives which are continuously extentatex {0} x {0}.

Under Assumptions, 3.2 — 3.5 and 4.2 it follows from Theorem 3.9 that for0 small enough, there
exists a continuous current coupon functief. In fact, m® is unique up to leading orders efas well as
explicitly identifiable, as the following theorem shows:

Theorem 4.3. Let Assumptions 3.2-3.5 and 4.2 hold. Eor- 0 small enough, lein® be any current
coupon function, continuous dn. Then we have

(4.4) m*(x) = mo(x) + emi(x) + o(e).

Above, the convergence is locally uniform forc D. The functionm is the unique fixed point from
Proposition 4.1 and, fox € D

(4.5)

B [ J3 (mo(@) = 72) p(t.mo(@)) ( fi 1 (X mo (), mo(X))du ) e~ Jortm(Xdugy]

B [foT ((mo(x) = re)pm (t, mo(x)) + p(t, mo(x))) e~ fé(rm@(Xu))dudt}

my(z) =
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Though the formula forn; is lengthy, the point of Theorem 4.3 is that itagplicitly identifiablegiven
my, the unique fixed point in the baseline case. Additionally, as will be used ifotlmsving section,
we point out that the formula for; makes perfect sense as long as the relevant random variables and
expectations are well defined. In particulgr,need not be compactly support angd v, need not be>? in
order for the above formula to make sense.

Proof of Theorem 4.3Fore > 0 small enough, letn®(x) be any continuous solution of (3.7) (or equiva-
lently (3.8)) withy = 79 + e7;. From Theorem 3.9 we know at least one such function exists. Firsg sinc
p(t,m) < 1,7 > 0,7 > 0 the numerator in (3.8) is bounded above by

T t
(4.6) E* { / re”Jo ’”“d“dt] <1
0

Second, using that; is compactly supported (and hence bounded above by g¢yeand Lemma C.1
below it follows for anysy > 0 small enough, the denominator in (3.8) is bounded below by; fors(:

T/2
le*EOCHlT}Em [/ e~ fot Tudtdt] )
2 0

As a function ofz the above is continuous and strictly positivelin where this latter fact follows from
the elliptic Harnack inequality: see [20, Chapter 4]. Thus, is locally bounded onD, uniformly in
0 < e < g9. Now, recall (3.7), specified to the current setup:

T
(4.7) 0=E" {/ (m®(x) — ) p(t, m*(x))e” fJ(T“J“VO(X“)er(X“’me(x)’me(X“)))d“dt} :
0

We first claim that for eaclx € D, lim.jom®(x) = mo(z). Indeed, sincen® is locally bounded in
D, uniformly in0 < & < ¢, it follows for eachz € D that{m®(z)}___ is uniformly bounded. Let
e, — 0 and assumen*" (x) — m(x) for somem(x). Sincey; is continuous and compactly supported, the
dominated convergence theorem yields

0=E® [ /0 T(m(x) — r)p(t, i(z))e Jo (7"“+70(X“))d“dt] ,
and so by the uniquenessaf, from Proposition 4.1 we know thak(x) = mg(x). Since this works for
all subsequences, — 0 the convergence result holds. Next, defi¢hrough
(4.8) me(z) = mo(x) + em(z,); x € D,e < gp.
Using Taylor's theorem we have

me(x) —ry = mo(x) — ry + em(x, e);

p(t,m"(z)) = p(t,mo(x)) + em(z, &) pm (t,mo(x)) + %azﬁ(x,a)%mm(t,f(x,e));

t
e=e Jo  (Xum (@) m* (Xu)du — 1 _ 5/ V1(Xu, m® (), m* (Xu))du
0

2

+ %»52 </0t 71(Xu,m5(x),m€(Xu))du> £(z,e,1),
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where
\f(x,a)] < a|m(w75)\; 0< é(l’,é‘,t) < esf(f’71(Xu,m5(g:),m€(Xu))du‘

Plugging these expansions back into (4.7) and collecting terms by explic#grpa¥e, the zeroth order
termis

T
W{/<mmw—wmmnm@»eﬁ“ﬁ%“mmﬁ o,
0

where the equality follows from Proposition 4.1. The first ordersiterms, within the expectation and
time integral, are

m(x, )p(t, mo(x)) +m(x, €)(mo(x) = re)pm(t, mo(x))

—WM@—MMM%@»AWW&mﬂ@mﬂXMM~

Using the given regularity, local boundedness and compactly suppssednptions, all higher order terms
together areD(<?), uniformly on compact subsets @#. Since the zeroth order term vanishes, we may
divide (4.7) bye > 0 to obtain

T t
OZW@QW{/(MWW@D+WM@—nWMWm@mé%W”W&Wmﬂ
0
T t ,
+ E* {/ (mo(x) — rt)p(t,mo(:n))/ Y1 (X, m(z), m®(Xy))du e~ Jo (Tu+"/0(Xu))dudt:|
0 0
which can be re-written as

E* [ (mo() — r)p(t, mo(2)) Jy 1 (X, m (), me(X))du e~ 3 CatmXa)dugy] 4 OE)

£

N 0(52)

)

) = B [Jg (bt mo(@)) + (mo(@) = re)pm (1, mo())) e~ Jaruton(Xdugy |
B [ o (mo () = ra)p(t, mo () R(t; 2, €)e Jaratn(Xiugy] 4 )
Y T ot mot@) + (mo(@) — ot o)) e~ R ngr]
where

R(t;x,e) = /0 (71( Xy, m®(z), m*(Xy)) — 71 (X, mo(x), mo(Xy))) du.

We have already shown that®(z) — mq(z). Sincem® is continuous;n® converges tang uniformly
on compact subsets @. Since~, is C? and compactly supported it thus follows by the dominated con-
vergence theorem théin, o m(x, ) — my(x) = 0 with uniform convergence on compact subsetof
finishing the result.

U

5. A NUMERICAL APPROXIMATION

Theorem 4.3 offers a natural numerical approximation for computingoticoupon functions. Namely,
for a given intensity functiory we first identify if there is a decomposition

(5.1) y(z,m,2) = yo(z) + 11 (z, M, 2),
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and then we compute, from +, definem, as in (4.5) and output the approximation from Theorem 4.3 at
e=1:le.

(5.2) m(x) ~ mo(x) + my(z).

Note that this approximation is obtainable as longrasm; are well defined, and does not necessarily
require~y,y; to satisfy the regularity and growth conditions in Assumption 3.6. Computatioria#y,
advantage of this approximation over naive contraction is clear: therdyiosna Monte Carlo simulation
(for eachx € D along a give mesh) needed to compuite

Next, we point out that a decomposition (5.1) is always possible since opeakay, = 0. In this
instanceng(x) from Proposition 4.1 solves
ﬂ = 1 /T EQ” {ei Jo T“d“} dt; xeD.

mo(z)T T Jo
For many models of interest (e.g. see [24, Example 6.5.2] for wherCI R), the expectation on the right
hand size is explicitly computable amd, is easily obtained by inverting the strictly decreasing function
y— (1—e7Y)/y. Alternatively, if there is some > 0 so thaty(z, m, z) > ~ then one can takey(z) = ~
and~; (xz,m, z) = v(x, m, z) — ~. Here, for constant, = ~ calculation shows that,, satisfies

_ —mo(x)T T . _ —mo(x)(T—t)
(5.4) oo™ / e MRY [ Jorud] <1+71 ‘ )dt,
0

mo(x) mo()

which is easy to obtain numerically given an explicit formula]ﬂ?r[e* Jo ’"u}. Oncemy is known, one
then may computer; using Monte Carlo simulation.

(5.3)

5.1. An Example. We now take an example similar to that in [12, Section 6] and asskénie a CIR
process (i.ed = 1, D = (0,00) andX (M) = r is a CIR process) ang takes the form

(5.5) Y(z,m,2) =+ k(m—2)".

Thus, there is a constant baseline prepayment intengiflecting turnover: i.e. prepayments not related to
refinancing) which is adjusted upwards (reflecting the refinancing tivegroy the difference between the
contract raten and refinancing rate, when this value is positive. This adjustment is then scaled by a factor
k > 0. Asin[12], we will assumé = 5 so this is not necessarily a small perturbation off the baseline case.
Here, we perform two approximations. The first s@tér) = 0,v1(z) = v + k(m — z)*, computesng
from (5.3), and themn; from (4.5). The second approximation takgéz) = v, v1(z,m, z) = k(m — 2)™
computesmg from (5.4) and thenn; from (4.5). For each approximation we compaig + mq to the
“theoretical fixed point”m obtained by naive contraction, which in this instance converges rapidly (e
after approximately five iterations) to a fixed function for a given initial gue&). The model parameters
are the same in [12]: ifir; = (0 — r)dt + o/rydW; thenk = 0.25,6 = 0.06, o = 0.1. Additionally,
~ = 0.045 andk = 5.

Figure 1 compares:; + m; to m when~(z) = 0. As shown in the right plot, the approximation does
very well, differing by less tha0 basis points (for an absolute leveldyt—12%) within the (2.5%, 97.5%)
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FIGURE 1. Current coupon functions (left plot) and errors (right plot) asrefion of the
underlying CIR factor. In the left plot, the solid line is the current coupamcfion m
obtained through naive contraction. The thick-dash plot is the approximatio+ m4
while the thin dash plot igg. Values are given in percentage points. For the right plot, the
error is the difference (in basis points) betwee@andmg+m;. Also in the right plot is the
invariant pdf for the CIR process my is calculated withy,(z) = 0 andm; is calculated
with y1 (2, m, z) = v + k(m — 2)*. Parameters are = 0.25,6 = 0.06,0 = 0.1, T = 30,

k = 5 andvy = 0.045. Computations were performed usiktlab, Mathematicaand the
code can be found on the author’s websitew.math.cmu.edu/users/scottrob/research

percentiles of the CIR invariant distribution. In the “middle” of the invariastribution, the approximation
is virtually identical to the naive fixed point, with errors consistently betwieert basis points.

Figure 2 makes a similar comparison, usigz) = ~. Here, the performance is significantly improved
with the (2.5%, 90%) percentiles in that the approximatiem, + m; is nearly identical to the functiom
obtained through niave contraction. Indeed, the difference betwgen m, andm is less tharB basis
points. However, for large values ofthe error is a bit larger than in the previous method, approaching
approximately? basis points.

APPENDIXA. PROOF OFTHEOREM 3.9

A.1l. Outline of the Proof. The goal is to show the existence of a functian D — (0, c0) so that (3.8)
is satisfied. To do this, we will use Schaefer’s Fixed Point Theorem, dhatedfor the convenience of the
reader

Theorem A.1(Schaefer: [4]) Let K be a closed, convex subset of a Banach spaeeth 0 € K. Assume
A : K — K is continuous, compact and such tHat € K | u = AA[u],0 < X < 1} is bounded. Thent
has a fixed point irk.

It is thus necessary to define the Banach spacelosed convex subséf and verify the given assump-
tions regardingA. For X we would like to choose the space @fHdlder continuous functions o and
have K be the subspace of non-negative functions. Howevel} &snot necessarily bounded, and the co-
variance matrix: is not necessarily uniformly elliptic o, we will have a difficult verifying the requisite
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FIGURE 2. Current coupon functions (left plot) and errors (right plot) asrefion of the
underlying CIR factor. In the left plot, the solid line is the current coupamcfion m
obtained through naive contraction. The thick-dash plot is the approximatio+ m4
while the thin dash plot igg. Values are given in percentage points. For the right plot, the
error is the difference (in basis points) betwee@andmg+m;. Also in the right plot is the
invariant pdf for the CIR process my is calculated withyy(z) = v andm; is calculated
with v1(z,m, z) = k(m — 2)*. Parameters are = 0.25,0 = 0.06,0 = 0.1, T = 30,

k = 5 andvy = 0.045. Computations were performed usiktatlab,Mathematicaand the
code can be found on the author’s websitew.math.cmu.edu/users/scottrob/research

continuity and compactness of the operatbrThus, we must first localize the problem. At the localized
level we will obtain a fixed point using Schaefer’'s theorem. We will thenindwhe localization to get the
result. As such, the plan is:

1) Define an operatad™ related ta4 and show thaid™ has a fixed pointn™ > 0 defined onD,, which is
a-Holder continuous for allv € (0, 1).

2) For eachn, obtain uniform (inn) Holder norm estimates oh,,, for the fixed pointsn™,n > m + 1.

3) Show thatn™ has convergent subsequence with limitwvhich solves the full fixed point problem.

As afirst step in the above plan, we need to obéaprioi Holder norm estimates on solutions to certain
partial differential equations (PDE) which are defined through expenta

A.2. A Priori Estimates of Holder norms. We first recall the standard definitions of the elliptic and
parabolic Holder spaces. For a more thorough introduction to suchsspaed8] for the elliptic case and
[6, 17, 4] for the parabolic case.

Fix n € N and recall the domain (i.e. open connected regibp)is bounded with smooth boundary.
Fork ¢ N, denote b)Ck(Dn) the collection of functions on D,, such that all partial derivatives of order
< k are continuous, and uyk (5n) the subspace of functions with partial derivatives of ordéer that are
continuously extend-able @D,,. Next, for a given function. on D,, anda € (0, 1] set

u(z) —u(y
lu|p, := sup |u(z)]; (U], D, = sup 7‘ (z) i )|
CL’EDn $7y,€Dn7$7ﬁy ‘:B - y‘
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The spaceC’<(D,,) is defined as the subset 6f*(D,,) consisting of those functions, whose partial
derivatives of ordeK k have finite| - | p,, norm and whose partial derivatives of ordehave finite[-],, p,,
norm. On the spac€”*(D,,) define the norm

(A1) lullyop, = lulp, +Z sup [D’ulp, + sup [D%ula,p,,
j= 1 Bl=j |B|=Fk
whereg is a multi-index consisting of non-negative integers, ..., 55 and|3| = E‘f:l B; and DPu =
c‘)f" 5, \tis weIIEnown thatC*<(D,,) with norm|| - |x.. 1, IS @ Banach space. Lastly, when= 0 write
C?(Dy) for C°(D,,) and|| - ||, 5, for ||
For the parabolic Holder norms, define the don@m (0,T) x D,,. Atypical pointP € @, takes the

formP = (t,2),0 <t < T,z € D,. ForP, = (t,x), P, = (t,Z) € Q,, the parabolic distance between
P, Pyisd(Py, Py) = (|z —Z|* + |t—f|)%. Now, leta € (0 1]. We recall the definitions of standard Holder
norms of a function: defined onQ),,:

u(P1) — u(P)]

ulon = sup |u(P)[; U = sup ;
o PeQn| Pl P PLPoeQnPi#P,  A(P1, P2)®
(A.2) [ulan = |ulon + [u]an?

|“’2+a,n |U’0n+Z|D U|0n+ Z |D U’an‘f' |Dtu|an
i,7=1

Above,D;u = Dé 0 andD? U= D0 1,.ou with the ones at andy, j respectively.

We now prove three Iemmas which establasbriori estimates (both local and global) for the ||, 5
normand|- ||, , 5, norm of some conditional expectation expressions, which will be essentie proofs
below. For each, denote byr, the the first exit time of the process from D,,. Each of the lemmas below
concern the functiom : D,, — R defined by

T ATy,
(A.3) u(x) == E* [/ g(t, Xy)e = Jo b Xu gt x € Dy,
0

whereg(t, z) andh(t, x) are functions defined of,,. To ease presentation, the bounding constants below
may change from line to line, and than the constants is assumed to absai{n),Ko(n), By (n), Ly(n)

of Assumptions 3.2—3.6, as well as the dimengipparabolic domaird),,, and horizori". We will keep the
dependence upon the Holder parametexplicit.

Lemma A.2 (Global C?© estimate) Letu : D,, — R be defined irffA.3) and assume for some < (0, 1],
g andh satisfy
|g|oc,n < 0Q; ‘h‘a,n < Kg(n),
lim g¢(t,y) =0; x € 0D,

y—ax,t—T

for some positive constaifz(n). Then

HUHZQ,EH < C(Tl, K3(n)7 O[) . ‘g‘a,n-
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Proof. Clearlyu(xz) = U(0, z), where
TNATp .
Ut,z) = E* {/ g(s, Xs)e™ Jom0.X0)d0 gy | t<T,x € D,.
t

Under the given regularity and ellipticity assumptions, [6, Theorem 3.7] impliessthe unique solution to
the Cauchy-Dirichlet problem

Ui+ LU = h(t,2)U = —g(t,z), (t,x) € Qn,
(A.4) w(T,x) =0, € Dy,

u(t,z) =0, (t,z)€[0,T] x OD,.
The boundary Schauder estimate (see [6, Theorems 3.6, 3.7] and notatlition ong ast T 1,y — = isS
the compatibility condition therein) for parabolic equations yields

||u‘|27a,ﬁn < ‘U|2+a,n < C(naKB(n)aa)|g|a,n-

i

Lemma A.3 (Global C* estimate) Letw : D,, — R be defined irf{A.3) and assume for some, € (0, 1]
that g, h satisfy

|g|oco,n < o0, ’h‘ao,n < o0, |h’0,n < K4(n),

for some positive constaif,(n). Then for alla € (0, 1)

HuHa’En < C(”a K4(7’L),Oé,0¢0) : ’g 0,n-

Proof. Sinceg, h areag-Holder continuous, we can invoke [7, Theorem 5.2] regarding sitich@presen-
tations of solutions to parabolic PDEs to writér) = U(0, z) whereU satisfies the linear parabolic PDE
in (A.4). Using the boundary Boundaryf;"}?’1 estimate for parabolic equations in [17, Theorem 7.3.2] we
obtain for allp > 1,

1Ullze(@n) + 1PU | 2p(0,) + Ut e (@) < C(n, Ka(n), a0)|gon-

Now, leta € (0,1). Since@, is a Lipschitz domain we can apply the Sobolev embedding (Morrey’s
inequality) to get, for a sufficiently large depending upom (as well as the model coefficients, domain,
«, etc.)

ully,p, < 1Ulan < C(n, Ka(n), @, a0)[[Ullwie(q,) < Cn, Ka(n), @, ao)lglon-

O

Lemma A.4 (Interior C* estimate) Letw : D,, — R be defined if{A.3) and assume for some, € (0, 1]
that g, h satisfy

|9lagn < o0, ’h‘ao,n < o0, |h’0,n < Ky(n),

for some positive constaif,(n). Leta € (0, 1). We then have for alhh < n that

HuHa,ﬁm < C(ma K4(’I7’L + 1)7 OZ?O[O) . (|g|0,m+1 + |U|0,m+1) 5
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whereU is satisfies the linear parabolic PD&.4).

Proof. Againu(z) = U(0, z), whereU satisfies (A.4). Set
Q= (O, Z) X Dpy,.

Forp > 2, the interior/¥," estimate for parabolic equations [17, Theorem 7.22] yields

1Ullzeqr) + IDUllLeqr) + 1UtllLe(qr,) < C(m, Ka(m + 1), ao) (Iglom+1 + [Ulom+1) -

Since@),, is a Lipschitz domain, Sobolev embedding yields for ang (0, 1) by takingp large enough

that
[ullo5,, < Ullaq,, < C(m, Ka(m + 1), a,20) |U[lw1r(qr,)

< C(m, Ka(m + 1), a, a0) (|glo.m+1 + [U

0,m+1) l}

where above we have st ||, o, as then-Holder norm on the regio®;,,.
O

A.3. The localized problem. Throughout this section, Assumptions 3.2—3.6 are in force. We first seek
functionsm = m™ on D,, satisfying (compare with (3.7)), for eaahe D,,:

m(z)?

n(l — e=m@)T)
The second term above is a correction term introduced to establish Igoénigy of solutiongn, and will
vanish as: 1 co. To establish existence of solutions, éet (0, 1) and fix a functior; € K,, where

TNTn
(A.5) E® |:/ (m(z) — r)p(t, m(z))e” fg('I‘u+'y(Xu,m(m),m(Xu)))dudt + —0.
0

(A.6) Ky, = {77 € Ca(bn) in 2 O} )
and look for functionsn = m™" solving, forz € D,,:

m(z)”

LD S—)
n(l — e=m@)T)

TATh
(A7) E [/ (m(x) — ro)p(t, m(a))e™ Joru Kum@nXu)dugy | |
0

l.e. we substitute;(X;) for m"(X;) in 4. Sincelim,,;om?/(1 — e ™) = 0 we define the second
term above to b&® whenm(z) = 0. Proposition A.7 below establishes existence and uniqueness of such
functionsm™". This defines the mapl™[n] := m™". Using thea-prioi estimates established in the
previous section we then verify this map satisfies the hypotheses of 8chdleéorem A.1 and hence there
is a fixed pointn™ satisfyingm™ = A" [m"] which is equivalent tan" solving (A.5).

Before proving Proposition A.7 we state two technical lemmas, proved inipp®. First, define

(A.8) C’,(LI) := sup {a:(l) S Dn}; Cp = sup{|z| : € D,},
and note that any solution of (A.5) muatpriori satisfy0 < m"(z) < Cfll). Additionally, as in the

previous section, the bounding constants below may change from line talintheir dependence onis
understood to absorb the dependence upon the congtafitg, K»(n), L, (n), B,(n) of Assumptions 3.3,
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3.6, as well as the regiof,,, dimensiond and maturityT’. To state the lemmas, for € K, define the
functionk™(m, z;n) for z € D,,, m > 0 by

T'NTn,
(A9)  E'(m,x;n) = iIE"’D [/ (m —r¢) (1 - e_m(T_t)) = Jo (rutr(Xusmon(Xu)))du gy + @,
0

m n

and note from (2.3) that (A.7) holds if for eaghe D,, we can findm = m(z) = m™"(x) > 0 so that
E™(m,z;n) = 0. The first technical lemma establishes regularity®in (z, m) for a fixed.

Lemma A.5. Leta € (0,1) andn € K,, and defing™ as in(A.9). Then
1) For a fixedz € D, k"(-,x;n) is continuously differentiable of0, o). Furthermore, there exists a
constant4(n) such that for ally € K,,, m > 0 andz € D,,:

(A.10) < 0k (i) < Aln).

2) For afixedm > 0, k"(m,-;n) € C*>%(D,,) and there exists a constan{n, Inll,,5,) such that for all
0<m< 07(11)

(A.11) 1B (s s m)llg.0,5, < Alns lInllap,,)-

For R > 0, A(n,[In[|, 5,) can be made uniform (i.e. depending only upot) for |||, 5 < R.
The second lemma establishes regularity’ofvith respect to changes in both andy.

Lemma A.6. For n1, 12 € K, and0 < my, ms < CT(LI) there exists a constat/ (n, Hmuaﬁn, H’72Ha5n)
so that
(A.12)

ijn(m17 . ’)71) — kn(m27 ) 772)"2704,5n

< N, Il 5, I2llo5,) (I = m2llo 5, + Ima = mal + lm = n2ll, 5, lma = mal )
and
sup |9 k" (m1, 3n1) — Omk™ (ma, 5 12)|

(A.13) v€Dn

< N, il o, W2llo 5,) (Ima = mal + = mall, 5, ) -

The constant\’ can be made uniform for alln1 ||, 5., 2/, 5, < R for R > 0.
Having established regulariy” we now present:

Proposition A.7. For « € (0,1) andn € K, there exists a unique function = m™" that is strictly
positive inD,, and solvegA.7) in D,,. m™" is continuously differentiable ifv,, with gradient
Vak™ (m, z;7)

A.14 S (z) = —
(A.14) Vem™(@) Omk™(m, ;1)

m=m"™"(x)

Furthermore V3 € («, 1), m satisfies the following a priori estimate of tieHolder norm:
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whereC'(n, 5) does nodepend upom.

Proof of Proposition A.7 As mentioned above, it suffices for eacke D,, to findm = m(x) = m™"(z)
so thatk™(m, x;n) = 0. From Lemma A.5 we know thdt" is strictly increasing inm. Additionally, by
the dominated convergence theorem andthat0, r; < C,(Ll),t < 7, we have

TATn .
lirf(l) E™(m,x;n) = —E* [/ (T — t)e~ Jorutr(Xu0n(Xu))du gy | g,
m 0

lim k" (m,x;n) = oco.
mToo

So for anyx € D,, there exists an unique(z) > 0 such that”(m(z), z;n) = 0 and this defines the map
m = m™" : D, — (0,00). We next show the priori estimate for the Holder norm of. in (A.15). By
definition,Vz, y € D,

(A.16) K" (m(z), z3m) = K" (m(y),y;n) =0,
which implies
(A.17) k" (m(y),y;n) — k" (m(x),y;m) = k" (m(z), ;1) — k" (m(x),y;1).

Sincey is fixed, the mean value theorem appliedhto— k™ (m, y;n) (Which isC! in m from Lemma A.5)
asserts the existence ©betweenn(z) andm(y) such that

(A.18) Omk" (& yim) - (m(y) — m(x)) = k" (m(x), z;n) — k" (m(x), y; ).
By Lemma A.5 we thus have
(A.19) im(x) —m(y)| < nlk"(m(z), z;n) — K" (m(z), yin)|.

Now, fix z (think of this as a parameter) and note th&tm(z), ;1) = «"" whereu™" is defined
in (B.7) below. Noting thatn(z) < C.” it follows from (B.8), (B.9), (B.10) below, as well & <
y D 4 y(y, m(z),n(y) < CY + B, (n) on D, that we may apply Lemma A.3 to obtain for dllc (o, 1)
that

1= emm@T=0)
[ @), 55, < Cln, Kaln), B,0) sup  |m(x) — y)|
(t,y)EQn

where the constarit’y(n) does not depend upon Thus, from (A.19) we obtain

S C(TL, K4(’I’l), B,Oé),

m(x) —m(y)| < nlk"(z,m(z);n) = k" (y,m(z);n)| < C(n,Ka(n), B, a0)lz —yl”.

Since itis clear from (A.7) that™" < Cfll), the estimate in (A.15) holds. Lastly, (A.14) follows immedi-
ately from the implicit function theorem since Lemmas A.5, A.6 imply that for a fixedK,,, £ (m, x; n)
is ' in (0,C") x D,. O

In light of Proposition A.7 we define the mag® : K,, — K,, by
(A.20) A" [n] = m™", n € K.

The following lemma will be needed in the proof of the continuity of the operdtar



20 ZHE CHENG AND SCOTT ROBERTSON

Lemma A.8. Leta € (0,1) andny,ma(z) € K,,. Letmy = A"[m], me = A"[ns]. Then, there is a
constantA (n, Imll, 5, In2ll, 5, ) which can be bade uniform fdm: [, 5, 2/l 5, < R such that

Sup [m () —ma ()] < A, Imllop,. Imllas,)0m = 12lap,

x n

Sup [Vok™ (2, ma(z);m) = Vak" (2, ma(@)in)] < A Il 5, I2llo 50 I = n2l o 5,
reln

SUp (k" (@, ma () m) = Ok (2, ma(2); 12)| < A llmllo 5, I2ll0 5,0 1m0 = n2l o 5, -
reDn

Proof of Lemma A.8By definition of m;, mo we have for allx € D, that0 = k"(mq(x),z;m) =
E™(ma(x), z;n2) and hence

K" (ma(x), x5m2) — K" (ma(x), m5m2) = K" (ma(x), z3m) — k" (ma(z), ;12).

By the mean value theorem applied to the map— k™ (m,z;n2) (which is C' from Lemma A.5)
there is som& betweenm; (x), ma(z) so thatd,, k™ (&, x;n2)(ma(z) — mi(x)) = k" (ma(x),z;n2) —
E™(my(x), z;n2). It thus follows that

). — K ()i
Ima(z) = ma ()] Ok (& 2 s) ’

<t (m, Imllo g, 12 ll05, ) I = m2llo 5,

A, Imlla, 5, In2lle5,)m = n2lla 5, -

where the inequality follows from (A.12) in Lemma A.6 sinGe< m;(x) < C’,(f) on D,,. The second
inequality follows immediately from the first by (A.12) of Lemma A.6. Similarly, the thindquality
follows from the first by (A.13) of Lemma A.6. 0

The following Proposition establishes a fixed poiniip:

Proposition A.9. Leta € (0,1). There existsn™ € K, that is strictly positive forr € D,, and solves the
fixed point equatiom:™ = A"[m"] in D,,. Equivalentlyyn™ satisfieqA.5). Furthermorey¥p € («, 1), m”
satisfies the following a priori estimate of tigeHolder norm onD,,:

Imlls 5, < C(n,B).

Proof of Proposition A.9.The existence of a fixed point™ will follow from Theorem A.1 by verifying the
steps below. Here, the Banach spac&is=- C%(D,,), the closed convex subset containing K,, and the
operatorA is A" from (A.20).

1) The mappingd” : K,, — K, is continuousFor anyn;,ne € K,,, letm; = A"[m] andmy = A"[ns].
In light of the first part of Lemma A.8, we need only consider[thg — mg]am semi-norm, and clearly,
it suffices to show thatup,.c p, Ve (m1(z) —ma(x))| < C(n, lmll, 5, In2ll, 5, ) lm —m2ll, 5, - TO



ENDOGENOUS CURRENT COUPONS 21

this end, we have from Proposition A.7 that foe 1, ...,d andz € D,,;:

ool = [ Quik" (@), 25m) O K" (ma(z), 25 12)
aazi (ml(fﬂ) 2( )) - (amkn(ml(x)7x;7’]1) 8mk:”(m2(a:),x;ng) )7
_ _amlkn (m1($)7$;01) - 8%]{3” (m2(x)7x;772)
8mkn(m1(x)7x;771)
n O, k" (Ma(), 23m2) X (Omk™ (ma(x), 23m1) — Omk"™ (ma(x), 2;12))
amkn(ml(x)vxanl)amkn(mQ(x)7x7n2) ’

and so from Lemmas A.5, A.8 we have

|0z, (ma () —ma(2)) | < 1[0 k"™ (ma(2), 23m) = O, K" (ma(2), 25 72)]
+ 12 An(n, [2lly 5,) 10mk™ (M1 (2), 23m0) = Onk™ (ma(x), 25m2)]

< A Imillo 5, I2llo ) (m 4 02A G, el 5, ) s = m2llo 5,

proving continuity.
2) The mappingd™ : K,, — K, is compact.Let us fix some3 € («,1). Given any bounded sequence
{ni}ien in K,,, Proposition A.7 yieldsyi € N,

1A nilllcs () < €0, B).

By the standard compact embeddings of Hélder spaces, there existsexjsabce A" [1;, | }ren Of
{A"[mi]}iew such that{. A" [n;, |} rew converges in| - [| oo 5, ) NOrm to some limit ink,.

3) The set{m € K,, : m = AA"[m] forsomed < \ < 1} is bounded.Supposen € K, satisfies
m = A\A"[m| for some0 < X\ < 1. We have from Proposition A.7

Imllce s,y = AMA* Ml gap,) < Cn,a).

Schaefer's Theorem thus asserts that the opegéitdras a fixed poinin™ in K,,. By Proposition A.7mn"
is strictly positive. Moreovem™ satisfies the following@ priori estimate of thes-Hdlder norm onD,,:

Imlles@yy < Cn, B), VB € (o, 1).

g

A.4. Global existence of a fixed point.For an arbitraryr € (0,1) andn € N we now choosen” € K,

such thatn™ is a fixed point of the operato4™ in K,,, whereA™ is from (A.20). Let us now fix an arbitrary

n € N. The following lemma establishespriori estimates for the-Holder norms of m” () }n># in D;.

We adopt the notation (72) to denote some positive constant that changes from line to line and mayddepen
on the dimensior, the model coefficient&’; (n + 1), K2(n + 1) from Assumption 3.3, the local Lipschitz
constantZ. (7 + 1) and local bounded constaBt, (7 + 1) from Assumption 3.6, and the time horiz@h

and domaing;, D; 4. If additionally, the constant depends upon the Holder expofiemé will write

A(n, B) to stress this dependence. As such when we vlrfie) the constantloes nodepend upors.
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Lemma A.10. Let € (0,1). For anyn € N there exists a positive constafn{n, §) such thatvn > n,
||mn‘|cﬁ(ﬁﬁ) < A(n, B).
Proof of Lemma A.10Let o € (0, 5). Sincem™ solves (A.7) we have, fom™(x) > 0, rearranging terms

that for alln > n 4+ 1 andx € Ds;;

E” [foT M rp(t, m™(x))e” f(f(ruﬂ(Xu7m"(x)vm"(Xu)))d“dt]

" (z) = |
T AT, n _t,ru w,m™(z),mn “ W mn(z
(A21) B fo 7 plt, ) e e o @ Dt ] n(l_f—fm)m)
= & < A(R)
B inf [EZ |:f(;11/2/\7—ﬁ+1 e~ fot("'udu'f'o'y(ﬁ'ﬁ-l))dudt} - ’
€Dy

Above, the second inequality has used (4.6), Lemma C.1 and the elliptic Mansapiality. We next turn

to the3-Holder semi-norm. From (A.18), for all, y € Dy we have

k" (m"(x), x;m") — k" (m" (), y; m™)
Ok (&, y;m™)

where¢ is some number between™ (z) andm™(y). From (B.2), (B.3) and (B.6) below, we obtain

ok™

(A.22) im"(z) —m"(y)| =

)

5 (& ym”)
TATn —e(T—t —&(T—t
> EY l/ e it X @) (i L = €Y = §§T —fe? )dt] ;
0
T/2NT5 —m(T—t —m(T—t
> EQY [/ / o e J3 ruty(Xu,m™ (@), m™ (Xu)))du 1— e m(T1) — mQ(T —te (T-1) dt] :
0 m m=m"(z)Vm" (y)
—mT'/2 —m(T/2 T/2NTs ;
N 1—e¢ /2 _ mQ(T/Q)e (T/2) . / /2N Tiig1 e fO(ru+’y(Xu,mn(x)7m”(Xu)))dudt] :
m 0

m=m"(z)Vm"(y)
T/2NTh41
> A(n)EY [/ rie” I T“d“dt] ;
0

> A().

Above, the second and third inequalities follow simee— m—2(1 — e~ — (T — u)e~™T %) is

strictly positive and decreasingin. The fourth inequality uses (A.21) and thdtX,,, m"™(z), m"(X,)) <

B, (n + 1) almost surely fort < T'/2 A 1341. The last inequality follows by taking the infimum of
- t . . . . . .

EQ” [fOT/QM"“ ree~ Jo rudugy overy € Dj; and noting that by Harnack’s inequality this value is strictly

positive givenDy; is strictly contained inD;1. For the numerator in (A.22) we have

K (m™ (), 2m"™) — K" (m" (x), y;m™) = u™" O (@) — ™ @m ()
whereuw™" is from (B.7) below. Note that"(*)™" is of the form (A.3) withg = ¢™" @) andh =

R (@)m™ from (B.8) below. Specifically, we have

1 — e~m"(@)(T—1)

g™ @t y) = (m"(x) — y M) D RO () =y 4y (y,m" (2), m" (y)).

m(z)



ENDOGENOUS CURRENT COUPONS 23

Since0 < m"(x) < C’,(f) we have from (B.9) and (B.10) that the assumptions of Lemma A.4 are satisfied

(with ap = « sincem™ € C“(D,,) for the given, arbitraryx € (0, 3)) and hence for als € (0,1) by
takinga € (0,1), a0 < 3:

(n, B) (|gmn(m)|07ﬁ+1 + |Umn($)’mn|0,ﬁﬁ+1)

(2, 8) (MG +1) + CL)y + " @ 5 Y.

™ O | g gy <

Now, fory € Dj:
" ()] = (K" (m" (), y; m"|

T n y t n n
< / (1 _m (x)(T—w) EQ {h e A X @) <Xu>>>du} gt
0

T ATy, —m"(z)(T—t n
L R / p LT @) (Kt | (@)
0 m"(x)
TNATh . -
< T +TEY [ / o~ rududt] LA@+D
0 n
<ory A ED)
n
=A(n+1).
Hence we conclude that™"(")™"| < A(#, 5) and thus
[E™ (" (), 5m"™) — K" (m" (), y; m™)| < AR, B)|z —y|°.
Putting these two estimates together in (A.22) gives
m" () = m"(y)| <A@, B)| —y|°, Va, y € D,
finishing the proof, in view of (A.21). O

With all these preparations, we are now ready to prove Theorem 3.9.
Proof of Theorem 3.9Note that (3.7) is equivalent to

E® [foT rep(t,m(z))e o (””(Xu*m(@’m(Xu”)d“dt}
; xeD.

m(x) =

£e [ p(t, m()je [ (Kum@mXa gy
Leta € (0,1). From Lemma A.10, there exists a positive constafit, o) such thatvn > 1, we have
[m"|l, 5, < A(l,«). The Arzela-Ascoli theorem asserts the existence of a subsequefiee' or)},>1,
which we denote b){mn;:)(x)}keN’ and somen!) e K; such that for eaclm,(j), mni satisfies the
equality in (A.21) forx € D; and such thaty™ () converge ton(!) () uniformly in D; ask — oo, with
lm M, 5, <A ).

Applying Lemma A.10 again, we have that there exists a positive constané) such thatVnS) > 2,
we have||m”§el) o5, < A(2,a). The Arzela-Ascoli theorem again assures the existence of a siersegu
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of {m”z(f) (x)}k . and somen(® € K, such thatn” converge ton(? uniformly in Dy ask — oo, with
Im@||, 5, < Ae(2,a). Note that by constructionn?) () = m™) (z) for z € D;.

The above procedure can be carried out iteratively and we conclatig/tiE N, there exists a subse-
guence of{mni(cl>}k>1, denoted b}{m"f(cHl)}keN, and functionn(*+1) e K, such thamnf(cZH) converge
tom*1) uniformly in Dy;1 ask — oo, and|[m*1|, 5 < A(l + 1,«). Moreover, by construction,
mD) () = mW(z) for z € D;.

Now, for allz € D, there is somé € N such thatr € Dy, Yk > [. We definem : D — [0, 00) by

(A.23) m(z) :=mW(z),

and note that by constructiom, is well defined andn(z) € C}.(D), Ya € (0,1). We claim thatmn is the

desired fixed point. Indeed, fixand note that for € D; we have thain(z) = limg_, o . )(:1:) for any
" > 1. Thus, for anyl’ > [ we can write, using (A.21),

(A.24)
- , OB (0
) TN ) — Jo | ruty(Xu,m™s  (z),m™k (X)) |du
lim E* | [, % mp(t,m"™  (z))e dt
k—o0
m(m) - ) )
RN ) -l <m+v(Xu,m"k (x),m"k (Xu))> du n{l")
lim E= | [, % p(t,m™ (z))e dt| + mt (@)

k—so00 Y NG
né ) l—e—m k (z)

where, (recall: € D; andl is fixed)

)

) )
ko (Xu)) |du

T ATy ) —fot (Tu+’y(Xu7mnk (z),m
A(l"y = lim E” / rp(t,m™ (x))e
0

k—o0

n

) )
TAT an @) -l (Tu+v(Xu7m”k (z),m" (Xu))>du

Borp(t,m™ o (x))e

T/\’Tl/

+ lim E® dt

k—o0

T ATy t
=[E* [/ rep(t,m(z))e” Jo (T“‘W(X“’m(m)’m(X“)))dudt}
0

) RQ)

T/\Tn(l’) ) *f(f (ru+7(Xu,m”k (z),m"k
+ lim E” / Eorp(t,m™ (2))e

k—o0 TATy

(Xu»)du
dtl

The second equality above follows from the bounded convergenceethesince) < p < 1,0 <7 < (Jl(,l),

. () .
~ > 0and smcen"kl (Xu) — m(X,) almost surely fou, < 7/, and also, sinc& > [, fromxz € D; C Dy
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()
som™ () — m(x). As for the second term we have

[ . W) L)
T/\Tn<l/) o) — Jo | ruty(Xu,m"®  (x),m"k
0<E” korp(t,m™ (z))e
TATy

<Xu>>>du
dt|

T t
< E* / ree” Jorudugy|

TNty

Taking!’ 1 oo and using the non-explosivity of along with the monotone convergence theorem it thus
follows that

T
Jim A(V) = E* V rep(t, m())e ot Xum(@mCX)dugy |
oo 0

Repeating the same calculation Br!’) and noting the only difference is a) the absence.oivhich is

’ , n(l/)
bounded fort < 7/, and b) the fractionn” )(:z:)/(n(l )(1 — e~™* (#)) which clearly goes away as

k 1 oo, it similarly follows that forx € Dy:

T
lim B(') = E” [/ p(t,m(x))e JorutrXum@)mXu)dugy |
o0 0

Thus, sincen(z) on the left hand side of (A.24) did not depend ugotie result follows.

APPENDIXB. SUPPLEMENTARY PROOFS FROMSECTION A.3

Proof of Lemma A.5Note that;, v(X¢, m, n(X;) are non-negative and uniformly bounded abové‘tg)g)Jr
By (n) for t < 7,. Additionally, from (3.4) and (3.5) we have that for alle D,,, m,z > 0 that

By(n) 4 Ly(n) m<1
=(T) m > 1

(B.1)  ym(z,m,z) <min{By(n)+ Ly(n)m,=(mT)} < { := M(n),

so thaty,, (X, m,n(X})) is almost surely bounded above br 7,, by a constant depending only upan
It thus follows by the bounded convergence theorem that we may pullfteecditial operator (with respect
to m) within the expected value and integral in (A.9) to obtain

(B.2)

ot i = [ (1 2) (1) s o L
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By differentiating and collecting terms (again all interchanges of the integrdlderivative are allowed
given the current hypotheses) we obtain

eJo ratr(Xumn(Xu))du o 5 ((1 _ ﬁ) (1 _ e—m(T—w) e fé(Tn+'v(Xmmm(Xu)))du)
m

(B.3)

1— e—m(T—t) (T _ t)e—m(T—t) 1— e—m(T—t)
- m? m m

— + /0 Ym (X, m,n(Xu))du>

t
(T — t)e=mT=1) _ (1 — ¢=m(T-1) / (X1, 71X o)t
0

For allm > 0,¢t < T calculation shows

_ —m(T—t) _ —m(T—t) _ —m(T—t)
B4) o0<l”° _ T =be <i@-pt o< Daroy,

m?2 m m

Since0 < v, (x,m,z) < M(n) and0 < r; < Cr(f) almost surely inD,, it follows that the right hand side
of (B.3) is bounded below by

(B.5) (T —t)e ™0 — (1 — 70 /t Y (X, m, (X)) du,
0

and from above by
1 _
cV <2(T —1)* + (T - t)tM(n)) + (T —t).

The upper bound in (A.10) readily follows. As for the lower bound, fr@@1®) we have

t
(T — t)eim(T*t) — (1 — Gm(Tt))/ ’Ym(Xua m, U(Xu))du
0

(86) > (T _ t)e—m(T—t) _ E(mT)t(l _ e—m(T—t));

To see the third inequality note that (writilg= 1 — ¢/7" and multiplying numerator and denominator by
T)

= . Be=AmT _ (T — t)e~m(T—)
E(mT) = inf = inf
(mT) 66%,1) (1—B)(1—ehAmT) tel(%,T) t(1 — e—m(T—1))’

It thus follows from (B.3) that almost surely for alt > 0 andt < T' A 7,, that

O ((1 . %) (1 _ e—m(T—ﬂ) o fg(rn+w<xu,m,n(xu>>>du) -

which yields the upper bound in (A.10). Lastly, it is evident from (B.3) thatmap

m — O, ((1 — ﬁ) (1 — e—m(T—t)) e fot(rn-i-’Y(Xu,m,n(Xu)))du)
m

is almost surely continuous in and non-negative with upper bound

o (;T2 + TZM(n)) +T,
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and hence by the bounded convergence theorem thenmap 0,,k"(m,x;n) is continuous and each
m > 0. Turning to (A.11), writek™(m, -; ) = ™" where

TATh 1— e—m(T—t) ‘ < XN
B.7) W™ x) := E* / (m—rt)ie—fo(“ﬂ“ﬂ wmsn(Xu)))du gy | . x €D,
0 m

u™" is of the form (A.3) with
1— e—m(T—t)
m — _ 1 -
) g"(t,x) == (m—a') -
Wt ) = B () = aD 4y (@,m, ().

Calculation shows fob < m < C,(LI) that

(B.9)  Jlim g"(ty)=0,2€0Dw  |g"ln <CIT5 "]

)

and
B o < CSY + By (n);

(B.10)
. < (07(11))1—@ + L,Y(TL V Cﬁbl) \Vi ||7]”0175n) ((QCn)l—a + ||n||a,5n) ’

[hm777:|a

)

Note that the above can be made uniform fof(all , 5 < R foranyR > 0. Thus, Lemma A.2 yields the
upper bound in (A.11).
O

Proof of Lemma A.6We havek™(my, -;m1) — k™ (ma, -;1m2) = ™M — ™22 whereu" is from (B.7).
For0 < mi,mg < C,(f), from (B.9), (B.10) (applied for the respectiue;, ;), it follows from Lemma A.2
that forv™" = U™ (0, -) whereU™#" solves the linear parabolic PDE given in (A.4). Furthermore,
|gminil, 5, < C(n,|nill,p,) where the bounded constant can be made uniforiyfdl, 5 < R.
DefineV := y™vm — ™22 ThenV solves the linear parabolic PDE

Vi+ LV — "™V = —g,  (t,x) € Qn,
(B.11) V(T,z) =0, x€ Dy,

V(t,z) =0, (t,z)€[0,T]x Dy,

where we have set (recall (B.8)):
(B.12) gt x) == g™ (t,x) — g™ (t, @) + U™ (L, 2) (R — B0 (2).

From (B.10) we have that™m| . is bounded from above by a constant which only depends upon
n, |mll, 5, (Which can be made uniform ||, 5. < R). A lengthy, though direct, calculation shows

1
™ = "o < (T4 GO0 by = .

B s < L (n OOV il 5, V Il 5,) (12 = mlla, + lm2 —mi).
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Note the above, again, can be made uniform|fiat|, 5 < R. Lemma B.1 below shows that there is a
constant (n, |1, 5, . In2]l, 5, ) (uniform for |, 5, . I2ll,. 5, < R) so that

(B.13)
(Wypl—a/2 | L2 (1) 1-a
o < (2O T 4 ST iy —

e — pmee) < Rl 5,0 Il p,) (1 = mal + lIne = mill 5, + lma = mallne = mll, 5, )

)

From (B.12), it easily follows sincg/2:m2 |27a’5n < C(n, Hnguaﬁn) that (by potentially enlarging.”)

9lan

< A lmillo, 0 W2l (Ima = mal + llm = mall, 5, + Iy = mallm = m2llo p, ) -

The result then follows from Lemma A.2 sing& andU ™22 take the value zero an= 1T,z € 0D,,, and
hence the compatibility condition holds.
We next prove (A.13). As follows from (B.2) and (B.3) we have

Omk"™(mi,x;m) — Onk™ (k2,3 12)

(B.14) TATn
= E* [ /0 (A1 (t) (B()C1(t) + Di(t)) — Aa(t) (B(t)Ca(t) + Da(t))) dt] :

where fori = 1,2

Ai(t) = e fg(Tu+7(Xu,mi,7]i(Xu)))du; B(t) = r,

1
) = o my(T—=t) o —mi(T—t)
Ci(t) 2 <1 e m;(T —t)e ) +

1— e—mi(T—t) t

mi
Di(t)) = (T — t)e™™T=0 — (1 — e~miT=) /0 (X (X))

Using the elementary estimate

|A1(BC1 + Dy) — Ao(BCy + Da)| < |A]|B]|Cy — Co| + (|B]|Ca| 4 [ D2)|Ar — Aa| + |A1||Dy — Dy,

we will obtain the upper bound in (A.13). First, we have the almost sure aiitigs

A<t B <Y,

Ca(t)] < T2 (; +M<n>) . Da(t) < T(1L+ TI(n).
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Above, we have used that> 0,0 < r; < CS) ont < 7,, (B.4), and (B.1). Next, we have
|C1(t) — Ca(t)]

1—e Tt (T —t)em™T=) 1 —e=m2(T=1) _ yy(T — t)e=m2(T—1)

B mi m3
1—e ™ (T—1) T
e [ (amt  (0) = (s, (X))
0

1— e—ml(T—t) 1— e—mQ(T—t)

m1 m2

T
+ / (X 2, (X))
0

The mapm — (1 — e ™7t — (T — t)e=™T—1)) /m? has derivative-(2/m3)(1 — e~"™T =) —m(T —
t)e=™T=) — (1/2)m?(T — t)2e~"™T=1) which is non-positive and is bounded in absolute valuglof-
t)3/3 < T3/3. Thus,

1—e Tt (T —t)e ™ T8 1 — e=m2(T=t) _ o (T — t)e—m2(T-1)

2 2
m my

T3
< ?|’I’)’L1 — ma|.

For the second term we have
1— 6_m1(T_t) T
7711/ |’Ym(Xuam177ll(Xu)) _'Ym(XU7m2)772(Xu))‘du
0

<T°Ly(nv COV Imll, 5, V lIn2

o) (Im1 = mal + i =l 5,) -
For the third term we have

1— e—ml(T—t) 1— e—mQ(T—t)

m1 ma2

T
/ (X s (X))t
0

|
< §T3M(n)lm1 — ma,

sincem — (1 — e ™7~ /m has a derivative bounded " — ¢)2/2. Thus, we can find a constant
C(n, Imllo5, In2ll,5,) so that almost surely far< T

|C1(t) — Ca(t)

< O, Il 5, el 5,) (1 = mal + i = 2l 5, )

We next have, by the non-negativity @fy and the fact thae = — e_b| < |a — b| for a,b > 0, that almost
surely fort < T A 7,:

T
|A1(t) — A2(t)] < /0 Y (X, m1, 1 (X)) — (X, ma, m2(Xu))| du,
< TLy(n v OOV o5, V Il 5,) (Jm1 = mal + lm = 7ell, 5, )

= O, il 5, 12 1l0.5,) (11 = mal + i = mll, 5,,) -
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Lastly, we have

|D1(t) — Da(t)]

T
<T ’eiml(Tit) - 67m2(T7t)‘ =+ (1 - 67m2(T7t)) / ’7m(XU7 my, nl(Xu)) - ’Ym(Xua ma, 772(Xu))| du
0

T
+/ Yo (X, ma, m2 (X)) du ‘eme(Tft) _ efml(Tft)‘ :
0

< T2jmy — ma| + TLy(nV CVV il 5, V llnel

o) (I =mal + = mal. 5, )
+ M (n)T?my — ma,

< Clmlop,s Inellop,) (Im = mal + s = m2ll, 5, ) -

Putting this all together in (B.14) gives for alle D,, that

|Om k™ (M1, 25m) — Opk™ (M2, z3m2)] < C(n, Imll, 5, I2ll.5,) (!ml —ma| + [|m — 772Ha,§n) ;

which is the desired result. O
LemmaB.1. For 0 < mj,mg < CT(LI), n,n2 € K, andg™, h™ as in(B.8) the inequalities in(B.13) hold.

Proof. The proof is a lengthy calculation based off of Taylor’'s formula, usingféice that~y is both C?,
with derivatives of ordeK 2 which can be continuously extendedfox {0} x {0}, as well as such that
all derivatives of ordex 2 are Lipschitz continuous il,, x [0,7n] x [0,n] with Lipschitz constanL.(n).
In particular, for any partial derivative of v with order< 2, anyn and constantsu,,, z,, > 0
sup lu(z,m, z)| < oo,
€Dy m<my,z<zy
sup lu(z,m,z) —u(z’,m',2")| < Ly(nVmn V z,) (|o — 2’|+ |m —m'| + |z — 2']).

2,2 €Dy ymam! <mip;z,2' <z
The above inequalities are used repeatedly in the sequel. 816a,(m|l, 5, .7, 5,) is a constant
which may change from line to line and can always be made uniform i, for [|m1 |, 5, . 2l 5, < B-
Now, fors,t < T, z,y € D,, we have

g (tx) — g™ (t,x) — (9" (s5,9) — 9" (5,9))

1— efml(Tft) 1— e*WLQ(Tft)

— _ (D _ _ (D)
(m1 —az') - (mg —zt) -
1— efml(Tfs) 1— efmg(Tfs)
_ == -
<(m1 y') - (m2 —y') - :

B /m1 <(T _ —m(T—t) + ﬂ (1 . e—m(Tft) . m(T o t)em(Tt))> dm
= -

m2

t)e ™
mi y(l)
/ (T — s)e™™T=9) 4 — (1 —e7T=9) _ (T — s)e_m(T_5)> dm.

mo m
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We have

‘/ﬂ:l ((T —t)e ™It (T — s)e*M(Tfs)> dm’ - ’/ml /St e T=) (T = 7) — l)drdm'

m2
<(1+ Cr(ll)T)\t — s||m1 — ma.

Next, we have

(1)
x—Q (1 — e T (T — t)e_m(T_t)) -
m

o | Lo (T — e 1 — e — (T — e T
< i o
Fa® =y 1= T — (T — s)e T

2
m
For anyk > 0 the functionm — m~2 (1 — e *™ — kme~*™) is non-negative and deceasingrin > 0
with limit asm — 0 of (1/2)k2. Using this we have

of 1— e ™T=5) (T — 5)e~™(T—9)

< Y= 92y < T )
m? =3 voi=g v

-y
Next, for anym > 0 the mapm — m=2 (1 — e ™I=7) — (T — 7)e~™T=7)) has derivative- (T —
7)e~™T=7) which is bounded above in absolute valueros T by T'. This implies

1—e ™I (T — t)e T 1 —em(T=t) _ (T — t)e=™T—1)

2 < CT(Ll)T|t — sl.

m?2 m?2

Putting these two terms together gives

mi (1) (1)
/ (gj (1 — e Tt (T — t)e*m(T*t)) v (1 —e7T=9) (T — s)em(TS)>> dm

m2

2
< (TQ\;C(U — W+ oW1t — s) Im1 — ma|.

Therefore
g™ (t,z) — g™ (t,x) — (9" (s,9) — 9" (5,9))]
T2
<y = ma] (1420007t = o] + 1otV = V).
and hence

a,n —

T2
(9™ = ™) < Iy = o ((1 +200T)T 0 4 2(@21))1—“) :
which is (B.13) forg. Turning toh, write a;(x) := (z,m;,n;(x)) fori = 1,2 andz € D,,. Set
(B.15) My == nV OOV il 5, Vinel.s,:
and note that

(B.16) a;(z) € En, = Dag, X [0, Mp] x [0, M,]; @ € Dy,
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We have, from the second order Taylor formula

(B.17)
7 (@) — W () — (R () — B ()

= (ai(x)) = y(az(z)) — (v(ar(y)) —v(a2(y))) ,
(

Il
3
|
3
NS
)
s
Q
[\]
&
|
2
3
Q
[\]

+ (m1 — m2)2 (Rmm(a1 (x)‘ag(x
+ R..(ai(z)|az(2)) (m () — n2(x))* — Rz (a1 (y)|az(y)) (m (y) — n2(y))?
+2(my1 — m2) (Rmz(a1(x)|az(x)) (1 (x) — n2(2)) — Rmz(a1(y)|az(y)) (m(y) — n2(y))) -

Here, fora; (z), ax(z), x € D,, we have set
1
R (a1 (2)]az(2)) = /0 (1 = w)ymm (a1 (x) + u(ag(z) — ai(x))) du,
1
= /0 (1 = W Ymm (x,m2 + u(mi — ma), n2(x) + u(m(z) — n2(x))) du,

with analogous formulas foR,, and R,,,.. Sincemsgy + u(m; — mg) is in betweenm; andmy, and
n2(x) + u(ni(z) — n2(x)) is in betweem; (x) andn, () this formula immediately gives (recall (B.16))

(B.18) | Rrm (a1(z)]az(z)[ < 5 sup  |ymm(z,m, 2)| = Cln, Ity 5, In2ll, 5,):

(z,m,z)EE,

N | =

(with analogous formulas faR,,., R..) as well as

| R (21 () [22()) — Rinim (21 (y) [22(y)) |

IN
t~

1
v (M) / (1 —u) (Jz = y[ + (1 = u)(n2(x) = n2(y)) + ulm(z) —my))|) du,
(B.19) 0

IA
| =

I
Q™

Ly(My) (|2 =yl + Inela 5, 12 = 1 + o, J2 = 917
(s Imllo 5, Im2lla 5,12 — yI%
(with analogous formulas faR. ., R,,. as well). We now use (B.18), (B.19) to bound the five terms on the
right hand side of (B.17) separately. First,
[(m1 —m2) (ym(a2(x)) — Ym(a2(y)))|
< Im1 = ma| Ly (M) (J2 =yl + Imello 5, 2 = y1*)

< C(n,|mll, 5, In2llo5,)ms —mallz —y|*.
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Second

7= (22(2)) (m () — n2(2)) — 7=(a2(y)) (m(y) = n2(y))]
< Jrz(az(@))] Im(x) = na2(x) = (m(y) = n2)| + Imy) = n2(y)| 7=(a2(2)) = 7z(az(y))l

< sup |v(mom,2)|lm —nell, 5, 12— yl®
(z,m,z)EEL,

(
(

ol = mallo p, Ly (M) (|2 =yl + el J2 = 917

«

= O, Imllap,: In2llop,)Im =l 52 = yl*

Third, from (B.19) we get

(m1 — m2)2 (Rmm<al ‘32 ) - Rmm<a1(y)‘a2(y)))
< (1)0(

Cp’Clns[Imlla b, In2lla,p,)ma = mallz —y[*
C

(n, lmllo, 5, Im2llo B, ) Im1 = mallz —y[*.

Fourth (recall (B.18),(B.19) ane® — b = (a — b)(a + b))

| R (a1 () ]az(2)) (m(x) — m2()) = Raz(a1(y) a2 (y)) (m (y) — 12(y))?]
< | Rz (an(x)]ag(2))] | (1 () — n2(2))? — (m(y) — n2(y))?|
+ (m(y) = n2(y)? | Rz (a1 (2)|az(2)) — Rez(an(y)|az(y))]
<2C(n, [Imll, 5, Im2llap)m —nel.5, 12—yl
+lm =2l 5, Cs lmll, 5, In2llo 5,012 = y1%

‘ «

=Cllmllop, In2llap,)lm = mllasr -y

Lastly, or fifth

12(m1 — ma) (R (a1(z)|ag(z)) (ni(z) — n2(z)) — Rmz(a1(y)|az(y)) (m(y) — n2()))|
[m(z) = n2(z) — (m(y) —n2(y))|
+ 2[mg — ma| [m1(y) — n2(y)| | Rm=(a1(z)|ag(z)) — R (a1(y)|az(y))

)

< 2|7'nl _m2HRmz(al ’32 )
)

< 2im1 = ma| (Ol 5, 2l 5, )l = m2llo 5, |7 = 91 + Cns o 3, 2l o 5, )l = 1)
=CImllop, In2llap,)lme = mollm = nello 52— yl*
Putting together the five estimates above in (B.17) we obtain
A (@) = B () — (B () = B ()
< C(nmllyp, In2llap,) <|m1 —ma| + [lm —n2ll, 5, + Im1 —ma|llm — ﬁzlla,ﬁn) |z —y|%,

from which the result in (B.13) follows.
O
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APPENDIXC. TECHNICAL RESULTS

The following lemma shows that for atk > 0, the first time the balange(t, m) falls at or belowl /2 is
at leastr’/2:

Lemma C.1. Forall m > 0, inf {¢t € [0,T] : p(t,m) < (1/2)} > T/2.
Proof. Assume for somen > 0.t € [0, 7], p(t,m) = 2. Then
1 1
t=T+—log|=(L+e™)).
+ —log (2 (1+e )>

It is clear that

T 1 1 T 1
¢ - 1 -1 —mT _ (1 —mT fmT/2.
>5 = Og<2( +e )>> 2<:>2(+e ) >e
The last inequality holds for ath > 0 and7" > 0, finishing the proof. O

APPENDIXD. ON THE CONSTRUCTION OF THERISK NEUTRAL MEASUREQ

Let D be as in Assumption 3.2 and let: D — R%andA : D — S¢ be given functions satisfying
Assumption 3.3. Assume thdd, b and A are so that there exists a (necessarily unique) solution to the
Martingale problem (see [28]) for the second order linear opera@ssociated t¢b, A)onD.

Now, fix a probability spacé?, G, P) and denote bW ad-dimensional Brownian motion und®&: Set
W as theP-augmented version of the right continuous enlargement of the naturatidittrfor 1/, so that
FW satisfies the usual conditions. Since the Martingale problend fisrwell posed, there exists a unique
strong solution to the SDE

(D.1) dX; = b(Xy)dt + a(X;)dW,.

wherea = V/A. Nextlety : D — R%, ¥ : D — S% also satisfy Assumption 3.3. With= /%, the market
is formed via trading instrumentss, S°) whereS = (S?, ..., %) have dynamics

dsi

k
5 =y (Xp)dt+ ) oV (X)dWY;  i=1,..4d,

Jj=1

andS? = exp (fot rudu) is the money market where= X (V). Defineb : D — R% by

(D.2) b(x) = b(z) — a(z)o(x) " (u(z) - r1),

wherel € R? is the vector of ones. Note thatsatisfies Assumption 3.3. Lastly, assume the Martingale
problem forL associated tdb, A) is also well posed o). Under these hypotheses it is well known (see
[24, Ch. 5], [20, 1]) the above market (wiltl" adaptedS-integral trading strategies) is complete, and the
unique risk neutral measut@on 7} has Radon-Nikodym derivative

@ = ZT; Zt = 5 (— / (M(Xt> — Tt]_)/ U_l(Xt)th> 5 t S T.
t

(D.3) =
dP FW 0
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In particular,Z is a(P, ]FW) martingale. WithQQ being well-defined orFTW, we recall (see [24, Ch. 5]) that,
provided the requisite integrability holds,if = {C(t)},. is a cumulative cash-flow stream, adapted to
FW and with rateC'(t) = C(t), then the unique price for the stream is given[&f%/[foT C(t)e~ Jorudugy|.
With this notation in place, we now derive the mortgage price in two instances.

D.1. Large Pool. ¥ Assume that in addition t&V, (€2, G,P) supports arP-i.i.d. sequence ot/ (0,1)
random variables{Ui}i:L_._ which are alsdP independent ofl. Let v be any non-negative, integrable,

W adapted process. Giventhe random timesr; } _are constructed via

i=1,..
(D4) lelnf{tzo ’ Uize_fot'yudu}; 1=1,....

Note that the{r; },.; arel’ conditionally i.i.d. givenFYW, each with commot® - intensity~y.

Now, consider a large pool, consisting of infinitely many loans which arégumly) infinitely small.
More precisely, fixNV and fori = 1,..., N setr; as the prepayment time of th& loan in anN-loan
pool, with each loan of sizé/N. The pool has common contract rateand hence the respective principal
balances and coupons argt, m) = (1/N)p(t,m) (wherepis from (2.3) and; = (1/N)m/(1—e "T) =
(1/N)e(m) fori =1, ..., N). The cumulative cash flows of the pools is thus:

1 & 1 &
Cn(t) = N ZZ; c(t NT)+ N ;p(n, m)ls,<¢.
By the conditional law of large numbers (see, for example [18, Theor2iidfollows for eacht < 7' that
Cn(t) — C(t) almost surely where for a generic copy of;:

C(t) =cE [t/\T}]:TW] +E [p(T, m)lTSt’]:;VV} ,

t t ” t u
= cte™ Joyudu C/ uyue Jo vwdt gy, 4 / p(u, m)yue” Jo'wdv gy
0 0

By first considering the countable set of rationals[inT] then using the facts that &)y (¢) is non-
decreasing irt and b)C is continuous ir¢, it follows that almost surely one hasy(t) — C(t) for all
t < T'. The cash flow rate faf is

C(t) =ce” Jo udu p(t,m)ye” Jo yudu,
It thus follows that the price of the large pool is given by
T ¢ T t
EV [/ (c+ p(t,m)ye)e fo (’"“ﬂ“)dudt] =1+E? [/ (m — ry)p(t,m)e Jorutmmdugy |
0 0

where the last inequality follows by using (2.1) and integration by parts. yiigids (2.7) andy is theP
prepayment intensity.

IThis derivation is alluded to, if not explicitly given, in [11, 12] and usesiegument similar to that in [14].
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D.2. Single Loan Pool. Here, we assume that in addition ¥, (€2, G,P) supports alJ(0,1) random
variableU which isP - independent of’. The random time- is created as in (D.4) whereis again
a non-negative, integrablé’,w adapted process. Associatedrtds the indicator proces = {H;},-,
with H; = 1,;. H generates the filtratioR” = {’Ht}t20 viaH; = o(Hs;s < t) andr is clearly_an
FH-stopping time. The enlarged filtratid® is that generated by boti" and theP-augmented versions
of FH, and is right continuous [13, Theorem 1]. Now, léte FV andt > 0. We clearly have that
EP [1,5¢14] = EF [(1 —e b 7ud“)lA} and hence

P¥ [7‘ > t‘}'w] = PP [7‘ > t‘]-'tw] =1- e‘fﬁ)t%d“,

so thaty is the (P, IE‘W) intensity ofr. Enlarge the market described above to allow@oadapted trading
strategies. Though this market is now incomplete, it follows that the minimal maleingaasure) (see
[5, 23] and note we are using the same notation as above) satisfies

% ] = Zr: T > 0.

T
We next claim thaty is the Q intensity of r as well. To see this note that ~ U(0, 1) under@Q since
QU <] = E¥ [ly<uZ7] = P[U < u] = u. Next,U is Q independent of" since for all4 € I;W for
anyT > 0:

QU <u, Al =EF Iy<,14Z7] =PU <u|Q[A] = QU < u]Q[4],

and hence th@ independence follows. Thus, for @l € IFW andt > O:
) =52 1 (1 )

proving thaty is theQ intensity ofr. Now, starting with the price for the mortgage as in (2.5) whgris
now the minimal measure in the enlarged market, equation (2.7) still holds ($3ed@d hence (2.7) and
(2.8) hold.

_wQ Q
Qr >t A =E [m@; [1U>e_ o
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