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CHAPTER I

Introduction

The purpose of this introduction is to describe the program of classification the-
ory of non-elementary classes with respect to categoricity and stability. This thesis
tackles the classification theory of non-elementary classes from two perspectives. In
Chapter II we work towards a categoricity transfer theorem, while Chapter III fo-
cuses on the development of a stability theory for abstract elementary classes. At
the end of this chapter we provide a brief outline of the thesis.

Early work in model theory was closely tied to other areas of mathematics. Led by
Robinson and Tarski, model theorists worked on generalizing known theorems about
fields to arbitrary first order theories. In the sixties, James Ax and Simon Kochen
found far reaching applications of model theory to the theory of valued fields. Their
work on Hensel fields and p-adic numbers was used to resolve a conjecture of Artin
(see [CK].) One direction of current work in model theory initiated by Tarski focuses
on pure model-theoretic questions which may someday shed light on open questions
in algebra and other areas of mathematics.

The origins of much of pure model theory can be traced back to one of the most
influential conjectures in model theory, Lo§’ Conjecture, which was motivated by

an algebraic result of Steinitz from 1915. Steinitz’s Theorem states that for every



uncountable cardinal, ), there is exactly one algebraically closed field of characteristic
p of cardinality A (up to isomorphism). In 1954, LoS conjectured that elementary

classes mimic the behavior of algebraically closed fields:

Conjecture 1.0.1. IfT is a countable first order theory and there exists a cardinal
A > Ny such that T has ezactly one model of cardinality A (up to isomorphism), then

for every p > RNg, T has exactly one model of cardinality .

This conjecture was resolved by Michael Morley in his Ph.D. thesis in 1962 [Mo].
Morley then questioned the status of the conjecture for uncountable theories. Build-
ing on work of W. Marsh, F. Rowbottom and J.P. Ressayre, S. Shelah proved the
statement for uncountable theories in 1970 [Sh31].

The theorem which affirmatively resolves Los’ Conjecture is often referred to as

Morley’s Categoricity Theorem:

Definition 1.0.2. A theory T is said to be categorical in A if and only if there is

exactly one model of T of cardinality A up to isomorphism.

Out of Morley and Shelah’s proofs, fundamental techniques and concepts such
as prime models, rank functions, superstable theories, stable theories and minimal
types surfaced. Present day research in first order model theory, particularly stability
theory or classification theory, would be unrecognizable without these techniques and
concepts. Model theorists have used the techniques and concepts of stability theory
to answer open questions in algebraic geometry.

While first order logic has far reaching applications in other fields of mathematics,
there are several interesting frameworks which cannot be captured by first order logic.
For example, non-archimedian fields, Noetherian rings, locally finite groups and finite

structures cannot be axiomatized by first order logic. Extending the work of Erdos,



Tarski, Hanf, D. Scott, Lopez-Escobar and C. Karp, model theorists C.C. Chang
and H.J. Keisler made much progress in the study of non-first order logics including
L(Q) and L, ., [CK],[Kel], [Ke2]. L(Q) is an extension of first order logic with
the addition of a quantifier Q, where Q is interpreted as there exists at least W;.
L, ., is also an extension of first order logic allowing for countable disjunctions and
conjunctions.

A major breakthrough in non-first-order model theory occured in 1974 when She-
lah answered John Baldwin’s question (which was made in the early 1970s and re-

produced on Harvey Friedman’s list of open problems):

Problem 1.0.3. Do there exist a countable similarity type and a countable 7" C
L(Q) (in the Xy interpretation) such that 7" has a unique uncountable model (up to

isomorphism)?

Shelah’s negative answer to this problem in the mid-seventies indicated a strong
link between categorical theories and the existence of models in uncountable car-
dinals ([Sh 48] under Oy, ,[Sh 87a] under 2% < 2% [Sh 88] in ZFC, or see [Grl]
for an exposition). The solution prompted Shelah to pose a generalization of Los’
Conjecture to Ly, ., as a test question to measure progress in non-first-order model

theory.

Conjecture 1.0.4. If p is an L, ,, theory categorical in some X\ > Hanf(L,, ,,) then

@ is categorical in every p > Hanf(L,, ).

Remark 1.0.5. Hanf(p) plays a technical role in the conjecture. Think of it as
the analog of N; in Los” Conjecture. The Hanf number of an AEC will be defined

explicitly in Definition I1.2.11

In the late seventies Shelah identified the notion of abstract elementary class



(AEC) to capture many non-first-order logics [Sh 88] including L, .,(Q). The bal-
ance between generality and practically of AECs is witnessed by the hundreds of
pages of results and the applications to problems in other fields of mathematics such
as number theory [Zi]. An abstract elementary class is a class of structures of the
same similarity type endowed with a morphism satisfying natural properties such as

closure under directed limits.

Definition 1.0.6. K is an abstract elementary class (AEC) iff K is a class of models
for some vocabulary 7 and is equipped with a binary relation, <y satisfying the

following:
(1) Closure under isomorphisms.

(a) For every M € K and every L(K)-structure N if M = N then N € K.

(b) Let Ny, Ny € K and My, My € K such that there exist f; : N; = M, (for
I =1,2) satisfying f; C fo then N7 < Ny implies that My <x M.
(2) = refines the submodel relation.
(3) =k is a partial order on K.
(4) If (M; | i < 6) is a <g-increasing and chain of models in K

(2) Uics Mi € K,

(b) for every j < 0, M; <x |J,_s M; and

i<$
(c) if M; <k N for every i < 6, then (J,_s M; <x N.

(5) If My, M1 < N and M, is a submodel of My, then My <xc M;.

(6) (Downward Lowenheim-Skolem Axiom) There is a Léwenheim-Skolem number

of K, denoted LS(K) which is the minimal & such that for every N € K and

every A C N, there exists M with A C M < N of cardinality x + |A|.



This has led Shelah to restate his conjecture in the following form:

Definition 1.0.7. We say K is categorical in A whenever there exists exactly one

model in I of cardinality A up to isomorphism.

Conjecture 1.0.8 (Shelah’s Categoricity Conjecture). Let KC be an abstract el-
ementary class. 1If K is categorical in some X > Hanf(K), then for every u >

Hanf(K), K is categorical in p.

Despite the existence of over 1000 published pages of partial results towards this
conjecture, it remains very open. Similar to the solution to Los’ conjecture, a solution
of Shelah’s categoricity conjecture is expected to provide the basic conceptual tools
necessary for a stability theory for non-first order logic. This enhances the potential
for further applications of model theory to other areas of mathematics.

Since the mid-eighties, model theorists have approached Shelah’s conjecture from
two different directions. Shelah, M. Makkai and O. Kolman attacked the conjecture
with set theoretic assumptions [MaSh], [KoSh], [Sh 472]. On the other hand, Shelah
also looked at the conjecture under additional model theoretic assumptions [Sh 394,
[Sh 600]. More recent work of Shelah and A. Villaveces [ShVi] profits from both
model theoretic and set theoretic assumptions. These assumptions are weaker than
the hypothesis made in [MaSh], [KoSh], [Sh 472], [Sh 394], and [Sh 600]. Shelah and

Villaveces identify the following context:

Assumption 1.0.9. (1) K is an AEC with no mazimal models with respect to the

relation <y,
(2) K is categorical in some fized A > Hanf(KC),

(3) GCH holds and



(4) a form of the weak diamond holds, namely CID,ﬁ(S”+

cf(u)) holds for every pu with

w< A

A central emphasis of Chapter II is to resolve problems from [ShVi] and to work
towards a solution to Shelah’s conjecture in this framework.

Let us recall some definitions in AECs which differ from the first-order counter-
parts. Because of the category-theoretic definition of abstract elementary classes, the
first order notion of formulas and types cannot be applied. To overcome this bar-
rier, Shelah has suggested identifying types, not with formulas, but with the orbit
of an element under the group of automorphisms fixing a given structure. In order
to carry out a sensible definition of type, the following binary relation £ must be an
equivalence relation on triples (a, M, N). In order to avoid confusing this new notion
of “type” with the conventional one (i.e. set of formulas) we will follow [Grl] and

[Gr2] and introduce it below under the name of Galois type.

Definition I1.0.10. For triples (a;, M;, N;) where a; € Ny, M;, N, € K, for | = 0,1,

we define a binary relation F as follows:
(@0, Mo, No)E (a1, My, Ny) iff

M = My = M, and there exists N € K and <x-mappings fo, f1 such that for { = 0,1

fi: Ny— N, fi | M =idy and fo(ap) = fi(a).

N0—>N

fo
idT Tfl

M T N 1
To prove that E is an equivalence relation (more specifically, that F is transitive),

we need to restrict ourselves to amalgamation bases.



Definition I.0.11. Let K be an AEC. A model M € K is said to be an (uq, f11)-
amalgamation base if and only if for every N; € IC of cardinality p; with M <x N;
for ¢+ = 0,1, there exists a model N € K and <y,-mappings fo : Ny — N and

f1: Ny — N such that the following diagram commutes:

N0*>N

fo
idT Tfl

M— N
When po = 1 = ||M||, we say that M is an amalgamation base.

Remark 1.0.12. The definition of amalgamation base varies across the literature.
Our definition of amalgamation base is weaker than an alternative formulation which
identifies amalgamation bases with models that are (|| M|, 1)-amalgamation bases for
every p > ||M]|. Under the assumption of the amalgamation property (that every
model in K is an amalgamation base), these definitions are known to be equivalent,
but since we do not assume the amalgamation property, we emphasize the distinction

here.

We can now define types over amalgamation bases in terms of the equivalence

relation, E:

Definition 1.0.13. For M, N € K, with M, N amalgamation bases and a, a finite
sequence in N, the (Galois-)type of @ in N over M, written ga-tp(a/M, N), is defined

to be (a, M, N)/E.

Remark 1.0.14. Unlike the first-order definition of type, this definition depends on
not only M and N, but also the class IC. Subtleties such as this commonly arise

when generalizing first-order notions to the context of AECs. With this in mind,



consequences which may seem trivial in the first order context, will have far deeper

proofs in the context of AECs.
In 1985 Rami Grossberg made the following conjecture:

Conjecture 1.0.15 (Intermediate Categoricity Conjecture). If K is an AEC,

categorical above the Hanf number of IC, then every M € K is an amalgamation base.

This conjecture encouraged Shelah to produce a partial ”downward” solution to
the categoricity conjecture under the assumption that every model M € K is an

amalgamation base [Sh 394]:

Fact 1.0.16. If K is categorical in some A* > Hanf(K) and K satisfies the amal-

gamation property, then for every p with Hanf(K) < p < AT, K is categorical in
I

This result redirects future work from the categoricity conjecture to solving Con-
jecture 1.0.15. The underlying goal of [ShVi] was to make progress towards Conjec-
ture 1.0.15 under Assumptions 1.0.9. An insightful contribution of their work is the
identification of the context of no maximal models as one where a deep theory can
be developed without the amalgamation property.

One approach to the Intermediate Categoricity Conjecture is to see if arguments
from [KoSh| can be carried out in this more general context. Shelah and Kolman
prove Conjecture 1.0.15 for L, theories where x is a measurable cardinal. They
first introduce limit models as a substitute for saturated models, and then prove the
uniqueness of limit models. A major objective of [ShVi| was to show the uniqueness
of limit models.

While there are several other valuable results in [ShVi], in the Fall of 1999, I

identified a gap in their proof of uniqueness of limit models. As of the Fall of 2001,



Shelah and Villaveces could not resolve the problem. The goal of Chapter II is to
prove the uniqueness of limit models.

The main attraction to solving Shelah’s Conjecture is to harvest the proof in
order to develop stability theory for abstract elementary classes. It is with the
stability theory in first order logic that model theoretic proofs are applied to other
mathematical fields. Thus having a stability theory for abstract elementary classes
provides the potential for further applications of model theory to other areas.

By investigating work towards Shelah’s Conjecture, one may eliminate the as-
sumption of categoricity and develop a stability theory. The notion of splitting that
appears in [Sh 394] can be studied in stable AECs. Rami Grossberg and I identi-
fied a nicely behaved, yet general class of AECs (tame AECs see Definition 111.4.2)
in which non-splitting can be exploited. We begin developing a stability theory by
proving the existence of Morley sequences in tame, stable AECs. This is the subject
of Chapter III.

The structure of the remainder of the thesis follows. Each chapter begins with a

brief introduction and an outline of the chapter.

Chapter II This chapter includes a number of new theorems listed below. We solve
a conjecture of [ShVi] by proving the uniqueness of limit models in a categorical
AEC with no maximal models under some mild set theoretic assumptions. The
uniqueness of limit models suggests that limit models are the right substitute

for saturation when considering Shelah’s Categoricity Conjecture.

We introduce the notion of nice towers to resolve a problem from [ShVi] in
proving the extension property for towers. In order to prove the uniqueness
of limit models, we prove the extension property for non-splitting types. This

result does not rely on categoricity and will be used in Chapter III to prove the
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existence of Morley sequences. We also identify the notion of relative fullness

which is a weakening of Shelah and Villaveces’ notion of fullness.

In addition, we provide an exposition of [ShVi] featuring proofs of

- Limit models are amalgamation bases using a version of Devlin-Shelah’s

weak diamond,
- Weak Disjoint Amalgamation and

- Stability implies a bounded number of strong types.

Chapter III Some background on AECs required for this chapter is included in
Section I1.2. Chapter III focuses on developing a stability theory for AECs. We
introduce a nicely behaved class of AECs, tame AECs, in which consistency has
small character. Showing that a categorical AEC is tame is a common step in
partial solutions to Shelah’s Categoricity Conjecture. In this chapter, we prove
the existence of Morley Sequences for tame, stable AECs. Up until this point
the only known proofs of existence of indiscernible sequences in general AECs
has been under the assumption of categoricity using Ehrenfeucht-Mostowski
models. Our proof does not use categoricity. The existence of Morley sequences
suggests a notion of dividing which may be used to prove a stability spectrum

theorem for tame AECs.

Here we list the main new proofs and results of the thesis. We write new to
indicate the that the statement is new. When new does not appear, it is because

the claim (or a variation of the claim) was made in [ShVi], but our proof is new.

Theorem I1.6.11 The <Z7a-exten8i0n property for nice towers. For every nice (M, a) €

]C*

e

Moreover, if |

there exists a nice tower (M',a) € K, ,

such that (M,a) <5, (M',a).

i<a M; is an amalgamation base and UKa M; <x M, for some



11

(p, p*)-limit, M, then we can find a nice extension (M, @) such that |J;_, M| <«

M.

Shelah and Villaveces claim the <Z7a—extension property for all towers. Unfor-
tunately, their proof does not converge, even for the subclass of nice towers. We
use their result on Weak Disjoint Amalgamation and a new construction based

on directed systems to prove this theorem.

Theorem I1.7.9 (new) Extension of non-splitting types. Suppose that M € K,
is universal over N and ga-tp(a/M, M) does not p-split over N. Let M be a
(i, pt)-limit containing a | J M.
Let M' € K™ be an extension of M with M’ <x M. Then there exists a
~<i-mapping g € Auty M such that ga-tp(a/g(M’)) does not p-split over N.
Alternatively, g~' € Auty, (M) is such that ga-tp(g—"(a)/M’) does not p-split

over N.

Theorem I1.7.11 (new) Uniqueness of non-splitting extensions. Let N, M, M’ €
K™ be such that M’ is universal over M and M is universal over N. If p €
ga-S(M) does not p-split over N, then there is a unique p’ € ga-S(M’) such

that p’ extends p and p’ does not u split over N.

Theorem I1.7.17 The <, ,-extension property for nice towers. If (M,a,N) €
+IC;a is nice, then there exists a nice (M’, a, N') € +IC:7a such that (M, a, N) < o

(M’,a, N'). Moreover if | J;_,, M; is an amalgamation base such that | J,_, M; <x

<o

M for some (j, p1)-limit, M, then we can find (M’, @, N') such that | J,_. M! <x

<o

M.

Building on the <Zva—extension property for nice towers and using the extension

property for non-splitting, we resolve a problem from [ShVi] with this theorem.
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Theorem I1.8.8 The <¢-extension property for nice scattered towers. Let ' and
1% be sets of intervals of ordinals < u* such that 4? is an interval extension of
(' Let (M',a',N') € *IC, 1 be a nice scattered tower. There exists a nice
scattered tower (M?,a% N?) € TK), e such that (M*,a', N') <¢ (M?, @, N?).
Moreover, if Uz‘euuMil is an amalgamation base and |J;¢ M} <x M for some
(11, pt)-limit M, then we can find (M?,a?, N?) such that Uieyu Mi <k M.
With this theorem, we arrive at an extension property sufficient to carry out

a proof of the uniqueness of limit models. This replaces the full <“extension

property in [ShVi| for which no proof is known to exist.

Theorem I1.9.7 Reduced towers are continuous. For every o < u™ < X and every

set of intervals U on «, if (M,a, N) € +ICZ’il is reduced, then M is continuous.

Shelah and Villaveces’” proof (with or without the full <-extension property)
does not converge as their construction is not rich enough to yield the tower

that they desire. We amend their construction to prove this theorem.

Theorem I1.10.12 (new) Let « be an ordinal < p* such that o = p - a. Suppose
U= {axd§} forsome § < put. If (M,a, N) € +’CZ,11 is full relative to (M7 | v <
) and M is continuous, then M := Uicyu Mi is a (u, cf(a))-limit model over
M.
This improves a result from [ShVi].

Theorem I1.11.2 Uniqueness of limit models. Let u be a cardinal 6,605 limit or-
dinals such that 61,0y < p™ < A. If My and M, are (u,61) and (u,0s) limit

models over M, respectively, then there exists an isomorphism f : M; = M,

such that f [ M = idy,.
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Shelah and Villaveces make this claim, but their proof does not converge even
with the <“extension property, as the construction of full towers is too much
to hope for. We provide an alternative proof with the identification of relatively

full towers.

Theorem II1.0.5 (new) Ezistence of Morley sequences. Let K be a tame abstract
elementary class satisfying the amalgamation property without maximal models.
There exists a cardinal 10(KC) such that for every p > po(K) and every M € K-,
A,I C M such that |I| > pu* > |A], if K is Galois-stable in p, then there exists
J C I of cardinality u*, Galois-indiscernible sequence over A. Moreover J can

be chosen to be a Morley sequence over A.
This extends results from [Sh3] and [GrLel].
Theorem II1.0.6 (new) Suppose K is a tame AEC. If u > Hanf(K) and K is

Galois p-stable then ,(K) < Hanf(K), where £,(KC) (defined in Chapter III)

is a distinct relative of x(T).



CHAPTER II

Towards a Categoricity Theorem for Abstract Elementary
Classes

I1.1 Introduction

Shelah’s paper, [Sh 702] is based on a series of lectures given at Rutgers University.
In the lectures, Shelah elaborates on open problems in model theory which he has
attempted but which have not yet been solved. There Shelah refers to the subject
of Section 13, “Classification of Non-elementary Classes,” as the major problem of
model theory. He points out that one of the main steps in classifying non-elementary
classes is the development of stability theory. In first order logic, solutions to Los’
Conjecture produced machinery that led to the invention of stability theory. It is
natural, then, to consider a generalization of this conjecture as a test question for a
proposed stability theory for AECs (Conjecture 1.0.8).

Despite the existence of over 1000 published pages of partial results towards this
conjecture, it remains very open. Since the mid-eighties, model theorists have ap-
proached Shelah’s conjecture from two different directions. Shelah, M. Makkai and O.
Kolman attacked the conjecture with set theoretic assumptions (see [MaSh], [KoSh]
and [Sh 472]). On the other hand, Shelah also looked at the conjecture under ad-

ditional model theoretic assumptions in [Sh 394] and [Sh 600]. More recent work of

14
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Shelah and A. Villaveces [ShVi] profits from both model theoretic and set theoretic
assumptions. These assumptions are weaker than the hypotheses made in [MaSh],
[KoSh], [Sh 472], [Sh 394], and [Sh 600]. A main feature of their context is that they
work in AECs where the amalgamation property is not known to hold. This chapter

focuses on resolving problems from [ShVi]. Here we recall the context of [ShVi].

Assumption II.1.1. We make the following assumptions for the remainder of this

chapter. Fiz A > Hanf(K) so that

(1) K is an abstract elementary class,
(2) K has no maximal models,

(3) K is categorical in A,

(4) GCH holds and

(5) @M+(S§J(ru)) holds for every cardinal p < A.

+

Assumption I1.1.1.(5) is not explicitly made in [ShVi]. They stated OW(ng(u))
which is stronger than what is used. We believe this version of weak diamond is
all that is needed to carry out Shelah and Villaveces’ suggestion for the proof that
limit models are amalgamation bases. We provide a complete proof of the theorem
which uses Assumption II1.1.1.(5) (see Theorem 11.4.3) and give an exposition of the
strength of Assumption I1.1.1.5 in Section I1.4.

In light of the downward solution to Shelah’s Categoricity Conjecture (Conjec-
ture 1.0.8) under the assumption of the amalgamation property (Fact 1.0.16), work
towards Conjecture 1.0.8 is directed towards deriving the amalgamation property

from categoricity. The underlying goal of [ShVi] was to make progress towards the

Intermediate Categoricity Conjecture (Conjecture 1.0.15) under Assumption II.1.1.
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Not knowing that every model is an amalgamation base presents several obstacles in
applying known notions and techniques. For instance, there may exist some models
over which we cannot even define the most basic notion of a type.

One approach to Conjecture 1.0.15 is to see if arguments from [KoSh] can be
carried out in this more general context. Shelah and Kolman prove Conjecture
1.0.15 for L, theories where x is a measurable cardinal. They first introduce limit
models as a substitute for saturated models, and then prove the uniqueness of limit

models. A major objective of [ShVi] was to show the uniqueness of limit models:

Conjecture I1.1.2 (Uniqueness of Limit Models). Suppose Assumption I1.1.1
holds. For 01,05 < u™ < A, if My and My are (p,01)-, (i, 02)-limit models over M,

respectively, then M is isomorphic to M.

While limit models were used to prove that every model is an amalgamation base
in [KoSh], limit models played a behind-the-scenes role in Shelah’s downward solution
to the categoricity conjecture in [Sh 394]. Furthermore, there is evidence that the
uniqueness of limit models provides a basis for the development of a notion of non-
forking and a stability theory for abstract elementary classes. Limit models are used
in Chapter III to produce Morley sequences in tame and stable AECs. They also
appear in [Sh 600] as an axiom for frames.

In all of these applications, limit models provide a substitute for saturation. With-
out the amalgamation property, it is unknown how to prove the uniqueness of satu-
rated models. This may seem strange, because the proof is so straight-forward in the
first order case. However, since we only have types over amalgamation bases (not
arbitrary sets), the usual back-n-forth argument cannot be carried out. Even with
the amalgamation property, the back-n-forth construction is non-trivial (see [Grl] for

details). Since we are working in a context without the luxury of the amalgamation
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property, in order for limit models to provide a reasonable substitute for saturated
models, there must be a uniqueness theorem. This is the main result of this chapter.

Here we outline the structure of this chapter:

Section II.1 We connect the uniqueness of limit models with its role in understand-
ing Shelah’s Categoricity Conjecture for AECs, the amalagamation property and

stability theory for AECs. An outline of the remainder of the chapter is given.

Section I1.2 In this section we provide some of the necessary definitions for AECs
including the amalgamation property and limit models. This background is also

used in Chapter III.

Section I1.3 We provide a description of an index set used to prove the existence
of universal models and to prove Weak Disjoint Amalgamation. We summarize
a few properties of EM-reducts constructed with this index set. Because of

categoricity, we can view every model of K as a K-substructure of an EM-reduct.

Section II.4 Using a version of the weak diamond, we provide a complete proof of
the fact from [ShVi] that limit models are amalgamation bases. This allows us

to show the existence of limit models of arbitrary length.

Section I1.5 We provide a complete proof of Shelah and Villaveces’ Weak Disjoint
Amalgamation Theorem. This theorem will be used in constructing extensions

of towers. The proof uses the EM models which were described in Section II.3.

Section I1.6 In the next few sections we will be introducing classes of towers. Ulti-
mately, we will only use scattered towers to prove the uniqueness of limit models.
However, to make the proof of the extension property for scattered towers more

manageable, we begin with naked towers and slowly modify them.
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We will show that every nice tower (M,a) € K. o can be properly extended

(with respect to the ordering <Zﬁa) to a larger tower in K, ,. This closes one of
the gaps from [ShVi]. The proof uses directed systems and direct limits. The

reader is suggested to refer to Section II.2 for a discussion of these concepts in

AECs.

Section I1.7 We define the notion of splitting for AECs and prove the extension
property for non-splitting. This result does not rely on the categoricity assump-
tion. We will use the extension property for non-splitting in Chapter III as
well. We also recall Shelah and Villaveces’ result concerning splitting chains
(Fact 11.7.6). After analyzing their proof we are able to read out a very useful
corollary which serves as a replacement for the finite character of splitting in
first order logic (Fact I1.7.7). We then augment the towers from Section II.6
with non-splitting types. We prove the <,  -extension property for this class of
towers as well. The proof relies on understanding the <Z7a—extension property

from Section I1.6 but does not explicitly depend on the result of I1.6.

Section I1.8 We begin this section with a description of the structure of the proof
of the uniqueness of limit models. We now make the final modification for
towers by adjusting the index set from an ordinal to a collection of intervals
of ordinals and prove the <“extension property for this class. This is a new
theorem. The structure of the proof reflects the proofs of the <Z,a and <j, ,

extension properties.

Section I1.9 One of the problems with our chains of towers is that <“extensions
are often discontinuous. We provide a complete proof that reduced towers are

continuous. This solves another problem from [ShVi]. The proof relies on the
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non-splitting results from Section I1.7. We then conclude that every scattered

tower has a continuous <‘¢-extension.

Section I1.10 Here we define strong types and provide a proof of Shelah and Villave-
ces’ result that stability gives us a bound to the number of strong types over
a given model. In this section we also introduce relatively full towers which
are towers realizing many strong types. This is a weakening of Shelah and
Villaveces’ notion of full towers. We then show that the top of a relatively full,
continuous tower is a limit model. This is a new result used in our proof of the

uniqueness of limit models.

Section I1.11 Here we prove Conjecture 11.1.2. The proof uses the <“extension
property for nice scattered towers and the results on reduced and relatively full

towers.

I1.2 Background

Recall the definition of an abstract elementary class from the introduction (Defi-
nition 1.0.6.)

One useful example of an abstract elementary class is the following:

Fact I1.2.1 ([Sh 88] or see [Gr2]). Let K be an abstract elementary class. Then
K=* .= {(N,M) | M,N € K,M <x N} is an abstract elementary class with

L(K™%) = L(K) U{P} where P is a unary predicate and <~<x 1is defined by

(N,M) <K=K (N,,M,) = (N <K N’ and M <K M/).

Notation I1.2.2. If ) is a cardinal and K is an abstract elementary class, ICy is the

collection of elements of K with cardinality .
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Definition I1.2.3. For models M, N in an AEC, K, the mapping f : M — N is an
<ic-embedding iff f is an injective L(X)-homomorphism and f[M] < N.
Using the axioms of AEC, one can show that Axiom 4 of the definition of AEC

has an alternative formulation (see [Sh 88] or Chapter 13 of [Gr2]):

Definition I1.2.4. A partially ordered set (I, <) is directed iff for every a,b € I,

there exists ¢ € I such that a <cand b <ec.

Fact 11.2.5 (P.M. Cohn 1965). Let (I,<) be a directed set. If (M; | t € I) and

{hi, |t <7 €1} are such that
(1) fort €I, My € K
(2) fort <r €l hy, : My — M, is a <x-embedding and
(3) forty <ty <ts €1, hyy 1y = hiyt, 0 bty 1, and hey = idyy,,

then, whenever s = limyes t, there exist My € K and <xc-mappings {h:s | t € I} such
that

his : My — My, M, = | hes(M,) and

t<s

forty <ty < s, hy o = Ny 50 ey p, and hy s = iday,.

Definition I1.2.6. (1) ((M; |t € I),{his |t < s € I}) from Fact I1.2.5 is called a

directed system.

(2) We say that M, together with (h:, | t < s) satisfying the conclusion of Fact

11.2.5 is a direct limit of (M |t < s),{her | t <1 < s}).

In fact we can conclude more about direct limits (Lemma I11.2.7). We will use this

lemma in our proofs of the extension property for towers.
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Lemma I1.2.7. Suppose that (M; <x Ny |t € I) and (fis |t < s € I) is a directed
system with fi s : Ny — Ng and fy s | My : My — M. Then we can find a direct limit
(N, oty | £ € 1Y) of (N [ £ € 1), (s | £ < 5 € 1)) and (M*, (goaupiry | £ € 1))
a direct limit of (M |t € I),(fes | My |t < s € I)) such that M* <x N* and
frsup(ry | My = Gt sup(r}-

Proof. By Fact 11.2.1, we know that =X is an abstract elementary class. Notice
that (((N, My) | t € I),{fis | t < s € I)) is a directed system for K=*. By Fact
I1.2.5, there exists a direct limit, (N*, M*) and (fisupr | t € I), for this system.
It is routine to verify that this direct limit induces the desired direct limits for the

directed systems in K. -

We will use Lemma I1.2.7 as well as the trivial observation (Claim II.2.8) in the

proof of the Conjecture 11.1.2.

Claim I1.2.8. If (N; |t < s) and (f.: | r <t < s) form a directed system and for
every r <t < s we have that Ny = N, = N and f,; € Aut(N). Then a direct limit
(Ns, (frs | t < s)) of this system is such that fi s : Ny = Ny for every t < s. Moreover
we can choose a direct limit such that Ny = N.

The following gives a characterization of AECs as PC-classes. Fact 11.2.10 is often

referred to as Shelah’s Presentation Theorem.

Definition I1.2.9. A class K of structures is called a PC-class if there exists a
language L1, a first order theory, T, in the language, L, and a collection of types

without parameters, I', such that L; is an expansion of L(K) and
K=PC(T\,I'\L):={M | L: M [T, and M omits all types from I'}.

When |1} | + |L1]| + |T'| + o = p, we say that K is PC,. PC-classes are sometimes

referred to as projective classes or pseudo-elementary classes.
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Fact I1.2.10. [Lemma 1.8 of [Sh 88] or [Gr2]] If (K,<x) is an AEC, then there

exists i < 290 such that K is PC,,.

The representation of AECs as PC-classes allows us to construct Ehrenfeucht-

Mostowski models if there are arbitrarily large models in our class.

Definition I1.2.11. Given an AEC K, we denote by Hanf number of K, denoted
by Hanf(K), as the minimal x such that for every PCyrsx)-class, K, if there exists

a model M € K’ of cardinality x, then there are arbitrarily large models in K.

In Section I1.3 we will see that this presentation of AECs as PC-classes allows us
to construct Ehrenfeucht-Mostowski models whenever the AEC K class contains a
model of cardinality Hanf(/C). It is well known that Hanf(K) < :(22LS(IC)) L

Let us recall the definition of amalgamation.
Definition I1.2.12. Let K be an abstract elementary class.

(1) Let p,k1 and ko be cardinals with p < Ky, ko. We say that M € K, is a (K1, K2)-
amalgamation base if for every Ny € K, and Ny € Ky, and g; : M — N; for
(1 = 1,2), there are <x-embeddings f;, (i = 1,2) and a model N such that the

following diagram commutes:

N1*>N

bil
ng sz
M ? NQ

(2) We say that a model M € K, is an amalgamation base if M is a (u,p)-

amalgamation base.

(3) We write " for the class of amalgamation bases which are in K.
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(4) We say K satisfies the amalgamation property iff for every M € K, M is an

amalgamation base.

Remark I1.2.13. We get an equivalent definition of amalgamation base, if we ad-
ditionally require that g; | M = idy, for i = 1,2, in the definition above. See [Gr2]

for details.

Amalgamation bases are central in the definition of types. Since we are not
working in a fixed logic, we will not define types as collections of formulas. Instead,

we will define types as equivalence classes with respect to images under <x-mappings:

Definition I1.2.14. For triples (a;, M;, N;) where a; € N; and M; = N, € K
for [ = 0,1, we define a binary relation E as follows: (ag, My, No)E(ay, My, Ny) iff
My = M; and there exists N € K and <y-mappings fy, f1 such that f; : Ny — N

and fl r M = ZdM for [ = 071 and f()(ao) = fl(C_Ll)Z

Ny —N

fi
idT sz
M T N2

Remark I1.2.15. F is an equivalence relation on the set of triples of the form

(a, M, N) where M < N, a € N and M, N € K" for fixed u > LS(K).

In AECs with the amalgamation property, we are often limited to speak of types
only over models. Here we are further restricted to deal with types only over models

which are amalgamation bases.
Definition I1.2.16. Let y > LS(K) be given.

(1) For M, N € K™ and a € “>N, the Galois-type of a in N over M, written

ga-tp(a/M, N), is defined to be (a, M, N)/FE.
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(2) For M € K™, ga-S*(M) := {ga-tp(a/M,N) | M < N € K" a € N}.

(3) We say p € ga-S(M) is realized in M’ whenever M <, M’ and there exist

a € M" and N € K™ such that p = (a, M, N)/E.

(4) For M" € K™ with M <x M" and q = ga-tp(a/M’, N) € ga-S(M’), we define

the restriction of ¢ to M as q | M := ga-tp(a/M, N).

(5) For M" € ;™ with M <x M’, we say that q € ga-S(M') extends p € S(M) iff

ql M =p.

Remark I1.2.17. We refer to these types as Galois-types to distinguish them from

notions of types defined as a collection of formulas.

Notation I1.2.18. We will often abbreviate a Galois-type ga-tp(a/M, N) as ga-tp(a/M)
when the role of N is not crucial or is clear. This occurs mostly when we are working

inside of a fixed structure M.

Fact I1.2.19 (see [Gr2]). When K = Mod(T) for T a complete first order theory,
the above definition of ga~tp(a/M, N) coincides with the classical first order defintion
where ¢ and a have the same type over M iff for every first order formula ¢(x,b)

with parameters from M,

N |= ¢(c,b)if fN = ¢(a,b).
Definition II.2.20. We say that K is stable in p if for every M € K™, | ga-S'(M)| =
L.

Fact I1.2.21 (Fact 2.1.3 of [ShVi]). Since K is categorical in A, for every p < A,

we have that KC is stable in p.
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Definition I1.2.22. (1) Let x be a cardinal > LS(K). We say N is k-universal
over M iff for every M’ € K, with M <y, M’ there exists a <x-embedding

g: M'— N such that g [ M = idyy;:

—— N
id

(2) We say N is universal over M iff N is ||M||-universal over M.

Remark I1.2.23. Notice that the definition of N wuniversal over M requires all
extensions of M of cardinality ||M|| to be embeddable into N. First-order variants

of this definition often involve ||M|| < ||N||. We will be considering the case when

M| = ([N
Notation I1.2.24. In diagrams, we will indicate that N is universal over M, by
writing M 4N
The existence of universal extensions follows from categoricity and GCH:
Fact 11.2.25 (Theorem 1.3.1 from [ShVi]). indezuniversal overlexistence of uni-

versal extensions For every p with LS(IKC) < p < A, if M € K™, then there exists

M e ICZm such that M' is universal over M.

Notice that the following proposition asserts that it is unreasonable to prove a
stronger existence statement than Fact 11.2.25, without having proved the amalga-

mation property.

Proposition I1.2.26. indexamalgamation base If M’ is universal over M, then M

1s an amalgamation base.
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We can now define the central concept of this chapter:

Definition I1.2.27. For M’, M € IC, and ¢ a limit ordinal with o < p*, we say that
M'is a (p, 0)-limit over M iff there exists a <x-increasing and continuous sequence

of models (M; € K, | i < o) such that
(1) M = M,
2) ' =U,., M,
(3) for i < o, M; is an amalgamation base and
(4) M4 is universal over M.

Remark I1.2.28. (1) Notice that in Definition 11.2.27, for ¢ < ¢ and i a limit

ordinal, M; is a (p,7)-limit model.
(2) Notice that Condition (4) implies Condition (3) of Definition I11.2.27.

Definition I1.2.29. We say that M’ is a (p, 0)-limit iff there is some M € K such

that M’ is a (i, 0)-limit over M.

Notation I1.2.30. (1) For u a cardinal and o a limit ordinal with ¢ < u™, we

write K7, for the collection of (y, o)-limit models of K.
(2) We define

K :={M e K|Misa (u,0) — limit model for some limit ordinal 6 < y*}.

indexKC, as the collection of limit models of K.

Limit models also exist in certain abstract elementary classes. By repeated appli-

cations of Fact 11.2.25, the existence of (p,w)-limit models can be proved:
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Fact I1.2.31 (Theorem 1.3.1 from [ShVi]). Let p be a cardinal such that pn < \.
For every M € K", there exists M’ € K such that M <x M" and M" is a (j1,w)-limit

over M.

In order to extend this argument further to yield the existence of (u, o)-limits for
arbitrary limit ordinals ¢ < p*, we need to be able to verify that limit models are
in fact amalgamation bases. We will examine this in Section I1.4.

While the existence of limit models is relatively easy to derive from the categoricity
and weak diamond assumptions, the uniqueness of limit models is more difficult. Here
we recall two easy uniqueness facts which state that limit models of the same length
are isomorphic. They are proved using the natural back-n-forth construction of an

isomorphism.

Fact 11.2.32 (Fact 1.3.6 from [ShVi]). Let p > LS(K) and o < p*. If My and
My are (u,o0)-limits over M, then there exists an isomorphism g : My — My such
that g | M = idy;. Moreover if My is a (p,0)-limit over My; Ny is a (u,o)-limit
over Ny and g : My = Ny, then there exists a <x-mapping, g, extending g such that

§: M, = N,.

Fact 11.2.33 (Fact 1.3.7 from [ShVi]). Let p be a cardinal and o a limit ordinal

with o < pu™ < X. If M is a (u, 0)-limit model, then M is a (u,cf(0))-limit model.

A more challenging uniqueness question is to prove that two limit models of
different lengths (0, # 02) are isomorphic (Conjecture I1.1.2). The main result of
this chapter, Theorem II.11.2, is a solution to this conjecture.

We will need one more notion of limit model, which will appear implicitly in the
proofs of Theorem I1.6.11, Theorem I1.7.17, Theorem I1.8.8 and Theorem I1.9.7. This

notion is a mild extension of the notion of limit models already defined:
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Definition I1.2.34. Let x be a cardinal < \, we say that M is a (u, u*)-limit over
M iff there exists a <j-increasing and continuous chain of models (M; € IC,, | i < p™)

satisfying
(1) My =M
(2) Ui<u+ M; =M
(3) for ¢ < p*, M; is an amalgamation base and
(4) for i < p*, M;yq is universal over M;

Remark I1.2.35. While it is known that (u, #)-limit models are amalgamation bases
when 6 < p*, it is open whether or not (i, u)-limits are amalgamation bases. To
avoid confusion between these two concepts of limit models, we will always denote

(11, p*)-limit models with a~above the model’s name (ie. M).

The existence of (u, uT)-limit models follows from the fact that (u, #)-limit models
are amalgamation bases when 6 < p*, see Corollary 11.4.10. The uniqueness of
(i, p)-limit models (Proposition I1.2.36) can be shown using an easy back and forth
construction as in the proof of Fact 11.2.32.

Proposition I1.2.36. Suppose M, and My are (u, pt)-limits over My and My, re-

spectively. If there exists an isomorphism h : My = My, then h can be extended to
an isomorphism g : My = M,.
(i, p)-limit models turn out to be useful as replacement for monster models. By

Proposition 11.2.36 and the following proposition, (u, u*)-limits provide some level

of homogeneity.

Proposition 11.2.37. If M is a (u, pt)-limit, then for every N <y M with N €

K", we have that M s universal over N. Moreover, M is a (p, p)-limit over N.
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I1.3 Ehrenfeucht-Mostowski Models

Since K has no maximal models, K has models of cardinality Hanf(K). Then by

Fact I1.3.1, we can construct Ehrenfeucht-Mostowski models.

Fact I1.3.1 (Claim 0.6 of [Sh 394] or see [Gr2]). Assume that K is an AEC
that contains a model of cardinality > :(ZLS(IC))+. Then, there is a ®, proper for

linear orders', such that for linear orders I C J we have that
(1) EM(1,®) | L(K) < EM(J,®) | L(K) and
(2) [EM(I,®) [ L(K)|| = ] + LS(K).

We describe an index set which appears often in work toward the categoricity
conjecture. This index set appears in several places including [KoSh], [Sh 394] and

[Shvil.

Notation I1.3.2. Let a < A be given. We define

faiz{newa:{n<w|n[n]7é0}isﬁnite}

Associate with I, the lexicographical ordering <. If X C «, we write

Ix = {ne “X: {n<w|nn] # 0} is finite} }.

The following fact is proved in several papers e.g. [ShVi].

Fact 11.3.3. If M <x EM(I,®) | L(K) is a model of cardinality p* with u™ < A,

then there exists a <x-mapping f: M — EM(I,+,®) | L(K).

1 Also known as a blueprint, see Chapter VII, §5 of [Shc].



30

A variant of this universality property is (implicit in Lemma 3.7 of [KoSh]):

Fact I1.3.4. Suppose k is a regular cardinal. If M <x EM(I.,®) | LK) is a
model of cardinality < k and N <x EM(I\,®) | L(K) is an extension of M of
cardinality || M||, then there exists a <x-embedding f: N — EM (I, ®) | L(K) such

that f 1 M = idy.

II.4 Amalgamation Bases

Since the amalgamation property for abstract elementary classes is inherent in
the definition of types, most work towards understanding AECs has been for classes
where the amalgamation property is known to hold. In [ShVi], Shelah and Villaveces
begin to tackle the categoricity problem with an approach that does not require the
amalgamation property as an assumption. Shelah and Villaveces, however, prove a
weak amalgamation property, which they refer to as density of amalgamation bases,

summarized here:

Fact 11.4.1 (Theorem 1.2.4 from [ShVi]). Forevery M € K_,, there exists N €

We can now improve Fact 11.2.25 slightly. This improvement is used throughout

this paper.

Lemma I1.4.2. For every p with LS(K) < p < X, if M € K", N € K and
a € "N are such that M < N, then there exists M® € K™ such that M? is

unversal over M and M |Ja C M.

Proof. By Axiom 6 of AEC, we can find M’ <x N of cardinality x containing M | a.

Applying Fact 11.4.1, there exists an amalgamation base of cardinality u, say M”,



31

extending M’. By Fact I1.2.25 we can find a universal extension of M" of cardinality
i, say M®.

Notice that M® is also universal over M. Why? Suppose M* is an extension of
M of cardinality u. Since M is an amalgamation base we can amalgamate M"” and
M* over M. WLOG we may assume that the amalgam, M**, is an extension of M”

of cardinality p and f*: M* — M™ with f* | M = idy,.

M* > M**

'O

M——M'"—= M*
id id
Now, since M® is universal over M”, there exists a <y -mapping ¢g such that

g: M* — M® with g | M" = idy». Notice that go f* gives us the desired mapping

of M* into M@.

While Fact I1.4.1 asserts the existence of amalgamation bases, it is unknown (in
this context) what characterizes amalgamation bases. Shelah and Villaveces have
claimed that every limit model is an amalgamation base (Fact 1.3.10 of [ShVi]),

+

using <>M+(S(fff(u)). We provide a proof that every (u,#)-limit model with 6 < u™ is

an amalgamation base under a slightly weaker version of diamond (<I>u+(5(’ff&))):

Theorem 11.4.3. Under Assumption I1.1.1, if M is a (u,0)-limit for some 0 with

0 < ut <\, then M is an amalgamation base.

Let us first recall some set theoretic definitions and facts concerning the weak

diamond.
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Definition I1.4.4. Let 0 be a regular ordinal < p™. We denote
ST = o < it | cf (@) = 6}

Definition I1.4.5. For p a cardinal and S C p* a stationary set, ®,+(.5) is said to
hold iff for all F: *">2 — 2 there exists ¢ : AT — 2 so that for every f : At — 2 the
set

{6€S|F(f]0)=g(0)} is stationary.
We will be using a consequence of ®,+(S), called ©,+(S) (see [Gr2]).

Definition I1.4.6. For p a cardinal S C u* a stationary set, ©,+(S) is said to hold

if and only if for all families of functions
{fy - me€ "2 where f, : p* — p*}

and for every club C' C u*, there exist n # v € #"9 and there exists a § € C'N S

such that

It is not hard to see the relative strength of these principles. See [Gr2] for details.
Fact I1.4.7. $,+(S) = ®,+(S) = 0,+(S) for all stationary S C p*.
For most regular § < p*, we have that ®,+ (S} +) follows from GCH:

Fact 11.4.8 ([Gy] for u regular and [Sh 108] for u singular). For every p >

Ny, GCH = O,+(S) where S = Sgﬁ for every regular 6 # cf ().
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Thus, from GCH and ®,+ (Sé‘f?ﬂ)) we have for every regular § < p*, ®,+ (Sgﬁ)

holds.

Before we begin the proof of Theorem I1.4.3, notice that:

Remark I1.4.9 (Invariance). By Axiom 1 of AEC, if M is an amalgamation base

and f is an <x-embedding, then f(M) is an amalgamation base.

Proof of Theorem II.4.3. Given p, suppose that 6 is the minimal infinite ordinal < p™
such that there exists a model M which is a (u, #)-limit and not an amalgamation
base. Notice that by Fact 11.2.33, we may assume that cf(6) = 6.

Now we define by induction on the length of n € K>9 a tree of structures,

(M, | n e *'>2), satisfying:
(1) for n <v e *'>2, M, <x M,

(2) for I(n) a limit ordinal with cf(i(n)) <6, M, =J M0

a<i(n)
(3) for n € *2 with a € Sg‘+,

(a) M, is a (1, 0)-limit model

(b) M,~y, M, cannot be amalgamated over M,

(c) M, and M,-, are amalgamation bases of cardinality
(4) for n € *2 with a ¢ S,

a) M, is an amalgamation base

(a) M, g

(b) M,-~y, M, are universal over M, and

(c) M,-o and M, are amalgamation bases of cardinality p (it may be that

Mo = M, in this case).
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This construction is possible:
n = (): By Fact I1.4.1, we can find M" € K™ such that M <x M'. Define
My =M.

l(n) is a limit ordinal: When cf(I(n)) > 0, let M} :=J,y,) Myia- M, is not nec-

a<l
essarily an amalgamation base, but for the purposes of this construction, continuity
at such limits is not important. Thus we can find an extension of M, say M,, of
cardinality p where M, is an amalgamation base.

For n with cf(I(n)) < 6, we require continuity. Define M, := |J Myjo. We

a<l(n)
need to verify that if I(n) ¢ Sy " then M,, is an amalgamation base. In fact, we will
show that such a M, will be a (y, cf({(n)))-limit model. Let (a; | ¢ < cf(I(n))) be an

increasing and continuous sequence of ordinals converging to I(n) such that cf(q;) < 60

for every i < cf(l(n)). Condition (4b) guarantees that for ¢ < cf(i(n)), M, is

lavit1

i < ct(l(n)))

is continuous. This sequence of models witnesses that M, is a (u,cf(l(n)))-limit

universal over M,,. Additionally, condition (2) ensures us that (M,

model. By our minimal choice of 6, we have that (u,cf(l(n)))-limit models are
amalgamation bases.
M

n"i where l(n) € Sgﬁ : We first notice that M, = J nla 18 @ (u, 0)-limit

a<li(n)
model. Why? Since I(n) € SY " and 6 is regular, we can find an increasing and
continuous sequence of ordinals, («; | i < #) converging to I(n) such that for each
i < 0 we have that cf(a;) < 0. Condition (4b) of the construction guarantees that

for each i < 6, M,)qa,,, is universal over M,,,. Thus (M., | i < 0) witnesses that

Qiq1
M, is a (p, 0)-limit model.
Since M, is a (1, 0)-limit, we can fix an isomorphism f : M = M,. By Remark

I1.4.9, M, is not an amalgamation base. Thus there exist M,y and M,-; extensions of

M,, which cannot be amalgamated over M,. WLOG, by the Density of Amalgamation



35

Bases, we can choose M, and M, to be elements of K™

n"i where l(n) ¢ Sgﬁ : Since M, is an amalgamation base, we can choose M,y
and M, to be extensions of M, such that M, € ICZm and M, is universal over
M,, for [ =0,1.

This completes the construction. For every n € “+2, define M, =, <+ Myja-
By categoricity in A and Fact I1.3.3, we can fix a <x-mapping g, : M,y — EM (I,+,®) |
L(K) for each p € *"2. Now apply @H+(Sg+) to find n,v € *"2 and a € Sg‘+ such

that

'gnrMp:gurMp-

By Axiom 6 (the Lowenheim-Skolem property) of AEC, there exists N <x EM ({,+,®) |

L(K) of cardinality u such that the following diagram commutes:

!]VFM‘
M, L

p°1

idT Tgn [Mp~0

My == Moo
Notice that g, [ Myo, g | M,1 and N witness that M, and M, can be

amalgamated over M,. Since l(p) = o € Sy " we contradict condition (3b) of the

construction.

Corollary 11.4.10 (Existence of limit models and (x, ut)-limit models). For
every cardinal p and limit ordinal 6 with 0 < pu* < X, if M is an amalgamation base

of cardinality p, then there exists M' € KCJ™ which is a (u, 0)-limit over M.
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Proof. By repeated applications of Fact 11.2.25 (existense of universal extensions)

and Theorem 11.4.3. =

II.5 Weak Disjoint Amalgamation

Shelah and Villaveces prove a version of weak disjoint amalgamation in an at-
tempt to prove an extension property for towers. We will be using weak disjoint
amalgamation to build extensions of towers. The following proof was suggested by

John Baldwin.

Fact II.5.1 (Weak Disjoint Amalgamation [ShVi]). Given A\ > p > LS(K)
and o, 0y < pt with 8y reqular. If My is a (p,6p)-limit and My, My € K, are <i-
extensions of My, then for every b € “( M{\M,), there exist Ms, a model, and h, a

<jic-embedding, such that

(1) h: My — Ms;

(2) h| My = idy, and

(3) h(My) Nb =0 (equivalently h(Ms) N My = My).

Proof. Let My, My, M, and b be given as in the statement of the claim. First notice
that we may assume that My, M;, M, and b are such that there is a § < pt with
My = My N (EM(Is5,®) | L(K)) and My, My <x EM(I,+,®) [ L(K). Why? Define
(N; € K, | i < ut) a <g-increasing and continuous chain of amalgamation bases

such that
(1) NO = M() and

(2) N;i1 is universal over ;.
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Let N+ = U, <+ Ni. By categoricity and Fact I1.3.3, there exists a K-mapping
f such that f : N+ — EM(I,+,®) | L(K). Consider the club C = {6 < p* |
F(N,o) N (EM(I;,®) | L(K)) = f(N5)}. Let 6 € C'n 8%, . Notice that f(Nj)
is a (u, cf(fp))-limit model. Since M, is also a (u, cf(6p))-limit model, there exists
g: My = f(Ns). Since f(Ns41) is universal over f(Nj), we can extend g to ¢’ such
that ¢’ : My — f(Nsy1) with ¢'(My) N EM (15, ®) | L(K) = ¢'(My). Thus we may
take My, M;, My and b as stated.

Let § be such that M; N (EM(I5,®) [ L(K)) = My and let 6* < put be such that
My, My <x EM(Is+) | L(K). Let h be the K mapping from EM (I5) [ L(K) into
EM(I+,®) | L(K) induced by

a— 0" +a

for all a < 6*.

We will show that if b € M;\M, then b ¢ h(M,). Suppose for the sake of
contradiction that b € M;\My and b € h(Ms). Let 7 be a Skolem term and let @,
beta be finite sequences such that @ € Iy and 3 € I\ I, satisfying b = 7(a, 3).

Since b € h(M;), there exists a Skolem term o and finite sequences & € I5 and
B € I,+\Is satisfying b = o(a, 3').

Since ' and 3 are disjoint, we can find 4/ and 4 € I such that the type of 33
is the same as the type of 4" over @'"a with respect to the lexicographical order of

A A —

I,+. Notice then that the type of 3’ and 4 over '@ @ are the same with respect to

1%
the lexicographical ordering.

Recall

EM(I+,®) I L(K) = b=7(, 8) = o(a, 5).

Thus

EM(I,+,®) | LK) F 7(a,7) = o(a/, 7).
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Since 7" and (3’ look the same over v a/"«r, we also have
EM(1,+,®) | L(K) |= 7(a, ) = o(', 7).

Combining the implications gives us a representation of b with parameters from I5.
Thus b € EM(I5,®) | L(K). Since My = M; N (EM (15, ®) | L(K)), we get that
b € My which contradicts our choice of b.

Let us state an easy corollary of Fact I1.5.1 that will simplify future constructions:

Corollary I1.5.2. Suppose j, My, My, My and b are as in the statement of Fact

IL5.1. If M is universal over My, then there exists a <xc-mapping h such that
(1) h: My — M,
(2) h | My =idy, and
(3) h(My) Nb = My (equivalently h(My) N M; = ().

Proof. By Fact I1.5.1, there exists a <x-mapping g and a model M; of cardinality u

such that
c g My — M
< g | My = idyg,

- g(My) Nb = My and
- My <k Ms.

Since M is universal over M, we can fix a <x-mapping f such that
- f: My — M and

er1:ZdM1
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Notice that h := g o f is the desired mapping from M, into M.

11.6 <fha-Extension Property for IC:‘W

Shelah introduced chains of towers in [Sh 48] and [Sh 87b] as a tool to build a
model of cardinality p* from models of cardinality p. Here we will use the towers to
prove the uniqueness of limit models by producing a model which is simultaneously
a (u, 601)-limit model and a (y, 02)-limit model. The construction of such a model is
sufficient to prove the uniqueness of limit models by Fact 11.2.32.

The proof of Theorem 11.11.2 uses scattered towers, defined in Definition I1.8.2.
The proof of the extension property for this class of towers is quite technical. For
expository reasons, we introduce weaker notions of towers and prove the extension
property for these towers in Sections I1.6 and I1.7. Understanding the <Z,a and <, -
extension properties will make the proof of Theorem I1.8.8 (the extension property

for scattered towers) more approachable.

Definition I1.6.1 (Towers Definition 3.1.1 of [ShVi]). Let x> LS(K) and «, 0 <

(1)

4 )

(M, a) == ((My | v < a),{ay | ¥ < a));

o M is <k —increasing;
Kipo=1< (M,a)
for every v < o, a, € M, 1\ M,;

for every v < o, M, € K,

(2) ICfW = {(M,a) € K, | for every v < a, M, is a (p, 0)-limit}
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(3)

for every v < a, there exists a limit ordinal 6., < "

Kho=1WM,a) € Kya
such thatM, is a (p, 8,)-limit model.

Fact I1.6.2 (Fact 3.1.7 from [ShVi]). Suppose K is categorical in \. Given A\ >

w>LS(K), a < pu and 6 a regular cardinal with 6 < u*, we have that ICZ’CY # ().

Roughly speaking, in order to prove the uniqueness of limit models, we will con-
struct an array of models of width #; and height 65 in such a way that the union
will simultaneously be a (i, 61)-limit model and a (u, 62)-limit model. Each row in
our array will be a tower from K, 5 . We define the array by induction on the height
(02) by finding an ”increasing” and continuous chain of towers from K} , . We need
to make explicit what we mean by "increasing.” One property that the ordering on
towers should have is that the union of an ”increasing” chain of towers from X}, 5
should also be a member of K}, 5 . In particular we need to guarantee that the models
that appear in the union be limit models. This motivates the following ordering on

towers:

Definition I1.6.3 (Definition 3.1.3 of [ShVi]). For (M,a), (N,b) € K, , we say

that
(1) (M,a) <5, (N, b) if and only if
(a) @a=b;
(b) for every v < a, M, <x N, and
(c) whenever M, <x N,, then N, is universal over M,.

(2) (M,a) <%, (N,b) if and only if (M,a) <b, (N,b) and for every v < a,

M, # N,.
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Notation I1.6.4. If ((M,a)” € K , | 0 < 7) is a <), ,-increasing and continuous

chain with v < u*, we let UU<7(M,EL)U denote the tower (M7,a) where MY =
<LJU<7‘A[? ’i<< @>.
Remark I1.6.5. If (M,a)” € K, | 0 <) is a <), ,-increasing and continuous

chain with v < p*, then J,_. (M,a)” € K}, ,. Why? Notice that for each i < a,

a<7(
M =, M7 is a limit model, witnessed by (M7 [ o < 7).

Notation I1.6.6. We will often be looking at extensions of an initial segment of a
tower. We introduce the following notation for this. Suppose (M,a) € K, ,. Let
B < a. We write (M, a) | 3 for the tower ((M; | i < 3),{a; | i < B)) € K}, 5. We also

abbreviate (M; | i < 8) by M | 8 and {a; | i < 8) by a | 3.

In order to construct a non-trivial chain of towers, we need to be able to take

proper <Z o-€xtensions.

Definition I1.6.7. We say the <Z7a—extensz'0n property holds iff for every (M, a) €

* s \ 1! = * 7 = b \ 1! =
K. o there exists (M',a) € K}, , such that (M,a) <, , (M',a).

Remark I1.6.8. Shelah and Villaveces claim the <Z’a—extension property as Fact
3.19(1) in [ShVi]. Their proof does not converge. As of the Fall of 2001, they were

unable to produce a proof of this claim.

We introduce a subclass of K}, , (nice towers) and prove the <Zﬁa—extension prop-
erty for these towers. With new proofs in Sections I1.9 and I1.10, the limited extension
property (for scattered towers) turns out to be sufficient to prove the uniqueness of

limit models.

o 1s nice provided that for every limit

Definition I1.6.9. ((M; | i < a),a) € K},

ordinal ¢ < «, we have that | J._, M; is an amalgamation base.

J<i
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Remark I1.6.10. If (M, a) is continuous, then (M, a) is nice.

Notice that in the definition of towers, we do not require continuity at limit
ordinals ¢ of the sequence of models. This allows for towers in which M; # U;_; M.
We cannot guarantee that a tower discontinuous at 7 is nice since the union of limit
models (UJ;; M;) may not be an amalgamation base.

Moreover, the union of a <’-increasing chain of < ;* nice towers, is not necessarily
nice. Suppose ((M,a)° | f < ) is a <), ,-increasing and continuous chain of nice
towers each discontinuous at 7. Then |J Beny U i M ]ﬁ may not be an amalgamation

base. All we know is that Uz, U, ; M ]/6 is a union of limit models.

7<t

Theorem I1.6.11 (The <Z7a-extension property for nice towers). For every nice

there exists a nice tower (M',a) € K, ,

such that (M, a) <®

JTRe

tower (M,a) € K,

2

(M',a). Moreover, if U;<o Mi is an amalgamation base and | J,_., M; <x M, for some

(1, wt)-limit, M, then we can find a nice extension (M',a) such that \J,_, M! <x M.
It is natural to attempt to define (M! | i < a) to form an extension (M’,a) of
(M,a) by induction on i < « (as Shelah and Villaveces suggest). Fact I1.5.1 makes
the base case possible. The limits could be taken care of by taking unions. The
problem arises in the successor step. We would have defined M/ extending M; such
that M/ N{a; | i < j < a} = 0. Fact I1.5.1 is too weak to find an extension of
both M and M;, which avoids {a; | i +1 < j < a}. We can only find M/, ; which
contains an image of M/ and M,,; and avoids {a; | i+ 1 < j < a} by applying Fact
I1.5.1 to M; 11, some extension of M,y |J M/, M, and {q; |i+1<j < a}.
Alternatively, one might try defining approximations (M',a')" € K, a <) -

extension of (M,a) by induction. In this construction, we have no problem with

the successor stages (because we do not require the approximations to be increas-
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ing). However, we will get stuck at the limit stages, because we can no longer take
unions.

Since Fact I1.5.1 gives us a mapping from M; to M, ; we have decided to look at
a directed system of models ((M] | i < a),(f;; |1 <j < a)).

Before beginning the proof of Theorem I1.6.11, we prove the following lemma

which will be used in the successor stage of the construction.

Lemma I1.6.12. Suppose (M, a) € K. lies inside a (u, u*)-limit model, M, that
is Ujog My =i M. If (M',@) € K., ji1 for some j +1 < « is a partial extension of
(M,a) (ie (M,a) | (j+1)<b,, (M a)) and Uicjn Mi =<k M, then there exists
a K-mapping f': M — M such that f' | M; = idy; and there exists Mj,, € K},
with M7, <k M so that ((f'(M}) | i < M) ,a 1 (G + 1)) is a partial <5, ;.

extension of (M, a).

Proof. Since M} and M;, are both <j-substructures of M, we can get M, (a
first approximation to the desired M ;) such that M, , € K} is universal over
M and universal over M;,;. How? By the Downward Lowenheim Skolem Axiom
(Axiom 6) of AEC and the density of amalgamation bases (Fact 11.4.1), we can find
an amalgamation base L of cardinality p such that M}, M; 1y <x L. By Fact 11.2.25

and Corollary I1.4.10, there exists M7, a (y1,w)-limit over L.

Subclaim I1.6.13. M}, is universal over M and is universal over Mj, .

Proof. Tt suffices to show that when Ly <x L; <x L are amalgamation bases of
cardinality g, if L is universal over L, then L is universal over Ly. Let L' be an

extension of Ly of cardinality p. Since Ly is an amalgamation base, we can find an
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amalgam L” such that the following diagram commutes:

L/ S L//

N

LO 7 Ll T> L
Since L is universal over Ly, there exists g : L” — L with g [ Ly = idy,. Notice

that goh: L' — L with go h | Ly = idy,. =

M ]”H may serve us well if it does not contain any a; for j + 1 <[ < «, but this is
not guaranteed. So we need to make an adjustment. Notice that M is universal over
Mj 1. Thus we can apply Corollary I1.5.2 to Mj 1, My, M7, and {(a; | j+1 <1 < a).

J

This yields a <x-mapping f’ such that
MY — M
< f' T My = idyy,,, and
(M) {a | j+1<T<a}=0.
Set M}, := f'(Mj,,). =

Proof of Theorem I1.6.11. Let u be a cardinal and « a limit ordinal such that a <
pt < A Let a nice tower (M,a) € K}, , be given. Denote by M, a model in K™

extending | J._ . M;. As discussed above, we have decided to look at a directed system

<o

of models ((M; [ i < a),(f]; | i < j < a)), as opposed to an increasing sequence,

such that at each stage i < a:

(1) ((ff;(M]) | j <i),a i) is a <l -extension of (M, a) | i

(2) M/ is universal over M;,

(3) M., is universal over f;,;,,(M/) and

(2
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(4) i er = ide?

]71

It may be useful at this point to refer to Section I1.2 concerning directed systems

and direct limits. In order to carry out the construction at limit stages, we need to

work inside of a fixed structure. Fix M to be a (u, u+)-limit model over M,.

Below is a diagram of the successor stage of the construction.

M
aop a;
S S
M, <K M, <k - <k Mj <K Mj+1-<}c
[« :
M id

fon

foa(Mg) == M{ .

‘id

fé,j f{,j f{,j-’-l .. f{,j
fé,j+1 '.

fo,j(M')Z:>f1j(M’) M — M
’ ;o ,
Ja+l BRFNER 341

v Wy | i
/ / / id ,
fO,j-Fl(M‘]—l-l) fl J+1 (M ) f] ]+1(M ) M]+1

(ag | k> j)

=<k M,

We will simultaneously define a directed system ((M; | i < a), (fi; | i < j < a))

extending ((M] | i < ), (f;; |1 <j <)) such that:
(5) ((M; =M | j <), {fu;| k<j<i)) forms a directed system,
(6) M! <x M and

(7) f;; can be extended to an automorphism of M, ]Ej,iv for j <.
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Notice that the M!’s will not necessarily form an extension of the tower (M,a).
Rather, for each i < «, we find some image of (Mj | j < i) which will extend the
initial segment of length i of (M,a) (see condition (1) of the construction).

The construction is possible:

i = 0: Since M, is an amalgamation base, we can find Mg € K}, (a first approx-
imation of the desired M/) such that M is universal over M,. By Corollary 11.5.2
(applied to My, My, MY and @), we can find a <x-mapping h : M} — M such that
h| My =idy, and h(M{) Na = 0. Set M} := h(M{)), f§o = iday and fop := idy.

i=j+1: Fix M, and f as in Lemma I1.6.12. Set f},, ., = idM§+17 ]Ej+1,j+1 =
idy; and f]; == f | M}. Since M is a (p, u")-limit over both MJ and f} (M),
by Proposition I1.2.36 we can extend f}.,, to an automorphism of M, denoted by
fii+-

To guarantee that we have a directed system, for k < j, define f; ;. , = fi 110/,
and fk,j+1 = ]Ej,j—&-l °© .fkj

i is a limit ordinal: Suppose that ((Mj | j <1),(f;; |k < j <1i)) and (M |j<
i), (fr; | k < j <)) have been defined. Since they are both directed systems, we
can take direct limits, but we want to choose the representations of the direct limits

carefully:

Claim I1.6.14. We can choose direct limits (M;,(f;; | j <)) and (MF, (f5 17 <

i) of (M| j < i)(fiy | k<j<i))and(M]j<i){figlhk<j<i)

respectively such that
(a) My <x M
(b) fj*l is an automorphism of M} for every j <'i

(¢c) M} = M and
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(d) f; | My = idy; for every j < i.

Proof. We will first find direct limits which satisfy the first 3 conditions ((a)-(c)).
Then we will make adjustments to them in order to find direct limits which satisfy
conditions (a)-(d) in the claim.

By Lemma I1.2.7 we may choose direct limits (M;*, (f;7 | j < i)) and (M;*, (f;7 |
§ < i) such that M;* <x M. By Claim I1.2.8 we have that for every j < i

Y

f#i is an automorphism and M;* = M. Notice that (M, (f:* | j < 4)) and

i I\

(3t

7 7

( fj*j | 7 <)) form direct limits satisfying the first three properties. However,
condition (d) may not hold. Thus some adjustments to our choice of representatives

of the direct limits must be made. First notice that
Subclaim I1.6.15. (f;7 [ M; | j < i) is increasing.
Proof. Let j < k < i be given. By construction
fin T Mj =idyy;.
An application of f;7 yields
ki © i | M = [ 1 M.

Since f77 and f;7; come from a direct limit of the system which includes the mapping
x> We have

gyt

Combining the equalities yields

Fra VM = fii T M.

Jie

This completes the proof of Subclaim 11.6.15



48

We still have not finished the proof of Claim I1.6.14. By the subclaim, we have that
9=, f;7 I M;is a partial automorphism of M from U, Mj onto U, f77(M;).
Since M is a (u, u*)-limit model and since | i< M; is an amalgamation base we

can extend g to G € Aut(M) by Proposition 11.2.36. Notice this is the point of the

proof where we use the assumption of niceness when we observe that | J i Mj is an
amalgamation base.

Now consider the direct limit defined by M;* := G='(M;*) with (f;; := G~ "o 7 |
j < i) and ff; =idy> and the direct limit M; := M with (f, := G'o fr1 | j <)
and f; := idy-. Notice that fi, | M; = G~'o fi7 | M; = idy, for j < i. This
completes the proof of Claim I1.6.14

_|

Our choice of (M}, (f;; | j <)) and (M, <fj*l | 7 <)) from Claim I1.6.14 may
not be enough to complete the limit step since M;" may contain a; for some ¢ < j < .
So we need to apply weak disjoint amalgamation and find isomorphic copies of these
systems. By Condition (4) of the construction, notice that M} is a (i, 7)-limit model
witnessed by (f7;(M}) | j <i). Hence M is an amalgamation base. Since M; and
M; both live inside of M, we can find M € K, which is universal over M; and
universal over M. By Corollary I1.5.2 applied to M;, M,, M/ and {(a; | | <i < «)
we can find h : M/ — M such that h | M; = idy;, and h(M/) N {a; |i <1< a} =0,

Set M{ := h(M}), fl; :=idu,,, fi; = idy and for j <i, fi, = ho fi;. We need
to verify that for j <, f;,(Mj)(a | j <1 < a} = 0. Clearly by our application of
weak disjoint amalgamation, we have that for every [ with ¢ <[ < a and every j <1,
a; & f;;(M;) since Mj D f7.(M;). Suppose that j < i and [ is such that j <1 <.

J

By construction a; ¢ f7,,,(M;) and f{,, ;(a;) = a;. So fj (M}) = f/,1,; 0 fj;1(M)

implies that a; ¢ f;,(M}).
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Notice that for every j < i, M is a (u, u*)-limit over both M and f;,(M;). Thus
by the uniqueness of (u, u)-limit models, we can extend f}: to an automorphism of
M, denoted by f“ This completes the limit stage of the construction.

The construction is enough: Let M and (f/, | i < a) be a direct limit of
(M | i < a),(fj; | j <i < «a)). By Subclaim I1.6.15 we may assume that
Uica Mi <x M],. It is routine to verify that ((f;,(M]) | i < a),a) is a <!, ,-extension
of (M,a).

If U, M; is an amalgamation base we can find a K-mapping as in the limit stage

to choose |J,_,, f'(M]) <x M.

Remark I1.6.16. Notice that the extension (M’,a) in Theorem I1.6.11 is not con-
tinuous. Continuity of towers will be desired in the proof of the uniqueness of limit
models. Taking an arbitrary <’-extension will not give us a continuous tower. In
fact, at this point, it is not apparent that any continuous extensions exist. However,
in Section 1.9 we will show that reduced towers are continuous and reduced towers

are dense, thereby, allowing us to take continuous extensions.

Remark I1.6.17. Although the extension (M’,a) is not continuous, it does have

the property that M/, is universal over M for every i < a.

IL.7 <¢ . Extension Property for *K,

JrRet

Unfortunately, it seems that working with the relatively simple K, , towers is
not sufficient to carry out the proof for the uniqueness of limit models. Shelah and
Villaveces have identified a more elaborate tower. The extension property for these

towers is also missing from [ShVi]. We provide a partial solution to this extension
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property, analogous to the solution for K7, , in the previous section. In fact, we will
have to further adjust our definition of towers to scattered towers in the following
section. We introduce the scaled down towers of Sections I1.6 and I1.7 to break down
the proof of the desired extension property into more manageable constructions.
We augment our towers with a dependence relation, p-splitting. This variant of
the first-order notion of splitting is often used in AECs. Most results relying on this
notion are proved under the assumption of categoricity. Just recently Grossberg and
I have made progress without categoricity by considering p-splitting in Galois-stable
AECs (see Chapter III.) Before defining p-splitting we need to describe what we

mean by the image of a type:

Definition I1.7.1. Let M be an amalgamation base and p € ga-S(M). If h is a
K-mapping with domain M we can define h(p). Fix M a (p, u*)-limit model over
M. Notice that M is saturated over M. Thus we can fix a € M realizing p. By

Proposition I1.2.36, we can extend k to k an automorphism of M. Denote by h(p) the

type ga-tp(h(a)/h(M)). It is routine to verify that this definition does not depend

on our choice of M and a.

Definition I1.7.2. Let u be a cardinal with © < A\. For M € K™ and p € ga-S(M),

we say that p p-splits over N iff N <, M and there exist amalgamation bases

Ny, Ny € K, and a <c-mapping h : Ny 2 N, such that
(1) N <x Ny, Ny < M,
(2) h(p | N1) #p | N, and
(3) h | N =idy.

Remark I1.7.3. Let N <x M <x M’ be amalgamation bases of cardinality p such

that ga-tp(a/M’) does not pu-split over N.
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(1) (Monotonicity) Then ga-tp(a/M) does not u-split over N.

(2) (Invariance) If h is a <x mapping with domain M’, h(ga-tp(a/M’)) does not

p-split over h(N).

Shelah and Villaveces draw connections between categoricity and superstability-
like properties using pu-splitting. Let us recall some first order consequences of su-
perstability. These results are consequences of k(T) = Ny and the finite character
of forking (see Chapter III §3 of [Shc|). It is interesting that Shelah and Villave-
ces manage to prove analogs of these theorems without having finite character of

u-splitting.

Fact 11.7.4. Let T be a countable first order theory. Suppose T is superstable. If
(M; | i < o) is a <-increasing and continuous chain of models and o is a limit

ordinal, then for every p € S(M,), there exists i < o such that p does not fork over

M;.

Fact I1.7.5. Let T be a countable first order theory. Suppose T is superstable. Let
(M; | i < o) be a <-increasing and continuous chain of models with o a limit ordinal.
If p € S(M,) is such that for every i < o, p | M; does not fork over My, then p does

not fork over M.

Fact I1.7.6 is an analog to Fact I1.7.4, that under the assumption of categoricity
there are no long splitting chains. The proof of this fact relies on a combinatorial

blackbox principle (see Chapter III of [Shg].)

Fact 11.7.6 (Theorem 2.2.1 from [ShVi]). Under Assumption II.1.1, suppose that
(1) (M; | i < o) is <-increasing and continuous,

(2) for alli <o, M; € K™,
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(3) for alli < o, M;yq is universal over M;

(4) ct(o) =0 < put < X and

(5) p € ga-S(M,).

Then there exists 1 < o such that p does not u-split over M;.

Implicit in Shelah and Villaveces’ proof of Fact I11.7.6 is a statement (Fact 11.7.7)
similar to Fact I1.7.5. If Fact I1.7.6 fails to be true, then there is a counter-example
that has one of three properties (cases (a), (b), and (c) of their proof). Each case is

separately refuted. Case (a) yields:

Fact 11.7.7. Under Assumption I1.1.1, suppose that
(1) (M; | i < o) is <-increasing and continuous,
(2) for alli < o, M; € K",

(3) for alli < o, M;yq is universal over M;,

(4) ct(o) =0 <p" <A,

(5) p € ga-S(M,) and

(6) p | M; does not p-split over My for all i < o.

Then p does not p-split over M.

Remark 11.7.8. The proofs of Fact I1.7.6 and Fact I1.7.7 require the full power of
the categoricity assumption. In particular, Shelah and Villaveces use the fact that
every model can be embedded into a reduct of an Ehrenfeucht-Mostowski model. It
is open as to whether or not similar theorems can be proven under the assumption

of Galois-stability in every cardinality (Galois-superstability).
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We now derive the extension property for non-splitting types (Theorem I1.7.9).
This result does not rely on the categoricity assumption. We will use it to find
extensions of towers, but it is also useful for developing a stability theory for tame

abstract elementary classes in Chapter III.

Theorem I1.7.9 (Extension of non-splitting types). Suppose that M € K, is
universal over N and ga-tp(a/M, M) does not p-split over N. Let M be a (p, ut)-
limit containing a|J M.

Let M' € K™ be an extension of M with M’ <x M. Then there exists a <j-
mapping g € Auty (M) such that ga-tp(a/g(M")) does not p-split over N. Alterna-

tively, g~ € Auty (M) is such that ga-tp(g~—'(a)/M') does not p-split over N.

Proof. Since M is universal over N, there exists a <x mapping A’ : M’ — M with
R | N = idy. By Proposition I1.2.36, we can extend &’ to an automorphism h of M.

Notice that by monotonicity, ga-tp(a/h(M’)) does not p-split over N. By invariance,
() ga-tp(h™(a)/M") does not p-split over N.
Subclaim I1.7.10. ga-tp(h~'(a)/M) = ga-tp(a/M).

Proof. We will use the notion of u-splitting to prove this subclaim. So let us rename
the models in such a way that our application of the definition of p-splitting will be-
come transparent. Let Ny := h™1(M) and Ny := M. Let p := ga-tp(h~'(a)/h~1(M)).
Consider the mapping h : Ny = N,. By invariance, p does not pu-split over N. Thus,

h(p [ N1) = p | Ny. Let us calculate this

h(p | N1) = ga-tp(h(h~"(a))/h(h~" (M))) = ga-tp(a/M).

While,

p | Ny = ga-tp(h™'(a)/M).
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Thus ga-tp(h~'(a)/M) = ga-tp(a/M) as required. =
From the subclaim, we can find a <x-mapping g € Auty, M such that goh~'(a) =
a. Notice that by applying g to (x) we get
(x%)  ga-tp(a/g(M'), M) does not p-split over N.

Applying g~! to (*x*) gives us the alternatively clause:

ga-tp(g~*(a)/M’', M) does not j-split over N.

Theorem I1.7.11 (Uniqueness of non-splitting extensions). Let N, M, M’ €
K™ be such that M' is universal over M and M is universal over N. If p € ga-S(M)
does not p-split over N, then there is a unique p' € ga-S(M’) such that p' extends p

and p' does not p split over N.

Proof. By Theorem I1.7.9, there exists p’ € ga-S(M’) extending p such that p’ does
not p-split over N. Suppose for the sake of contradiction that there exists ¢ #
P € ga-S(M’) extending p and not p-splitting over N. Let a,b be such that p’ =
ga-tp(a/M’) and ¢ = ga-tp(b/M’). Since M is universal over N, there exists a <j-
mapping f : M’ — M with f [ N = idy. Since p’ and ¢ do not p-split over N we
have
(*)a  ga-tp(a/f(M")) = ga-tp(f(a)/ f(M')) and
() gatp(b/ /(M) = goctp(7(0)/ F(M).

On the other hand, since p # ¢, we have that

(x)  ga-tp(f(a)/f(M)) # ga-tp(f(b)/f(M")).
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Combining ()4, (*), and (x), we get

ga-tp(a/f(M")) # ga-tp(b/f(M")).

Since f(M') <x M, this inequality witnesses that

ga-tp(a/M) # ga-tp(b/M),
contradicting our choice of p’ and ¢ extending p. -

Now we incorporate p-splitting into our definition of towers.

(M,a) € K*

(e

N=(N;|i+1<a);
Definition I1.7.12. +’CZ:0‘ = (M,C_L, N) for every 1 —+ 1< O./,Ni <K ]\4“7

M; is universal over N; and;

ga~tp(a;/M;, M;y1) does not p-split over N;.
/

Remark I1.7.13. The sequence (N; | i+ 1 < «) is not necessarily <-increasing or

continuous.
Similar to the case of K, , we define an ordering,

Definition I1.7.14. For (M,a, N) and (M',a’, N') € TKC , we say (M,a, N) <fa

e

(3) for every i < o, ga-tp(a;/M;, M],,) does not p-split over N;.

(2
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Remark I1.7.15. Notice that in Definition I1.7.14, condition (3) follows from (2).

We list it as a separate condition to emphasize the role of p-splitting.

Notation I1.7.16. We say that (M, a, N) is nice iff when i is a limit ordinal Ui M;

is an amalgamation base.
. . :
We now prove the <j, ,-extension property for nice towers.

Theorem I1.7.17 (The <f ,-extension property for nice towers). If(M,a,N) €

+lC;, is mice, then there exists a nice (M',a, N') € +IC:7 such that (M, a, N) <l

« «

(M',a,N"). Moreover if |J,_., M; is an amalgamation base such that \J,_, M; <x M

for some (u, u*)-limit, M, then we can find (M',a’, N') such that \J,_, M <x M.

<o
Proof. Let u be a cardinal and « a limit ordinal such that a < put < X Let

(M,a,N) € J’IC;CY be given. Denote by M, a model in K7™ extending | J;_, M;. Fix

<o
M to be a (p, p*)-limit model over M,.

Similar to the proof of Theorem I1.6.11, we will define by induction on 7 < « a
sequence of models (M] | i < ) and sequences of <x-mappings, (f;, | j < i < )

and (f;; | j <i < a) such that for i < a:

(1) ((fj,(M}) | j<i),ald N [i)isa <{;-extension of (M,a,N) | 1,

VA
(2) ((M; |7 <i),(fj;|j<1i)) forms a directed system,
(3) M is universal over M;,

(4) M, is universal over fi, (M),

(5) fii I M; = idw,

(6) M <x M,

(7) f;; can be extended to an automorphism of M, iji, for j <i and
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(8) ((M | j < i), {fr; | k <j <i)) forms a directed system.

The construction is enough: We can take M, and (f;, | i < a) to be a direct
limit of ((M] | i < o), (fi; | j < i < a)). Since fj; [ M; = idy;, for every
J < i < a, we may assume that f;, [ M; = idy;, for every i < a. Notice that
((fl(M)) | i < a),a) is a <, ,-extension of (M, a). For the moreover part, simply
continue the construction one more step for i = a.

The construction is possible:

i = 0: Since M, is an amalgamation base, we can find Mg € K}, (a first approx-
imation of the desired M) such that M{ is universal over My. By Theorem I1.7.9,
we may assume that ga-tp(ag/MY) does not p-split over Ny and M} <x M. Since
ap ¢ My and ga-tp(ag/My) does not p-split over Ny, we know that ay ¢ MJ. But,
we might have that for some [ > 0, ¢; € M{. We use weak disjoint amalgamation
to avoid {a; | 0 < I < a}. By the Downward Léwenheim-Skolem Axiom for AECs
(Axiom 6) we can choose M? € K, such that M{/, M; <x M? < M.

By Corollary 11.5.2 (applied to My, M,, M? and {(a; | 0 < I < «)), we can find a

<jc-mapping h such that
~h:M*— M
- h | My =idp,
h(MAH N |0<i<a}=10

Define M{ := h(M[). Notice that ay ¢ M/ because ag ¢ M/ and h(ag) = ao.
Clearly M{N{a; | 0 <1 < a} =0, since M} <x M?* and h(M*)N{a; |0 <1 < a} = 0.
We need only verify that ga-tp(ag/M]) does not p-split over Ny. By invariance,
ga-tp(ap/M{) does not p-split over Ny implies that ga-tp(h(ag)/h(M{)) does not

p-split over Ny. But recall h(ag) = ag and h(M{) = M]. Thus ga-tp(ag/M}) does
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not p-split over Nj.

Set foo := idy; and Joo = idug.

t = j 4+ 1. Suppose that we have completed the construction for all £ < j. Since
M, My 1 <k M, we can apply the Downward-Lowenheim Axiom for AECs to find
M7, (a first approximation to M, ) a model of cardinality y extending both M;
and Mj;,. WLOG by Subclaim I1.6.13 we may assume that M7}, is a limit model of
cardinality y and M| ; is universal over M, and M. By Theorem II1.7.9, we can find
a <x mapping f : M, — M such that f | Mj,, = idy;., and ga-tp(a;y1/f(M]))

does not p-split over Nj ;. Set MY, | = f(M,).
Subclaim I1.7.18. a;,1 ¢ M},

Proof. Suppose that a;1; € M7,,. Since M;,, is universal over N;,, there exists a
<i-mapping, g : M}, — M;,, such that g [ Nj,1 = idy,,,. Since ga-tp(a;1/M], )

does not p-split over N;;1, we have that

ga-tp(a;1/9(M},,) = ga-tp(g(aj+1)/g(M],)).

Notice that because g(a;1) € g(M},,), we have that a;11 = g(a;1). Thus ajy, €

g(M}, ) <x Mji1. This contradicts the definition of towers: a;.1 ¢ M;

M, may serve us well if it does not contain any a; for j +1 < I < «, but
this is not guaranteed. So we need to make an adjustment. Let M? be a model of
cardinality p such that M;yo, M}, <x M? <k M. Notice that M is universal over

M. Thus we can apply Corollary I1.5.2 to M 2, My, M? and {a; | j+2 <1 < ).

This yields a <x-mapping h such that

hiM?2 = M
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- h er+2 :ide+2 and
h(M*)N{w |j+2<l<a}=0.

Set M., := h(Mj, ). Notice that by invariance, ga-tp(a;1/M},,) does not u-
split over Nj; implies that ga-tp(h(a;;1)/h(M],,)) does not p-split over h(Nj;1).
Recalling that h [ Mjyo = idy,,, we have that ga-tp(a;;1/M7,,) does not p-split
over Njyi. We need to verify that aj, ¢ M ;. This holds because a;1 ¢ M7,
and h(a;j41) = aji1.

Set fliyip1 = idas ., and fioi o1 = idy and ff . :=ho f | M} Since M is a
(11, p*)-limit over both Mj and f7;,,(M}), we can extend f;;,, to an automorphism
of M, denoted by fj 1.

To guarantee that we have a directed system, for k < j, define j‘]{f’jJrl = fiin Ofl/c,j

and fk,j+1 = ]Ej,j+1 o JEk]

i is a limit ordinal: Suppose that ((Mj [ j < i),(fi; | k < j <)) and (M |
J <), (fk] | K < j < 1)) have been defined. Since they are both directed systems,
we can take direct limits. By niceness we can apply Claim I1.6.14, so that we may

assume that (M}, (f;; | j <)) and (M, ( V;"Z- | j <)) are the respective direct limits

such that M} <x M and {J._, M; <x M;. By Condition (4) of the construction,

j<i
notice that M;" is a (p1,)-limit model witnessed by (f;;(M}) | j < i). Hence M} is an
amalgamation base. Since M; and M; both live inside of M, we can find M!" € K,
which is universal over M; and universal over M.

By Theorem I1.7.9 we can find a <c-mapping f : M — M such that f | M; =
idyg, and ga-tp(a;/ f(M]")) does not p-split over N;. Set M[" := f(M]"). By a similar
argument to Subclaim I1.7.18, we can see that a; ¢ M.

M! may contain some a; when i < [ < a. We need to make an adjustment

using weak disjoint amalgamtion. Let M? be a model of cardinality p such that
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M My < M? <x M. By Corollary I1.5.2 applied to M;, M,, M? and (q; | i <
I < a) we can find h: M/ — M such that h | M, 11 = idy,,, and h(M?) N {a | i <
[ <a}=0.

Set M! := h(M!). We need to verify that a; ¢ M/ and ga-tp(a;/M]) does not
p-split over N;. Since a; ¢ M/ and h(a;) = a;, we have that a; ¢ h(M]) = M.
By invariance of non-splitting, ga-tp(a;/M]") not p-splitting over N; implies that
ga-tp(h(a;)/h(M]")) does not p-split over h(N;). Recalling our definition of h and
M. This yields ga-tp(a;/M]) does not p-split over N;.

Set fl; :=id,;, fii = idy and for j <4, fi, :==ho fo [,

Notice that for every j < i, M is a (y, ut)-limit over both M; and f;,(M;). Thus
by the uniqueness of (i, u)-limit models, we can extend f}: to an automorphism of

M, denoted by fﬂ

11.8 Extension Property for Scattered Towers

We now make the final modification to the towers and prove an extension theorem
for these scattered towers. Let’s recall the general strategy for proving the uniqueness
of limit models. Our goal is to construct an array of models (M; | j < 6,7 < ) of
width f5 and height 0 such that the union will be simultaneously a (j, 0)-limit model
(witnessed by <Mf1 | j < 6)) and a (u, 6;)-limit model (witnessed by (Mg, | i < 61)).
In spirit our construction will behave this way, but the technical details involve an
array of models indexed by u® x (u - u™).

A straightforward construction on 6; x 5 is too much to expect for the following

reasons:
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61

We would like (J;_,, M?" to be a (p,0)-limit model. One way to accomplish

this would be to focus on towers (M, a, N)? € +IC;79 such that

2

(%) M}, is universal over M, for all i < 65.

While these towers are easy to construct, in our <j, , -increasing and continuous
chain of such towers, we could not guarantee (%) to occur at limit stages (.
Consider the <¢ , -increasig and continuous chain, ((M,a, N) | v < 3). For 3
a limit ordinal < p*, the tower (M,a, N)? may not satisfy (). Even in first
order logic it is unknown whether A/}, universal over M for all v < 3 implies

that Mﬁl is universal over M. This seems like too much to hope to be true.

There are several tools to deal with this difficulty. We introduce the notion of
relatively full towers (Definition 11.10.7) which are towers realizing many strong
types. If a tower, (M, a, N) € +IC;7O¢,

M; is a (u, «)-limit model (Theorem I1.10.12).

is relatively full and continuous, then the
top of the tower, | J,_,,
Once we have the existence of relatively full towers, we need to guarantee that
each is continuous in order to apply Theorem I1.10.12. Continuity is not im-
mediate. In fact, continuous extensions are hard to find (Remark I1.6.16). To
remedy this, Shelah and Villaveces restrict themselves to reduced towers (Defi-
nition 11.9.1). An increasing and continuous chain of reduced towers results in
an array such that Mf NnM ] =M f for 6 < v and ¢ < j. All reduced towers are
continuous (Theorem 11.9.7). So the density of reduced towers with respect to

the ordering <f, , (Proposition I1.9.6) gives us continuous extensions of all nice

towers.

While our ordering on towers is enough to get that M is a (u,6;)-limit for

i < 0y (witnessed by (M/ | j < 6,)), we cannot say anything about the model
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Mg;. Unfortunately it is not reasonable to "fix” our definition of ordering to
guarantee that Mg; is a limit model, since we would then be unable (at least

we see no way of doing it directly) to prove the extension property for towers.

Instead, we define scattered towers (Definition I1.8.2). Since we know that
M is a (p,0y)-limit for i < 6, (witnessed by (M7 | j < 6)), the idea is
to construct a very wide array of towers (of width %) and then focus in on
some o < pt of cofinality ;. Then M’ won’t be in the last column of the
array, so the ordering will guarantee us that MY is a (u, 6;)-limit (witnessed
by (M? | j < 6;)). However, we have not proved an extension property for
towers of width p*. Our arguments won’t generalize to K, ,+ because Fact
I1.5.1 (Weak Disjoint Amalgamation) isn’t strong enough since we would have
pt many elements to avoid ({a; | i < pu*}). So we will construct the tower in
K, in p-many stages by shorter towers (in K, , for a < p™). To do this we
introduce the notion of scattered towers, which will allow us to extend a tower

in IC, , to a longer tower in K}, 5 when o < 3 < p* (Theorem 11.8.8).

Notation I1.8.1. Let o be an ordinal. We say that & C P(«) is a set of disjoint

intervals of v of which one contains 0 provided that
-0 e U,
- for uy # uy € YU, uy Nug = P and
- for u € U, if B < By € u, then for every v with 31 < v < 32, we have vy € .

Since we will not be looking at any other sets of intervals, we abbreviate a set of

disjoint intervals of o of which one contains 0 as a set of intervals.

Definition I1.8.2 (Definition 3.3.1 of [ShVi]). For 4 a set of intervals of ordi-
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nals < pt, let

( 3

M = (M; |ieJU);

M is <x increasing, but not
necessarily continuous;

Kru=19 (M,a,N) | q; € My \M; when i,i+1 € [

N =(N;|ieJuU);

M is universal over N; when 7,7+ 1 € [J4 and

ga-tp(a;, M;, M;,1) does not u — split over N;

\

We refer to an element (M, a, N) € +/C;,u as a scattered tower.

Remark II.8.3. Suppose that I is a well-ordering. Then if (M,a, N) is a tower
indexed by I, we can find o an ordinal, such that (M,a, N) € +IC:7a. This allows us
to interchange between sequences of well-orderings (such as ordered pairs of ordinals,

ordered lexicographically) and seqeunces of intervals of ordinals.

Notice that these scattered towers are in some sense subtowers of the towers +IC;7Q.

Hence we can consider the restriction of <j, , to the class +K:,u3
Definition I1.8.4 (Definition 3.3.2 of [ShVi]). Let (M' @', N') € *K,  for | =

1,2. (MY at, Nt < (M? a%, N?) iff for i € J4,
(1) M} =x M?, a} = a? and N} = N? and
(2) if M} # M?, then M? is universal over M}.
We say that (M1, at, N') <¢ (M?,a%, N?) provided that for every i € [ JU, M} # M2.

Actually we can extend the ordering to compare towers from classes K, and

l”/7ul

* . . . . .
K ot when i, is an interval-extension of ;. By interval-extension we mean:
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Definition I1.8.5. i is an interval-extension of 4, iff for every u; € 4, there is
Uy € Yy such that u; C uy. We write Ut Cjpp U2 when U2 is an interval extension of
ul

Definition I1.8.6. Let 4, be an interval extension of 4;. Let (M' @', N') € +’C:,ul

for 1 =1,2. (M*',a*, N') <¢ (M? a% N?)iff for i € |JU,
(1) M} 2 M?, aj = a? and N} = N? and
(2) if M} # M?, then M? is universal over M.

Now we can generalize the notion of niceness and prove an extension property for

the class of all scattered towers.

Definition I1.8.7. A scattered tower (M, a, N) € JFIC:A1 is said to be nice provided
that whenever a limit ordinal 7 is a limit of some sequence of elements from |J4,

then J M; is an amalgamation base.

jeUyY, j<i
Theorem 11.8.8 (<°-Extension Property for Nice Scattered Towers). Let i'
and U* be sets of intervals of ordinals < pt such that 4* is an interval extension of
U, Let (M*,a', N') € +IC:,U’1 be a nice scattered tower. There exists a nice scattered
tower (M?,a*, N?) € *K, o such that (M*,a', N') <¢ (M?,a* N?).

Moreover, if UieUuMi 15 an amalgamation base and UieUuMi <x M for some

(1, ut)-limit M, then we can find (M?,a%, N?) such that Uicuu Mi <k M.

Proof. While the proof does not rely on the extension properties from Sections I1.6
and I1.7, understanding these sections clarifies the structure of this proof. WLOG we
can rewrite 4* as a collection of disjoint intervals such that for every u? € 4?, there
exists at most one u! € U' such that u' C u?. Let us enumerate 4" as (u} | t € a!) in

increasing order (in other words when ¢ < t' € a' we have that max(u;) < min(u},).)



65

For bookkeeping purposes, we will enumerate U? as (u? | t € o) where

{i e U | min{u}} <i < minfu},,}} ift+1<al
{i e U | min{u}} < i} otherwise

Notice that u} is not necessarily an interval.

Remark I1.8.9. The second part of the definition of u} is used only to define u2,

when a! is a successor ordinal.

Since 0 € [J4U', this enumeration of {* can be carried out.

Given (M',a', N') € *IC, u a nice tower, we will find a <“extension in "k,
by using direct limits inside a (p, u™)-limit model as we have done in the proofs
of Theorem I1.6.11 and Theorem 11.7.17. As before, fix M a (u, u*)-limit model
containing (J;¢ ¢ M}. We will define approximations to a tower in +IC;7u2 with
towers in K, 2 extending towers in *KC,, .y where 8 = {ul | s <t} for [ =1,2.

These partial extensions will be defined by constructing sequences of models (M? |
i e JU?) and (N? |4,i+1 € |JU?), a sequence of elements (a? | 4,741 € |JU?) and
<x-mappings {fs; | s <t < a'} (or {fss] s <t < a'}for a® a successor) satisfying

(1) ({fsx(M?)]i € u? and s < t),a’, N) is a <, yp-extension of (M, @', NY) T !
where @' = (a? | i,i+1 € 42) and N* = (N? |4,i +1 € U2),

(2) ((M*] s <t),{fss|s<t)) forms a directed system where M* = J,_,. M?.

ieu? *i
(3) M? is universal over M} for all i € |J 4,

(4) M? is universal over f,,(M7) for every i < j and s < ¢ such that 7 € u2 and

J € ui (consequently, M+ is universal over f;;1(M?")),
(5) fou | M} = idy for all j € u?,

(6) MZ~2 <K M,
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(7) fs+ can be extended to an automorphism of M , fs,t, for s <t < a! and
(8) ((M | s <t),{fssr]s <t)) forms a directed system.

The construction is enough:

Let o := o' if ! is a limit, otherwise o := o' +1. We can take M/ and (f;, | t <
@) to be a direct limit of ((M* |t < a),(fs: | s <t < a)). Since fs; | M} = idpp,
for every i € u?, we may assume that f;, | M* = idy; for every t < a. Notice that
(fraM)) | i €uf, t <a),(a?|iec ), (N2 |ieJU))isa < ,-extension of
(M,a, N)'. For the moreover part, simply continue the construction one more limit
step.

The construction:

t = 0: First notice that by Theorem I1.7.17, we can find (M | ¢ € u}) such that
(M';a' | ud, N' | ) is a <{g-extension of (M',a',N') | U and M’ avoids a'
above u (specifically (U;c,, M{) (aj | j € Uy \ul} = 0.) Moreover the proof of

Theorem 7.10 gives us an extension such that | J,_ . M/ is a limit model.

; 1
’LE’LLO

We can choose MT € K, such that Ui@té M, Mé}in{u%} <) Mt <, M and M is
a (1, ~))-limit over Uz‘@}) M/ where 7] is otp(u2) if u2 is infinite, otherwise v = w.

icut M is an amalgamation base. Let (MI |y < 7Y witness

This is possible since | J

that M7 is a (1, 7¢)-limit over | J, . M!. Since limit models are amalgamation bases,

icu}

we may choose M'1+1 to be a (p,w)-limit over M.
By weak disjoint amlagamation (Corollary I1.5.2) applied to (UiEué M}, Uieug M, MT)

and {a} | j € JU"\ 8}, there exists an automorphism g of M such that
9 1 Uiew Mi = iy, arp and

~g(MY) N {aj |5 € YW \ug} = 0.

Denote by (i, | v € otp(u3\ug)) the increasing enumeration of ug\uj. Define
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" g(M]) forieu}

2

g(MI)  fori =iy € uf\ug
Since M is an limit model witnessed by the MlI’s, we can choose af € M7, |\ M} for
all i,7+ 1 € u2\u}. Since M? is a limit model for each 7,7+ 1 € ud\u}, we can apply
Fact I1.7.6 to find N? <x M? such that ga-tp(a?/M?) does not u-split over N? and
M? is universal over N?.
All that remains is to define fy := iduieué M} and fop = idyy.
Below is a depiction of the base case. The diagram also applies to the construction

in the successor and limit steps.

M
ag a;
€ €
. 2 2
ud Mo =<x My =<c M; =x Ujeur Mj a2, a?,

NN

vd id id id id
ug M6 M{ Mll ‘ UjEu(l) MJI : ! s> M,LIO : ;L::: > M,L/1 : :l::: > MZ/'Y i 7‘:::> U]G’U«g M]/
B A A A A
wid
e g g g .9
S t " |
Mg s> My > My > M

t = s+1 : By condition (4) of the construction, we have that | J;,. M7 is a limit model

witnessed by (f.«(M?) | i € u? and r < s). Thus | J,_ . M? is an amalgamation base.

=
icu?

Now we can choose a model M’ € K, such that | J,_ . M?, M!

1€u? min{ul, ,}

< M" and M"
is a (p, [u2, 1|+ Ro)-limit over | J,.,. M?. By identical arguments to the successor case
in Theorem I1.7.17, we can find M’ = (M/ | i € 4> Jul,,) and an automorphism h

of M such that

- (M',@,N") is a nice scattered tower, where @ = (a? | i € $£Jul,;) and
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N' = (N? i€ ;U uyy)
(MY at, NY Ul <o (M, N)

‘ UieﬂﬁUu;_H M0 {agl' |jeu \Lliﬂ} =0.

AT MY MY =M and
) 1 =1
h r Mmin{u;+1} Zerlnin{ué+1} ‘

Let MT be a (,u,yzﬂ)—limit model over Uz‘eiﬁuulﬂ M! such that M!

min{u§+2}

=K
M <y M, where 7, is otp(u?,,) if u2,, is infinite, otherwise 71, ; = w. Let (M |
v < fyi 1) witness that MT is a limit model. Since limit models are amalgamation
bases, we may choose M$+1 to be a (p,w)-limit over M.

Applying Corollary 11.5.2 to (| M} Ui U, Mi, MT)and {a} | j € U4\ 86,4},

ie“;-u

there exists an automorphism of M, g, such that

- g rUi€u1+l Mil = ZdU Mz‘l and

ieu;+1
S9N N {aj [ j € YU} = 0.
Denote by (i, | v € otp(uZ,;\ui,,)) the increasing enumeration of u2,\u. ;.
Define

A2 g(Mj)  fori € g,y

(2

g(MvT) fori=1, € uzﬂ\uiﬂ
Since M' is a limit model witnessed by the M’s, we can choose af € M7, |\ M}
forall4,i+1 € u2,\ui,,. Since M? is a limit model for each i,i+1 € u?, ;\ul,,, we
can apply Theorem 7.2 to find N? <, M? such that ga-tp(a?/M?) does not p-split
over N? and M? is universal over N?.
Define fo i1 :=goh | Uic, M? and f, .1 = g o h. To complete the definition

of a directed system, for every r < s, set f, 41 := fost10 frs and frs = fssi10 frs.
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M2 (= M?®) | s <t),{frs |7 <s<t))and

ieu? “i

t is a limit ordinal: Suppose that ({(J
(M| s <t),{frs | r < s <t)) have been defined. Since these are both directed
systems, we can take direct limits. By niceness, we can apply Claim I1.6.14, so that
we may assume that (M*, (f, | s <t)) and (M, (f;‘t | s < t)) are respective direct
limits such that M* <x M, f;t D fop and U, Uieun M} < M*.

By condition (4) of the construction, notice that M* is a (u,t)-limit model wit-
nessed by (f7,(M*®) | s < t). Hence M; is an amalgamation base. As in the

successor case of the construction in the proof of Theorem I1.7.17, we can find

M = (M] i€, 42 Jui) and an automorphism h of M such that

- (M',@',N") is a nice scattered tower, where @’ = (a? | i € |J,_, 4> Ju}) and

N' = <Ni2 i€ Us<tu§Uutl>
. (Ml,C_Ll,N1> rui <c (M,,C_L,,N/)
“Uieu._, 2yl M N {a} | jed \y} =0

A UMM =M and

min{u

“h | M!

min{u}} - ZdMl

min{u% }

, M! such that M!

i rnin{uf_H }

Let M1 be a (u,~])-limit model over UiGUsQﬂ?Uu <K
M' <y M, where 7] is otp(u?) if u? is infinite, otherwise 7] = w. Let (M | v < 7))
witness that MT is a limit model. Since limit models are amalgamation bases, we
may choose Z\/[VTJrl to be a (p,w)-limit over M.

Applying Corollary IL5.2 to (Uc,n Mi' Ui 2 Uul M, M') and {a} | j €

Uu'\ 4!}, there exists an automorphism of M, g, such that
. g r U’LGU% Mil = ZdUzEu% Mil and

Cg(MY) N {aj |5 € YW\ L} =0.
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Denote by (i~ | v € otp(u?\u;)) the increasing enumeration of u?\u;. Define

g(M!) fori€u}

2

g(MI)  fori=i, €uf\uf
Since MT is a limit model witnessed by the M;L’S, we can choose af € M7\ M}
for all 4,7 + 1 € u?\u;. Since M? is a limit model for each 7,i + 1 € u?\u;}, we can
apply Theorem 7.2 to find N? <, M? such that ga-tp(a?/M?) does not u-split over
N? and M? is universal over N?.

Define f,; :=goho f7; | Uicw M? and fs,t i=goho fi forall s <t

If we isolate the induction step, we get the following useful fact:

Corollary I1.8.10. Suppose (M,a,N) € JFIC:;u lies inside a (p, pt)-limit model,
M, that is Uica Mi <k M. If for some ' Ciy U, (M',@',N') € +IC:’u/ is a
partial extension of (M,a, N) (ie (M,a,N) | 4nB <¢ (M’',a’, N')), then there ex-

ist a <xc-mapping f, models Ms/up{uu’ and ]\fs’up{uw}+1 and an element a;up{UM/}

1
such that f : Ujeqy M — M, f | M; = idy, for j € W and ((f(M]) | i €
UW) ML sy ) (@i € UMW) al iy an)s FONVD) T € UMD (N iy 1) 88

a partial <°-extension of (]\_4, a, N).

I1.9 Reduced Towers are Continuous

In Section I1.10 we identify a property (relatively full and continuous) which will

guarantee that for a tower (M,a, N) € +IC;7 with this property, we have that

Uica Mi is a (p, o)-limit model over M (see Theorem I1.10.12). This addresses

problem (1) in our construction of an array of models described at the beginning of

Section I1.8. The first point that (1) breaks down is that (M | i < ;) need not
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be a continuous chain of models, since we do not require towers to be continuous.
Shelah and Villaveces introduced the concept of reduced towers in an attempt to
capture some continuous towers. Unfortunately, their proof that reduced towers
are continuous does not converge. Here we solve this problem. We introduce a

strengthening of reduced towers, completely reduced towers, for easier reading.

Definition I1.9.1. A tower (M,a, N) € J“IC;u is said to be reduced provided that
for every (M',a’,N') € JFIC:;Ll with (M,a, N) <¢ (M’,a’, N') we have that for every
ieJu,

()i M0 ] M; =M,
jeyu

The following seems to be a strengthening of reduced, but by Proposition 11.9.3
it turns out to be equivalent to reduced. We introduce it primarily for expository
reasons as it clarifies the proof of Theorem I1.9.7. The formal difference between
completely reduced and reduced, is that for a tower to be reduced we require every

partial extension (M',a’,N') € *KC, v of (M,a,N) to satisfy (x); for i € (JU'.

Definition 11.9.2. A tower (M,a, N) € J“IC;u is said to be completely reduced
provided that for every ¢ < sup{J} and every (M’,a’,N') € jLIC;'l,imC with

(M,a,N) [ UN¢ <¢ (M’,a’, N') we have that for every i € [JUNC,

Mn ) M=M
jeyund

Proposition 11.9.3. If (M,a, N) is reduced, then it is completely reduced.

Proof. Suppose that (M,a, N) is not completely reduced, then there exist a ¢ <

sup{}, a tower (M’ @', N') € +ICZMC, i € JUNC and an element b such that
. (M,EL,N) F(UT¢) <° (M’,EL’,N’) and

- be (M0 Ujeyune M)\M..



72

By Lemma I1.8.10, there exists a <x-mapping f and a tower (M*, a*, N*) € J“IC;’;u

such that

(1) (M,a,N) <° (M*,a*, N*),

(2) f: Ujeuzmg M — Ujeuumg M;u
(3) £ 1 Ujepune Mi = idy . oo it

(4) for every j € JUNC, f(M]) = M

J

Notice that by (3) and the fact that b € (J;¢(jyne Mj, We have that f(b) = b. Since

b € M/, we have b € f(M]) = M;. Thus (M*,a*, N*) witnesses that (M,a, N) is

not reduced.

_|

Corollary 11.9.4. If (M,a,N) € +/C;7u is reduced, then for every ¢ < sup{lJuU},

(M,a,N) | ¢ is also reduced.
Proof. Immediate from the definitions and Proposition 11.9.3. -

If we take a <“increasing and continuous chain of reduced towers with increasing
index sets, the union will be reduced. The following proposition appears in [ShVi] for
the special case when il = {a} for some limit ordinal o (Theorem 3.1.14 of [ShVi].)

We provide the proof here for completeness.

Fact I1.9.5. Let (8, | v < () be an increasing and continuous sequence of sets of
intervals (4,41 is an interval-extension of t, and if v is a limit ordinal |, =
Use, Uls.) If (M,a,N)" € *K, | v < B) is < -increasing and continuous
sequence of reduced towers, then the union of this sequence of towers is a reduced

tower.
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Proof. Denote by (M,a, N)? the union of the sequence of towers and s the limit
of the intervals. More specifically, {3 is a fixed set of intervals such that (JUs =
U,<s U4, and for every v < 3, Us is an interval extension of i,. MP = (MP |
i € Utls) where M = Uy _guayuy M7~ NP = (NPOFEUSE G e ) and
B — <a§rlin{vli€ULH} i e i)

Suppose that it is not reduced. Let (M’ a, N) € J“ICthﬂﬁ witness this. Then there

exists an ¢ € JUg and an element a such that a € (M N Y Mf)\Mf There

jGﬂB
exists 7 < f3 such that i € 4, and there exists j € i, such that a € M. Now
consider the tower in +Kz,m7 (M',a, N) | $k,. Notice that (M’,a, N) | ik, witnesses

that (M, a, N)? is not reduced. =

The following proposition will be used in conjunction with Theorem I1.9.7 to
show that every tower can be properly extended to a continuous tower. It appears
in [ShVi] (Theorem 3.1.13) for the particular case of 4l = {«a} for limit ordinals a.
John Baldwin has asked for us to elaborate on their proof here. We provide a proof

of the more general result with 4 an arbitrary set of intervals on a < p*.

Proposition 11.9.6 (Density of reduced towers). Let (M,a,N) € *K,  be nice.
Fiz M a (p, p*)-limit model containing \J;cq M;. Then there exists (M',a, N) €

+K:,u such that

=
Bl
=

<¢(M',a,N),
- (M',a@, N) is reduced and

’ UieUuMz‘/ <k M.

Proof. We first observe that it suffices to find a <-extension, (M’,a’, N'), of (M, a, N)

that is reduced. If (M’ ,a’, N') does not lie inside of M, since (M, a, N) is nice, we
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can apply Proposition I1.2.37 to find a <x-mapping f : UieUuMi/ — M such that
f1l UieUuMi‘ Notice that f[(M’,a’, N')] is as required.

Suppose for the sake of contradiction that no <‘-extension of (M,a, N) in JFIC:;Ll
is reduced. This allows us to construct a <°increasing and continuous sequence of
towers ((M¢,a¢, N¢) € *IC, o | ¢ < pt) such that (M, a¢™, N¢™) witnesses that
(M¢,ac, N¢) is not reduced for ¢ > 0.

The construction: Since (M,a, N) is nice, we can apply Theorem I1.8.8 to find
(M,a, N)* a <¢ extension of (M,a, N). By our assumption on (M,a, N), we know
that (M, a, N)! is not reduced.

Suppose that (M, a, N)¢ has been defined. Since it is a <®-extension of (M, a, N),
we know it is not reduced. By the definition of reduced towers, there must exist
a (M,a, N)+t € JFIC:;u a <‘extension of (M,a, N)¢, witnessing that (M,a, N)¢ is
not reduced.

For ¢ a limit ordinal, let (M,a, N)* = |J._.(M,a, N)?. This completes the con-

7<¢
struction.
For each b € U<<u+,ieUuMiC define
ih) :=min{i e [ Juve | J |J M;} and

¢ept J<i
jeyu

¢(b) :=min{¢ < p"|be Mf(b)}.

¢(+) can be viewed as a function from p* to pu*. Thus there exists a club E =
{6 <ut|Wbe Uieuqu, ¢(b) < d}. Actually, all we need is for £ to be non-empty.
Fix § € E. By construction (M°*+! a’*1 No+1) witnesses the fact that (M?,a®, N%)

is not reduced. So we may fix i € |J4 and b € M ™ N Mf such that b ¢ M?.

jelJu

Since b € M?™!, we have that i(b) < 4. Since § € E, we know that there exists ¢ < §

such that b € Mi‘;b). Because ¢ < § and i(b) < 4, this implies that b € M? as well.
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This contradicts our choice of i and b witnessing the failure of (M?% a°, N°) to be

reduced. =

The following theorem was claimed in [ShVi]. Unfortunately, their proof does not

converge. We resolve their problems here.

Theorem I1.9.7 (Reduced towers are continuous). For every a < pu™ < X\ and

every set of intervals U on o, if (M,a, N) € J“IC;u is reduced, then M is continuous.

Proof. Let p be given. Suppose the claim fails for ;¢ and ¢§ is the minimal limit ordinal

for which it fails. More precisely, 0 is the minimal element of

( )
4 is a limit ordinal

there exist 4 a set of intervals

and a reduced tower (M, a, N) € “LIC;;il such that
sup{UU} Nd =4,

Jde U and

M;s # Uie(uu)mé M;

\ J

Let $ be a set of intervals and (M,a, N) € +K:,u witness 6 € S. Let b €
M\ Uie(U Wo M; be given. Our goal is to arrive to a contradiction by showing that
(M,a, N) is not completely reduced. By Corollary 11.9.4, it is enough to show that
(M,a,N) | (§ + 1) is not reduced. We will find a <®-extension (M*,a | (§+1), N |
(64 1)) of (M,a, N) | (6§ +1) such that b € M} for some ¢ < 4.

Fix M a (p, p")-limit over Ms. We begin by defining by induction on ¢ < 6 a
<‘-increasing and continuous sequence of reduced towers, {(M,a, N)¢ € +IC;M5 |
¢ < 6), such that (M,a,N)° | 6§ = (M,a, N) and M <x M for all ¢ < § and for
all ¢ € (JUNS. Why is this possible? By the minimality of 6 and Corollary 11.9.4,

(M,a, N)° | § is continuous. Therefore, it is nice. This allows us to apply Proposition
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I1.9.6 to get a reduced extension (M,a, N)! of length ¢ inside M. Similarly we can
find reduced extensions at successor stages. When ( is a limit ordinal, we take unions
which will be reduced by Fact I1.9.5.

Consider the diagonal sequence (M, g | ¢ e YU and ¢ < J). Notice that this is a
< -increasing sequence of amalgamation bases. For ¢ < ¢’ € [JUNd, we have that
Mg is universal over Mg . Why? From the definition of <€, MCCI is universal over
Mg Since Mgl <K Mg, we have that Mg,, is universal over Mf

By minimality of 4, the sequence <M4C | ¢ e JU and ¢ < §) is continuous:

for ¢ € | JUnd with ¢ = sup{_Jun¢}, Mg = [ J Mg,
£<¢
Thus Usejuns Mg is a limit model. Since e jyns JWCC and M; are amalgamation
bases inside M, we can fix M <x M a (y,w)-limit model universal over both
Uceysuns Mg and M;. (w was an arbitrary choice, we only need that M¢ be a (u, 0)-
limit for some limit § < p*.)

Because Uceuumé Mf is a limit model, we can apply Fact I1.7.6 to

ga-tp(b/ Uceyuns Mé,Mf). Let £ € [JUNJ be such that
(x)1  ga-tp(b/ U M¢, M?) does not p-split over ]\/[g
ceyuns

We choose by induction on @ < § a <-increasing and continuous chain of models
(N e K, | i e JUN(d + 1)) and an increasing and continuous sequence of K-

mappings (h; | i € JUN(0 + 1)) satisfying
(1) hi: M} — N} fori <4
(2) hit1(a;) & Nf fori,i+1 € JUN(0+1)

(3) Nj <x M



(s

(4) N} is universal over N for j < i

(5) M2 C Ny fori> ¢

(6) he =idye,

(7) ga-tp(b/h;(M})) does not u-split over Mg for i € U N with ¢ > £ and

(8) ga-tp(hiy1(a;)/N}) does not p-split over h;(N;) for i,i+ 1 € JUN(5 + 1).

Fix an increasing enumeration of (JUN(5+1) = {i¢ | ¢ < a} for some a < 6. We

construct this sequence of models and sequence of mappings by induction on ( < a.

Let £ be such that £ = i¢-.

We depict the construction below. The inverse image of the sequence of N’s will

form the required <‘-extension of (M,a, N) | (§ + 1).

7 7
Mg < M.*© < M

ho | id hig id hi§+1

b

S

tet2 ¢ §
Mz‘g; =K Uceusns Me = M

i * id *

¢ <€ Set Nf =M and hy, =id ..

s
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¢ > & is a limit ordinal and i; = sup{i, | v < ¢}: To maintain continuity,
N = U, N and h; = |, hi,. Condition (7) follows from the induction
hypothesis and Fact 11.7.7.

¢ > & is a limit ordinal with ic # sup{i, | v < ¢} or ¢ = v+1 with i # i,+1: Let
N* = U N7, and M™ =y, MZ;. Let N;i* € K, be a universal extension of N*
and M} with N7 <k M. This is possible because either N* = N;, for some 3 and
is therefore a limit model by the induction hypothesis, or continuity and condition
(4) guarantee that N* is a limit model witnessed by (N} | § < (). N will be a

first approximation for our definition of N. To get condition (7) notice that by the

induction hypothesis we have for every 3 < (,
ga—tp(b/hﬁ(M;[f)) does not p-split over Mf
With an application of Fact I1.7.7, we can conclude that

ga-tp(b/M™) does not p-split over Mf

By Theorem I1.7.9 we can find f € Aut (M) such that

A
B
Upc hig (M)

ga-tp(b/ f(N;")) does not p-split over Mg

Let N7 := f(N;") and h;. := f. Notice that we do not have to concern ourselves
with condition (8) since i¢c # i, + 1. It is routine to verify that N and h; meet the
other conditions.

(=7+1> (" withic =1i,+1: Let h;, € Aut(M) extend h;,. Let N** € K, be a
universal extension of N} , hi, (MZCC) and M with N** <x M. This will be our first
approximation to Ni*g.

We will first work towards condition (2). By Corollary I1.5.2, applied to A (MZ:),
hi, (Mff), N** and the collection of elements (M | J NI O\hi, (M;”), we can find a <j-

mapping f such that
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- f BZV(M%) — N**

s

f T he, (M) = idhw(Mf? ) and

© flha, (MGS)) 0 (MZ U N )\, (M) in particular f o by (a;) ¢ N7, for j > i,

(2

Now that we have met condition (2), we focus on meeting condition (8) without

mapping a;, into N; . By the definition of towers, we have
ga-tp(a;, /M,”) does not p-split over ;.
By invariance we have that
ga-tp(f o hiv(aiw)/hiv(ij)) does not p-split over hiW(NZ:).

By the extension property for non-splitting (Theorem I1.7.9), we can find g €

Aut (M) such that

hir, (M)
(¥)2 ga-tp(go fo hiv(aiw)/N;:) does not pu-split over hiv(wa”).

Let ¢ :=gof oﬁiw. We need to verify that by applying ¢’ our work towards condition

(2) is not lost:
Claim I1.9.8. ¢'(a;,) ¢ N; .

Proof. Since h; (M, I:) is universal over hiW(NZJ), there exists a <x-mapping H :

7

N; = hi, (M) with H [ by (N[7) = id

(2% Ty

 vivy- By definition of ¢’ and (*2), we have
hiy (N])

ga-tp(g'(ai,)/N; ) does not p-split over hiv(N;:). Thus

(x)s  ga-tp(g'(as,)/H(N})) = ga-tp(H (g'(ai,))/H(N,)).

Suppose for the sake of contradiction that ¢'(a; ) € N; . Then an application of
H gives us that H(¢g'(a;,)) € H(N; ). Thus by the above equality of types (x)s, we

have that ¢'(a;,) € H(N; ). Since rg(H) C hZW(M;”) we get that g'(a; ) € hy, (M;”)
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Since a;, ¢ MZ: and since ¢’ | MY = p

i i,, an application of g gives us g(aiw) ¢

hi (M -i”), contradicting the previous paragraph. .

by
We now tackle condition (7). Fix N7 <x M such that it is universal over ¢’ (MZ(C),

N} and N**. By monotonicity of non-splitting (x); implies

by
ga—tp(b/MZ:) does not p-split over M§
By invariance we get
ga—tp(g'(b)/g’(M;”)) does not p-split over Mg

By the extension property for non-splitting, we can find k € Autg, () M such that
iy

ga-tp(k o g'(b)/N;;) does not -split over Mg

Set h;, :=kog' | Ni. Since k [g’(]\/[;:) = idg’(M:;Y)’ conditions (2) and (8) are met
by hs,. This completes the construction of our sequences (N; | i € [JHUN(d+1)) and
(h; |1 e JUN(0+1)).

We now argue that the construction of these sequences is enough to find a <¢-
extension, (M*,a | (6 +1),N [ (6 +1)), of (M,a,N) | (6 +1) such that b € M¢
for some ¢ < 6. We will be defining M* to be pre-image of N*. The following claim

allows us to choose the pre-image so that M contains b for some ¢ < 9.

Claim 11.9.9. There exists h € Aut(M) extending Uicysuns i such that h(b) = b.

Proof. Notice that i, = §. Consider the increasing and continuous sequence <h5(MZ:) |
v < a). By invariance, when i < j, hs(M?) is universal over hs(M;) and hs(M}) is

j % %

a limit model. By construction we have that for every i € [ J4UNJ,

ga-tp(b/hs(M}))does not p-split oveer.
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This allows us to apply Fact IL.7.7, to ga-tp(b/ U;cjuns hs(M})) to conclude that

(%) ga-tp(b/ U hs(M})) does not p-split over Mg
e yuns

Notice that [J;c jyns M} is a limit model witnessed by (M]j | 7 e JUni). So we
can apply Proposition 11.2.36 and extend Uz‘euuma h; to an autmorphism h* of M.
We will first show that

(x5 gatp(b/h"( | M), M) = gatp(h(b)/h"( | M), M).
e Juno e Juns

By invariance and our choice of ¢ we have that

ga-tp(h*(b)/h*( U M), M) does not p-split over Mé
eyuns

We will use non-splitting to show that these two types are equal (x)5. In accor-
dance with the definition of splitting, let N* = U,c jyns Mis N? = M (Uicyurs M)
and p = ga-tp(b/h* (Uicjuns M?), M). By ()4, we have that p | N> = h*(p | N*Y).
In other words, ga-tp(b/n" (U;c\juns M), M) = ga-tp(h*(b)/h* (Uicsrs M?), M), as
desired.

From this equality of types (x)s, we can find an automorphism f of M such that
S () = b and f I 2" (Uicyurs M) = idh*(UieUuﬂé my)- Notice that h := f o h”
satisfies the conditions of the claim.

_|

Now that we have a automorphism h fixing b and UieU wns Mi, we can define M*
as the pre-image of N*. For each i < § define M} := h™1(N}). Let ¢ := min{i € U |
i > &+ 1}. Notice that since § = sup{dNd} and § > &, we have that ( < . Let

U'=UN(G6+1).

Claim I1.9.10. (M*,a | |JU*, N | 4*) is a <-extension of (M,a, N) | |JU" such

that b € MC*
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Proof. By construction b € M{ C N¢. Since h(b) = b, this implies b € M. To verify

that we have a <‘-extension we need to show for 7 € {*:
i. M} = M; or M; is universal over M;
ii. a; ¢ M} for j € 4" with j >4 and
iii. ga-tp(a;/M;) does not p-split over N; whenever i,i+ 1 € [JU".

Item i. follows from the fact that M} is universal over M; and M; <x M;. Condition
(2) of the construction of (N | i € (JUN(d + 1)) guarantees that for j > i, h(a;) ¢
N;. Thus for j >4, a; ¢ M. iii follows from condition (8) of the construction and

invariance. —

Notice that (M*,a | JU*, N | JU*) witnesses that (M,a, N) | [JU* is not

reduced. This gives us a contradiction and completes the proof of the theorem. -

I1.10 Relatively Full Towers

We begin this section by recalling a definition of strong types from [ShVi].

Definition I1.10.1 (Definition 3.2.1 of [ShVi]). For M a (u,#)-limit model,
(1) Let

N <y M;
N is a (u, 0) — limit model;
&t(M) =4 (p,N) | M is universal over N;

p € ga-S(M) is non-algebraic (not realized in M) and

p does not p — split over V.

and
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(2) For types (p, Vi) € S4(M) (I = 1,2), we say (p1,N1) ~ (p2, N2) iff for every
M’ € K™ extending M there is a ¢ € S(M') extending both p; and py such

that ¢ does not pu-split over N; and ¢ does not p-split over Ns.

Notation I1.10.2. Suppose M <y, M’ are amalgamation bases of cardinality pu.
For (p, N) € &t(M’), if M is universal over N, we denote the resitriction (p, N) |
M € 6t(M') to be (p [ M, N).

If we write (p, N) | M, we mean that (p, N) is a strong type over M’ (ie p does

not u-split over V) and M is universal over V.

Notice that ~ is an equivalence relation on &t(M). ~ is not necessarily the
identity. If non-splitting were a transitive relation, then ~ would be the identity.
Not having transitivity of non-splitting is one of the difficulties of this work. For
instance, the proof of Fact I1.7.7 would be easy if we had transitivity. Even in
the first order situation, splitting is not transitive. This is one of the features of

non-forking which makes it more attractive than non-splitting.

Lemma I1.10.3. Given M € K™, and (p,N), (p', N') € &t(M). Let M’ € K"
be a universal extension of M. To show that (p, N) ~ (p',N') it suffices to find

q € ga-S(M') such that q extends p and p' and q does not p-split over N and N'.

Proof. Suppose q € ga-S(M’) extends both p and p’ and does not p-split over N
and N'. Let M* € K™ be an extension of M. By universality of M’, there exists
f: M* — M’ such that f | M = idy. Consider f~'(q). It extends p and p’ and

does not p-split over N and N’ by invariance. Thus (p, N) ~ (p/, N'). =

The following appears as a Fact 3.2.2(3) in [ShVi]. We provide a proof here for

completeness.

Fact I1.10.4. For M € K", |&t(M)/ ~ | < p.
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Proof. Suppose for the sake of contradiction that | St(M)/ ~ | > p.

Let {(p;, N;) € 6t(M) | i < pt} be pairwise non-equivalent. By stability (Fact
I1.2.21) and the pigeon-hole principle, there exist p € S(M) and I C ™ such that
i € I implies p; = p. Set p := ga-tp(a/M).

Let M be a (u, pF)-limit model containing M | Ja. Fix M’ € K™ a universal
extension of M inside M. We will show that there are > u* types over M’. This
will provide us with a contradiction since K is stable in pu.

For each ¢ € I, by the extension property for non-splitting (Theorem 11.7.9), there

exists f; € Auty, M such that
- ga-tp(f;(a)/M') does not p-split over N; and
- ga-tp(fi(a)/M') extends ga-tp(a/M).
Claim I1.10.5. Fori # j € I we have that ga-tp(fi(a)/M') # ga-tp(f;(a)/M’)

Proof. Otherwise ga-tp(f;(a)/M') does not p-split over N; and does not p-split over
N;. By Lemma I1.10.3, this implies that (p, N;) ~ (p, N;) contradicting our choice

of non-equivalent strong types.

This completes the proof as {ga-tp(f;(a)/M') | i € I} is a set of ut distinct types

over M’'. -

We can then consider towers which are saturated with respect to strong types

(from &t(M)). These towers are called relatively full (see Definition 11.10.7.)

Remark I1.10.6. When « and § are ordinals, o x § with the lexicographical order-
ing (<jez), is well ordered. Recall that otp(a X §, <jer) = 9 - @ where - is ordinal

multiplication. We will identify « x § with the interval of ordinals [0, - «).
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Definition I1.10.7. Let 4 = {a x §} for some limit ordinals o, § < p*. Let (M7 |
v < 6) be such that M” is a sequence of limit models ((Mj, | (3,7) € J4)) with
ngl universal over My, for all (3,4) € [JU and 0 a limit ordinal.

A tower (M,a,N) € JFIC?il is said to be full relative to (M" | v < 6) iff for all

(8,4) e JU
(1) My =,y M}, and

(2) for all (p, N*) € &t(Mg;) with N* = Mg, for some 7 < 0, thereisa j <

6 such that (ga-tp(ag+1,;/Mp11,5), No+15) [ Mg ~ (p, N¥).

My << ML o
id id

My <eee=e M, o
id id

M&z)rl <K =<x Mg:'l =<K ...
id id

M070=U7<0M&0 <k <K Mﬁ,i:Uy<0Mg,i <K ...
Notation I1.10.8. We say that (M,a, N) € ’Cﬁ,u is relatively full iff there exists

(M" | v < 6) as in Definition 11.10.7 such that (M, a, N) is full relative to (M” | v <

0).

Remark I1.10.9. A strengthening (full towers) of Definition I1.10.7 appears in [ShVi]

(see Definition 3.2.3 of their paper). Consider the equivalence
(*) VM € K™ and V(p, N), (p',N') € 6t(M) (p,N) ~ (p/, N") iff p=17p'.

(%) implies that relatively full towers are full. However we do not know that (x)

holds. We introduce relatively full towers because we cannot guarantee the existence
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of full towers. The existence of relatively full towers is derived in the proof of the

uniqueness of limit models in the following section.
Remark I1.10.10. If (p, N) ~ (p/, N'), then necessarily p = p'.
The following proposition is immediate from the definition of relative fullness.

Proposition I1.10.11. Let o and 0 be limit ordinals < p*. Set 4 := {a x 0}. If
(M,a,N) € JFICZu is full relative to (M7 | v < 6), then for every limit ordinal 8 < «,

we have that the restriction (M,a, N) | 3 x & is full relative to (M7 | 3 x5 |~y < 6).

The following theorem is proved in [ShVi] for full towers (Theorem 3.2.4 of their

work). The proof here is similar to Shelah and Villaveces’ argument.

Theorem I1.10.12. Let « be an ordinal < pt such that « = p - a. Suppose U =
{a x 8} for some § < pt. If (M,a,N) € JFICZ’Ll is full relative to (M" | v < 6) and

M is continuous, then M := Uicuyu Mi is a (. cf(a))-limit model over M.

Proof. Let M’ be a (u, a)-limit over M, witnessed by (M/ | i < «). Since My is an
amalgamation base, we can assume that M is a (u, ut)-limit model over M, such
that M, M’ < M. We will construct a <,-embedding from M into M’. For each
i < o we can identify the universe of M/ with (1 + ¢). Notice that since o = pa,
we have that i € M, for every i < a.

Now we define by induction on i < o <x-mappings (h; | i < «) such that
(1) h; : M; ; — M), for some j < §
(2) (h; | i < ) is increasing and continuous and
(3) i € rg(his1).

For i = 0 take hg = idp,. For i a limit ordinal let h; = {J,_, hy.
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Suppose that h; has been defined. There are two cases: either i € rg(h;) or
i ¢ rg(h;). First suppose that i € rg(h;). Since M, is universal over M/ ,, it is also
universal over h;(M; ;). This allows us to extend h; to hip1 @ M1 9 — M/ .

Now consider the case when i ¢ rg(h;). Here we illustrate the construction for

this case:

i
S o
M} = N =1 £ s
N fi
: N BN
. g . . ~ - /
ho | id hi hi1 . Ji tofaoh! M fi@) = fa(h(@it15))
) -+ 7
X .faohl
Moo <k Mip <k M;; =<x Miti9 <x M1y
€ L
faoh'
Qi+1,5 +

Since (M | v < 0) witness that M;; is a (u, 0)-limit model, by Fact 11.7.6, there
exists € < ¢ such that ga-tp(i/h;(M;;)) does not p-split over h;(M; ;). There exists
ga-tp(b/M, ;) € ga-S(M; ;) and b’ € Aut M extending h; such that ga-tp(h’(b)/hi(M; ;)) =
ga-tp(i/h;(M; ;). WLOG K (b) = i. By relative fullness of (M,a, N), there exists

j < ¢ such that

(ga-tp(b/M;;), M; ;) ~ (ga-tp(ait1,/Mis1j), Nigry) | Mij.

In particular we have that

(*)  ga-tp(air1y /M ;) = ga-tp(b/M, ;).

An application of i’ to () gives us

(sx)  gartp(h'(ai1y) /1 (Mij)) = ga-tp(h'(b) /W' (M; ;) = ga-tp(i/hi(M ;).
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By (#x), there exist M* € K™ a K-substructure of M containing M;; and K-
mappings fo : ' (Mit1541) — M* and f; : M, — M* such that fo(h/(aiy1,)) =
fi(i) and fo [ hi(M; ;) = fi | hi(M; ;) = idp, g, ;)- Since M, , is universal over Mj, ,,
it is also universal over h;(M; ;). So we may assume that M* = M/,,. Since M is a
(i, p)-limit model, we can extend f, and f; to automorphisms of M, say f, and f;.
Let hjp1 : Miy1jo41 — M/, , be defined as f o f,oR'. Notice that hivi(aiz15) =1

Let h := |J,., hi- Clearly h : M — M'. To see that h is an isomorphism, notice

that condition (3) of the construction forces h to be surjective.

II.11 Uniqueness of Limit Models

Recall the running assumptions:
(1) K is an abstract elementary class,
(2) K has no maximal models,
(3) K is categorical in some A > LS(K),
(4) GCH and @, (S, ) holds for every cardinal ;1 < A.

Under these assumptions, we can prove the uniqueness of limit models using the
results from Sections 1.8, 1.9 and II.10. This is a solution to a conjecture from
[ShVi].

Notice that in the proof of the <“-extension property for nice towers, there is some
freedom in choosing the new a’s. We will use this corollary in the inductive step of

the construction in Theorem II.11.2 in order to produce a relatively full tower.
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Corollary I1.11.1. Let U' and 4* be sets of intervals of ordinals < pt such that 4>
is an interval extension of U'. Let (M',a', N') € *K 1 be a nice scattered tower.
Let {i, | v < otp(ui\uj)} be an enumeration of ui\u;. Fiz {(p,N)? | v < p}with
{0, N [v<u} =Ujeun GSt(M}). We denote (p”, N7) as (p, N)?.
Then there exists a nice scattered tower (M?,a*, N?) € YK, 2 such that (M*,a*, N') <°
(M?,a, N?) and for every t < o' and for every v < min{otp(u?\,u})u} we have

that
- (p, N)" ~ (ga-tp(aj / dom(p?), N7 ) and
N2 =N
(Notice that N* = N2 | U' by the definition of <°).

Proof. WLOG we may assume ' = {u} |t < o'} and Y* = {u? | t < o'} are as
in the proof of Theorem I1.8.8. Let t < a! be given. Refer back to stage t of the
construction in the proof of Theorem I1.8.8. At stage ¢ of the construction, after
we have defined (M7 | i € u}), notice that our choice of af was arbitrary. Here
we make a more selective choice. Let v < min{otp(u?\,u})u} be given. Consider
(p, N)" € &t(M}). So M} is universal over N7. Also notice that M7 is universal over
Mj because M? is universal over M} and M7 contains M7. Since M} is universal
over Mjl, an application of Theorem I1.7.9, gives us p’ € ga—S(Mi) extending p?
such that p’ does not u-split over N7. Since Mfﬁl is universal over Mi, there exists

a' € M7 | realizing p'. Set af :=a' and N7 := N".

Ly+1

Abusing notation, we will apply Corollary I1.11.1 in the next theorem where the

index sets are ordered pairs of ordinals instead of ordinals.
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Theorem I1.11.2 (Uniqueness of Limit Models). Let p be a cardinal 6,04 limit
ordinals such that 61,0, < ut < A\. If My and My are (u,61) and (u,02) limit mod-
els over M, respectively, then there exists an isomorphism f : My = My such that

1M =idy.

Proof. Let M € K be given. By Fact 11.2.32, it is enough to show that there exists
a 0y such that for every 6; a limit ordinal < u*, we have that a (u, 6;)-limit model
over M is isomorphic to a (u, 63)-limit model over M. Take 65 such that 6y = pfs.
Fix 6, a limit ordinal < . By Fact 11.2.33, we may assume that ¢, is regular. Using
Fact I1.2.32 again, it is enough to construct a model M* which is simultaneously a
(1, 01)-limit model over M and a (pu, 02)-limit model over M.

The idea is to build a (scattered) array of models such that at some point in the
array, we will find a model which is a (ju, 6;)-limit model witnessed by its height in
the array and is a (u, 62)-limit model witnessed by its horizontal position in the array,
relative fullness and continuity. To guarantee that we have continuous towers, we
will be constructing the array with reduced towers. We will define a chain of length
u* of reduced, scattered towers while increasing the index set of the towers in order
to realize strong types as we proceed with the goal of producing many relatively full
TOWS.

We will consider the index set U at stage 0 < av < u™ where
U = {ug | B < a},

where the disjoint intervals of U are ug := {(8,4) | i < pa} with (3,7) denoting an
ordered pair (not an interval). The ordering on (J4“ is the lexicographical order.
Notice that for a < o < u™, we have U* Cjpy 4. We start our construction at

a =1 (as opposed to a = 0) in order to avoid the "empty” tower.
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Define by induction on 0 < o < p the <“-increasing sequence of scattered towers,

(1) M < M()Of(h
(2) (M,a, N)* is reduced,
(3) (M,a,N)* := U,@‘<a(M7 a, N)? for o a limit ordinal and

(4) In successor stages in new intervals of length p, put in representatives of all Gt-
types from the previous stages. More formally, if (p, N) € &t(Mg;) for i < o

and 8 < «, there exists j € [ua, p(a + 1)] such that
(p, N) ~ (gartp(ag 1, /MEL ), Ny) | Mg

This construction is possible:

o = 1: We can choose M* = (M} | i < i) to be an arbitrary <y increasing sequence
of limit models of cardinality p with M = M. For each 7 < p, fix a(l)’i e M \M;.
Now consider ga-tp(ag;/M;). Since M is a limit model, we can apply Fact I1.7.6 to
fix Nj,; € K™ such that ga-tp(ag,;/M;") does not p-split over Nj,; and M;" is universal
over Ny, Let a' := (af, | i < p) and N* = (N}, | ¢ < pu). By Theorem I1.9.6, there

exists a sequence of models, M*, such that (M*' a', N')
: +
- is a member of K 1,
- is a <-extension of (M*,a', N*) and
- is reduced.

a a limit ordinal: Take (M,a, N)® := U6<a(J\7[,c_z, N)B.

a = 3+ 1: Suppose that (M,a, N)? has been defined. By Fact I1.10.4, for every
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v < B, we can enumerate |J;_,4 Gt(Mf,k) as {(p, N); | I < u}. Notice that for all
v <8,

udt I\l = {(7,0) [ pB < i < p(B+ 1)}
By Corollary II.11.1 and Theorem I1.9.6 we can find a reduced extension (M, a, N )@V ¢

+K:,u(ﬂ+l> of (M,a, N)? such that for every [ < p and v < 3,

(p, N)] ~ (ga'tpmvﬂ,uﬁﬂ/Mfrll,uﬂﬂ)» Noyt1up+1) [ dom(p”).

We now provide a diagram of the successor case. For simplicity, we describe the

case 1 = 2.
ap
€
MOI,O <K M(},l <K M(},i <K Uj<u ]\4j1 ag,,u(': pO) ag,u-%l(': pl)
id\ﬂ/ idﬂ/ id\H] idﬂ/ € €
Mgo =<x Mgy =<x Mgy =<xUjc,M&; =<x Mg, < Mg, <k Mg, qp <c-

This completes the construction.

We now want to identify all the rows of the array which are relatively full.

Claim I1.11.3. For § a limit ordinal < p*, we have that (M,a, N)° is full relative

to (M | v < §).

Proof. Let (p, N) € &t(Mj},) be given such that N = M ; for some v < 4. Since our
construction is increasing and continuous, there exists 0 < § such that (3,7) € 4
and v < ¢’. Notice then that M g’l is universal over N. Furthermore, p [ M g’z does not
p-split over N. Thus (p, N) | M 5:i € 6t(M g’z) By condition (4) of the construction,

there exists j < u(6" + 1), such that

(p, N) | M, ~ (ga-tp(ags1; /Myt ) Norrg) | M.
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Since ng:ll] <x M}, ; and ga-tp(aps1,;/Mj,, ;) does not p-split over Ngiy j, we

can replace Mg“ with Mg

+1,5 +1,5°

(o, N) | Mg/z ~ (ga-tp(aml,j/MgH,j% Npt15) | Ma:i'

Let M’ be a universal extension of Mg By definition of ~, there exists q €

15
ga-S(M’) such that ¢ extends p | Mg’z = ga—tp(aﬂ+17j/Mg:i) and ¢ does not u-
split over N and Ngii ;. By the uniqueness of non-splitting extensions (Theo-
rem I1.7.11), since p does not p split over N, we have that ¢ | Mg’i = p. Also,
since ga-tp(agi1,;/Mg,, ;) does not p-split over Ngii;, Theorem IL7.11 gives us
ql M§+1,j = ga—tp(a5+1,j/Mg+Lj). By definition of ~ and Lemma I1.10.3, ¢ also wit-
nesses that (ga-tp(ags1; /M5 ;) Noyay) | Mj,; ~ (p,N). Since (p, N) was chosen

arbitrarily, we have verified that (M, a, N)° satisfies the definition of relative fullness.

_|

Take (0 < p* | ¢ < 61) to be an increasing and continuous sequence of limit

ordinals > 6,. By Proposition 11.10.11, we have that
(M,a, N)% | {0, x pdc} is full relative to (M7 [ {0y x udc} | v < ¢}
Define

M=) U M= | M

(<01 i€02 X ud¢ i€02 X 1g,
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Consider the following representation of M*.

cofinality 6y

- Mgfo B Mgoy ~K Mg?ﬂl ==K Ui602 x udo Miao
id id id id
Mgfo e x Mg% =K Mgfjﬂ ==K Ui€6’2 Xl Mfg
cofinality 6; id id id id
ME <emse MO <e MO, <e=e U, Mo
] B.J B,J+1 i€02 X pub¢ 1 * i
id id id id
- Mé"1 <K=k M% <k M% <K<K M*
0,0 B,j B,j+1

We will now verify that M* is a (u, 6;)-limit over M and a (u, 3)-limit over M.

Notice that (| Mfc | ¢ < 01) witnesses that M* is a (p,6;) limit. Since

i€02 X ¢
M < Mg?o, M* is a (p, 01)-limit over M.

Notice that by our choice of &, (M,a, N)% | {0y x pudg,} is relatively full.
Furthermore, we see that (M,a, N)%: | {f, x udg, } is continuous since (M, a, N )%

is reduced. Since 6 = p - 05, we can apply Theorem 11.10.12 to conclude that M* is

a (1, 02)-limit model over M. =

The above proof implicitly shows the existence of relatively full towers:

Corollary 11.11.4. For every reqular limit ordinal 0 < u*, there exist ordinals «

and § < p and a tower (M,a, N) € +1Ci7{w5} such that (M, a, N) is relatively full.



CHAPTER III

Stable and Tame Abstract Elementary Classes

In this chapter, we explore stability results in the new context of tame abstract

elementary classes with the amalgamation property. The main result is:

Theorem II1.0.5. Let IC be a tame abstract elementary class satisfying the amal-
gamation property without mazimal models. There exists a cardinal po(K) such that
for every > po(KC) and every M € K+, A,I C M such that |I| > pu*t > |A|, if £
is Galois-stable in i, then there exists J C I of cardinality u*, Galois-indiscernible

sequence over A. Moreover J can be chosen to be a Morley sequence over A.

This result strengthens Claim 4.16 of [Sh 394] as we do not assume categoricity.
This is also an improvement of a result from [GrLel] concerning the existence of
indiscernible sequences.

A step toward this result involves proving:

Theorem II1.0.6. Suppose K is a tame AEC. If p > Hanf(K) and K is Galois

p-stable then k,(KC) < Hanf(K), where k,(K) (defined below) is a distinct relative
of k(T).

This generalizes a result from [Sh3].

95
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II1.1 Introduction

Already in the fifties model theorists studied abstract classes of structures (e.g.
Jénsson [Jol], [Jo2] and Fraissé [Fr]). In [Sh 88], Shelah introduced the framework of
abstract elementary classes and embarked on the ambitious program of developing
a classification theory for Abstract Elementary Classes. While much is known about
abstract elementary classes, especially when K is an AEC under the additional as-
sumption that there exists a cardinal A > Hanf(K) such that K is categorical in
A, little progress has been made towards a full-fledged stability theory. One of the
open problems from [Sh 394] (Remark 4.10(1)) is to identify of a good (forking-like)
notion of independence for abstract elementary classes. This is open even for classes
that have the amalgamation property and are categorical above the Hanf number. In
[Sh 394], several weak notions of independence are introduced under the assumption
that the class is categorical. Among these notions is the Galois-theoretic notion of
non-splitting. This notion is further developed for categorical abstract elementary
classes in Chapter II with the extension property and in [ShVi] with a powerful
substitute for x(7T") (listed here as Theorem I1.7.6). Here we study the notion of non-
splitting in a more general context than categorical AEC: Tame stable classes. We
plan to use Morley sequences for non-splitting as a bootstrap to define a dividing-like

concept for these classes.

I1I1.2 Background

Much of the necessary background for this chapter has already been introduced
in the Section I1.2. We begin by reviewing the definition of Galois-type, since we will

be considering variations of the underlying equivalence relation F in this chapter.
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Definition IT1.2.1. Let § > 0 be an ordinal. For triples (a;, M;, N;) where a, €
AN, and M; <x N, € K for | = 0,1, we define a binary relation E as follows:
(@, My, No)E(ay, My, Ny) iff My = M; and there exists N € K and elementary
mappings fo, f1 such that f; : Ny — N and f; | M = idy for [ = 0,1 and fy(ag) =

fi(ar):

Ny ——N

fi
idT Tf2

M T N 2
Remark II1.2.2. E is an equivalence relation on the class of triples of the form

(@, M,N) where M <x N, a € N and both M, N € K*". When only M € K", E

may fail to be transitive, but the transitive closure of E could be used instead.

While it is standard to use the E relation to define types in abstract elementary
classes, we will discuss and make use of stronger relations between triples in section

IT1.4 of this paper.

Definition IT1.2.3. Let 3 be a positive ordinal (can be one).

(1) For M,N € K*" and @ € °N. The Galois type of @ in N over M, written

ga-tp(a/M, N), is defined to be (a, M,N)/E.
(2) We abbreviate ga-tp(a/M, N) by ga-tp(a/M).

(3) For M € K*™,
ga-SP (M) := {ga-tp(a/M,N) | M < N ¢ K. a € ANY.

We write ga-S(M) for ga-S'(M).
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(4) Let p := ga-tp(a/M’, N) for M <, M’ we denote by p | M the type ga-tp(a/M, N).
The domain of p is denoted by dom p and it is by definition M’.

(5) Let p = ga-tp(a/M, N), suppose that M <x N’ <x N and let b € N we say
that b realizes p iff ga-tp(b/M,N') =p [ M.

(6) For types p and ¢, we write p < ¢ if dom(p) C dom(q) and there exists a realizing

p in some N extending dom(p) such that (a,dom(p), N) € ¢ | dom(p).

Definition II1.2.4. We say that KCis 3-stable in ju if for every M € K7™, | ga-S°(M)| =

. The class K is Galois stable in p iff K is 1-stable in p.

Remark I11.2.5. While an induction argument on n < w gives us that 1-stability
implies n-stability in first order logic, the relation between (-stability and 3’-stability

in AECs is unknown.
In this general context it is interesting to consider:

Example II1.2.6. Let T be a stable, countable, first order, complete theory. Set
K := Mod(T) and <y the usual elementary submodel relation. Take y = 2%. While
K is 1-stable in p (in fact it is (n + 1)-stable in p for all n < w), it can be shown

that IC is w-stable in p iff X has the dop or otop.

Definition II1.2.7. We say that M € K is Galois saturated if for every N < M

of cardinality < ||M||, and every p € ga-S(NN), we have that M realizes p.

Remark III.2.8. When K = Mod(T") for a first-order 7', using the compactness
theorem one can show (Theorem 2.2.3 of [Grl]) that for M € K, the model M is

Galois saturated iff M is saturated in the first-order sense.

It is interesting to mention
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Fact I11.2.9 (Shelah [Sh 300]). Let A > LS(K). Suppose that KC has the amalga-

mation property and N € ICy. The following are equivalent
(1) N is Galois staurated.

(2) N is model-homogenous. l.e. if M <x N and M' > M of cardinality less than

A then there exists a K-embedding over M from M’ into N.

Unfortunately [Sh 300] has an incomplete skeleton of a proof, a complete and
correct proof appeared in [Sh 576]. See also [Grl].

In first order logic, it is natural to consider saturated models for a stable theory.
In this context, saturated models are model homogeneous and hence unique. In
abstract elementary classes, the existence of saturated models is often difficult to
derive without the amalgamation property. To combat this, Shelah introduced a
replacement for saturated models, namely, limit-models (Definition 11.2.29), whose
existence (Theorem I1.4.10) and uniqueness (Theorem II.11.2) we have shown in
Chapter II for categorical AECs under some additional assumptions.

When K = Mod(T) for a first-order and stable 7" then automatically (by Theorem

I11.3.12 of [Shc]):

M € K, is saturated = M is (p, 0)-limit for all o < p*

of cofinality > k(7).

When T is countable, stable but not superstable then the saturated model of
cardinality p is (i, Xq)-limit but not (u, Xp)-limit.

We have mentioned in Chapter II that the existence of universal extensions follows
from categoricity and GCH (see Theorem 11.2.25). However, all that is needed for

the existence of universal extensions is stability:
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Claim II11.2.10 (Claim 1.14.1 from [Sh 600]). Suppose K is an abstract elemen-
tary class with the amalgamation property. If KC is Galois stable in p, then for every
M e K, there exists M' € K,, such that M’ is universal over M. Moreover M' can

be chosen to be a (u,o)-limit over M for any o < u*.

IT1.3 Existence of Indiscernibles

Assumption II1.3.1. For the remainder of this chapter, we will fix IC, an abstract

elementary class with the amalgamation property.

Remark II1.3.2. The focus of this chapter are classes with the amalgamation prop-
erty. Several of the proofs in this section can be adjusted to the context of abstract

elementary classes with density of amalgamation bases as in [ShVi] and Chapter II.

The most obvious attempt to generalize Shelah’s argument from Lemma 1.2.5 of
[Shc] for the existence of indiscernibles in first order model theory does not apply since
the notion of type cannot be identified with a set of first order formulas. Moreover,
there is no natural notion of a type over an arbitrary set in the context of abstract
elementary classes. However we do have a notion of non-splitting at our disposal.

Recall Shelah’s definition of non-splitting from Chapter II:

Definition TI1.3.3. A type p € S?(N) u-splits over M <y N if and only if | M| <
i, there exist Ny, No € K<, and h, a K-embedding such that M <x N; <x N for

l=1,2and h: Ny — Ny such that h | M = idy; and p | Ny # h(p [ Ny).

Similarly to x(7T") when T is first-order the following is a natural cardinal invariant

of K:

Definition II1.3.4. Let § > 0. We define an invariant £ (K) to be the minimal

such that for every (M; € I, | i < k) which satisfies
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(1) k= cf(r) < pt,
(2) (M; | i < k) is <k-increasing and continuous and
(3) for every i < k, My is a (u, 0)-limit over M; for some 6 < u™,

and for every p € ga-S” (M,), there exists ¢ < x such that p does not u-split over M;.

If no such x exists, we say ) (K) = co.
Another variant of x(7') is the following

Definition III1.3.5. For § > 0, Rﬁ(lC) is the minimal cardinal such that for every
N € K, and every p € ga-S’(N) there are A < & and M € K, such that p does not

u-split over M.
It is not difficult to verify that
Proposition II1.3.6. For p with cf(u) > &5(K), we have £(K) < & (K).

While for stable first order theories (when 3 < w) both invariants are equal, the
situation for non-elementary classes is more complicated. Already in [Sh 394] it was
observed that «f(K) is better behaved than &/(K) when a bound for s (K) was
found. A corresponding bound for Fcﬁ (K) is unknown. We will defer dealing with the
(perhaps) more natural invariant Rﬁ(IC) to a future paper, since we will only need
the bound for /@ﬁ (K) to prove the existence of Morley sequences.

Notice that Theorem II.7.6 states that categorical abstract elementary classes
under Assumption II.1.1 satisty I{}L(/C) = w, for various .

A slight modification of the argument of Claim 3.3 from [Sh 394] can be used to

prove a related result using the weaker assumption of Galois-stability only:
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Theorem II1.3.7. Let 5 > 0. Suppose that K is [(3-stable in u. For every p €
ga-SP(N) there exists M <x N of cardinality p such that p does not p-split over M.
Thus /fﬁ(lC) < .

For the sake of completness an argument for Theorem I11.3.7 is included:
Proof. Suppose N =x M, a € N such that p = ga-tp(a/M, N) and p splits over
Ny, for every Ny <x M of cardinality A.

Let x :=min{y | 2¥ > A}. Notice that x < A and 2<X < \.

We'll define {M, < M | o < x} C K, increasing and continuous <j-chain which

will be used to construct M; € IC, such that
| ga-S” (M) = 2X > X obtaining a contradiction to A-stability.

Pick My < M any model of cardinality .
For @ = 3 + 1; since p splits over Mg there are Ng, <k M of cardinality A for
¢=1,2 and there is hg : Ng1 =y, Ngo such that
hs(p | Ng1) # p | Nga. Pick Mg < M of cardinality A containing the set |Ng;| U
| Ns.al-
Now for a < x define M € Ky and for n € “2 define a K-embedding h, such
that
(1) B<a = Mj=<x M,
(2) for a limit let My =, M,
(3) B<anne “2 = hy C hy,

(4) pe °2 = hy,: M, < M* and

(5) o = 6+ 1 AnE 9 = hnAO(N/B,l) = hn*l(N[iQ).



103

The construction is possible by using the A\-amalgamation property at a = 3+ 1
several times. Given 1 € P2 let N* be of cardinality A\ and fy be such that the

diagram

Mﬁ—&—lfL)N*

N

My —— M;

commutes. Denote by Ny the model fo(Ng2). Since hg : Ng1 =y, Npgo there is a
K-mapping ¢ fixing Mg such that g(Ng1) = N». Using the amalgamation property

now pick N** € K, and a mapping f; such that the diagram

Mﬁ"'l f N**

I

Nsa g Ny
idT Tz’d
Mg Mj

m
Finally apply the amalgamation property to find Mj,, € Ky and mappings e, €;

such that

N** et ME-H

d

Ms —5> N
commutes. After renaming some of the elements of Mj,, and changing e; we may
assume that ey = idy~.
Let hyo := fo and hy1 :=e€; 0 f1.
Now for n € *2 let

M = U M, and H,:= U hptar-

a<y a<y
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Take Ny = M from Ky, an amalgam of N and M over M, such that

commutes.

Notice that
n#v e X2 = gatp(H,(a)/My, N;) # ga-tp(H,(a)/ My, Ny).

Thus | ga-S(M})| > 2% > A. .

In Theorem II1.5.7 below we present an improvement of Theorem I11.3.7 for tame

AECs: In case K is (-stable in p for some p above its Hanf number then mﬁ(lC) is

bounded by the Hanf number. Notice that the bound does not depend on .

The following is a new Galois-theoretic notion of indiscernible sequence.

Definition I11.3.8. (1) (a; | ¢ < i*) is a Galois indiscernible sequence over M iff
for every iy < -+ <, <i* and every j; < --- < j, <i*, ga-tp(a;, ...a;, /M) =

ga-tp(a;, ...a;,/M).

(2) (a; | i < *) is a Galois-indiscernible sequence over A iff for every iy < --- < i, <
v* and every j; < --- < j, <%, there exists M;, M;, M* € K and <x-mappings
fi, f; such that
( ) fl ]\4l_)]\4>'< fOI'l—Z],

(©) filai, - ai,) = fi(@jo, -, a;,) and

(d) and f; [ A= f; | A=idy.



105

Remark II1.3.9. This is on the surface a weaker notion of indiscernible sequence
than is presented in [Sh 394]. However, under the amalgamation property, this defi-

nition and the definition in [Sh 394] are equivalent.

The following lemma provides us with sufficient conditions to find an indiscernible

sequence.

Lemma I11.3.10. Let u > LS(K), k, A be ordinals and 3 a positive ordinal. Suppose

that (M; | i < Ay and (a; | i < \) satisfy
(1) (M; € K, | i < \) are Zx-increasing;
(2) My is a (p, k)-limit over M;;
(3) @i € "Mipq;
(4) pi := ga-tp(a;/M;, M;y1) does not p-split over My and
(5) fori<j <X\ pi <pj.
Then, (a; | i < A\) is a Galois-indiscernible sequence over Mj.
Definition ITI.3.11. A sequence (a;, M; | i < \) satisfying conditions (1) — (6) of
Lemma II1.3.10 is called a Morley sequence.

Remark II1.3.12. Notice that our definition of Morley sequence varies from some
literature. An alternative name for our sequences (suggested by John Baldwin) is a

coherent non-splitting sequence.

Remark IT1.3.13. While the statement of the lemma is similar to Shelah’s Lemma

[.2.5 in [She], the proof differs, since types are not sets of formulas.

n+1) -

Proof. We prove that forig < -+ < i, < Xand jo < -+ < jp, < A, ga-tp(ay,, ..., a;, /Mo, M;

ga-tp(ajo, - .., a;, /My, M;,,,) by induction on n < w.
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n = 0: Let ig, jo < A be given. Condition 5, gives us
ga_tp(aio/M(h Mio-l-l) = ga_tp(ajo/M()? Mj0+1>‘

n > 0: Suppose that the claim holds for all increasing sequences 7 and j € \ of
length n. Let ipg < -+ < i, < Aand jy < --- < j, < A be given. Without loss of
generality, i, < j,. Define M* := M;. From condition 2 and uniqueness of (u,w)-
limits, we can find a <k-isomorphism, g : M;, — M, such that g [ My = id.
Moreover we can extend g to g : M, 1 — M; 1. Denote by b;, = g(a;) for

[ =0,...,n. Notice that b, € M;, for | < n. Since ga-tp(b,,...,bj;, /Mo, M;, +1) =

ga-tp(aj,, - - -, aj, /Mo, Mj, +1) it suffices to prove that ga-tp(b b /Mo, My, 1) =

oy - -
ga-tp(as,, ..., ai, /Mo, M;, +1).

Also notice that the <x-mapping preserves some properties of p;. Namely, since
p; does not p-split over My, g(p; | M;,) =p; | M;,.
Thus, ga-tp(b;,/M;,, M;, 1) = ga-tp(a;, /M;,, M;,+1). In particular we have that
ga-tp(bj, /M;,, M;, 1) does not p-split over M.

By the induction hypothesis

ga—tp(bjo, ce ,Bjn_l/Mo, Mln) = ga—tp(dio, N 7ain—1/M07 Mzn)

Thus we can find h; : M;, 1 — M*and h; : M;, 1 — M*such that h;(a;,,...,a, ,) =
h;i(bjo, . .-, bj, ). Let us abbreviate bj,, . ..,b;, , by b;. Similarly we will write a; for
iy - vy Ay -

By appealing to condition 4, we derive several equalities that will be useful in

the latter portion of the proof. Since p; does not pu-split over Mj, we have that

p; | hj(M;,) = hi(p; | M;,), rewritten as

(*)  gatp(by, /hi(M;,), M;, 1) = ga-tp(h;(b;,)/hi(M;,), M*).
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Similarly as p; does not u-split over My, we get

pi | hi(M;,) = hij(p; | M;

in

) and p; | hy(M;,) = hi(pi | M;,). These equalities

translate to
(ex); - ga-tp(@i, /hi(Mi, ), Mi, 1) = ga-tp(h;(@i,)/h;(M;,), M) and
(+x);  ga-tp(as,/hi(Mi,), Mi,+1) = ga-tp(hi(as,)/hi(M;,), M"), respectively.
Finally, from condition 5., notice that
(# %) ga-tp(as, /Mi,, M, 1) = ga-tp(bs, /Mi,, M, 11)-
Applying h; to (* * *) yields
(1) ga-tp(h;(bs,)/h;(M;,), M) = ga-tp(hy(as, )/ hy (M, ), M”).

), we can draw from () the following:

in

Since h;(a;) = h;(b;) € hj(M;
(1) ga-tp(hy(bs,) hy(by) /Mo, M*) = ga-tp(h;(a;,) hi(az) /Mo, M").
Equality (xx); allows us to see
(2)  ga-tp(as, hi(az) /Mo, M™) = ga-tp(hi(as, ) hi(az) /Mo, M™).

Since ga-tp(h;(a;,)/h;j(M;,), M*) = ga-tp(a,,/h;j(M;,), M;,+1) (equality (¥x);))

and h;(a;) = h;(b;) € hj(M;,), we get that
(3)  ga-tp(h;(a:,) hi(az) /Mo, M*) = ga-tp(as, hi(az) /Mo, M”).
Combining equalities (1), (2) and (3), we get
(t1)  ga-tp(hy(@) hi(@i,) /Mo, M*) = ga-tp(h;(b5) h;(b;,) /Mo, M").
Recall that h; | My = h; | My = idy,. Thus (11), witnesses that

ga-tp(aiy, . - ., ai, /Mo, M;, +1) = ga- tp(bjo, .. /MO, M; +1).
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II1.4 Tame Abstract Elementary Classes

While the notion of type defined as equivalence classes of E has led to several
profound results in the study of abstract elementary classes, a stronger equivalence
relation (denoted E,,) is eventually utilized in various partial solutions to Shelah’s
Categoricity Conjecture (see [Sh 394] and [Sh 576]).

Shelah identified E, as an interesting relation in [Sh 394]. Here we recall the

defintion.

Definition III.4.1. Triples (ai, M, Ny) and (aq, M, N;) are said to be E,-related

provided that for every M’ <x M with M' € K,
(afla MIJ NI)E<527 MIJ NQ)

Notice that in first order logic, the finite character of consistency implies that two
types are equal if and only if they are E_-related.

In Main Claim 9.3 of [Sh 394], Shelah ultimately proves that, under categoricity
in some A > Hanf(K) and under the assumption that IC has the amalgamation prop-
erty, for types over saturated models, E-equivalence is the same as F,, equivalence
for some p < Hanf(K).

We now define a context for abstract elementary classes where consistency has

small character.

Definition I11.4.2. Let y be a cardinal number. We say the abstract elemen-
tary class K with the amalgamation property is x-tame provided that for types,
E-equivalence is the same as the E) relation. In other words, for M € K< pany(x),
p # q € ga-S(M) implies existence of N <, M of cardinality y such that p | N #
q|N.

KC is tame iff there exists such that K is x-tame for some x < Hanf(K)
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Remark I1I1.4.3. We actually only use that F-equivalence is the same as E,-equivalence

for types over limit models.

Notice that if K is a finite diagram (i.e. we have amalgamation not only all models
but also over subsets of models) then it is a tame AEC.

There are tame AECs with amalgamation which are not finite diagrams. In fact
Leo Marcus in [Ma] constructed an L, ., sentence which is categorical in every cardi-
nal but does not have an uncountable sequentially homogeneous model. Lately Boris
Zilber found a mathematically more natural example [Zi] motivated by the Schanuel
Conjecture. His example is not homogeneous nor L, ,-axiomatizable. Shelah proves
tameness for countable L, .,)-theories which are categorical in some uncountable car-
dinal and for all n < w I(N,;1,K) < 2%+ ([Sh 87a] and [Sh 87b].)

While we are convinced that there are examples of arbitrary level of tameness at

the moment we don’t have any.

Question I11.4.4. For py < po < 3,,, find an AEC which is ps-tame but not

u1-tame.

In fact we suspect that the question is easy to answer.

I11.5 The Order Property

The order property, defined next, is an analog of the first order definition of

order property using formulas. The order property for non-elementary classes was

introduced by Shelah in [Sh 394].

Definition II1.5.1. K is said to have the k-order property provided that for every a,

there exists (d; | i < ) and where d; € "€ such that if iy < jo < a and i; < j; <

(*) then for no f € Aut(€) do we have f(d;,"d;,) = d;,"d;, .
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Example I11.5.2. Let T be a superstable, first order theory in a countable language.
Set K := Mod(7T') and < the usual elementary submodel relation. C has the alephg-

order property iff K has dop or otop.

Remark I11.5.3 (Trivial monotonicity). Notice that for k; < ko if a class has

the ki-order property then it has the kg-order property.

Claim III.5.4 (Claim 4.6.3 of [Sh 394]). We may replace the phrase every « in

Definition I11.5.1 with every a < :(2n+LS(I€))+ and get an equivalent definition.

Fact II1.5.5 (Claim 4.8.2 of [Sh 394]). If K has the k-order property and 1 > K,
then for some M € IC, we have that |ga-S"(M)/E.| > p*. Moreover, we can

conclude that KC is not Galois stable in p.

Question II1.5.6. Can we get a version of the stability spectrum theorem for tame

stable classes?

The following is a generalization of a old theorem of Shelah from [Sh3] (it is

Theorem 4.17 in [GrLe2])

Theorem II1.5.7. Let 3 > 0. Suppose that IC is a k-tame abstract elementary class.

If K is (B-stable in p with Dppwsrsoory+ < g, then 55 (K) < Djgrrrseoys -

Proof. Let x := :(2n+LS(IC))+. Suppose that the conclusion of the theorem does not
hold. Let (M; € K, | i < x) and p € ga-S”(M,) witness the failure. Namely, the

following hold:
(1) (M; | i < x) is <g-increasing and continuous,
(2) for every i < x, M1 is a (p, 0)-limit over M; for some 6§ < ut and

(3) for every i < p*, p u-splits over M;.
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For every i < x let f;, N} and N? witness that p p-splits over M;. Namely,

M; <x N} N? < M,
fi: N} = NE with fi | M; = iday,
and fi(p | N}) #p | N}

By k-tameness, there exist B; and A; := f-_l(BZ-) of size < k such that

filp ' A;) #p | Bi.
By renumbering our chain of models, we may assume that
(4) Ay, B; C M.
Since M;,; is a limit model over M;, we can additionally conclude that
(5) ¢ € My realizes p | M;.
For each i < p, let d; := A;"B;’G;.
Claim II1.5.8. (d; | i < x) witnesses the r-order property.

Proof. Suppose for the sake of contradiction that there exist g € Aut(€), iy < jo < X

and 7; < j; < x such that
g(czioAJjo) - leAJil‘
Notice that since iy < jo < a we have that ¢;, € M;,. So f;,(¢,) = ¢,. Recall

that f;,(A4j,) = Bj,- Thus, f;, witnesses that
(*) ga_tp(éioAAjo/w) = ga'tp(éioABjo/@)'
Applying g to (x) we get

(**) ga‘tp(éﬁ AAZ& /Q) = ga‘tp(EﬁABil /®)
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Applying fi, to the RHS of (sx), we notice that

(ﬁ) ga'tp(fil (Ejl)ABh /(Z)) = ga_tp(éleBil/Q))'

Because i < ji, we have that ¢;, realizes p | M;,. Thus, () implies

) filp I Ay) =p | By,

which contradicts our choice of f;,, 4;, and B;,.

By Claim I11.5.4 and Fact II1.5.5, we have that IC is unstable in p, contradicting

our hypothesis.

II1.6 Morley sequences

Hypothesis IT11.6.1. For the rest of the chapter we make the following assumption:
IC is a tame abstract elementary class, has no maximal models and satisfies the

amalgamation property.

Theorem II1.6.2. Fix 5 > 0. Suppose pu > :(QHanf(K))+. Let M € K-, A, I CM
be given such that |I| > p* > |A]l. If K is Galois B-stable in u, then there exists
J C I of cardinality p*, Galois indiscernible over A. Moreover J can be chosen to
be a Morley sequence over A.

Proof. Fix k := cf(u). Let {a; € °1|i < p*} be given. Define (M; € K, | i < pu™*)

<x-increasing and continuous satisfying
(1) A C Mo

(2) M;iq is a (u, k)-limit over M;
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(3) a; € Mgy
Let p; := ga-tp(a;/M;, M;,,) for every i < u*. Define f: S*" — put by
f(@) == min{j < p" | p; does not p-split over M;}.

By Theorem II1.5.7, f is regressive. Thus by Fodor’s Lemma, there are a stationary

set S C S#" and jy € I such that for every i € S,
(1) pi does not p-split over M;,.

By stability and the pigeon-hole principle there exists p* € ga-S(M,,) and S* C S of
cardinality x4 such that for every i € S*, p* = p; | M,,. Enumerate and rename S*.
Let M* := M;. Again, by stability we can find S** C S* of cardinality u* such that

ok

for every ¢ € S**, p** = p; | M*. Enumerate and rename S**.

Subclaim II1.6.3. Fori<j € S™, p;=p; | M,.

Proof. Let 0 < i < j € S be given. Since M;, and My are (i, £)-limits over
M;, there exists an isomorphism g : M;y; — M;;; such that g | M; = idy;,. Let
b; := g(a;). Since the type p; does not p-split over Mj,, ¢g cannot witness the
splitting. Therefore, it must be the case that ga-tp(b;/M;, M;11) = pi | M;. Then,
it suffices to show that ga-tp(b;/M;, Miy1) = p;.

Since p; | My = p; | My, we can find <x-mappings witnessing the equality.
Furthermore since M* is universal over My, we can find h; : M;y; — M* such that
hy | My = idyy, for | = i,j and h;(a;) = h;(b;).

We will use () to derive several inequalities. Consider the following possible

witness to splitting. Let Ny := M; and Ny := h;(M;). Since p; does not u-split over

My, we have that p; [ No = h;(p; | N1), rewritten as

(*)  ga-tp(ai/hi(M;), Miy1) = ga-tp(hi(a;)/hi(M;), M™).
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Similarly we can conclude that
(ex)  gatp(b;/hj(M;), Mis1) = ga-tp(hy(bs)/hy(M;), M),
By choice of S**, we know that
(%)  ga-tp(b;/M") = ga-tp(a;/M").

Now let us consider another potential witness of splitting. N; := h;(M;) and
Ny := h;(M;) with H* := h; o h;' : Ny — Nj. Since p; | M; does not u-split over
Moy, p; | N5y = H*(p; [ Ny). Thus by (**) we have

(8) H'(p; I NY) = gartp(hy(by)/hy (M), M*).

Now let us translate H*(p; [ Ny). By monotonicity and (x * %), we have that
p;j | Ny = ga-tp(b;/hi(M;), Mi 1) = ga-tp(a;/hi(M;), M;,1). We can then conclude
by (%) that p; [ Ny = ga-tp(h;(a;)/hi(M;), M;+1). Applying H* to this equality
yields

() H*(py | N?) = gatp(y @) /s (M), M°).

By combining the equalities from (f) and (8f) and applying hj_l we get that

ga-tp(b;/M;, M;1) = ga-tp(a;/M;, M)

Notice that by Subclaim I11.6.3 and our choice of S**, (M; | i € S™) and (a; | i €
J) satisfy the conditions of Lemma II1.3.10. Applying Lemma I11.3.10, we get that
(a; | i € S*) is a Morley sequence over My. In particular, since A C M, we have

that (a; | i € S*) is a Morley sequence over A.
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II1.7 Exercise on Dividing

With the existence of Morley sequences a natural extension is to study the fol-
lowing dependence relation to determine whether or not it satisfies properties such

as transitivity, symmetry or extension. Here we derive the existence property.

Definition IT1.7.1. Let p € ga-S(M) and N <x M. We say that p divides over
N iff there are @ € M non-algebraic over N and a Morley sequence, {a, | n < w}
for the ga-tp(a/N, M) such that for every collection {f, € Auty€ | n < w} with
fn(@a) = @, we have

{fnu(p) | n < w} is inconsistent.

Theorem II1.7.2 (Existence). Suppose that K is stable in p and k-tame for some
K < p. For every p € ga-S(M) with M € K, there exists N <x M of cardinality p

such that p does not divide over N.

Proof. Suppose that p and M form a counter-example. WLOG we may assume that
M = €. Through the proof of Claim 3.3.1 of [Sh 394], in order to contradict stability

in y, it suffices to find N;, N}, N2, h; for ¢ < p satisfying
(1) (N; € K, | i < p) is a <-increasing and continuous sequence of models;
(2) N; <x N! <x Niy fori < pandl=1,2;
(3) for i < p, h;y : N} & N? and h; | N; = idy, and
(4) p I N? # hi(p [ N}).

Suppose that N; has been defined. Since p divides over every substructure of
cardinality p, we may find a, {a, | n < w} and {f, | n < w} witnessing that p

divides over N;. Namely, we have that {f,(p) | n < w} is inconsistent. Let n < w
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be such that fo(p) # fu(p). Then p # f;' o fu(p). By k-tameness, we can find
N* <k € of cardinality x4 containing N such that p | N* # (f;' o f.(p)) | N*.
WLOG fy'o f, € AutyN*.

Let h; := fy 'of,, N} :== N* and N? := N*. Choose N;;; <x € to be an extension

of N* of cardinality pu. -
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ABSTRACT

Categoricity and Stability in Abstract Elementary Classes

by

Monica M. VanDieren

This thesis tackles the classification theory of non-elementary classes from two
perspectives. In Chapter II we work towards a categoricity transfer theorem, while
Chapter III focuses on the development of a stability theory for abstract elementary
classes (AECs).

The results in Chapter II are in a context idenitified by Shelah and Villaveces in
which the amalgamation property does not necessarily hold. The longterm goal is
to solve Shelah’s Categoricity Conjecture in this context. One of the first steps is
to isolate a suitable notion of saturation. I have solved a conjecture of Shelah and
Villaveces by proving the uniqueness of limit models, which will serve as our notion
of saturation.

The work in Chapter III is joint with Rami Grossberg. We identify a general
context (tame abstract elementary classes) in which we begin developing the stability
theory. Using the notion of splitting introduced by Shelah for AECS, we prove the
existence of Morley sequences in tame, stable AECs. It is feasible that this result
will lead to a Stability Spectrum Theorem for tame AECs and may even motivate a

workable definition of dividing.



