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SIMPLE-LIKE INDEPENDENCE RELATIONS IN ABSTRACT
ELEMENTARY CLASSES

RAMI GROSSBERG AND MARCOS MAZARI-ARMIDA

ABSTRACT. We introduce and study *-simple, simple and supersimple independence relations
in the context of AECs with a monster model.

Theorem 0.1. Let K be an AEC with a monster model.
o If K has a x-simple independence relation, then the relation is canonical, K is stable
and K does not have the tree property.
o IfK has a simple independence relation with (< Ro)-witness property, then K does not
have the tree property.

The proof of both facts is done by finding cardinal bounds to classes of small Galois-types
over a fixed model that are inconsistent for large subsets. We think this finer way of counting
types is an interesting notion in itself.

We characterize supersimple independence relations by finiteness of the Lascar rank under
locality assumptions on the independence relation.
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1. INTRODUCTION

Simple theories were discovered by Shelah in the mid seventies, an early characterization from
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his 1978 book [Sh78] is Theorem II1.7.7. Originally they were named theories without the tree
property, Shelah’s first paper on them was published in 1980 [Sh80]. Simple theories were ignored
for more than a decade. In 1991 Hrushovski circulated [Hru02] (which was published in 2002),
there he discovered that the first-order theory of an ultraproduct of finite fields while unstable is
simple in the sense of Shelah and established an early version of the type-amalgamation theorem
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(also known as the independence theorem). This work was extended later by Chatzidakis and
Hrushovski in the mid nineties, eventually published as [ChHr99]. Influenced by these papers,
Kim in [Kim98] and with Pillay in [KiPi97] managed to adapt the type-amalgamation theorem
from the algebraic context to complete first-order theories and solved a technical difficulty Shelah
had with forking. We recommend [GIL02] for some of the basic results, history (approved by
Shelah) as well as some technical simplifications and the chain condition. The subject of simple
theories and more generally studying various variants of forking-like relations for unstable first-
order theories got much attention in the last 20 years as witnessed by three books dedicated to
the subject: [Wag00], [Cas11] and [Kim14].

In 1976 and 1977 Shelah circulated preprints of [Sh87al, [Sh87b] and [Sh88] starting the far
reaching program of extending his classification theory of first-order theories to several non-
elementary classes. First classes axiomatizable by a theory in L, ,(Q) and later to the more
general syntax-free context of Abstract Elementary Classes (AECs for short). An elementary
introduction to the theory of AECs can be found in [Gro02]. A more in depth introduction is the
two volume book by Shelah [Sh09]. Another book is Baldwin’s [Bal09]. For many years Shelah
was the only person who managed to make progress in the field. Much of the early work was
motivated by Shelah’s categoricity conjecture (a generalization of Morley’s categoricity theorem).
Naturally the work was closely related to generalizing first-order Ny-stability and superstability.

There is a very extensive literature about attempts to develop analogues to Ng-stability, su-
perstability and stability for various classes of AECs. Always under some extra assumptions on
the AEC. This massive effort occupies thousands of pages and is impossible to summarize in this
paper. A start can be found in the above mentioned books by Baldwin and Shelah, however in
the last decade much was added. See in particular in the PhD theses of Boney [Bonl4a] and
Vasey [Vasl7a].

The goal of this paper is to begin exploring analogues of simplicity in the context of AECs.
A-priori it is unclear that there is a natural property (for AECs) that correspond directly to sim-
plicity. It is plausible that there are several such properties. We introduce x-simple, simple and
supersimple independence relations. The main difference between stable independence relations
and the relations that we introduce is that we do not assume uniqueness of non-forking exten-
sions and instead assume the type-amalgamation property. Although this may seem like a minor
change, based on our knowledge of forking in first-order theories this is actually a significant one.

Simplicity in first-order theories can be approach from several points of view: using ranks, tree-
property, axiomatic properties of forking (or independence properties in general) and counting
families of types as in Shelah’s Theorem II1.7.7 of his first book [Sh78]. In this paper we too
approach simplicity-like properties of AECs from various different directions.

We introduce the function NT'(u, A, k) to connect the existence of a simple-like independence
relation with structural properties of the AEC. Our function generalizes NT'(u, \) of [Cas99].
The function NT'(u, A, k) assigns to each p < A and & cardinals the supremum of |T'| such that
I' is a subset of Galois-types over models of size less than p which are contained in a fix model
of size A and such that any subset of I" of cardinality greater than k is inconsistent. Intuitively
this function let us count types in a finer way than just calculating the number of types over a
fix model.

We find the following bounds for the different kinds of independence relations studied in this
paper.

Theorem. Let K be an AEC with a monster model.

(1) (Theorem 4.2) If L is a stable independence relation, then

NT(u, N\ k) < /\'“(“/) +K.
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(2) (Theorem 5.13) If L is a s-simple independence relation, then

2~(I)+2<“\‘/’)

NT(p, M\, &) < A + K.

(3) (Theorem 6.7) If L is a simple independence relation, x(L) < p < X and ,ud(J“) = i,
then

NT (1, A, Ro) < A7) 4 90,
(4) (Theorem 7.2, 8.6) If L is a simple independence relation with the (< Ro)-witness

property for singletons or a supersimple independence relation, k(L) < p < X and

<£(\L)

I = u, then

NT (A, (29)%) < XD 4o,
We show that these bounds are useful as they imply that the AEC is stable or the failure of
the tree property. The extension of the tree property to AECs is another of the contributions of

the paper and the idea is that small types play the role of formulas (see Definition 3.4).
Corollary. Let K be an AEC with a monster model.

(1) (Corollaries 4.3, 4.4, 5.15, 5.14) If L is a stable independence relation or a x-simple
independence relation, then K is stable and does not have the tree property.

(2) (Corollary 6.9) If L is a simple independence relation, then K does not have the 2-tree
property.

(3) (Corollary 7.3, 8.6) If L is a simple independence relation with the (< Wg)-witness
property for singletons or a supersimple independence relation, then K does not have
the tree property.

We show that #-simple independence relations are canonical. This together with the first
result of the above corollary can be used to show that for complete first-order theories an inde-
pendence relation is x-simple if and only if it is stable (Lemma 5.20). Moreover, we obtain a new
characterization of stable first-order theories assuming simplicity. We show that if first-order
non-forking is contained in nonsplitting and 7' is simple then T is stable (Lemma 5.19).

In a different direction, we characterize supersimple independence relations via the Lascar
rank (extended to AECs in [BoGrl7]) under the (< Rg)-witness property for singletons. This
extends [Kim14, 2.5.16] to the AEC context.

Theorem 8.12. Assume K has a monster model. Let L a simple independence relationship
with (< Rg)-witness property for singletons. The following are equivalent.

(1) L is a supersimple independence relation.
(2) If M € K and p € S(M), then U(p) < oo.

A natural question whenever encountering work in pure model theory is about applications.
In this paper we do not deal with applications, we believe that it is premature to focus in
applications as even for first-order simple theories the first significant applications were found
more than 15 years after the basic results were discovered. Only recently some early applications
were discovered of the much better understood theory of stable and superstable AECs. For this
we refer the interested reader to recent results of the second author on classes of modules, among
them: [KuMal, [Maz1] and [Maz2].

It is worth mentioning that there have been some efforts to extend the notion of simplicity to
non-elementary settings. Buechler and Lessman introduced a notion of simplicity for a strongly
homogeneous structure in [BuLe03], Ben-Yaccov introduced a notion of simplicity for compact
abstract theories in [Ben03], Hyttinen and Kesild introduced a notion of simplicity for No-
stable finitary AECs with disjoint amalgamation and a prime model in [HyKe06] and Shelah
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and Vasey introduced a notion of supersimplicity for Rg-nicely stable AECs in [ShVal8]. One
major difference between our context and that of [BuLe03] is that in their context types can
be identified with sets of first-order formulas. As for [Ben03], types in his setting have a strong
finitary character built in. While in our context types are orbits of the monster model € under
the action of Auty/(€). As for [HyKe06] and [ShVal8], a major difference is that we do not
assume any trace of stability.

On March 3rd, 2020, two days before posting this paper in the arXiv, Kamsma paper [Kam]
was posted in the arXiv. In it, he introduced simple independence relations in AECat. The main
difference between our setup and his is that he assumes that types are (< w)-tame and that a
simple independence relation satisfies some analogue to finite character.

The paper is organized as follows. Section 2 presents necessary background. Section 3 in-
troduces the function NT(-,-,-), which is the main technical device of the paper, and a tree
property. Section 4 deals with stable independence relations, a bound for NT (i, A, ) is found
and it is shown that it implies stability and the failure of the tree property. Section 5 intro-
duces *-simple independence relations, a bound for NT'(u, A, k) is found and it is shown that
it implies stability and the failure of the tree property. Moreover, the canonicity of *-simple
independence relations is obtained. Section 6 introduces simple independence relations, a bound
for NT(u, A\, Rg) is found and it is shown that it implies the failure of the 2-tree property. Section
7 studies simple independence relations with locality assumptions. A bound for NT'(u, A, (2#)™)
is found and it is shown that it implies the failure of the tree property. Section 8 introduces
supersimple independence relations and characterizes them by the Lascar rank. It is also shown
that the existence of a supersimple independence relation in a class that admits intersections
implies the (< Ng)-witness property for singletons.

This paper was written while the second author was working on a Ph.D. under the direction
of the first author at Carnegie Mellon University and the second author would like to thank
the first author for his guidance and assistance in his research in general and in this work in
particular. We thank Hanif Cheung for helpful conversations.

2. PRELIMINARIES

We assume the reader has some familiarity with abstract elementary classes as presented for
example in [Bal09, §4 - 8] and [GrolX, §2, §4.4]. Familiarity with [BGKV16] and [LRV19] would
be useful, but it is not required as we will recall the notions from [BGKV16] and [LRV19] that
are used in this paper. We begin by quickly introducing the basic notions of AECs that we will
use in this paper.

Since the main results of the paper assume joint embedding, amalgamation and no maximal
models, we will assume these since the beginning.?

Hypothesis 2.1. Let K be an AEC with joint embedding, amalgamation and no maximal models.
2.1. Basic concepts. We begin by introducing some notation for AECs.

Notation 2.2.

o If M € K, |M]| is the underlying set of M and ||M|| is the cardinality of M.

o IfXis a cardinal, Ky ={M e K: [|[M||=A} and Koy ={M € K: ||M]| < A}

e IfM € K and A < |M||, [M]» = {N : N <g M}NK, and [M]<* = {N : N <k
M}ﬂK<)\.

o Let M,N € K. If we write “f : M — N7” we assume that f is a K-embedding, i.e.,
f: M= f[M] and f[M] <k N.

2S0me of the definitions presented here make sense without these hypothesis.
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We will also use the next set theoretic notation.

Notation 2.3.

e For k a cardinal, we define k= = 0 if k = 0T and K~ = Kk otherwise.
e For k a cardinal and k < |A|, let P<,,(A) ={B C A:|B| < k}.

Recall the following definitions due to Shelah.

Definition 2.4. Let M € K.

(1) M is A-universal if for every N € K., there exists f : N — M.
(2) M is A-model homogeneous if for every My <k Ny both in K.y, if My <x M then there
exists f : Ny 7 N.
0

Remark 2.5. Since K has joint embedding, amalgamation and no mazximal models we can
make use of a monster model € (as in complete first-order theories). A monster model € is
large compared to all the models we consider and is universal and model homogeneous for small
cardinals. As usual, we assume that all the elements and sets we consider are contained in the
monster model €. The details of its construction can be consulted in [GrolX, §4.4].

Shelah introduced a notion of semantic type in [Sh300]. The original definition was refined
and extended by many authors who following [Gro02] call these semantic types Galois-types
(Shelah recently named them orbital types). We present here the modern definition and call
them Galois-types throughout the text. We use the terminology of [MaVal8, 2.5] and introduce
Galois-types without using the assumption of the existence of a monster model.

Definition 2.6.

(1) Let K? be the set of triples of the form (b, A, N), where N € K, A C [N|, and b is a
sequence of elements from N.

(2) For (bhAl,Nl), (bg,AQ,NQ) S K3, we say (bl,Al,Nl)E(bQ,AQ,NQ) ZfA = A = AQ,
and there exists fy : Ny 7) N such that f1(b1) = fa(ba).

(3) Note that E is an equivalence relations on K3. It is transitive because K has amalgama-
tion.

(4) For (b, A,N) € K3, let tpg(b/A; N) := [(b, A, N)]g. We call such an equivalence class
a Galois-type. If N = € (where € is a monster model) we write tp(a/A) instead of
tp(a/A; @).

(5) For N € K, AC N and I a non-empty set, S{(A; N) = {tp(b/A;N) :b=(b; € N :i €
I)}. Let S(M) := SY (M) and S<®(M) :=J, .o, S*(M).

(6) An AEC is M\-Galois-stable if for any M € K, it holds that |S(M)| < \. An AEC is
stable if there is A > LS(K) such that K is A-Galois-stable.

(7) Forp=tpk((bi)ier/A;N) € ST(A;N), A’ C Aand Io C 1, p™ 4= [((bi)ier,, A's N)]p-

The following fact shows that in the presence of a monster model, the Galois-type of b over

a set A is simply the orbit of b under the action of the automorphisms of € fixing A.

Fact 2.7. Let € be a monster model. tp(b1/A;€) = tp(ba/A;€) if and only if there exists
f S A'I.LtA(Qt) with f(bl) = bs.

The notion of tameness was isolated by the first author and VanDieren in [GrVan06] and
type-shortness by Boney in [Bonl4b].
Definition 2.8.
e K is (< k)-tame for O-types if for any M € K and p # q € SL(M) with |I| = 0, there is
A€ P (M) such that p [a#£ q [a.
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o K is r-tame for O-types if it is (< xT)-tame for O-types.

e K is fully (< k)-tame if for every 6 ordinal, K is (< k)-tame for 0-types.

e K is fully (< x)-tame and -type-short if for any M € K and p # q € ST(M), there is
A€ Po(M) and Iy € P<,(I) such that plo [ 4% q™ [ 4.

2.2. Independence relations and the witness property. Global independence relations in
the context of AECs and pu-AECs have been extensively studied in the last few years, see for
example [BoGrl17], [Vasl6a] and [LRV19]. Below we introduce a weak independence notion. Our
notation and choice of axioms is inspired by [LRV19] and the particular simple-like independence
relations that we will study in this paper.

Definition 2.9. L is a independence relation in an AEC K if the following properties hold:

(1 Lc {(M,A,B): M <k € and A, B C €}. We say that tp(a/B) does not fork over M
if ran(a).L,;B. This is well-defined by the next three properties.

(2) (Preservation under K-embeddings) Given My <x €, A,B C € and f € Aut(Z), we
have that A\LMOB if and only if f[A]\Lf[MO]f[B].

(3) (Monotonicity) If AiMOB and Ay C A, By C B, then AOIMOBO.

(4) (Normality) AL B if and only if AU Moy Ly, BU M. B

(5) (Base monotonicity) If AL, B, My <k M) <k € and |M,| C B, then AL, B.

(6) (Existence) If M <x N and p € S<(M), then there exists ¢ € S<®(N) extending p

such that q does not fork over M. o o

(7) (Transitivity) If My <k My, ALy, My and ALy, B, then AL, B.

)
6

Let us introduce some notation.

Notation 2.10. Given L an independence relation:

e For a a cardinal, let ko(L) be the minimum \ (or oo) such that: If p € S*(M), then
there exists Mo <x M with ||[Mo|| < A and p does not fork over Mp.

o Let (k(L),0(L)) be the minimum (X\,0) (or (c0,00)) such that: If p € S*(M), there
exists My € K with My <g M, |Mo|| < X+ a<? and p does not fork over Mj.

The following notion is a locality notion for independence relations.

Definition 2.11 ( [Vasl6a, 3.19.(2)]). Let L an independence relation. L has the right (< 0)-
witness property of length « if for all M <x N and b € €%: bIMN if and only if biMA for
every A € Pog(N). We say that L has the right (< 0)-witness property if and only if L has the
right (< 6)-witness property of length « for all c.

Observe that since first-order non-forking has finite character, first-order non-forking has
(< Wg)-witness property. This might not be the case for independence relations as the next
example shows. This example was first considered in [Adl05, 1.43].

Example 2.12. Let L(K) =0 and K = (Sets, C). Given M, A, B € K let:
AL B if and only if (AN B)\C| < Ng

It is easy to show that L isan independence relation. Ijas the (< Vq)-witness property of
length o for o countable, but not for o uncountable. Hence L does not have the (< Ng)-witness
property.

In a few places in the paper we will assume that the independence relation under consideration

has the witness property in order to be able to carry out some of the proofs (see for example
Lemma 7.1 and Theorem 8.12).
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The next lemma gives a natural condition that implies the witness property. It fixes a small
gap in [Vasl6a, 4.3]; the argument in [Vasl6a, 4.3] seems to only work for M of cardinality less

than or equal to k4 (L) as we need My <x M; in order to apply transitivity.

Lemma 2.13. Let L an independence relation. If ko(L) = X, then L has the (< A\*)-witness
property of length «.

Proof. We prove the following by induction on the size ||M]|:

For all N and a € €%, if M <g N and VB € P<)(N)(al,,B), then al ,,N.

Base: Assume ||M|| = LS(K). Let M <g N and a € €%, by r,(L) = A there is N’ € [N]*
such that aL y, N. Since |M|| < X and M <g N, we may assume without lost of generality that
M <g N'. Moreover, by hypothesis aIMN ’. Then by transitivity we conclude that aIMN .

Induction step: If || M| < A, the same proof as the one presented in the base step works, so
assume that |M|| > X\. Let M <k N and a € €% Since ko(L) = X there is M’ € [M]*
such that al,, M. Using that VB € P<x(N)(al,,B) and transitivity, it follows that VB &

P<r(N)(al,; B). Then by induction hypothesis a L, N. Hence aL ,, N by base monotonicity.
g

We will give a few other natural conditions that imply the witness property, see for example
Fact 5.6 and Corollary 8.16.

3. THE BASIC NOTIONS

In this section we introduce a way of counting Galois-types over small submodels and generalize
the tree property to AECs. We think that this finer way of counting types is an interesting notion
in itself. As mentioned in the preliminaries we are assuming Hypothesis 2.1.

In this paper Galois-types over submodels will play a central role.

Definition 3.1. Let M € K and p < || M||:
S(M, < 1) = {tp(a/N) : N < M and |N|| < s}

The following notion generalizes [Cas99, 2.3] to the AEC setting.

Definition 3.2. Let p, A € [LS(K), 00) such that u < X and k a cardinal (possibly finite). We
define the following:
NT(u, A\ k) = sup{|T'| : IM € K\(T € S(M, < p) and VA CT(JA| > k = A is inconsistent)) }

If k = 2 instead of writing NT(u, A\, 2), we write NT (i1, \) as in [Cas99].

The following bounds are easy to calculate and hold in general. In what follows, see Theorems
4.2, 5.13, 6.7 and 7.2, we will find sharper bounds which will be the key to show stability or the
failure of the tree property under additional hypothesis.

Proposition 3.3.
(1) If M € Ky, then |S(M)| < NT(\\,2).
(2) Iful S K2, )\1 S )\2 and K1 S K2 then NT(/Ll,)\l, 1461) S NT(,U,Q, A27K/2).

(3) If u < A, then the value of NT (u, A, -) is bounded as follows:
(a) If k € [2, (M) T], then NT(u, A\, k) < A¥.

3The definition given here does not fully match the definition of [Cas99] when K = (Mod(T), <) for a complete
first-theory T, since the bound p on [Cas99] refers to the cardinality of the type (the number of formulas in it)
while in our definition it refers to the cardinality of the domain of the type.
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(b) If K € (AT, (2M) 7], then NT(u, A\, k) < 2*.

(c) If Kk € ((2M)*F,2M], then NT(u, A\, k) < 22",

(4) K is A-Galois stable if and only if NT(u, A\, k) < X for every p € [LS(K),\] and k €
[2, AT].

Proof.

(1) Let x = |S(M)| and {pa : o < x} an enumeration without repetitions of S(M). Observe
{Pa : @ < x} € S(M,< )) and any set {p,,ps} is inconsistent if o # (. Therefore,
S(M)| = x < NT(\1.2).

(2) Follows from the fact that if ' C S(M,< uy) for M € K, and each subset of size
greater or equal to x; is inconsistent, then there is M* € Ky, with M <x M* and
I’ C S(M*, < p9) such that any subset of size greater or equal to ko is inconsistent.

(3) (a) Let k € [2,(M)T], x := M and {pn : @ < xT} CS(M, < p) for M € K.

Let ® : x* — [M]S* be defined as ®(a) = dom(p,), since |[[M]S#| = M by
the pigeonhole principle there is S C x* of size x* and N € [M]S# such that
dom(ps) = N for each v € S. Let ¥ : S — S(N) be defined as ¥(a) = p,, since
[S(N)| < 2* by the pigeonhole principle there is S’ C S of size x™ and ¢ € S(N)
such that p, = ¢ for each o € S’. In particular {p, : a € S’} is a consistent set of
size xT. Hence NT(u, \, k) < M.

(b) Let & € (M)F,(2M)71], x :==2" and {p, : @ < xT} € S(M, < p) for M € K.
Given a < xT, let g, € S(M) such that q, > pa, it exists because we assumed
that K has amalgamation. Let ® : x* — S(M) be defined as ®(«) = q,, since
|S(M)| < 2* by the pigeonhole principle there is S C x* of size xT and ¢ € S(M)
with g, = ¢ for every a € S. In particular {p, : @« € S’} is a consistent set of size
xt. Hence NT(p, \, k) < 27

(c) Similar to (b).

(4) The forward direction is similar to (3).(a) but using that for every M € K, we have that
|S(M)| < X instead of only |S(M)| < 2*. The backward direction follows from (1).

0

The next concept extends the tree property to the AEC context. The main idea is that Galois-
types over finite sets in AECs play a similar roll as that of formulas in first-order theories. This
correspondence is explored in [Vas16b].

Definition 3.4. Let u, A € [LS(K),00) and k < w. K has the (u, A, k)-tree property if there is
{(ay, By) : n € <HA}* such that:

(1) v € <FA(|| Byl < LS(K)).

(2) Yv € *A({tp(ay;,/Bu;,) 1 o« < p} is consistent).

(3) Vn € <FA({tp(ayra/Byra) 1 o < A} is k-contradictory).

We say that K has the k-tree property if for all u, A € [LS(K),00) K has the (u, A, k)-tree
property and K has the tree property if there is a k < w such that K has the k-tree property.

The following lemma relates the two concepts we just introduced. A similar construction in
the first-order context appears in [Cas99, 2.3].

Lemma 3.5. Assume A<* = X\ and LS(K) < u < \. If K has the (u, A\, 2)-tree property, then
NT(p, \,2) = M. Moreover, NT(u, \, k) > M\ for all k > 2.°

Proof. By the definition of the tree property we have {(a,, By) : n € <*A} such that:

4As always we assume that Vn(an € € and By, C €).
5As usual we assume that A, i are cardinals way below the size of the monster model.
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(1) Vi € “MA(|| By < LS(K)).
(2) Yv € “A({tp(av;,/By,) : @ < p} is consistent).
(3) Vn € “FA({tp(ayra/Byra) : @ < A} is 2-contradictory).

Let A = J,c<uy By. Since A<# = X and each B, has cardinality less than LS(K), we have
that |A] < A. So applying downward Lowenheim-Skolem in € we obtain M € K such that
Vn € <FX(B, C |M]).

For each v € #\, pick a, € € realizing {tp(a,;,/B,;,) : @ < p} and apply downward
Léwenheim-Skolem to U, ., Buy, in M to get M, € [M]=#. Then define p, := tp(a,/M,).

Observe that {p, : v € #A} C S(M,< p) and using part (3) of the definition of the tree
property it is easy to show that: if vy # v, then p,, # p,,. Therefore |[{p, : v € ¥A}| = I
Moreover, using part (3) of the definition of the tree property it follows that any pair of types is
inconsistent. Hence NT'(u, A, 2) > A\*.

The equality and moreover part follow from Proposition 3.3. ]

As we will see later, if we only know that K has the tree property it becomes more complicated
to obtain a lower bound on NT'(-,-,-).

4. STABLE INDEPENDENCE

In this section we deal with stable independence relations. The definition given here for a
stable independence relation is similar to the one given in [LRV19]. The properties given here
are obtained by taking the “closure” of a stable independence relation in the sense of [LRV19];
this is formalized in [LRV19, 8.2].

Definition 4.1 ( [LRV19, 8.4, 8.5, 8.6]). L is a stable independence relation in K if the following
properties hold:

(1) L is an independence relation.

(2) (Symmetry) ALy B if and only if BL, A.

(3) (Uniqueness) Let p,q € S<*°(B; N) with M <xg N and |M|C BCI|N|. If p Ily=q [m
and p,q do not fork over M, then p = q.

(4) (Local character) For each cardinal o there exists a cardinal A (depending on «) such
that: If p € S*(M), then there exists My <x M with ||Mp|| < X and p does not fork
over M.

We begin by bounding NT'(-, -, -).
Theorem 4.2. IfI s a stable independence relation, then
NT(pu, M\ k) < A (D) +K.

In particular, we get that NT (pu, \) < )\"‘1(\L).

Proof. Let \g = k1(L), x = A + k™ and {p, : o < xT} C S(M, < ) for M € K.

By local character Yo < xT3R,, € [M]*(p, does not fork over R,), so we define ® : x* —
[M]* as ®(a) = R,. Then by the pigeonhole principle there is R € [M]* and S C x*t of
cardinality xT such that p, does not fork over R for every o € S. Now define ¥ : S — S(R) as
V() = pa IR, since |S(R)| < 2%, by the pigeonhole principle there is p € S(R) and S’ C S of
size x* such that p, [gr= p for every a € S’. Observe that p, > p and p,, does not fork over R
for every a € S’.

By the extension property and transitivity for each o € S’, there is ¢, € S(M) extending p,,
such that g, does not fork over R. Then by uniqueness, using that for all «, 8 € S” we have that
Qo [R=Pa [R=DP = p3 [rR= q3 [r and that both ¢, gz do not fork over R, we conclude that
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there is ¢ € S(M) such that g, = ¢ for every o € S’. In particular, {p, : a € S’} is consistent
and |S’| > k. Hence NT(p, A\, k) < A + k7.
U

The next corollary follows directly from Proposition 3.3 and the above theorem. A version of
it already appears in [BGKV16, 5.17] and [LRV19, 8.15].

Corollary 4.3. Ifi is a stable independence relation, then K is A\-Galois-stable for every A
such that A"‘ld“) =\

We show that the existence of a stable independence relation implies the failure of the tree
property.

Lemma 4.4. IfK has L a stable independence relation, then K does not have the tree property.

Proof. Let k1(L) = Ao and k < w such that K has the k-tree property. Let u = AJ and
A = 3,(p). By the definition of the (i, A, k)-tree property there are {(a,,By) : n € <#A} such
that:

(1) v € <UA(I1B, | < LS(K)),

(2) Yv € *A({tp(ay;,/Bu;,) : @ < p} is consistent ).

(3) Vn € <FA({tp(ayra/Byra) : @ < A} is k-contradictory).

Realize that A<# = ), so doing a similar construction to that of Lemma 3.5 we have M € K
and for each v € M we fix p, = tp(a, /M, ) such that M, € [M]< and Vo < pu(tp(ay;, /By,) <
Du)-

Observe that if A C #X and {p, : v € A} is consistent then the tree {v [o: a < p,v € A}
is finitely branching by condition (3) of the tree property, hence |A| < 2#. Therefore we can
conclude that for all A C {p, : v € M}, if |A| > (2#)T, then A is inconsistent.

Since ¢f(A\) = p, by Konig Lemma, we have that \* = 3,(p)* > J,(p)" = AT. We
claim that [{p, : v € A*}| > AT. If it was not the case, then there would be S C M with

|S| = AT and {p, : v € S} consistent; but this would contradict the previous paragraph since
(2#)" <3, (p)" = A*. Hence
(1) AP < NT(p, A, (24)F).

On the other hand, by Theorem 4.2, we have that NT(u, A, (2#)T) < Ao 424, Moreover, one
can show that A = )\ and that 2+ < A, hence
2) NT(u, A, (24%) <\

The last two equations gives us a contradiction.

O

The above proof can also be carried out in Shelah’s context of good frames, see [Sh09, §IT]
or [Maz20, §3] for a definition.

Corollary 4.5. Let K be an AEC. If K has a type-full good [\, c0)-frame, then K does not
have the tree property.

Proof sketch. Using local character (in the sense of a good frame) it is easy to show by induction
on |[M|| that ¥p € S(M)3IN € [M]*(p does not fork over N). Using this fact together with
the properties of type-full good [\g, 00)-frame one can show that the proofs of Theorem 4.2 and
Lemma 4.4 go through. O

Remark 4.6. The above corollary goes through in the weaker setting of a type-full good™[Ag, 00)-
frame (see [Maz20, 3.5.(4)]). We do not know if it still goes through in the even weaker setting
of w-good frames (see [Maz20, 3.7]).
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5. *%-SIMPLE INDEPENDENCE

In this section we introduce *-simple independence relations. These are independence relations
that are not stable because there is not a unique non-forking extension, but which are very close
to being stable. This is the case as the existence of a x-simple independence relation implies
stability of the AEC (Lemma 5.15) and the existence of a subu-AEC with a stable independence
relation (Lemma 5.16). Moreover, for first-order theories #-simple independence relations and
stable independence relations are the same. A similar notion is studied in [ShVal8, §6] under
stability assumptions.

Before we introduce *-simple independence relations, let us recall the following generalization
of nonsplitting that was introduced in [BGKV16].

Definition 5.1 ( [BGKV16, 3.14]). We say that A does not explicitly split from B over M,
(nes)

denoted by A L B, if and only if for every C1,Cy C C, if tp(C1/M) = tp(Cy/M) then

tp(AC, /M) = tp(ACy/M).

Let us introduce our new notion.

Definition 5.2. | is a *-simple independence relation in K if the following hold:

(1) L is an independence relation.

(2) (Symmetry) AL, B if and only if BL, A.

(3) (Type-amalgamation) If p € S<(M), M C A,B C N and AL ,;B, then for all ¢ €
S<>®(A4;€),q2 € S<*®(B;¢) and N* O A, B such that q1,q2 > p and q1,q2 do not fork
over M, there exists ¢ € S<°°(N*) such that ¢ > q1,q2 and q does not fork over M.

(4) (Uniform local character) There exists 0 and A cardinals such that: If p € S*(M), then
there exists My <x M with ||Mo|| < XA+ a<? and p does not fork over My. Recall that
(k(L), (L)) are the least (X, 0) with such a property.

(nes)

(5) Lc L.

Remark 5.3. The only difference between stable independence relations and x-simple indepen-
dence relations are conditions (3), (4) and (5). As for (3), while we assume uniqueness in stable
independence relations, we only assume type-amalgamation in *-simple independence relations.
Although this may seem like a minor change, based on our knowledge of forking in first-order
theories this is actually a significant one. As for (4), this is a minor change and we give natural
condition under which local character implies uniform local character (see Fact 5.4 and Corollary
5.7). As for (5), we will show that a stable independence relation satisfies it and it will be used
throughout the section.

The proof of the following fact is the same as that of [LRV19, 8.10], since the hypothesis are
slightly different and the proof is short we repeat the argument for the convenience of the reader.

Fact 5.4. Let Loan independence relation. IfI has local character and (< 0)-witness property,
then L has uniform local character.

Proof. Since L has local character, for each & < 6 we have that ro(L) < co. Let Ay =
sup{ka(L): a < 0}. We show that the pair (Ao, ) is a witness for uniform local character.

Let M € K and p = tp(b/M; N) € S#(M). For each I C 3 with |I| < 0, let M; € [M]*
such that b [; IMIM, this exists by the choice of A\g. Let My = UIQB,|I|<0 Mj;. Observe
that [[Mo]| < Mo + 8<% and (< 6)-witness property together with monotonicity imply that
by, M. O
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The next lemma gives a condition under which a stable independence relation is a x-simple
independence relation.

Lemma 5.5. IfI is a stable independence relation that has (< 0)-witness property, then Lis
a *-simple independence relation.

Proof. We only need to check properties (3), (4) and (5). As for (4), this follows from Fact 5.4.
(5) is basically [BGKV16, 4.2]. So we only need to show the type-amalgamation property.

Let p € S<°(M), M C A,B C ¢, ALyB, 1 € S<°(4;¢) and ¢ € S<*°(B;¢€) and
N* D A, B such that q1,¢q2 > p and ¢1, 2 do not fork over M. Since q; [pr€ S<°(M) and
M <k N*, by the extension property there is ¢ € S<°°(N*) such that ¢ > ¢ [ and g does not
fork over M.

Observe that g [4,q1 € S<®(A,€), q [4,q do not fork over M and (q [4) [mM=p =q1 I,
then by the uniqueness property ((3) of Definition 4.1) we have that ¢ [a= ¢1. Hence ¢; < q.
One can similarly show that q [p= go.

Therefore, ¢ > q1,¢2 and g does not fork over M. O

The next fact gives a natural assumption on K that implies (< #)-witness property.

Fact 5.6 ( [LRV19, 8.8]). If K is fully (< 0)-tame and L is a stable independence relation, then
L has (< 0)-witness property.

Corollary 5.7. If K is fully (< 0)-tame and L is a stable independence relation, then L is a
x-simple independence relation.

We begin by showing that a class with a *-simple independence relation is tame. This extends
[LRV19, 8.16] as they prove it for stable independence relations.
Lemma 5.8. If L is a *-simple independence relation, then K is (r(L) + (2a)<(£(¢))—tame
for types of length «.

Proof. Let N € K and p,q € S*(N) such that p [p=g¢q [p forevery D e P __ T
<w(L)+(a)<t)
Assume that p = tp(a/N) and ¢ = tp(b/N) for a,b € €°.

Consider tp(ab/N), then by local character there is Ny <x N such that tp(ab/N) does not

o —_ o (nes)
fork over Ny and ||No| < k(L) + (2a)<(€(\L). By symmetry and the hypothesis that | C L
we have that:

(nes)
N \J_/ Noab.
Since tp(a/Ny) = p [n,= ¢ [n,= tp(b/Ny) because Ny is small, we have by the definition of
explicitly nonsplitting that tp(alN/Ny) = tp(bN/Np). Hence p = q. O

The next result is the key result for many of the arguments given in this section. The idea of
the proof is similar to that of the proof of weak uniqueness given in [Van06, Theorem 1.4.12].

Lemma 5.9. Let pu, s infinite cardinals. Assume Lisa x-simple independence relation, p >
k(L) + r<tD) If M is p*-model homogeneous, M <x N, p,q € S<*®*(N), p,q do not fork
over M and p [y= q [, then p'o [a= ¢! [ 4 for every A € P.(N) and Iy € P.(|p|).

Proof. Let A, Iy as required and assume that p = tp(a/N), ¢ = tp(b/N) for a,b € €* and « an
ordinal.
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Consider p’o 57 and ¢’° |, then by local character, base monotonicity and using that |Io| < &

there is L <g M such that p’ |5, ¢ as do not fork over L and ||L|| < x(L) + k<) < p.
Let L' the structure obtained by applying downward Lowenheim-Skolem to LUA in N, observe
that | L'|| < p. Since M is pT-model homogeneous, there is f : L’ - M.

__ (nes)
Then by base monotonicity, monotonicity, transitivity and the fact that . C L , we obtain
that:

(nes) (nes)
alp, L Nandb |, L . N.
Let C; = L' and Cy = f[L/]. Realize that L C Cy,Cy C N and tp(Cy/L) = tp(Cy/L),

then by the above equations, the definition of explicitly nonsplitting and the choice of Cy, Cs we
obtain that:

tp(a [, L'/L) =tp(a [, f[L']/L) and tp(b [;, L'/L) = tp(b [1, f[L']/L).
Since by hypothesis p [p= ¢ Ia and f[L'] <x M, we have that tp(a [, /f[L']) = tp(b |1,
/f[L']). Then it follows that tp(a [, f[L']/L) = tp(b |1, f[L']/L). Therefore, by the above
equation and using that A C L', we conclude that p’ [ 4= ¢’ [ 4. (|

The following two corollaries are straightforward, we record them as we will use them in what
follows.

Corollary 5.10. Let p an infinite cardinal. Assume Lisa x-stmple independence relation,
> k(L) and K is p-tame. If M is p*-model homogeneous, M <x N, p,q € S(N), p,q do not
fork over M and p [pr=q [a, then p=q.

Corollary 5.11. Let p,x infinite cardinals. Assume L is a x-simple independence relation,

w> n(i) + /<c<e(\‘/) and K is fully (< k)-tame and type-short. If M is u-model homogeneous,
M <g N, p,q € S<*°(N), p,q do not fork over M and p [pr= q |, then p = q.

Remark 5.12. For K an AEC with joint embedding, amalgamation and no mazimal models,
one can show as in first-order that if A > k > LS(K), M € K<) and A\<" = X, then there is
N € K, such that N is k-Galois-saturated. Moreover, N is k-model homogeneous as Shelah
showed the equivalence between saturation and model homogeneity in [Sh09, §11.1.14].

We obtain a bound for *-simple independence relations.
Theorem 5.13. IfI s a *-simple independence relation, then

NT (i, \ k) < )\(QN(LWG(JJ)) s
Proof. Let Ao = k(L) + 2<Z(J“), X=X 45~ and {po : @ < xt} C S(M, < p) for M € K.
Observe that by the above remark there is M’ extending M such that M’ is (2*°)*-model
homogeneous and ||M'|| = A2 For each a < x ™, fix ¢ € S(M’) such that p, < ¢q, this exist
by amalgamation. Moreover, given o < xT, by local character there is N € K, such that ¢,
does not fork over N. Since (2*0)* = 2% by the remark above there is N’ extending N such
that N’ is (\{)-model homogeneous and ||[N’| = 2*. Since M’ is (2*°)*-model homogeneous,
there is f : N’ - M'. So fix N, = f[N'], realize N, € Kyro, Ny is (AJ)-model homogeneous
and ¢, does not fork over N, by base monotonicity.
Define @ : y* — [M’]2"° as ®(a) = N,. Then by the pigeonhole principle there is N € [M']2™°
and S C xT of cardinality x* such that ¢, does not fork over N for every a € S. Now define
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U :S — S(N) as ¥(a) = g In, since |S(N)| < 22 by the pigeonhole principle there is
q € S(N) and 8" C S of size x* such that ¢, [n= ¢ for every a € S’
Observe that ¢, > ¢ and g, does not fork over N for every a € S’. Then since N is (A\J)-

model homogeneous and K is A\ = R(I)+2<Z(L)—tame (by Lemma 5.8), it follows from Corollary
5.10 that ¢, = ¢g for every o, € S’. In particular, {p, : @ € S’} is consistent and |S’| > &.

Hence NT(u, A\, k) < AP 4k O

The next results show that having a *-simple independence relation implies that K is stable
and that K does not have the tree property.

Corollary 5.14. IfI s a *x-simple independence relation, then K does not have the tree prop-
erty.

Typo<ecl
Proof. Let u = (2”@“”‘2“( ))+ and A =3, (p). Since A<# = ), the same construction as that
of Lemma 4.4 gives us that:

< NT(u, A, (24)9).
On the other hand, by the previous theorem we have that:

$)+2<‘“J”

NT (i, A, (24)F) < A2 Fon =)
Putting together the last two equation we get that A™ < A, which is clearly a contradiction. [J

Lemma 5.15. IfI is a *-simple independence relation, then K is a stable.

Proof. Let A = 22°° and M € K,. By Proposition 3.3.(1) [S(M)| < NT(A, A,2). Then by the
previous theorem we have that |S(M)| < . O

The next result shows that a %-simple independence relation is close to being a stable inde-
pendence relation. Recall that K* ™ is the yT-AEC (see [BGLRV16]) which models are the
T -model homogeneous models of K and which order is the same as that of K.

Lemma 5.16. Assume K is fully (< k)-tame and type-short. IfI is x-simple independence
L

relation and p > k(L) + £<HL) | then KP ™ has a stable independence relation. This is

precisely the restriction ofI to pu+-model homogeneous models.

Proof. A big monster model of K is a monster model of K+ mb For M € K’ﬁ'mh7 A BC¢
define:

(+) _
AL B if and only if AL ,,B.
()

We claim that L is a stable independence relation in Kr mh Tt s straightforward to show
that it is an independence relation that satisfies symmetry. Uniqueness follows from Corollary
5.11. As for local character, we have that given o and p € S*(M) with M € K+ mh there is

(*) _ -
N € K+ -mb guch that p does not L-forks over N and ||N| < x(L) + a<tly 4 LS(K)*. O

Remark 5.17. The existence of a stable independence relation in a sub-u-AEC of K for K
a class with an *-simple independence relation and fully tame, also follows from Lemma 5.15,
[Vas16b, 4.15] and [LRV19, 10.1].
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The next lemma shows that #-simple independence relations are canonical. It extends [LRV19,
9.1] as in [LRV19, 9.1] is shown (based on [BGKV16] ) that if an AEC has a stable independence
relation then this is canonical. The proof relies heavily on [BGKV16] so we will only sketch it.
The proof uses in a nontrivial way the type-amalgamation property, specifically Proposition 6.4.

(1) (2) 1 (2
Lemma 5.18. If L and L are x-simple independence relations, then L = L.
Proof sketch. The arguments given in [BGKV16, 4.10, 4.11, 4.13] can be carried out in our setting
changing nonsplitting for explicitly nonsplitting to obtain the hypothesis of [BGKV16, 4.7]. Then
by applying [BGKV16, 4.7] (but changing nonsplitting for explicitly nonsplitting) twice, it follows

n @

that L = L. One of the hypothesis of [BGKV16, 4.7] is that the relation is contained in explicitly
nonsplitting, it is in this step that it is crucial that x-simple independence relations are contained
in explicitly nonsplitting. ]

We finish this section by showing that the results in this section can be used to obtain a new
characterization of stability assuming simplicity for first-order theories. In order to present it,
let us recall the notion of nonsplitting for first-order theories. A complete type p in T does not
split over A a subset of the monster model if and only if for every @,b € Dom(p) and ¢(Z,7)
first-order formula, if tp(a/A) = tp(b/A), then ¢(Z,a) € p if and only if ¢(F,b) € p. This notion
was introduced by Shelah in Definition 2.2 of [Sh3].

Lemma 5.19. Let T a simple complete first-order theory. The following are equivalent.
(ns) (ns)
(1) L € L for every M model of T, where L denotes first-order non-forking and L
M M

denotes first-order nonsplitting.
(2) T is stable

Proof. Lemma 5.9, Theorem 5.13 and Lemma 5.15 can be carried out if one replaces explicitly
nonsplitting for nonsplitting in complete first-order theories.
Since T is stable, non-forking has uniqueness (stationarity) over models. Under this

(ns)
hypothesis it is easy to show that L. C L for every M model of T (a proof is given in [BGKV 16,
M M

4.2)). O

We can also show that for complete first-order theories the notion of a *-simple independence
relation and stable independence relation coincide.

Lemma 5.20. Let T' a complete first-order theory. IfI is a *-simple independence relation on
(Mod(T), <), then L is a stable independence relation on (Mod(T),=).

Proof. Let L a s-simple independence relation on (Mod(T), <). By Lemma 5.15 T is an stable
theory, so first-order non-forking is a stable independence relation. We denote first-order non-
forking by L. Since (Mod(T), =) is fully (< Wg)-tame, it follows from Corollary 5.7 that L

is a x-simple independence relation. Then by the canonicity of *-simple independence relations
(Lemma 5.18) we conclude that L = L. Therefore, L is a stable independence relation. ]

6. SIMPLE INDEPENDENCE

We introduce simple independence relations and begin their study. We bound the possible
values of NT'(-,-,-) under the existence of a simple independence relation and as a corollary we
are able to show the failure of the 2-tree property. As in the previous section we are assuming
Hypothesis 2.1.
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Definition 6.1. | is a simple independence relation in K if the following properties hold:

(1) L is an independence relation.

(2) (Symmetry) ALy B if and only if BL y; A. -

(3) (Type-amalgamation) If p € S<®(M), M C A,B C N and ALl B, then for all ¢, €
S<®(A;€),q2 € S<®(B;€) and N* 2 A, B such that q1,q2 > p and q1,q2 do not fork
over M, there exists ¢ € S<®°(N*) such that ¢ > q1,q2 and q does not fork over M.

(4) (Uniform local character) There exists 0 and A cardinals such that: If p € S*(M), then
there exists My <x M with ||[Mo|| < XA+ a<? and p does not fork over My. Recall that
(k(L), (L)) are the least (X, 0) with such a property.

Remark 6.2. Let T' be a complete first-order theory. If T' is simple and L s first-order non-
forking, then L is a simple independence relation.

Remark 6.3. It is clear that a x-simple independence relation is a simple independence relation
as the only difference between both definitions is that in simple independence relations we do not
(nes)

assume that L € L . Moreover, by Corollary 5.7 it follows that in fully (< 0)-tame AECs,
every stable independence relation is simple.

The next technical proposition is important as it shows that even when we are considering
independence relations over sets in some sense models are ubiquitous

Proposition 6.4. Lefti a simple independence relation. If AiMB, then there is M* € K with
BUM C M* and AL, M*.

Proof. Assume AL ,;B. By normality and monotonicity we can conclude that AL ,,BUM. Let
M’ € K the structure obtained by applying downward Lowenheim-Skolem in € to M U B C M’

Consider p = tp(A4/M), q1 = tp(A/M UB) and g2 = tp(A/M). Observe that p < q1,¢2, 1 €
S<*°(MUB; €) does not fork over M, go € S<°°(M) does not fork over M, M C MUB, M C M’
and M U Bl ;M. Recognize that p,q;,q2 and M C M, M U B C M’ satisfy the hypothesis of
the type-amalgamation property, then there is 7 € S<®(M’) > ¢, g2 such that r does not fork
over M.

Suppose that r = tp(A’/M’), since r > ¢y there is f € Autpup(€) such that f[A’] = A. Since
r does not fork over M, we have that A’.L,,M’. Then by invariance f[A’].L ;s f[M']. Observe
flA]=A, f[M] =M, so AL,,;f[M']. Finally, realize that M U B C f[M’], hence M* := f[M’]
satisfies what is needed. d

The following notion generalizes the chain condition introduced in [Les00, 2.3].

Definition 6.5. We say L has the t-bound condition if: YA € [LS(K),00)VM € K\Vk €

[LS(K),A\[Vp € S(M, k)Vu € [k(L) + r,\|( If ud(i’) =p and {ps : a < (2M)T} C S(M, < p)
are such that Yo < (2)T(p,, is a non-forking extension of p), then there are A C (2)T and q a
type such that |A] = ¢ and VYo € A(po < q) ). Moreover, we say that L has the strong t-bound
condition if the type q is a non-forking extension of p.

The following is a generalization of [Les00, 2.4], which is based on an argument of Shelah
which appeared in [GIL02, 4.9]. Compared to [Les00, 2.4], instead of showing that two types are
comparable we show that countably many types are comparable, [Les00, 2.5] mentions that this
can be done in the first-order case. We have decided to present the argument to show that it
does come through in this more general setting and because we will extend it in Lemma 7.1.
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Lemma 6.6. Ifi is a simple independence relation, then L has the Ry-bound condition.®

Proof. Let A\, i,k € Car, M € Ky, R € [M]*, p € S(R) and {po € S(N,) : a < (2)*} C
S(M,< u) as in the definition of the Rp-bound condition. By the extension property we may
assume that all N, have size pu.
We build {M,, : @ < (2")T} strictly increasing and continuous chain such that:
(1) Va € (2")T (M, € Kau).
(2) R <k Mp.
(3) Vo€ (2")*(No <k Maqt1)
Let S={a < (2")" i cf(a) = pt} and ® : S — (2#)" be the function where ®(a) = min{s :
tp(No/M,) does not fork over Mg}. Observe that @ is regressive by local character and the fact

that ud(\‘/) = p. Then by Fodor’s lemma there is S* C S stationary and o* < (2#) such that
Vo € 5*(tp(No/M,) does not fork over M,«). We may assume without loss of generality that
S = S5* and a* = 0. Hence,

(3) Va € S(tp(No/M,) does not fork over My).

By local character and using again that ud(\L) = p we have that Vo € SIR, € [Mo]*(tp(Na/Ma) [,
does not fork over R,). Define ¥ : S — [My]* as ¥(a) = R,. Then by the pigeonhole principle,
since |[Mp]"| = 2#, we may assume that there is a R* € [My]* such that:

(4) Vo € S(tp(No/My) Ta, does not fork over R").

By base monotonicity we may further assume that R <x R*. Then applying transitivity to
the previous two equations we obtain that:

(5) Vo€ S(Ny L g M,).

Moreover, given o« € S p, € S(N,) does not fork over R and N, <x M,+1. Applying
extension and transitivity, there is ¢, € S(My41) extending p, and g, does not fork over R. By
base monotonicity, since R <x R* <x Mu+1, we also have that ¢, does not fork over R*.

Let T : S — S(R*) be defined as T(a) = ¢» [r+, by the pigeonhole principle we may assume
that there is ¢ € S(R*) such that:

(6) Vo € S(qq > q and g, does not fork over R*).
Let {a, : m € w} C S increasing set of ordinals. We build {r,, : n € w} such that:
(1) 70 = Qop-
(2) Tn+1 Z Tn;pozn_H-
3)

(3) rn € S(My, +1)-
(4) r, does not fork over R.

The base step is given so let us do the induction step. By equation (5) N, +1$R* M, Since

Qpg1t
ap +1 < apgy €5, we have that M, 11 <k Ma,,,.,, so by monotonicity NMHIR*MO(”H and
by normality we have that N, , U R* L p.M,, 1. Realize that ¢ € S(R*), Qansr [Na,, URE
S(Na,., UR*C), ry € S(Mgy,,4+1) and M, 41 substituted by p, qi, g2 and N* satisfy the
hypothesis of the type-amalgamation property. Therefore there is 7,41 € S(M,,,,,+1) such that
T4l 2 Gani, N UR*,Tn and 7,41 does not fork over R*.

“n+41

6Syrnmetry is not used to obtain this result.
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In particular we have that 7,41 > 7, pa,,, (since qa,,, > Pa,,,) and by transitivity ( since
Tntl = Ty B < Mg, 41 and 1, does not fork over R) we have that r,; does not for over R.
This finishes the construction.

Finally {r, € S(M4,+1) : n € w} is an increasing chain of types so by [Bal09, 11.3], there
is 7 € S(U,ew Ma, +1) such that r* > r, for each n € w. In particular, by clause (2) of the
construction, we have that ¥n < w(p,, < r*), which is precisely what we need to show. g

The following generalizes [Les00, A] to the AEC context. The proof is similar to that of
Theorem 4.2, but using the Ny-bound condition instead of the uniqueness property.

Theorem 6.7. If L is a simple independence relation, k(L) < < X and udd“) =, then
NT (1, A\, Ro) < ALY 4 on,

In particular, NT(u, ) < /\“(\‘/) + 20

Proof. Let Ao = s(L), x = A +2* and {p, € S(Na) : @ < xT} C S(M,< p) where
M € K. Observe that by the extension property we may assume that each N, € K. As
in the proof of Theorem 4.2 there are S C x* of size YT, R € [M]* and p € S(R) such that
VYo € S(ps > p and p, does not fork over R).

By the Ng-bound condition, where the cardinal parameters are as in the definition except
that k := A9 and all the model theoretic parameters are the same with {p, : @ € S} being
the collection of types and dom(p) = R, we obtain that there are countable A C S and ¢
a type such that ¢ > ¢, for each @ € A. In particular {g, : a € A} is consistent. Hence
NT (11, A, Rg) < Ao+ 21, O

Remark 6.8. Observe that when L is a stable or x-simple independence relation Theorem 4.2
and 5.13 give us a better bound. Moreover, Theorem 4.2 and 5.13 give us a bound for each
k € Car while the above corollary only gives us a bound when k is countable, as we will see in
Theorem 7.2 more can be said if we assume the (< No)-witness property.

The following result shows that we can not have the 2-tree property if K has a € simple
independence relation.

Corollary 6.9. IfI s a simple independent relation, then K does not have the 2-tree property.

Proof. Suppose for the sake of contradiction that K has the 2-tree property.

Let Ao = k(L), p = (:le(I)+()\5r))+ and A = J,(u). Observe that the following cardinal

arithmetic equalities hold:

(1) ud(\‘/) = 1, using that Cf(jE(T)Jr (Ad)) = £(L)T and Hausdorff formula.
(2) AMo 420 = ), using that cf(\) = p > Ao and that 3, (u) > 2~.
(3) A<t = X, using that cf(\) = p.
Applying Theorem 6.7, this is possible by the first cardinal arithmetic equality, and by the
second cardinal arithmetic equality we get that:

(7) NT (11, \) < A0 21 = A
Applying Lemma 3.5, this is possible by the third cardinal arithmetic equality, we get that
(8) A< NT (s, A).

So putting inequalities (7) and (8) we obtain that A* < A, but this is a contradiction to
Kénig’s Lemma since cf(\) = p. O
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Remark 6.10. In the result above, instead of showing the failure of the 2-tree property, we would
have liked to obtain the failure of the tree property. We will show in Corollary 7.3 that this is
the case if L has the (< No)-witness property for singletons.

The next result follows trivially from the results of this section.

Corollary 6.11. (1) — (2) — (3) where:

(1) L a simple independence relation.
(2) N3OV, A If Mo < pu < X and p=? = p, then NT(u, \,Rg) < Ao 4 21),
(3) K does not have the 2-tree property.

Proof. The first implication is Theorem 6.7 and the second one is Theorem 6.9. (|

7. SIMPLE INDEPENDENT RELATIONS WITH THE WITNESS PROPERTY

In this section we continue the study of simple independence relations under locality assump-
tions. We begin by showing the failure of the tree property under the existence of a simple
independence relation with (< Rg)-witness property. Then we study simple independence rela-
tions with (< LS(K)™)-witness property and obtain some basic results.

7.1. Failure of the tree property. The next argument extends the one presented in Lemma
6.6.

Lemma 7.1.7If$ is a simple independence relation with the (< Ro)-witness property for sin-
gletons, then L has the strong (2#)-bound condition.

Proof sketch . Everything is the same as the proof of Lemma 6.6 until equation (6), but in this
case instead of building only countably many 7/, s we will build (2#)* many of them.

Let {a; 14 < (2#)*} C S an increasing set of ordinals. We build {r; : i < (2#*)*}, {a; : i <
(2#)T} and {f;; : j <i < (2")"} such that:

(1) 10 = gay = tP(ao/Mag+1).

(2) Ifk<j<i< (2")7", then fr;= fjio fr;-

(3) Vi <i(fii Mo, 1 =1d01, 45 fi(a;) = a; and f;; € Aut(Z)).
(4) r; = tp(a;/My, 1) does not fork over R.

(5) T Z Po; -

(6) V5 <i(r; <m).

The construction in the successor step is similar to that of Lemma 6.6, so we only show how to
do the the step when ¢ is a limit ordinal. Since {r; : j < i}, {a; : j < i} and {fr; : k< j <i}isa
directed system, by [Bal09, 11.3], there is p* = tp(a*/J;.; Ma,+1) upper bound for {r; : j <}
and {f}, : j < i} satisfying (2) and (3) but with a* substituted for a;.

Using (< Ng)-witness property, invariance and monotonicity it is easy to show that p* does
not fork over R. Observe that (J; ; Ma,;+1 C Ma,, N, LM, (by equation (5) of Lemma
6.6) and p* > 79. Using these, one can show that ¢ € S(R"), qa, [N, ur-€ S(No, U R*;€),
p* € S(Uj<i Mg, 1) and M, 11 substituted for p, g1, g2 and N* satisfy the hypothesis of the
type-amalgamation property. Therefore, there is r; € S(M,,+1) such that r; > qa, N, Ur*,D*
and r; does not fork over R*. '

Let r; := tp(a;/Ma,+1). Since 7; U, Ma, 2= P", there is g € Aut(€) such that g(a*) = a;
and g rU,-<iMaj+1: ide<i Mo, 11- For each j < i, let f;; := go f;. It is easy to show that
ri,ai, {fji : j < i} satisfy (1) through (6), for conditions (4)-(6) see the explanation given in
Lemma 6.6 . This finishes the construction.
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We have constructed {(r;, a;, {fx,j : k < j < i}): i < (2*)"} a coherent sequence of types, then
by [Bal09, 11.3] there is 7 € S(U; (2u)+ Ma,+1) such that Vi < (2#)*(r; < r*). In particular,
Pa; < 1* for every i < (2#)T, since by condition (5) p,, < r; for each i < (2#)*. Moreover, using
the (< Ng)-witness property it follows that r* does not fork over R. 0

Using the above result instead of Lemma 6.6 we are able to extend Theorem 6.7 to uncountable
cardinals. As the proof is similar to that of Theorem 6.7 we omit it.

Theorem 7.2. Ifi is a simple independence relation with the (< Ng)-witness property for

singletons, (L) < u < X\ and ud(\‘/) = u, then

NT(, A, (24)+) < A0 4o,
As a corollary we obtain the failure of the tree property.

Corollary 7.3. IfI is a simple independence relation with the (< No)-witness property for
singletons, then K does not have the tree property.

Proof sketch . Let A\g = k(). Let u and X as in Theorem 6.9, i.e., yu = (:Z(I)
A =3, (u). Then doing a similar construction to that of Lemma 4.4 we get that:
(9) A < NT(u, A, (247).

But by Theorem 7.2 we have that NT'(u, A, (2#)%) < Ao 4 2% then by choice of y and \ we
have that Ao 4+ 2/ = \, so:

(10) NT(p, A, (24)7) < A

Observe that equations (9) and (10) give us a contradiction.

+()\5r))+ and

O

Remark 7.4. It is natural to ask which relations satisfy the hypothesis of this subsection, we
give two classes of examples:
o Let T be a complete first-order theory. If T is simple and L is first-order non-forking,
then L is a simple independence relation with the (< Wo)-witness property for singletons.
This follows from the fact that forking has finite character.
o If L is stable independence relation and K is fully (< Ro)-tame, then L is a simple
independence relation with the (< No)-witness property for singletons. This follows from
Corollary 5.7, Fact 5.4 and Lemma 5.5.

7.2. Simple independence relations with (< LS(K)™)-witness property. We continue the
study of simple independence relations but with the additional hypothesis of the (< LS(K)™)-
witness property for singletons. Recall that we have shown that if x1 (L) = LS(K). then L has
the (< LS(K)™)-witness property for singletons (Lemma 2.13).

The following simple proposition will be used to study the Lascar rank in the next section.

Proposition 7.5. Let L a simple independence relation with (< LS(K)™)-witness property for
singletons. If M <x N, p € S(M), q € S(N) and q is a forking extension of p, then there is
M* <k N with |M*|| = |M||, M <x M* and q [y~ a forking extension of p.

Proof. Assume that ¢ = tp(b/N). Suppose for the sake of contradiction that it is not the case,

hence for every M* <g N with ||[M*|| = [|M| and M <x M* it holds that ¢ [+ does not fork

over M. We will show, using the (< LS(K)™)-witness property for singletons, that bl ,,N.
Let A C N and |A| < LS(K), then apply downward Lowenheim-Skolem to A U M inside

N to get M* € Kjpz) such that AUM C M* <k N. Then by assumption biMM*. So by
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monotonicity bL,A. Therefore, by (< LS(K)')-witness property for singletons, we conclude
that bl 5, N, which contradicts the hypothesis that ¢ forks over M. 0

The next lemma generalizes [Kim14, 2.3.7].

Lemma 7.6. Let L a simple independence relation that has (< LS(K)™)-witness property for
singletons and without uniform local character. The following are equivalent.

(1) K1 (J,) =A.
(2) There are no {M; : i < AT} and p € S(My+) such that {M; : i < Xt} is strictly
increasing and continuous chain and p forks over M; for every i < A\*.7

Proof. Assume for the sake of contradiction that there is {M; : i < AT} a strictly increasing
and continuous chain and p € S(M,+) such that p forks over M; for every i < A*. Then by
hypothesis there is M’ € [My+]* such that p does not fork over M’. Then by regularity of A* and
base monotonicity there is ¢ < AT such that py+ does not fork over M;. This is a contradiction.

Assume for the sake of contradiction that x1(L) # A, then there is ¢ = tp(a/N) € S(N)
such that g forks over M for every M € [N]*. Realize that || N| > At as ¢ does not fork over N.

We build {M; : i < AT} strictly increasing and continuous chain such that:

(1) For every i < AT, M; € K, and M; <g N.
(2) For every j > 1, q [, forks over M;.

Before we do the construction observe that this is enough by taking M+ = U, y+ M;, {M; :
i<At}andp=g¢q Mgy -

In the base step, just take any My € [N]*. If i < At limit take unions and and it works
by monotonicity, so the only interesting case is when ¢ = j + 1. Then by (< LS(K)™)-witness
property there is B C N of size LS(K) such that p [p forks over M; and pick ¢ € N\M;. Let
M;4+1 be the structure obtained by applying downward Léwenheim-Skolem to B U M; U {c} in
N. This works by the choice of B and monotonicity. ]

Realize that even simple assertions as the ones above become very hard to prove or perhaps
even false if the independence relation does not have some locality assumptions.

8. SUPERSIMPLE INDEPENDENCE AND THE U-RANK

In this section we introduce supersimple independence relations and show that they can be
characterized by the Lascar rank under a locality assumption on the independence relation. We
also show that the existence of a supersimple independence relation implies the (< Rg)-witness
property for singletons in classes with intersections.

Let us introduce the notion of a supersimple independence relation.

Definition 8.1. | is a supersimple independence relation if the following properties hold:

(1) Lisa simple independence relation.
(2) (Finite local character) For every § limit ordinal, {M; : i < ¢} increasing and continouos
chain and p € S(Ms), there is i < § such that p does not fork over M.

Remark 8.2. Let T' be a complete first-order theory. If T is supersimple and L s first-order
non-forking, then L is a supersimple independence relation.

The following is straightforward but will be useful.

Lemma 8.3. If L is a supersimple independence relation, then ry (L) = LS(K).

"This generalizes the first-order notion of a forking chain.
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Proof sketch. The proof can be done by induction on the cardinality of the domain of the type.
The base step is clear because types do not over their domain and for the induction step use that
L has finite local character. O

The above lemma together with Lemma 2.13 can be used to obtain the next result.

Corollary 8.4. If L is a supersimple independence relation, then L has the (< LS(K)™")-witness
property for singletons.

The next lemma shows that supersimplicty and stability imply superstability.

Lemma 8.5. IfI is a stable and supersimple independence relation, then K is Galois-stable in
a tail of cardinals®.

Proof. Since L is a stable independence relation, by Corollary 4.3 K is a Galois-stable AEC, so
let Ag be the first stability cardinal. We show by induction on u > A\¢ that K is u-Galois-stable.

The base step is clear, so let us do the induction step. We proceed by contradiction, let
M € K, and {p; : i < pt} C S(M) an enumeration of different Galois-types. Let {M, :
a < p} € Ko, an increasing chain of submodels of M such that Ua<ﬂ M, = M. Then by
supersimplicity for every i < p* there is a; < p such that p does not fork over M,,. Then by
the pigeonhole principle and using that .l has uniqueness, one can show (as in Theorem 4.2)
that there are i # j < p* such that p; = p;- This is clearly a contradiction. Therefore, K is
u-Galois-stable. O

It is worth noticing that Lemma 7.1 can be carried out with the finite local character assump-
tion instead of the (< Ng)-witness property for singletons. The idea is that by applying finite
local character and transitivity in limit stages one can show that the type constructed does not
fork over R (where R is the one introduced in condition (4) of Lemma 7.1).

Corollary 8.6. IfI 1s a supersimple independence relation, then
e if k(L)< pu<\and udd“) = 1, then

NT (A, (29)%) < XD 4o,
e K does not have the tree property.

8.1. Lascar rank. The Lascar rank was extended to the AEC context by Boney and the first
author in [BoGrl17].

Definition 8.7 ( [BoGrl7, 7.2]). We define U with domain a type and range an ordinal or oo
by, for any p € S(M)

(1) U(p) = 0.

(2) U(p) > « if and only if U(p) > B for each 5 < c.

(3) U(p) > B+1 if and only if there are M’ >x M and p’ € S(M') with |M'|| = ||M||, p’ a

forking extension of p and U(p’) > .
(4) U(p) = « if and only if U(p) > « and it is not the case that U(p) > o+ 1.
(5) U(p) = oo if and only if U(p) > « for each o ordinal.

The next couple of results show that U is a well-behaved rank. The proofs are similar to
the ones presented in [BoGrl7, §7], but we fix a minor mistake of [BoGrl17, §7]. The arguments
of [BoGrl17, §7] only work when the models under consideration are all of the same size, we are

8This is equivalent to any notion of superstability in the context of AECs if one assume that the AEC has a
monster model and is tame by [GrVasl7] and [Vasl8].
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able to extend the arguments for models of different sizes by using (< LS(K)™)-witness property,
specifically Proposition 7.5.

Lemma 8.8. Let L a simple independence relation with (< LS(K)™)-witness property for sin-
gletons, then the U-rank satisfies:

(1) ( [BoGri17, 7.4]) Invariance: If p € S(M) and f: M = M’', then U(p) = U(f(p)).

(2) Monotonicity: If M <x N, p € S(M), g € S(N) and p < q, then U(q) < U(p).

Proof. We provide a proof for (2) based on [BoGrl7, 7.3]. We prove induction on « that: if
p < g, then if U(q) > «, then U(p) > «. The base step and limit step are trivial so assume
that & = 84 1 and that U(q) > 8+ 1. By definition there is N’ >k N and ¢’ € S(N’) with
IN‘l = INl, ¢ > q, ¢ forks over N and U(q’) > /3. Observe that by monotonicity ¢’ forks over
M and clearly ¢’ > p. Then by Proposition 7.5 there is M’ >k M with |M’|| = [|M||, ¢’ s> p
and ¢’ [ forks over M. Since ¢’ [y < ¢', by induction hypothesis U(¢’ [pr) > 8. Therefore,
by the definition of the U-rank U(p) > 5 + 1. O

Lemma 8.9. Let L a simple independence relation with (< LS(K)™)-witness property for sin-
gletons. Let M <x N, p € S(M) and q € S(N) with p < q and U(p),U(q) < co. Then:

U(p) = U(q) if and only if q is a non-forking extension of p.

Proof. Assume for a sake of contradiction that ¢ forks over p. Then by Proposition 7.5 there
is M* € K with ||M*|| = ||M||, ¢ [m+> p and ¢ [p+ forks over M. Then from monotonicity of
the rank and the definition of the U-rank, we can conclude that U(p) > U(q) + 1, which clearly
contradicts our hypothesis.

The same argument given in [BoGrl7, 7.7] can be carried out in our context due to
Proposition 6.4. (|

Fact 8.10. ( [BoGri17, 71.8]) Let L a simple independence relation with (< LS(K)™T)-witness
property for singletons. For each pu > LS(K), there is some ax , < (2*)* such that for any
MeK,, ifU(p) > ak u, then U(p) = oco.

The proof of the following lemma is similar to that of [BoGrl7, 7.9].

Lemma 8.11. Let L a simple independence relation with (< LS(K)™")-witness property for
singletons. Let M € K,, and p € S(M). The following are equivalent.
(1) U(p) = o0
(2) There is an increasing chain of types {pn : n < w} such that pg = p and pp41 is a forking
extension of p, for each n < w.

Proof. Let ak,, the ordinal given by Fact 8.10. We build {M,, : n < w} and {p,, € S(M,,) :
n < w} by induction such that:

(1) po=p-

(2) M, € K,.

(3) pn41 is a forking extension of p, for every n < w.

(4) U(pn) Z K + 1.
The base step is given by condition (1). As for the induction step, we have by induction that
U(pn) > ak,, + 1. Then by definition of the U-rank there is M1 > M, and prpy1 € S(Mp41)
a forking extension of p, such that |[M, 41| = ||M,|| = p and U(pn+1) > ak,u. Observe that
since U(pn4+1) > ok, and M, 1 € K,,, we have that U(py+1) = 00, so U(pn+1) > ak,, + 1.

Let {p, : n < w} an increasing chain of types such that po = p and p,+1 is a forking

extension of p,, for each n < w. We prove by induction that for each a € Or(Vn € w(U(p,) >
a)). The base step and limit case are trivial so assume that « = §+ 1 and take n € w. By
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induction hypothesis U(pp4+1) > S and by hypothesis p, 11 is a forking extension of p,. Then

by Proposition 7.5 there is M* € K with [|[M*| = |[dom(pn)|l, Pn+1 s> D and pry1 [are
forks over dom(p,,). Then by monotonicity of the rank and the definition of the U-rank we can
conclude that U(p,) > f+1 = a. O

With this we obtain our main result regarding the relationship between a supersimple inde-
pendence relations and the U-rank . This generalizes a characterization of supersimplicity for
first-order theories [Kim14, 2.5.16].

Theorem 8.12. Let L a simple independence relationship with (< No)-witness property for
singletons. The following are equivalent.

(1) L is a supersimple independence relation.
(2) If M € K and p € S(M), then U(p) < oo.

Proof. Suppose there is M € K and p € S(M) such that U(p) = co. Then, by Lemma
8.11, there is an increasing chain of types {p, : n < w} such that py = p and p,41 is a forking
extension of p,, for every n < w.

Since we have that {p, : n < w} is an increasing chain of types, by [Bal09, 11.3], there
is po € S(U, <, dom(p,)) such that p, > p, for each n < w. Then, by the definition of
supersimplicty, there is n < w such that p,, does not fork over dom(p,,). Hence by monotonicity
Pw [dom(pnsr)= Pnt1 does not fork over dom(p, ), which contradicts the fact that p, 1 is a forking
extension of p,,.

Assume for the sake of contradiction that .l is not a supersimple independence relation,
then there are § limit ordinal and {IV; : ¢ < §} increasing and continuous chain and p € S(Nj),
such that p forks over N; for every ¢ < .

We first show that for every i < ¢ there is j; € (¢,9) such that pj, forks over N;. Let i < ¢
and suppose for the sake of contradiction that p; does not fork over N; for each j € (i,6). Then
using the (< Wg)-witness property for singletons, as in Proposition 7.5, one can show that p does
not fork over N;, contradicting the hypothesis that p forks over N;.

Then one can build by induction {i, : n < w} C ¢ increasing such that {p;, : n < w} is an
increasing chain of types with p;,, a forking extension of p;, for each n < w where p;, =p [n, -
Therefore by Lemma 8.11 we can conclude that U(p;,) = oo, this contradicts the fact that
U(pi,) < oo by hypothesis. O

8.2. A familiy of classes with the (< Ny)-witness property. In this subsection we show
that in classes that admit intersections one obtains the (< Ng)-witness property for singletons
from supersimplicity. We begin by recalling the definition of classes that admit intersections,
these were introduced by Shelah and Baldwin.

Definition 8.13 ( [BaSh08, 1.2] ). An AEC admits intersections if for every N € K and
A C|N| there is My <g N such that |Mo| = ({M <k N: AC|M|}. For N € K and A C |N|,
we denote by clf (A) = ({M <k N : A C |M|}, if it is clear from the context we will drop the
K. We write cl(A) for cl%(A) where € is a monster model of K and K is clear from the context.

Below we provide the properties of AECs that admit intersections that we will use, for a more
detailed introduction to AECs that admit intersections the reader can consult [Vasl7b, §2].

Fact 8.14. Let K be an AEC that admits intersections.
(1) If AC BC N, then cl¥(A) <k ™ (B).
(2) If AC M and M € K, then cl(A) <x M.
(3) (Finite character) Let M € K and a € cl™(B), then there is By Cyi,, B such that
a € cd™(By).
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Proof. (1) and (2) are trivial and (3) is [Vas17b, 2.14]. O

We show that finite local character is actually witnessed by a finite set in classes with inter-
sections.

Lemma 8.15. Let K be an AEC with a monster model that admits intersections and L a simple
independence relation. The following are equivalent.
(1) (Finite local character) For every § limit ordinal, {M; : i < ¢} increasing and continouos
chain and p € S(Ms), there is i < § such that p does not fork over M.
(2) For every M € K and p € S(M), there is D Cg,, M such that p does not fork over cl(D).

Proof. The backward direction follows trivially using monotonicity, so we show the forward
direction.
Let M € K and p € S(M), we show by induction on A < ||M|| the following:

(¥)x : For every A € P(M) and p € S(cl(A)) , there is D Cap, M s.t. p does not fork over cl(D).

Observe that this is enough as cl(M) = M. So let us do the proof.

Base: If A is finite (x), is clear because given p € S(cl(A)), p does not fork over cl(A). So
let us do the case when A = Rg. Let A = {a; : ¢ < w} an enumeration without repetitions
and p € S(cl(A)). Let M; = cl({a; : j < i}) for every i < w and M, = |J,., M;. Observe
that {M; : i < w} is an increasing and continuous chain and J;_,, M; = cl(A) by the finite
character of the closure operator. Then by (1) there is ¢ < w such that p does not fork over
M; =cl({a; : j <i}). So D ={a; : j < i} is as needed.

Induction step: Let A an uncountable cardinal and suppose that (), holds for every pu < .
In this case the proof is similar to that of the base step when A = Ry. The only difference is
that on top of using (1), one uses the induction hypothesis and transitivity of the independence

relation.
O

Corollary 8.16. Let K be a class that admits intersections. IfI is a supersimple independence
relation, then L has the (< Rg)-witness property for singletons.

Proof. Let M <k N and a € € such that aIMB for everyj Cgqn N.
By the previous theorem there is D Cg, N such that aJ/cl( D)N , then by base monotonicity

aIEl( panN. On the other hand, by hypothesis aIMD7 then by normality, monotonicity and

Proposition 6.4 it follows that aIﬂcl(DM ). Therefore, applying transitivity to aIMcl(DM )
and a.L yparyN we obtain that a.l 5, N. O

9. FUTURE WORK

In [KiPi97, 4.2] it is shown that if a complete first-order theory is simple, then there is a
canonical independence relation satisfying the type-amalgamation property. In [BGKV16] it is
shown that stable independence relations are canonical and in Lemma 5.18 we showed that -
simple independence relations are canonical. So it is natural to ask if the same holds true for
simple and supersimple independence relations.

Question 9.1. If K has La simple or supersimple independence relation, is L canonical?

It is known that for a complete first-order theory 7', T" is simple if and only if T" does not have
the tree property (see for example [GIL02, 3.10]). In Sections 6 and 7 we showed some instances
of the forward direction for simple independence relations (Corollary 6.9 and Corollary 7.3). So
we ask the following:
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Question 9.2. If K does not have the tree property, does K have Loa simple independence
relation?

Another notion that we studied in this paper is that of the witness property for independence
relations. This seems to be a very strong hypothesis that can be taken for granted in first-order
theories as forking has finite character. Regarding it we ask:

Question 9.3. Can Fact 5.6 be extended to simple independence relations? More precisely, if
K is fully (< 0)-tame and L is a simple independence relation, does L have the (< 0)-witness
property?

A related question is the following:
Question 9.4. Is Corollary 8.16 true for all AECs with a monster model?

Moreover, we used the witness properties a few times in this paper, see for example Lemma 7.1
and Theorem 8.12. An interesting question would if the use of the witness property is necessary
in those arguments where we use it.

Finally, in [LRV19, 8.16] it is shown that the existence of a stable independence relation implies
that the AEC is tame. We extended this result for x-simple independence relations in Lemma
5.8, so a natural question to ask is:

Question 9.5. If K has La simple or supersimple independence relation, is K tame?
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