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Abstract. We prove that from categoricity in λ+ we can get categoric-
ity in all cardinals ≥ λ+ in a χ-tame abstract elementary classes which
has arbitrarily large models and satisfies the amalgamation and joint
embedding properties, provided λ > LS(K) and λ ≥ χ.

For the missing case when λ = LS(K), we prove that K is totally
categorical provided that K is categorical in LS(K) and LS(K)+.

1. introduction

The benchmark of progress in the development of a model theory for
abstract elementary classes (AECs) is Shelah’s Categoricity Conjecture.

Conjecture 1.1. Let K be an abstract elementary class. If K is categorical
in some λ > Hanf(K)1, then for every µ ≥ Hanf(K), K is categorical in µ.

With the exception of [MaSh], [KoSh], [Sh 576], [ShVi] and [Va] in which
extra set theoretic assumptions are made, all work towards Shelah’s Cat-
egoricity Conjecture has taken place under the assumption of the amalga-
mation property. An AEC satisfies the amalgamation property if for every
triple of models M0,M1,M2 in which M0 ≺K M1 and M0 ≺K M2 there exist
K-mappings g1 and g2 and an amalgam N ∈ K such that the diagram below
commutes.

M1
g1 // N

M0

id

OO

id
// M2

g2

OO

Under the assumption of the amalgamation property, there is a natural
generalization of first order types. However, types are no longer identified
by consistent sets of formulas. Since we assume the amalgamation and joint
embedding properties, we may work inside a large monster model which
we denote by C. We use the notation AutM (C) to represent the group
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of automorphisms of C which fix M pointwise. With the amalgamation
property, we can define the Galois-type of an element a over a model M ,
written ga-tp(a/M). We say two elements a, b ∈ C realize the same Galois-
type over a model M iff there is an automorphism f of C such that f(a) = b
and f � M = idM . We abbreviate the set of all Galois-types over a model
M by ga-S(M). An AEC is Galois-stable is µ if for every model M of K
of cardinality µ, there are only µ many Galois-types over M . See [Gr1] or
[Ba1] for a survey of the development of these concepts.

In the first author’s Ph.D. thesis and [GrVa2], we isolated the notion
of tameness in order to develop a stability theory for a wide spectrum of
non-elementary classes. An abstract elementary class satisfying the amalga-
mation property is said to be χ-tame if for every model M in K of cardinality
≥ χ and every p 6= q ∈ ga-S(M), there is a submodel N of M of cardinality χ
such that p � N 6= q � N . A class K is said to be tame if it is χ-tame for some
χ. In other words, tameness captures the local character of consistency.

All families of AECs that are known to have a structural theory satisfy
the amalgamation property and are tame 2. In fact several examples of tame
class fail to be homogeneous or even excellent.

(1) Elementary classes.
(2) Homogeneous model theory (as Galois-types are sets of formulas).
(3) The class of atomic models of a first-order theory (from [Sh 87a]).

I.e. the class introduced to study the spectrum function of Lω1,ω

sentence (under mild assumptions) is an example of a tame AEC.
(4) Let K be an AEC, and suppose there exists κ strongly compact

cardinal such that LS(K) < κ. Let µ0 := i(2κ)+ . Makkai and Shelah
prove that if K is categorical in some λ+ > µ0 then has the AP. By
further results of [MaSh] the Galois-types can be identified with sets
of formulas from Lκ,κ. Thus K is κ-tame.

(5) The class of algebraically closed fields with pseudo-exponentiation
studied by Zilber is tame.

(6) Using the method of [GrKv] Villaveces and Zambrano in [ViZa] have
shown that the class of Hrushovski’s fusion Kfus is ℵ0-tame.

(7) Baldwin [Ba2] combining arguments from [GrKv] and [Zi2] have
shown that the class K of two sorted structures (V,A) when A is
semi-abelian with a group homomorphism exp from a finite dimen-
sional Q-vector space V onto A with kernel ZN is ℵ0-tame AEC with
AP (details are in section 4 of [Ba2]).

(8) It is a corollary of [GrKv] that good frames that are excellent (in
the sense of [Sh 705]) are tame.

2While there are structural results for continuous model theory, this context is not an
AEC. The classification theory for continuous model theory is parallel to the Buechler-
Lessmann paper on homogeneous models [BuLe]. One could apply the definition of tame
to classes satisfying the same properties as models of a continuous theory. In this view,
continuous model theory is tame.
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As further evidence to the importance of tame AECs, recent progress on
Shelah’s Categoricity Conjecture has been made under the assumption of
tameness by combining the work of [Sh 394] with [GrVa1].

Fact 1.2. Suppose K is a χ-tame abstract elementary class satisfying the
amalgamation and joint embedding properties. Let µ0 := Hanf(K). If χ ≤
i(2µ0 )+ and K is categorical in some λ+ > i(2µ0 )+, then K is categorical in
µ for all µ > i(2µ0 )+.

Previous results (e.g. [Sh 87a], [Sh 87b], [MaSh], [KoSh], [Sh 472] and
[Sh 705]) of Shelah in the direction of upward categoricity required not only
model-theoretic assumptions but also set-theoretic assumptions. An inter-
esting feature of our work is that it is an upward categoricity transfer theo-
rem in ZFC. In particular it can be viewed as an improvement of the main
result of [MaSh] where the assumption of existence of a strongly compact
cardinal is made.

One distinction between Fact 1.2 and Conjecture 1.1 is that Fact 1.2
applies only to classes which are categorical above the second Hanf number,
i(2Hanf(K))+ . One motivation for this paper is to improve Fact 1.2 getting a
better approximation to Conjecture 1.1 for tame abstract elementary classes.
In fact our results extend beyond the scope of Conjecture 1.1 since we are
able, for instance, to conclude that for a LS(K)-tame abstract elementary
class with arbitrarily large models satisfying the amalgamation and joint
embedding properties if the class is categorical in LS(K) and LS(K)+ then
the class is categorical in all µ ≥ LS(K).

In his paper [Sh 394], Shelah proved that from categoricity in λ+ above
the second Hanf number, one could deduce categoricity below λ+. Under
the additional assumption of tameness, we provide an argument to transfer
categoricity in λ+ upwards in [GrVa1]. The main step in our proof is:

Fact 1.3 (Corollary 4.3 of [GrVa1]). Suppose that K has arbitrarily large
models, satisfies the amalgamation property and is χ-tame with χ ≥ LS(K).
If K is categorical in both λ+ and λ with λ ≥ χ and λ > LS(K), then K is
categorical in every µ with µ ≥ λ.

A breakthrough in [GrVa1] was to go from categoricity in λ+ to cate-
goricity in λ++ when λ+ was above the second Hanf number of the class.
Working under the assumption of categoricity above the second Hanf num-
ber provided us the convenience of categoricity in λ with an application of
[Sh 394].

Recently, Lessmann expressed interest in whether or not the upward cate-
goricity transfer theorem (Fact 1.3) could be proved from categoricity in only
one successor cardinal. He communicated to us that he could use our meth-
ods along with quasi-minimal types and countable superlimits to prove the
desired result for ℵ0-tame classes with LS(K) = ℵ0 [Le], but was unable to
prove it when LS(K) is uncountable. This paper answers Lessmann’s ques-
tion. Using the ideas and arguments from [GrVa1] along with quasi-minimal
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types, we deduce from categoricity in λ+ categoricity in λ++ for λ > LS(K)
with no restrictions on the size of LS(K) or the tameness cardinal. We also
improve Fact 1.3 by removing the assumption that λ > LS(K).

Our proof that categoricity in λ+ implies categoricity in λ++ under the de-
scribed setting involves showing that there are nice minimal types (which we
have called deep-rooted quasi-minimal) over limit models, and these quasi-
minimal types have no Vaughtian pairs of cardinality λ++. Then using a
characterization of limit models (Theorem 4.1 from [GrVa1]), we show that
this is enough to prove the model of cardinality λ++ is saturated.

We are grateful to John Baldwin and Olivier Lessmann for asking ques-
tions without which this paper would not exist.

2. Preliminaries

Throughout this paper, we make the assumptions that our abstract ele-
mentary class K has arbitrarily large models and satisfies the joint embed-
ding and amalgamation properties. We will also assume that the class is
χ-tame. We let Kµ stand for the set of all models of K of cardinality µ.
In the natural way, we use K≤µ and K≥µ. We will be using notation and
definitions consistent with [GrVa1]. Many of the propositions can be proved
in more general settings, but we leave an exploration of those possibilities
for future work.

In abstract elementary classes saturated models have various guises. In
some cases, it is more prudent to work with a limit model as opposed to a
saturated model.

Definition 2.1. (1) We say N is universal over M iff for every M ′ ∈
K‖M‖ with M ≺K M ′ there exists a K-embedding g : M ′ → N such
that g � M = idM :

M ′

g

''NNNNNNNNNNNNN

M

id

OO

id
// N

(2) For M ∈ Kµ, σ a limit ordinal with σ ≤ µ and M ′ ∈ Kµ we say
that M ′ is a (µ, σ)-limit over M iff there exists a ≺K-increasing and
continuous sequence of models 〈Mi ∈ Kµ | i < σ〉 such that
(a) M = M0,
(b) M ′ =

⋃
i<σ Mi and

(c) Mi+1 is universal over Mi.

While using back and forth one can show that any two (µ, σ)-limit models
are isomorphic to show that all (µ, σ1)-limit models are isomorphic to a
(µ, σ2)-limit model is not so obvious. We will be using the following fact
which is a consequence of [Va]; or see [GrVaVi] for an exposition and proof.
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Fact 2.2 (Uniqueness of Limit Models). Suppose that K is an abstract el-
ementary class satisfying the amalgamation property and is categorical in
some λ. If LS(K) < µ < λ and M0 ∈ Kµ, then for every two limit models
M1 and M2 over M0, if M1 and M2 both have the same cardinality κ < λ,
then they are isomorphic over M0.

Notation 2.3. In light of Fact 2.2, when the cardinality of the limit model
is clear, we omit the parameters µ and σ and refer to (µ, σ)-limit models as
limit models.

A corollary of Fact 2.2 is that

Proposition 2.4. Assuming categoricity in λ and the joint embedding and
amalgamation properties, for µ with LS(K) < µ < λ, every saturated model
of cardinality µ is also a (µ, σ)-limit model for any limit ordinal σ < µ+.

Proof. First we show that any limit model of cardinality µ is saturated.
Then by our assumptions and the uniqueness of saturated models (Lemma
0.26 of [Sh 576]), we can conclude that any saturated model of cardinality
µ is isomorphic to a limit model of cardinality µ.

Suppose that M is a limit model of cardinality µ. Fix κ such that LS(K) ≤
κ < µ. Fix N1 ≺K M of cardinality κ and p = ga-tp(a/N1, N2) with
‖N2‖ = κ. Since M is a limit model, we can find a continuous decomposition
of M into 〈Mi | i < κ+〉 such that each Mi is a model of cardinality µ and
Mi+1 is universal over Mi. By the regularity of κ+, we can find i < κ+ such
that N1 ≺K Mi. Invoking the amalgamation property, we can amalgamate
N2 and Mi over N1 as in the diagram below:

N2
g // N∗

N1

id

OO

id
// Mi

id

OO

We may assume that the amalgam N∗ has cardinality µ. Since Mi+1 is
universal over Mi we can extend the commutative diagram:

N2
g // N∗

f

""FFFFFFFF

N1

id

OO

id
// Mi

id

OO

id
// Mi+1

Notice that f ◦ g witnesses that f(g(a)) ∈ Mi+1 realizes ga-tp(a/N1, N2).
a

Galois-stability and the amalgamation property are enough to establish
the existence of limit models (see [Sh 600] for the statement and [GrVa2] for
a proof). Limit models exist in categorical AECs since categoricity implies
Galois-stability:
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Fact 2.5 (Claim 1.7(a) of [Sh 394] or see [Ba1] for a proof). If K is cate-
gorical in λ > LS(K), then K is Galois-stable in all µ with LS(K) ≤ µ < λ.

Another consequence of µ-stability is the existence of minimal types. As
a replacement for first order strongly minimal types, Shelah has suggested
using minimal types in [Sh 394]. We in [GrVa1] found that a more restrictive
minimality condition (rooted minimal) could be used to transfer categoricity
upward.

Definition 2.6. Let M ∈ K and p ∈ ga-S(M) be given.

(1) p is said to be minimal if it is both non-algebraic (that is, it is not
realized in M) and for any N ∈ K extending M there is at most one
non-algebraic extension of p to N .

(2) A minimal type p is said to be rooted minimal iff there is some
M0 ≺K M with M0 ∈ K<‖M‖ such that p � M0 is also minimal. M0

is called a root of p.

Fact 2.7 (Density of Minimal Types [Sh 394]). Let µ > LS(K). If K is
Galois-stable in µ, then for every N ∈ Kµ and every q ∈ ga-S(N), there are
M ∈ Kµ and p ∈ ga-S(M) such that N �K M , q ≤ p and p is minimal.

The main obstacle of minimal types in this context is that while there are
minimal types in stable AECs, the minimal types may be trivially minimal,
meaning that the minimal type has no non-algebraic extensions. As in
[Sh 48] and [Zi] we replace this notion of minimality with quasi-minimality.

Since a non-algebraic type may not have any non-algebraic extensions, we
distinguish these non-algebraic types from the well-behaved non-algebraic
types. A non-algebraic type p ∈ ga-S(M) is big iff for every M ′ �K M of
cardinality ‖M‖, there is a non-algebraic extensions of p to M ′ (see Defini-
tion 6.1 of [Sh 48]). Notice that this is equivalent to requiring that there is
a big extension of p to M ′.

Almost thirty years after Shelah’s [Sh 48], Zilber rediscovered the notion
of minimality and used perhaps the better notation quasi-minimality to
distinguish it from the first order relatives. As in [Zi], we say a big type
p is quasi-minimal iff for any N ∈ K extending M there is at most one
non-algebraic extension of p to N . Analogous to the minimal case, we can
define deep-rooted quasi-minimal. Most of the results concerning minimal
types can be proved for quasi-minimal types with minimal work.

We will show that quasi-minimal types exist in Section 3. For now notice
that the assumptions of the amalgamation property and no maximal models
give us the following:

Remark 2.8. For any M ∈ K, there exists p ∈ ga-S(M) such that p is big.

Another consequence of µ-stability is that µ-splitting is well-behaved and
the notions of non-algebraic and big types over limit models are the same.
We begin by reviewing some basic facts about µ-splitting.
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For M ∈ K≥µ and N ≺K M we say that p ∈ ga-S(M) µ-splits over N
iff there exist two models N1, N2 ∈ Kµ and an isomorphism f : N1

∼= N2

such that N ≺K Nl ≺K M for l = 1, 2; f � N = idN and p � N2 6= f(p �
N1). Under the assumption of categoricity, µ-splitting has an extension
property (See Corollary 2 of [Ba2] or Theorem 12.8 of [Ba1]) in addition to
the existence property which follows from Galois-stability in µ (see Lemma
6.3 of [Sh 394]):

Fact 2.9. Suppose that K is categorical in some λ > LS(K). Let µ be a
cardinal such that LS(K) ≤ µ and let σ be a limit ordinal with LS(K) ≤ σ <
µ+. Then, for every (µ, σ)-limit model M and every type p ∈ ga-S(M), there
exists N �K M of cardinality µ such that for every M ′ ∈ K≤λ extending M ,
there exists q ∈ ga-S(M ′) an extension of p such that q does not µ-split over
N . In particular p does not µ-split over N .

Moreover, if M is a (µ, σ)-limit model witnessed by 〈Mi | i < σ〉, then
there is a i < σ such that p does not µ-split over Mi.

The only other property of µ-splitting that we will explicitly use is an
observation that non-splitting extensions of non-algebraic types remain non-
algebraic.

Fact 2.10 (Corollary 2.8 of [GrVa1]). Let N,M,M ′ ∈ Kµ be such that M ′ is
universal over M and M is a limit model over N . Suppose that p ∈ ga-S(M)
does not µ-split over N and p is non-algebraic. For every M ′ ∈ K extending
M of cardinality µ, if q ∈ ga-S(M ′) is an extension of p and does not µ-split
over N , then q is non-algebraic.

We can use non-splitting to show that

Fact 2.11. Suppose that K is categorical in some λ > LS(K) and µ is a
cardinal < λ. If M is a limit model of cardinality µ, then p ∈ ga-S(M) is
non-algebraic iff p is big.

Proof. As in the proof of Theorem I.4.10 [Va] or see Proposition 1.16[Le].
At the referee’s suggestion, we have included a proof here.

Clearly every big type is non-algebraic. Suppose M is a limit model
witnessed by 〈Mi | i < σ〉 and p = ga-tp(a/M) is non-algebraic. By Fact
2.9, there is an i < σ such that p does not µ-split over Mi.

Let M ′ be a K-extension of M of cardinality µ. We now show that p can
be extended to a non-algebraic type p′ ∈ ga-S(M ′). By the definition of limit
model and our choice of 〈Mi | i < σ〉, we know that Mi+1 is universal over
Mi. Thus there is a K-mapping h′ : M ′ → Mi+1 such that h � Mi = idMi .
Because of we are working inside a monster model, we can extend h′ to
h ∈ AutMi(C). Our candidate for a non-algebraic extension of p to M ′ will
be p′ := ga-tp(h−1(a)/M ′). Immediately we see that p′ is non-algebraic
since ga-tp(a/h(M ′)) was non-algebraic.

We claim that p′ is in fact an extension of p, that is that ga-tp(h−1(a)/M) =
ga-tp(a/M). By monotonicity, of non-splitting, we have that ga-tp(a/h(M ′)
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does not µ-split over Mi. By invariance, we have ga-tp(h−1(a)/M ′) also
does not µ-split over Mi. Now if ga-tp(h−1(a)/M) 6= ga-tp(a/M), we would
witness that ga-tp(h−1(a)/M ′) µ-splits over Mi via the mapping h. Thus
p′ � M = p as required.

a

We now go into some details of a common construction in AECs. A varia-
tion of the proposition appears in the literature as Claim 0.31(2) of [Sh 576]
and in the proof of Theorem II.7.1 of [Va], we isolate it here as Lemma 2.12.
After detailing Lemma 2.12 to John Baldwin in e-mail correspondence in
the Summer of 2004, we decided to include the proof here.

Lemma 2.12. Suppose 〈Mi | i < α〉 is an ≺K-increasing and continuous
chain of models. Further assume that 〈pi ∈ ga-S(Mi) | i < α〉 is an increas-
ing chain of types such that there are ai ∈ C with ai |= pi and ≺K-mappings
fi,j ∈ AutMi(C) with fi,j(ai) = aj for i ≤ j < α such that for i ≤ j ≤ k we
have that fi,k = fj,k ◦ fi,j. Then there exists aα ∈ C realizing each pi and
there are fi,α ∈ AutMi(C) with fi,α(ai) = aα.

The proof uses direct limits, so we will review some facts first. Using the
axioms of AEC and Shelah’s Presentation Theorem, one can show that the
union axiom of the definition of AEC has an alternative formulation (see
[Sh 88] or Chapter 16 of [Gr2]):

Definition 2.13. A partially ordered set (I,≤) is directed iff for every
a, b ∈ I, there exists c ∈ I such that a ≤ c and b ≤ c.

Fact 2.14 (P.M. Cohn 1965). Let (I,≤) be a directed set. If 〈Mt | t ∈ I〉
and {ht,r | t ≤ r ∈ I} are such that

(1) for t ∈ I, Mt ∈ K
(2) for t ≤ r ∈ I, ht,r : Mt → Mr is a ≺K-embedding and
(3) for t1 ≤ t2 ≤ t3 ∈ I, ht1,t3 = ht2,t3 ◦ ht1,t2 and ht,t = idMt,

then, whenever s = limt∈I t, there exist Ms ∈ K and ≺K-mappings {ht,s |
t ∈ I} such that

ht,s : Mt → Ms,Ms =
⋃
t<s

ht,s(Mt) and

for t1 ≤ t2 ≤ s, ht1,s = ht2,s ◦ ht1,t2 and hs,s = idMs .

Remark 2.15. Cohn’s proof gives us that Ms is an L(K)-structure. To show
that Ms ∈ K and that ht,s are K-embeddings we use Shelah’s presentation
theorem.

Definition 2.16. (1) (〈Mt | t ∈ I〉, {ht,s | t ≤ s ∈ I}) from Fact 2.14 is
called a directed system.

(2) We say that Ms together with 〈ht,s | t ≤ s〉 satisfying the conclusion
of Fact 2.14 is a direct limit of (〈Mt | t < s〉, {ht,r | t ≤ r < s}).
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Proof of Lemma 2.12. Let 〈pi ∈ ga-S(Mi) | i < α〉 be an increasing chain of
types and 〈Mi | i < α〉 a ≺K-increasing chain of models with 〈fi,j | i ≤ j <
α〉 and ai as in the statement of the lemma. Notice that (〈Ci | i < α〉, 〈fi,j |
i ≤ j < α〉) forms a directed system where Ci = C for all i. Let C∗α and
〈f∗i,α | i ≤ α〉 be a direct limit to this system. Outright we don’t have much
control over this limit, but by the following claims we will be able to chose
a limit (Cα, 〈fi,α | i ≤ α〉) so that

⋃
i<α Mi �K Cα = C and fi,α � Mi = idMi .

First notice that we can take Cα to be C since a direct limit of auto-
morphisms is an isomorphism using the construction of direct limits from
[Gra].

Claim 2.17. 〈f∗i,α � Mi | i ≤ α〉 is increasing.

Proof of Claim 2.17. Let i < j < α be given. By construction

fi,j � Mi = idMi .

An application of f∗j,α yields

f∗j,α ◦ fi,j � Mi = f∗j,α � Mi.

Since f∗i,α and f∗j,α come from a direct limit of the system which includes the
mapping fi,j , we have

f∗i,α � Mi = f∗j,α ◦ fi,j � Mi.

Combining the equalities yields

f∗i,α � Mi = f∗j,α � Mi.

This completes the proof of Claim 2.17.
a

By the claim, we have that f :=
⋃

i<α f∗i,α � Mi is a ≺K-mapping from⋃
i<α Mi onto

⋃
i<α f∗i,α(Mi). Since C is saturated and model homogeneous,

we can extend f to F ∈ Aut(C).
Now consider the direct limit defined by Cα := F−1(C∗α) with 〈fi,α :=

F−1 ◦ f∗i,α | i < α〉 and fα,α = idCα . Notice that fi,α � Mi = F−1 ◦ f∗i,α �
Mi = idMi for i < α. Thus

⋃
i<α Mi �K Cα.

Let aα := f0,α(a0). The following argument explains why ga-tp(aα/
⋃

i<α Mi)
is an upper bound for 〈pi | i < α〉.

Claim 2.18. ga-tp(aα/Mi) = ga-tp(ai/Mi) for all i < α.

Proof of Claim 2.18. Fix i < α. Notice that by the definition of direct limit
we have aα = f0,α(a0) = fi,α ◦ f0,i(a0). But by our choice of f0,i we know
that f0,i(a0) is actually ai. Thus fi,α is an automorphism of C fixing Mi

taking ai to aα. So ga-tp(ai/Mi) and ga-tp(aα/Mi) must be the same.
a

a
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Lemma 2.19. Suppose 〈Mi | i < α〉 is an ≺K-increasing and continuous
chain of limit models. If 〈pi ∈ ga-S(Mi) | i < α〉 is an increasing chain of
quasi-minimal types and α is a limit ordinal, then we can find ai ∈ C with
ai |= pi and ≺K-mappings fi,j ∈ AutMi(C) with fi,j(ai) = aj for i ≤ j < α
such that for i ≤ j ≤ k we have that fi,k = fj,k ◦ fi,j.

Proof. We find ai and fk,i by induction on i. For i = 0, take a0 ∈ C to be
some realization of p0 and f0,0 := idC. Suppose that we have defined ai and
fk,i for all k ≤ i. Let ai+1 be some realization of pi+1 in C. Since the types
are increasing, we can find fi,i+1 ∈ AutMi C with fi,i+1(ai) = ai+1. Define
fk,i+1 := fi,i+1 ◦ fi,i+1. We use quasi-minimal types to get past limit stage.
Suppose that we have defined fj,k for all j ≤ k < i with i a limit ordinal. By
Lemma 2.12 there exists a∗ ∈ C and fj,i ∈ AutMj C with fj,i � Mj = idMj

and f∗j,i(aj) = a∗. This a∗ comes from a direct limit construction and may
not realize the same type as ai over Mi. However, ga-tp(a∗/Mi) is a non-
algebraic extension of ga-tp(a0/M0), which was quasi-minimal. Since Mi is
also a limit model, then ga-tp(a∗/Mi) is big. So, we can actually conclude,
by quasi-minimality that the types of a∗ and ai over Mi agree. So we can fix
g ∈ AutMi(C) such that g(a∗) = ai. Then fj,i := g ◦ f∗j,i is as required. a

Corollary 2.20. Suppose 〈Mi | i < α〉 is an ≺K-increasing and contin-
uous chain of limit models. If 〈pi ∈ ga-S(Mi) | i < α〉 is an increas-
ing chain of quasi-minimal types and α is a limit ordinal, then there is
a pα ∈ ga-S(

⋃
i<α Mi) extending each of the pi.

Proof. Follows from Lemma 2.19 and Lemma 2.12.
a

3. Deep-rooted minimal types

The main aim of this section is to prove the existence of deep-rooted
quasi-minimal types. We will use the idea of Shelah’s density of minimal
types to do this. Our work generalizes Lemma 6.6 of [Sh 48] where Shelah
proves the existence of (quasi)-minimal types using a rank function.

First notice that if the class is tame, then any big extension of a quasi-
minimal type is also quasi-minimal:

Proposition 3.1 (Monotonicity of Minimal Types). Suppose K is χ-tame
for some χ with µ ≥ χ. If p ∈ ga-S(M) is quasi-minimal with M ∈ Kµ,
then for all N ∈ K extending M and every q ∈ ga-S(N) extending p, if q is
big then q is quasi-minimal. If N is a limit model, then the assumption that
q is big can be replaced with non-algebraic.

Proof. The last sentence of the claim is Proposition 2.2 of [GrVa1] once we
notice Fact 2.11. The proof of the rest of the claim is similar, but we include
details here for completeness.

Suppose that p is a quasi-minimal type over M with a big extension q to
N . For the sake of contradiction assume that q is not quasi-minimal. Then
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there exist distinct q1 and q2 non-algebraic extensions of q to some model
N ′. By tameness, there exists M ′ of cardinality µ such that M ≺K M ′ and
q1 � M ′ 6= q2 � M ′. Since q1 � M ′ and q2 � M ′ are both non-algebraic
extensions of p we have a contradiction to the quasi-minimality of p. a

Similar to the proof of the density of minimal types, Fact 2.7, we get
quasi-minimal types. Moreover, instead of a density result, we can actually
find quasi-minimal types over every limit model. This is one of the obstacles
in working with minimal types.

Proposition 3.2 (Existence of Quasi-Minimal Types over Limits). Suppose
K is Galois-stable in µ and M ∈ Kµ is a limit model. Then there exists a
quasi-minimal type over M .

Proof. We build a tree of types, but restrict ourselves to limit models through-
out the construction. Suppose for the sake of contradiction that M ∈ Kµ

is a limit model and that there are no quasi-minimal types over M . By
Remark 2.8 we can fix p ∈ ga-S(M) a big type. By induction on i < µ+ we
build a ≺K-increasing and continuous chain of models, 〈Mi | i < µ+〉 and a
tree of types 〈pη | η ∈ <µ+

2〉 satisfying
(1) Mi is a limit model of cardinality µ
(2) Mi+1 is a limit model over Mi

(3) pη = ga-tp(aη/Mi) is big where i is the length of η
(4) pηˆ〈0〉 6= pηˆ〈1〉
(5) for all ordinals i ≤ j less than the length of η, we have pη�i ≤ pη,

and there exist fη�i,η ∈ AutMη�i
C such that fη�i,η(aη�i) = aη and

fη�i,η = fη�j,η ◦ fη�i,η�j

(6) p〈〉 = p
(7) M0 = M .

Suppose that Mi and pη ∈ ga-S(Mi) have been defined. Since Mi is
isomorphic to M (by Fact 2.2), our assumption implies that pη cannot be
quasi-minimal. So we may fix an extension N of Mi and two distinct big
extensions of pη to N . Let a′ηˆ〈0〉 and a′ηˆ〈1〉 realize these big extensions and
let M ′

1 ∈ Kµ be some extension of N containing both a′ηˆ〈0〉 and a′ηˆ〈1〉. Fix
a (µ, ω)-limit model over N and call it Mi+1. By the definition of big types,
there are aηˆ〈0〉 and aηˆ〈1〉 realizing big extensions of ga-tp(a′ηˆ〈0〉/N) and
ga-tp(a′ηˆ〈1〉/N), respectively.

For the limit stage of the construction notice that Mi :=
⋃

j<i Mj is a limit
model as guaranteed by condition (2). For η ∈ i2 with i a limit ordinal, we
choose pη to be some (there may be more than one) non-algebraic extension
of the pη�j for j < i. This is possible by our construction of the fη�j,η’s and
Lemma 2.12. This lemma also gives us the required fη�j,η’s.

To see that this construction is enough, let i be the first ordinal < µ+

such that 2i > µ. Then, {pη ∈ ga-S(Mi) | η ∈ i2} witnesses that K is not
Galois-stable in µ.
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a

We need an extension property for quasi-minimal types in order to find
deep-rooted quasi-minimal types.

Proposition 3.3 (Extension Property for Quasi-Minimal Types). Let K
be categorical in some λ > χ. Let µ be such that LS(K) ≤ µ ≤ λ. If
p ∈ ga-S(M) is quasi-minimal and M is a (µ, σ)-limit model for some limit
ordinal satisfying LS(K) ≤ σ < µ+, then for every M ′ ∈ K≤λ extending M ,
there is a quasi-minimal q ∈ ga-S(M ′) such that q extends p. Furthermore
if p does not µ split over some N , then q can be chosen so that q does not
µ-split over N .

Proof. Without loss of generality M ′ is a limit model over M . Let p ∈
ga-S(M) be quasi-minimal. Since M is (µ, σ)-limit model, using Fact 2.9,
we can find a proper submodel N ≺K M of cardinality µ such that for every
M ′ ∈ K≤λ there exists q ∈ ga-S(M ′) extending p such that q does not µ-split
over N . Suppose for the sake of contradiction that q is not quasi-minimal.
Then tameness and Proposition 3.1 tells us that q must be algebraic. Let
a ∈ M ′ realize q and Ma ∈ Kµ contain a with M ≺K Ma ≺K M ′. Then
q � Ma is also algebraic. However, since q � Ma does not µ-split over N and
extends p, by Corollary 2.10 we see that q � Ma is not-algebraic. This gives
us a contradiction. a

Remark 3.4. Proposition 3.3 holds for minimal types as well. Simply
replace quasi-minimal with minimal in the proof. This will be used in the
last section of the paper.

Propositions 3.3 and 3.2 are key to get the existence of deep-rooted quasi-
minimal types.

Proposition 3.5 (Existence of deep-rooted quasi-minimal types). Let K be
categorical in some λ > χ. Then for every M ′ ∈ Kλ, there exists a deep-
rooted quasi-minimal q ∈ ga-S(M ′). Furthermore, if M ≺K M ′ is a limit
model of cardinality µ with χ ≤ µ < λ and p ∈ ga-S(M) is quasi-minimal,
then we can find q ∈ ga-S(M ′) a deep-rooted quasi-minimal extension of p
with root M .

Proof. Fix µ with χ ≤ µ < λ. Notice that by Fact 2.5, K is Galois-stable in
µ. Choose M ∈ Kµ to be some K-substructure of M ′. Since K is stable in
µ and categorical in λ, we may take M to be a (µ, σ)-limit model for some
limit ordinal σ with LS(K) ≤ σ < µ+. By Proposition 3.2 and monotonicity
of quasi-minimal types, we can choose M such that there is a quasi-minimal
type p ∈ ga-S(M). Then by Proposition 3.3, there exists a quasi-minimal
q ∈ ga-S(M ′) extending p. q is rooted with root Mi.

a
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4. Vaughtian Pairs

We will show that for deep-rooted quasi-minimal types, there are no true
Vaughtian-pairs. This is a variation of the result in [GrVa1] that for rooted
minimal types there are no Vaughtian-pairs.

Definition 4.1. Let M ∈ K be a limit model and p ∈ ga-S(M) non-
algebraic. Fix µ ≥ ‖M‖.

(1) A pair of models (N0, N1) is said to be a (p, µ)-Vaughtian pair pro-
vided that N0, N1 both have cardinality µ and M �K N0 �K N1

with no c ∈ N1\N0 realizing p.
(2) A (p, µ)-Vaughtian pair (N0, N1) is a true (p, µ)-Vaughtian pair iff

N0 and N1 are both limit models.

The ubiquity of the assumption of categoricity in a successor cardinal in
the literature concerning Conjecture 1.1 can be explained by the proof of the
following central result. The result uses a classical Vaughtian-construction
in the spirit of Morley’s work, and it appears in [Sh 394] as Claim (∗)8 of
Theorem 9.7.

Fact 4.2. Assume that K is categorical in some λ+ > LS(K)+. Then for
every limit model M ∈ K≤λ and every minimal type p ∈ ga-S(M), there are
no true (p, λ)-Vaughtian pairs.

Using the fact that all saturated models are limit models; that the union of
an increasing chain of saturated models is saturated (Claim 6.7 of [Sh 394])
and Fact 2.11, the same argument for Fact 4.2 can be carried out to yield
the following proposition.

Proposition 4.3. Assume that K is categorical in some λ+ > LS(K)+.
Then for every limit model M ∈ K≤λ and every quasi-minimal type p ∈
ga-S(M), there are no true (p, λ)-Vaughtian pairs.

Notice that the previous argument works only when λ is strictly larger
than LS(K). We will come back to this issue in Section 6 and deal with the
special case in which LS(K) = χ = λ and K is categorical in both λ and λ+.

The following Vaughtian-pair transfer theorem is a relative of Theorem
3.3 of [GrVa1]:

Theorem 4.4. Suppose that K is categorical in some λ+ > LS(K). Let
p be a deep-rooted quasi-minimal type over a model M of cardinality λ+.
Fix a root N ≺K M of cardinality λ, with p � N quasi-minimal. If K
has a (p, λ+)-Vaughtian pair, then there is a true (p � N,λ)-Vaughtian pair
(N0, N1).

Proof. Suppose that (N0, N1) form a (p, λ+)-Vaughtian pair. By categoric-
ity, we know that N0 and N1 are both saturated.

Let C denote the set of all realizations of p � N inside N1. Fix a ∈ N1\N0.
We now construct 〈N0

i , N1
i ∈ Kλ | i < λ+〉 satisfying the following:
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(1) N0
0 = N

(2) N `
i �K N ` for ` = 0, 1

(3) the sequences 〈N0
i | i < λ+〉 and 〈N1

i | i < λ+〉 are both ≺K-
increasing and continuous

(4) N `
i+1 is a limit model over N `

i for ` = 0, 1
(5) a ∈ N1

i \N0
i and

(6) Ci := C
⋂

N1
i ⊆ N0

i+1.
The construction follows from the fact that both N0 and N1 are saturated

and homogeneous and the following:

Claim 4.5. If d ∈ N1 realizes p � N0
0 , then d ∈ N0. Thus C ⊆ N0.

Proof of Claim 4.5. Suppose that d ∈ N1\N0 realizes p � N0
0 . Because N0

is saturated, ga-tp(d/N0) is not only non-algebraic, it is a big extension of
p � N0

0 . Since p � N0
0 is quasi-minimal, we have that ga-tp(d/M) = p. Since

(N0, N1) form a (p, λ+)-Vaughtian pair, it must be the case that d ∈ N0,
contradicting our choice of d.

a

The construction is enough: Define

E :=


δ < λ+ δ is a limit ordinal,

for all i < δ and x ∈ N1
i ,

if there exists j < λ+ such that x ∈ Cj ,
then there exists j < δ, such that x ∈ Cj

 .

Notice that E is a club. (We only use the fact that E is non-empty.) Fix
δ ∈ E.

Claim 4.6. For every c ∈ N1
δ ∩ C, we have c ∈ N0

δ .

Proof of Claim 4.6. Since 〈N1
i | i < λ+〉 is continuous, there is i < δ such

that c ∈ N1
i . Thus by the definition of E, there is a j < δ with c ∈ Cj . By

condition (6) of the construction, we would have put c ∈ N0
j+1 ≺K N0

δ .
a

Notice that N1
δ 6= N0

δ since a ∈ N1
δ \N0

δ . Thus Claim 4.6 allows us the
conclude that we have constructed a (p � N,λ)-Vaughtian pair. We complete
the proof by observing that condition (4) of the construction and our choice
of a limit ordinal δ imply that both N0

δ and N1
δ are limit models.

a
Remark 4.7. The same proof of Theorem 4.4 works with minimal in place
of quasi-minimal. Thus for p a minimal type, notice that for (N0, N1) in
the conclusion of Theorem 4.4 we have that (N0, N1) is a true (p � N0, λ)-
Vaughtian pair and p � N0 is minimal. Furthermore N0 is a limit model over
N . This extra information will be used in Section 6.

Corollary 4.8. Let λ > LS(K). If K is categorical in λ+ and p is a deep-
rooted quasi-minimal type over a model of cardinality λ+, then there are no
(p, λ+)-Vaughtian pairs.
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Proof. Suppose that (N0, N1) is a (p, λ+)-Vaughtian pair and that N is both
a root of p (with p � N quasi-minimal) and a limit model of size λ. Then
by Theorem 4.4, there is a true (p � N,λ)-Vaughtian pair. This contradicts
Proposition 4.3.

a

Corollary 4.9. Let λ > LS(K). If K is categorical in λ+, then every deep-
rooted quasi-minimal type over a model N of cardinality λ+ is realized λ++

times in every model of cardinality λ++ extending N .

Proof. Suppose M ∈ Kλ++ realizes p only α < λ+ times.
Let A := {ai | i < α} be an enumeration of the realizations of p in M . We

can find N0 ∈ Kλ+ such that N
⋃

A ⊆ N0 ≺K M . Since M has cardinality
λ++, we can find N1 ∈ Kλ+ such that N0 �K N1 ≺K M . Then (N0, N1)
forms a (p, λ+)-Vaughtian pair contradicting Corollary 4.8.

a

5. The Main Result

Now that we have established the existence of deep-rooted quasi-minimal
types with no Vaughtian pairs, we proceed as in [GrVa1] to transfer cate-
goricity upwards using the following result which is a variation of Theorem
4.1 of [GrVa1].

Theorem 5.1. Let λ ≥ χ. Suppose M0 ∈ Kλ and r ∈ ga-S(M0) is a
quasi-minimal type such that K has no (r, λ)-Vaughtian pairs.

Let α be an ordinal < λ+ such that α = λ · α. Suppose M ∈ Kλ has
a resolution 〈Mi ∈ Kλ | i < α〉 such that for every i < α, there is ci ∈
Mi+1\Mi realizing r. Then M is saturated over M0. Moreover if K is
Galois-stable in λ, then M is a (λ, α)-limit model over M0.

Proof. At the referee’s request we have included a proof of this result. Let
r, M0, M and 〈Mi | i < α〉 be as in the statement of the theorem. Let
p ∈ ga-S(M0) be given. We will show that M realizes p.

First, fix M ′ an extension of M0 of cardinality λ realizing p. It is enough to
construct an isomorphism between M and some extension of M ′. We build
such an extension and isomorphism by inductively defining increasing and
continuous sequences 〈M ′

i | i < α〉 and 〈hi | i < α〉 so that hi : Mi → M ′
i .

During this construction we also fix 〈aλ·i+j | j < λ〉 an enumeration (possibly
repeating) of the realizations of r inside Mi. After stage β = λ · i + j of the
construction, we require that aβ ∈ hβ+1(Mβ+1).

To see that such a construction is possible, let us examine the successor
case. The base and limit stages of the construction are routine to carry
out. Suppose that we have defined M ′

i and hi and that we have fixed an
enumeration 〈aλ·k+j | j < λ〉 of all realizations of r in M ′

k for each k ≤ i.
By properties of ordinal arithmetic, there is exactly one pair j, k with k ≤ i
for which i + 1 = λ · k + 1. If ai is already in hi(Mi) there is nothing to
do but extend hi to include Mi+1 in its domain and choose an appropriate
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M ′
i+1 containing hi+1(Mi+1). When ai /∈ hi(Mi), more care is needed. The

important thing to notice here is that in this case, ga-tp(ai/hi(Mi)) is a
non-algebraic extension of r. By the quasi-minimality of r, we know that
regardless of which extension ȟ of hi to an automorphism of C that one
would consider, we have ga-tp(ȟ(ci)/hi(Mi)) = ga-tp(ai/hi(Mi)). Thus we
can choose ȟ to be an automorphism of C extending hi so that ȟ(ci) = ai.
Now define hi+1 := ȟ � Mi+1 and choose an appropriate extension M ′

i+1 of
M ′

i containing the image of Mi+1 under hi+1.
Once we have completed the construction outlined above, the issue of

whether or not h :=
⋃

i<α hi is an isomorphism between M and
⋃

i<α M ′
i

remains to be addressed. First notice that by our assumption that α = λ ·α,
if a ∈ M ′ realizes r, then at some stage in the construction, we would have
put a into the range of h. Therefore, if h were not an isomorphism, h(M)
and M ′ would form a (r, λ)-Vaughtian pair contradicting our hypothesis on
r.

If in addition to the hypothesis given, we assume that K is Galois-stable
in λ, we could conclude that M is a (λ, α)-limit model by altering the con-
struction. At stage i of the construction we choose M ′

i+1 as above, only now
require that M ′

i+1 to be universal over M ′
i . a

Using Theorem 5.1, we are able to transfer categoricity from λ to λ+ by
showing that every model of cardinality λ+ is saturated:

Theorem 5.2. Suppose that K has arbitrarily large models, is χ-tame and
satisfies the amalgamation and joint embedding properties. Let λ be such
that λ > LS(K) and λ ≥ χ. If K is categorical in λ+ then K is categorical
in all µ ≥ λ+.

Proof. First we prove that K is categorical in λ++ by establishing that every
model N of cardinality λ++ is saturated. Let M ≺K N have cardinality
λ+. We will show that N realizes every type over M . First notice that
Proposition 3.5 and categoricity in λ+ guarantees that there exists a deep-
rooted quasi-minimal r ∈ ga-S(M). By Corollary 4.9, we know that N
realizes r λ++-times.

Let α < λ+ be such that α = λ+ · α. By the Downward-Löwenheim
Skolem Axiom of AECs, we can construct a ≺K-increasing and continuous
chain of models 〈Mi ≺K N | i < α〉 such that M = M0 for every i < α, we
can fix ai ∈ Mi+1\Mi realizing r. This construction is possible since there
are λ++-many realizations of r from which to choose. By Fact 5.1,

⋃
i<α Mi

realizes every type over M .
We have explained that categoricity in λ+ implies categoricity in λ+ and

λ++. Now, an application of Fact 1.3 provides categoricity in all larger
cardinalities.

a

A combination of our upward result and Shelah’s downward result from
[Sh 394] yields
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Theorem 5.3. Let K be a χ-tame abstract elementary class satisfying the
amalgamation and joint embedding properties. If K is categorical in λ+ for
some λ > max{LS(K), χ}, then K is categorical in all µ ≥ min{λ+, i(2Hanf(K))+}.

It remains open whether or not categoricity in λ+ implies categoricity
in λ++ for the special case where ℵ0 < LS(K) = χ = λ. For this case,
a substitute for Fact 4.2 is missing. We will provide some partial results
concerning this problem in the following section.

6. Categoricity in LS(K) and LS(K)+

In this section, we examine an abstract elementary class which is cate-
gorical in both λ and λ+ and λ = LS(K) = χ. We assume the class has
no maximal models and satisfies the amalgamation and joint embedding
properties. This is motivated by questions of John Baldwin and Olivier
Lessmann concerning perceived limitations of [GrVa1]. From these assump-
tions, we derive categoricity in all µ ≥ LS(K). The difficulty in working with
a class that is categorical in LS(K)+ is that there are no saturated models of
cardinality LS(K). However, from stability we do have limit models of car-
dinality LS(K), and in this section we have an extra categoricity assumption
which tells us that all models of cardinality LS(K), while not saturated, are
limit models. This allows us to use minimal types instead of quasi-minimal
types.

We begin with a replacement for Fact 4.2.

Theorem 6.1. Assume that K is categorical in λ and λ+ with λ = LS(K) =
χ. Then for every limit model M ∈ Kλ there is a minimal type p ∈ ga-S(M),
such that there are no true (p, λ)-Vaughtian pairs of the form (N0, N1) with
M = N0.

Proof. Suppose every minimal type over a limit model had a true Vaughtian
pair. Let M be a limit model of cardinality µ and fix p ∈ ga-S(M) minimal
with true Vaughtian pair (M,N1) where N1 ∈ Kλ. We can construct a ≺K-
increasing and continuous chain 〈Ni | i < λ+〉 of limit models such that for
each i < λ+

(1) N0 = M
(2) Ni ∈ Kλ

(3) Ni is a limit model and
(4) no a ∈ Ni+1\Ni realizes p.

Suppose i is a limit ordinal and that we have defined Nj for all j < i. Let
Ni :=

⋃
j<i Nj . By categoricity in λ we know that Ni must be a limit model

(but it may not be a limit model over M).
For the successor step of the construction, suppose that Ni has been

defined. Since M is a limit model, we can find pi ∈ ga-S(Ni) a unique non-
algebraic extension of p (by Remark 3.4). Since Ni is a limit model and pi is
a minimal type, by our assumption it must be the case that there is Ni+1 a
limit model extending Ni which together with Ni forms a (pi, λ)-Vaughtian
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pair. Since no a ∈ Ni+1\Ni realizes pi, we can conclude by the minimality
of p that condition (4) holds.

To see why the construction is enough to get a contradiction, let Nλ+ :=⋃
i<λ+ Ni. From condition (4) of the construction, we find that Nλ+ does

not realize p. Thus Nλ+ is not saturated, which contradicts categoricity in
λ+. a

We now prove a slight variation of Corollary 4.8.

Corollary 6.2. Let λ be as in Theorem 6.1. For every M ∈ Kλ+, there is
q ∈ ga-S(M), a deep-rooted minimal type with no (q, λ+)-Vaughtian pairs.

Proof. Let M ∈ Kλ+ be given. Fix N ≺K M a limit model of cardinality
λ. By Theorem 6.1, we can choose a minimal p ∈ ga-S(N) such that there
are no true (p, λ)-Vaughtian pairs. By Proposition 3.5, we can extend p
to a deep-rooted minimal type q ∈ ga-S(M). Suppose that N0, N1 form
a (q, λ+)-Vaughtian pair. Then Theorem 4.4 and Remark 4.7 tell us that
there are limit models N0, N1 with N ≺K N0 ≺K N0 with (N0, N1) a (p, λ)-
Vaughtian pair and N0 a limit model over N . Furthermore, we have that
(N0, N1) form a (q � N0, λ)-Vaughtian pair.

We will now show that by our choice of p such (q � N0, λ)-Vaughtian pairs
cannot exist. Since N is a limit model, we can find a resolution 〈N+

i | i < ω〉
of N such that N+

i+1 is universal over N+
i . By Fact 2.9, there is i < ω such

that p does not λ-split over N+
i . Observe that N is a limit model over

N+
i . Additionally, since N0 is a limit model over N it is also a limit model

over N+
i . Then, N and N0 are isomorphic over N+

i . Let f : N ∼= N0 with
f � N+

i = idN+
i

. Since there are no (p, λ)-Vaughtian pairs with N as the
first model in the pair, there are no (f(p), λ)-Vaughtian pairs with N0 as
the first model in the pair. By invariance and our choice of N+

i , we have
that f(p) does not µ-spit over N+

i . This implies that f(p) ≥ p, otherwise
f−1 would witness that f(p) λ-splits over N+

i . Now we have that f(p) and
q � N0 are both non-algebraic extensions of p to N0. By minimality of p,
f(p) = q � N0 and we can conclude that there are no (q � N0)-Vaughtian
pairs with N0 as the first model of the pair. This gives us a contradiction
and completes the proof. a

Corollary 6.2 is enough to carry out the argument of Corollary 4.9 and
the remaining arguments in Section 5. This allows us to conclude the second
theorem in the abstract, restated here:

Theorem 6.3. Let K be a LS(K)-tame abstract elementary class satisfying
the amalgamation and joint embedding properties with arbitrarily large mod-
els. If K is categorical in both LS(K) and LS(K)+, then K is categorical in
all µ ≥ LS(K).
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