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ABSTRACT. Starting from an abstract elementary class with no maximal mod-
els, Shelah and Villaveces have shown (assuming instances of diamond) that
categoricity implies a superstability-like property for a certain independence re-
lation called nonsplitting. We generalize their result as follows: given an abstract
notion of independence for Galois (orbital) types over models, we derive that the
notion satisfies a superstability property provided that the class is categorical
and satisfies a weakening of amalgamation. This extends the Shelah-Villaveces
result (the independence notion there was splitting) as well as a result of the first
and second author where the independence notion was coheir. The argument is
in ZFC and fills a gap in the Shelah-Villaveces proof.

1. INTRODUCTION

1.1. General motivation and history. Forking is one of the central notions
of model theory, discovered and developed by Shelah in the seventies for stable
and NIP theories [She78] In the mid-nineties, Kim [Kim98] proved that Shelah’s
theory of forking can be extended to the class of so-called unstable simple theories.
The work of Kim influenced many people to further explore properties of forking-
like relations in various classes of unstable theories. For a modern summary see
Adler’s [Ad109].

Another way to extend Shelah’s first-order stability theory is to move beyond
first-order: in the mid seventies Shelah also started the program of classifica-
tion theory for non-elementary classes focusing first on classes axiomatizable in
Ly, x,(Q) [She75] and later on the more general abstract elementary classes (AECs)
[She87a]. Roughly, an AEC is a pair K = (K, <x) satisfying some of the basic
category-theoretic properties of (Mod(7'), <) (but not the compactness theorem).
Among the central problems, there are the decades-old categoricity and eventual
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categoricity conjectures of Shelah. In this paper, we assume that the reader has a
basic knowledge of AECs, see for example [Gro02] or [Bal09).

A lesson learned from the proof of Morley’s categoricty theorem [Mor65] is
that the identification of tp(a/A) with the orbit of a under the group Aut,(€)
is important. In the early days of classification theory for non elementary classes
(see [She72, GS86b, GS86a]) the notion of types studied in L,+ ,-axiomatizable
classes was tpy+ ,(b/A; M) = {p(x;a) : ¢(x;y) is a formula from Ly+ ,,a €
<wA, M | glbsall.

In [She87b]| and [She09] a better nameless notion was introduced, Grossberg
[Gro02] named it Galois type (Shelah uses the name orbital types in later papers).
This has an easy definition when the class K has amalgamation, joint embed-
ding and no maximal models, as these properties allow us to assume that all the
elements of IC we would like to discuss are substructures of a “monster” model
¢ € K. In that case, gtp(b/A) is defined as the orbit of b under the action of
the group Aut4(€) on €. One can develop the notion of Galois type also without
assuming amalgamation, joint embedding, or no maximal models, however then
the definition is more technical.

1.2. Independence, superstability, and no long splitting chains in AECs.
In [She99] a first candidate for an independence relation was introduced: the
notion of splitting (roughly, p € gS(M) splits over My <x M provided there are
My < My < M, ¢ =1,2 and f: M; =y, M, such that f(p | My) # p [ Ma).

This notion was used by Shelah to establish a downward version of his cate-
goricity conjecture from a successor for classes having the amalgamation property.
Later similar arguments [GV06] were used to derive a strong upward version of
Shelah’s conjecture for classes satisfying the additional locality property of (Galois)
types called tameness.

In Chapter II of [She09], Shelah introduced good A-frames: an axiomatic defini-
tion of forking on Galois types over models of size A\. The notion is, by definition,
required to satisfy basic properties of forking in superstable first-order theories
(e.g. symmetry, extension, uniqueness, and local character). The theory of good
A-frames is well-developed and has had several applications to the categoricity
conjecture (see Chapters III and IV of [She09] and recent work of the fourth au-
thor [Vasd, Vase, Vasc, Vasal).

Constructions of good frames rely on weaker independence notions such as the
aforementioned splitting, see e.g. [Vas16b,VV]: a key property there is the so-called
no long splitting chains in £,: If (M; : i < a) is an increasing continuous chain in
K, (so a < p' is a limit ordinal) and M, is universal over M; for each i < a,
then for any p € gS(M,) there exists i < « so that p does not split over M; (this
is called strong universal local character at o in the present paper, see Definition
3). This can be seen as a replacement for the statement “every type does not
fork over a finite set”. The property is already studied in [She99], and has several
nontrivial consequences: for example (assuming amalgamation, joint embedding,



SUPERSTABILITY FROM CATEGORICITY IN AECS 3

no maximal models, stability in x4, and tameness), no long splitting chains in IC,
implies that K is stable everywhere above u [Vas16b, Theorem 5.6] and has a good
pt-frame (on the subclass of saturated models of cardinality pu*) [VV, Corollary
6.14]. No long splitting chains has consequences on the uniqueness of limit models,
another superstability-like property akin to “the union of an increasing chain of
p-saturated models is p-saturated” (see for example [SV99, Van06, Van13, Van]).

Boney and Grossberg explore another approach to independence; they adapted
the notion of coheir to AECs. They show that for classes satisfying amalgamation
which are also tame and short (a strengthening of tameness, using the variables
of a type instead of its parameters), a little bit more than stability implies that
coheir has some basic properties of forking from a stable first-order theory. There
the “no long coheir chain” property also has strong consequences (for example on
the uniqueness of limit models [BG, Corollary 6.10]).

1.3. No long splitting chains from categoricity. It is natural to ask whether
no long splitting chains (or no long coheir chains) in K, follows from categoricity
above' 4. Shelah shows that this holds for splitting (assuming amalgamation
and no maximal models) if the categoricity cardinal has cofinality greater than
p [She99, Lemma 6.3]. Without any cofinality restriction, a breakthrough was
made in a paper of Shelah and Villaveces when they proved no long splitting
chains assuming no maximal models and instances of diamond [SV99, Theorem
2.2.1]. Later Boney and Grossberg used the Shelah-Villaveces argument to derive
the result in their context also for coheir [BG, Theorem 6.6]. It was also observed
that the Shelah-Villaveces argument does not need diamond if one assumes full
amalgamation [GV, Theorem 6.1]. In conclusion we have:

Fact 1. Let K be an AEC with no mazimal models. Let LS(K) < p < X and
assume that K is categorical in .

(1) [SV99, Theorem 2.2.1] If OS*‘: holds then IC has no long splitting chains
in IC,. o

(2) [BG, Theorem 6.6] If K has amalgamation, k € (LS(K),un), K has no
weak r-order property and is fully (< k)-tame and short, then K has no
long coheir chains in KC,.

(3) [GV, Theorem 6.1] If K has amalgamation, then K has no long splitting
chains in IC,,.

Remark 2. Fact 1 has applications to more “concrete” frameworks than AECs.
One can deduce from it (and the aforementioned fact that no long splitting chains
implies stability on a tail in the presence of tameness) an alternate proof that
a first-order theory T categorical above |T| is superstable. More generally, one

1f one has categoricity at or below 1, one can try to derive no long splitting chains below
the categoricity cardinal and then transfer it upward assuming tameness [Vasl6a, Proposition
10.10], but one cannot hope to do this in general without tameness [HS90, BK09].
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obtains the same statement for the class K of models of a homogeneous diagram
in T [She70]. The later was open for |T| uncountable and K categorical in R, (|T'])
(see [Vasc, Section 4]).

1.4. Statement and discussion of the main theorem. In this paper, we prove
a generalization of Fact 1. In order to state it we introduce a rather weak notion
of independence.

Definition 3. Let K* be an abstract class* and L be a 4-ary relation such that if

aiNM holds, then My <y« M <« N are all in K* and a € |N/|.
Mo

(1) The following are several properties we will assume about L (but we will
always mention when we assume them).

(a) L has invariance (I) if it is preserved under isomorphisms: if a L~ M
My

and f: N = N', then f(a) L N fIM].
fIMo]

(b) L has monotonicity (M) if:
(1) [fCLJ/NM, M() < M(/) =< M’ < M, and N < N/, then
My
aLN'M'; and:
My

(i) [falNM, N’ <y« N is such that M <x~ N' and a € |N'|,
Mo

then a LN M.
Mo
(2) () and (M) mean that this relation is really about Galois types, so we write

gtp(a/M; N) does not *fork over My for a L N M.
Mo

(3) For a limit ordinal o, L has weak universal local character at « if for
any increasing continuous sequence (M; € K* | i < «) and any type p €
gS(M,), if My is universal over M; for each i < «, then there is some
19 < a such that p | M;,+1 does not x-fork over M, .

(4) For a limit ordinal o, L has strong universal local character at a if for
any increasing continuous sequence (M; € K* | i < «) and any type p €
gS(M,), if M;yy is universal over M; for each i < «, then there is some
19 < a such that p does not x-fork over M;,.

Remark 4.

>That is, a partial order (K*, <x+) such that K* is a class of structures in a fixed vocabulary
closed under isomorphisms, <y~ is invariant under isomorphisms, and M <y - N implies that
M is a substructure of N.
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(1) In the setup of Fact 1.(1), non-u-splitting on the class K* of amalgamation
bases of cardinality p will have (I), (M), see Fact 7.

(2) If a < B are limit ordinals and L has weak universal local character at «,

then L has weak universal local character at B, but this need not hold for
strong universal local character (if say cf p < cf a).

(3) If L has (M) and L has strong universal local character at cf o, then L
has strong universal local character at c.

(4) If L has (M), strong universal local character at o implies weak universal
local character at «.

(5) If (as will be the case in this note) K* is a class of structures of a fized size
i, then we only care about the properties when o < ™.

Theorem 5 (Main Theorem). If:

(1) K is an AEC.

() 1 > LS(K).

(3) For every M € K, there exists an amalgamation base M' € IC,, such that
M < M.

(4) For every amalgamation base M € IC,, there exists an amalgamation base
M'" € K, such that M' is universal over M.

(5) Every limit model in IC,, is an amalgamation base.

*

(6) L is as in Definition 3 with K* the class of amalgamation bases in K,
(ordered with the strong substructure relation inherited from KC).

(7) L satisfies invariance (I) and monotonicity (M).

(8) L has weak universal local character at some cardinal o < pt
(9) K has an Ehrenfeucht-Mostowski (EM) blueprint ® with |7(®)| < p such
that every M € ICj, .+ embeds inside EM,(u", ®) (where we write 7 :=

T(K)).
Then L has strong universal local character at all limit ordinals o < pt.

Remark 6. As in [SV99], when we say that M is an amalgamation base we mean
that it is an amalgamation base in the class Ky, i.e. we do not require that larger
models can be amalgamated over M.

Before proving Theorem 5, we give several contexts in which its hypotheses hold.
This shows in particular that Fact 1 follows from Theorem 5.

Corollary 7. Let K be an AEC with arbitrarily large models. Let LS(K) < u < A
and assume that K is categorical in A and K. has no maximal models. Then:

(1) If <>S“+ holds, then the hypotheses of Theorem & hold with \L being non-fi-

cf

splitting.
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(2) If K, has amalgamation, then:

(a) The hypotheses of Theorem 5 hold with j/ being non-p-splitting.
(b) If k € (LS(K), u) is such that KC does not have the weak rk-order prop-

erty, then the hypotheses of Theorem 5 hold with i being (< K)-coheir

(see [BG]).

Proof. Fix an EM blueprint ¥ for I (with |7(V)| < u). We first show that
there exists an EM blueprint ® with [7(®)| < p such that any M € Ky,
embeds inside EM,(u*,®). Let M € K, ,+. Using no maximal models and
categoricity, M embeds inside EM, (A, ¥), and hence inside EM,.(S, ¥) for some
S C X with |S] < u*. Therefore M also embeds inside EM,(«, ¥), where a :=
otp(S) < pt. Now it is well known (see e.g. [Bal09, Claim 15.5]) that o embeds
inside EM, (<“u™, ®). The class {<“I | I is a linear order} is an AEC, therefore
by composing EM blueprints there exists an EM blueprint ® for K such that
|7(®)| < pand EM,(I,®) = EM,(<¥I, V) for any linear order I. In particular, M
embeds inside EM, (uT, @), as desired.

As for the hypotheses on density of amalgamation bases, existence of universal
extension, and limit models being an amalgamation base, in the first context this
is proven in [SV99] (note that { .+ implies 2¥ = y*). When K, has full amalga-

cf p
mation, only existence of universal extension is nontrivial. It is stated for example

as [She99, Lemma 2.2]; see [GV06, Claim 2.9] for a proof.

In all the contexts given, it is trivial that L satisfies () and (M). In the first
context, it can be shown that non p-splitting has weak universal local character at
any o < put such that 27 > p (see the proof of case (c¢) in [SV99, Theorem 2.2.1]
or [Bal09, Lemma 12.2]). Of course, this also holds when K, has full amalgamation.
As for (< k)-coheir, it has weak universal local character at any o < u* such that
27 > k. This is given by the proof of [BG, Theorem 6.6] (note that using a back
and forth argument, one can assume without loss of generality that any M;.; in
the chain is k-saturated). O

Some of the hypotheses of Theorem 5 may appear technical. Let us give a little
more motivation. Hypotheses (3-5) are the statements that Shelah and Villaveces
derive (assuming instances of diamond) from categoricity and no maximal models.
It is well known that they hold in AECs with amalgamation. Note that (4) implies
stability in u. As for (8) it can be seen as a consequence of stability (akin to
“every type does not fork over a set of size less than p”). We have seen that (9) is
implied by categoricity but it is really weaker: it is a weak version of solvability (a
property that Shelah [She09, Chapter IV] has introduced as a potential definition
of superstability in AECs). It can be shown that (8) holds in any superstable
first-order theory, see [GV, Section 5]). See also [Vasb| for more applications of
solvability.
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1.5. Gaps in the Shelah-Villaveces proof. The proof of the main theorem
follows the proof of [SV99, Theorem 2.2.1], but some changes had to be made. In
a preliminary version of [BG], the proof of Theorem 6.8 referred to the argument
used in [SV99, Theorem 2.2.1]. The referee of [BG] insisted that the full argument
necessary for Theorem 6.8 be included. After looking closely at the argument
in [SV99], we concluded that there was a small gap in the division of cases and a
need to specify the exact use of the club guessing principle that they imply.

More specifically, Shelah and Villaveces [SV99, Theorem 2.2.1] assume for a
contradiction that no long splitting chains fails and can divide the situation into
three cases, (a), (b), and (c). In the division into cases [SV99, Claim 2.2.3], just
after the statement of property ®;, Shelah and Villaveces claim that they can
“repeat the procedure above” on a certain chain of models of length p. However
the “procedure above” was used on a chain of length o, where o is a reqular cardinal
and regularity was used in the proof. As pu is a potentially singular cardinal, there
is a problem (this is addressed here in Lemma 9.(5)).

Once the division of cases is done, Shelah and Villaveces prove that cases (a),
(b), (c¢) contradict categoricity. When proving this for (b), they use a club-guessing
principle for x4 on the stationary set of points of cofinality o (see Fact 11). The
principle only holds when o < p, so the case ¢ = u is missing (this is addressed
here by a division into cases in step (3) of the proof of Theorem 5 at the end of
this paper).

1.6. Other advantages of the main theorem. The discussion above gave many
results that rely on the Shelah-Villaveces theorem, hence in our opinion it is a very
important result. This is why we give a detailed, corrected, and generalized proof
of the main theorem that does not rely on any of the material in [SV99]. As
should be clear from Corollary 7, another advantage of our main theorem is that
it separates the combinatorial set theory from the model theory (it holds in ZFC)
and also shows that there is nothing special about splitting in the Shelah-Villaveces
paper.

Some results here have independent interest. For example, any independence
relation with invariance and monotonicity has (assuming categoricity) a certain
continuity property (Lemma 10). Variants of this have recently been used by the
fourth author to study stable (not necessarily superstable) AECs [Vasf].

1.7. Acknowledgments. This paper was written while the fourth author was
working on a Ph.D. thesis under the direction of the second author at Carnegie
Mellon University and he would like to thank Professor Grossberg for his guidance
and assistance in his research in general and in this work specifically.
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2. PROOF OF THE MAIN THEOREM

The proof of Theorem 5 has two steps. First, we study two more variations on
local character: continuity and absence of alternations. We show that if strong lo-
cal character fails but enough weak local character holds, then there must be some
failure of continuity, or some alternation. Second, we show that neither continuity
nor alternation can happen if the categoricity (or more precisely existence of a
universal EM model in ) hypothesis holds. The first step uses the weak local
character (but not categoricity, it is essentially forking calculus) but the second
does not (but does use categoricity).

The precise definitions of continuity and alternations are as follows.

Definition 8. Let K* and J*/ be as in Definition 3 and let o be a limit ordinal.

(1) L has universal continuity at « if for any increasing continuous sequence
(M; € K* | i < «) and any type p € gS(M,,), if for each i < a M;yy is
universal over M; and p | M; does not x-fork over My, then p does not
x-fork over M.

(2) Ford < u* alimit, L has no 6-limit alternations at « if for any increasing
continuous sequence (M; € K* | i < «) with M;1y (u,d)-limit over M; for
all i < « and any type p € gS(M,), there exists i < « such that the
following fails: p | Moy *-forks over My; and p | Maiio does not x-fork

over Moy If this fails, we say that L has 0-limit alternations at a.

Note that the failure of universal continuity and no J-limit alternation corre-
spond respectively to cases (a) and (b) in the proof of [SV99, Theorem 2.2.1].
Case (c) there corresponds to failure of weak universal local character at p (which
is assumed to hold here, see (8) of Theorem 5). The following lemma implements
the first step described at the beginning of this section. In particular, (7) be-
low says that if we can prove weak local character at some o, continuity and no
alternations at all «, then strong local character at all a follows.

Lemma 9. Assume (1)-(7) from the statement of Theorem 5. Let a < p* be a
reqular cardinal, o < p* be a (not necessarily reqular) cardinal, and 6 < p* be a
limat ordinal.

(1) If L has weak universal local character at o, then L has no 0-limit alter-
nations at o.

(2) If L has universal continuity at o and weak universal local character at «,

then L has strong universal local character at «.

(3) We obtain an equivalent definition of weak universal local character (or
strong local character) at o, if in the statement we ask in addition that
“Mi 1 is (u, 6)-limit over M;” for alli < o.



(4)

Proof.
(1)

(2)
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Assume that L has weak universal local character at o. Let (M; : i < o)
be increasing continuous in K* with M; 1 universal over M; for all i < o.
For any p € gS(M,) there exists a successor i < o such that p | My, does
not x-fork over M;.

If L has universal continuity at o, weak universal local character at o, and

no 0-limit alternations at w, then L has strong universal local character at
.

Assume that L has strong universal local character at o. If L does not

have weak universal local character at o, then L has o-limit alternations
at «.

Assume that L has weak universal local character at o. If L has universal
continuity at o and o, L has no o-limit alternations at w, and L has no

o-limit alternations at o, then L has strong universal local character at c.

Fix (M; :i < «), §, p as in the definition of having no d-limit alternations.
Apply weak universal local character to the chain (My; : i < ).
Suppose that (M; : i < «), p is a counterexample.

Claim: For each i < a, there exists j; € (i, ) such that p [ M;, *-forks
over M.

Proof of Claim: If i < « is such that for all j € (i,«), p [ M; does
not x-fork over M;, then applying universal continuity at « on the chain
(M, : k € [i,a]) we would get that p does not *-fork over M;, contradicting
the choice of (M; : i < «), p. T Claim

Now define inductively for ¢« < «, ko := 0, ki1 = Jg,, ki = Sup;; k;.
Note that (k; : i < «) is strictly increasing continuous and ¢ < « implies
k; < o (this uses regularity of a; when « is singular, see (5)).

Apply weak universal local character to the chain (M, : i < a) and the
type p. We get that there exists ¢ < o such that p [ M}, , does not *-fork
over Mjy,. This is a contradiction since k; 1 = j, and we chose ji, so that
p | M, x-forks over Mj,.

We do it for weak universal local character, and the proof for the strong
version is similar. Fix (M} :i < ), p witnessing failure of weak universal
local character at 0. We build a witness of failure (M; : i < o), p such that
M, = M?, and M, is (u,d)-limit over M; for each i < a. Using existence
of universal extensions, we can extend each M? to M that is (u,d)-limit
over M. Since M}, is universal over M, we can find f; : M\, —yp0 M.
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Since limit models are amalgamation bases, f;(M; ) is an amalgamation
base. Now set M} := M} for i < o limit or 0 and M}, = fi(M},,).
This is an increasing continuous chain of amalgamation bases with M},
(@, 8)-limit over M}. Let M; :== M3..

This works: if there was an ¢ < ¢ such that p [ M;;; does not *-fork over
M;, this would mean that p [ M, , does not x-fork over My;, but since
M3, <joe My < MY o =i M3, 5, we have by (M) that p | MY, , does
not *-fork over MJ;. ,, a contradiction.

(4) Apply weak universal local character to the chain (Msy; : i < o) to get
J < o such that p | Myj o does not *-fork over M,;. By monotonicity, this
implies that p [ My;42 does not *-fork over My ;. Let i := 25 4 1.

(5) Suppose not, and let (M; : i < o), p be a counterexample. By (3), without
loss of generality M, is (p, d)-limit over M; for all i < §. As in the proof
of (2), for each i < o, there exists j; € [i,0) such that p [ Mj, x-forks over
M;. On the other hand, applying (4) to the chain (M; : j € [j;, 0]), for
each 7 < o, there exists a successor ordinal k; > j; such that p [ My, 1 does
not *-fork over My,. Define by induction on n < w, my := 0, may4;1 =
Emon, Monte = kpy,, + 1, and m,, := sup, ., m,. By construction, the

sequence (M., :n < w) witnesses that L has ¢-limit alternations at w, a
contradiction.

(6) Let v := o-0. By (3), there exists (M; : i < a), p witnessing failure of weak
universal local character at « such that for all i < a, M;;q is (p,7y)-limit
over M;. Let (M;; : j <) witness that M, is (i, y)-limit over M; (i.e.
it is increasing continuous with M ;41 universal over M, ; for all j < 7,
M,y = M;, and M,;s = M,+1). By strong universal local character at o,
for all ¢ < a, there exists j; < 7 such that p [ M;,; does not x-fork over
M, ;,. By replacing j; by j; + o if necessary we can assume without loss of
generality that cf j; = cf 0.

Observe also that for any ¢ < «, p [ M1, *forks over M; (us-
ing (M) and since by assumption p | M, x-forks over M;). Therefore

*
(Mo, M j,, My, M3 j,, .. .), p witness that L has o-limit alternations at a.
(7) By (5), L has strong universal local character at o. By the contrapositive

of (6), L has weak universal local character at a. By (2), .L has strong
universal local character at .

OJ

The next lemma corresponds to the second step outlined at the beginning of
this section. Note that in contrast to Lemma 9 we are assuming (9) from Theorem

d.
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Lemma 10. Assume (1)-(7) and (9) in Theorem 5. Let o < p* be a regular
cardinal. Then:

(1) L has universal continuity at .

(2) If in addition o < p, then for any limit v < p*, L has no y-limit alterna-
tions at .

Proof. Let (M; | © < «) and p be as in the definition of universal continuity or
~y-limit alternations. Let S** := {§ < u* | ¢fd = a}. We say that C' = (Cj |
)€ Sf;+> is an Sﬁf-club sequence if each Cs C § is club. Clearly, club sequences
exist: just take Cs := ¢ (this will be enough for proving universal continuity).
Shelah [She94] proves the existence of club-guessing club sequences in ZFC under
various hypotheses. We will describe a construction of a sequence of models N(C)
based on a club sequence and then plug in the necessary club sequence in each
case.

Given an S*"-club sequence C, enumerate Cs U {d} in increasing order as (s |
Jj<a).

Claim: Let v < pu™ be a limit ordinal. We can build increasing, continuous

N(C) = {(N; € K*|i < pt) such that for all 1 < pu™:
(1) Niyqis (u,y)-limit over Ny
(2) when i € S#7, there is g; : M, = N; such that g;(M;) = Ng,; for all j < a;
and:
(3) when i € S#" there is a; € N;;; that realizes g;(p).

Proof of Claim: Build the increasing continuous chain of models as follows: start
with an amalgamation base Ny (which exists as we are assuming (3) of Theorem
5). Given an amalgamation base N;, build N;.; to be (u,~)-limit over it. This
exists by (4) of Theorem 5), and Ny, is an amalgamation base by (5) there. At
limits, it also guarantees we have an amalgamation base.

At limits ¢ of cofinality «, use the uniqueness of (j,y)-limits models to find the
desired isomorphisms: the weak version gives My = Mp, ), and the strong (over
the base) version allows this isomorphism to be extended to get an isomorphism
gi between (M; | j < o) and (Ng,, | j < a) as described. Since N;;; is universal
over N;, we there is some a; € N, that realizes g;(p). T Claim

By (9) of Theorem 5, we may assume that N :=
Thus, we can write a; = p;(7], . . ., V) With:

+ N; <ic- EM,(uF, ®).

<[

"< <%in(i) <i§’721(¢)+1 < <%i1(i) <ut
Now we begin to prove each part of the lemma. In each, we will find i; < iy € S&‘Jr
such that gtp(a;, /N;; N) and gtp(a;, /Ny ; N) are both the same (because of the
EM structure) and different (because they exhibit different x-forking behavior),
which is our contradiction.
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(1) Assume that p [ M; does not fork over My, for all j < a.

Let C be an S* -club sequence, and set (N; € K* | i < put) = N(C) as in
the Claim (the value of v doesn’t matter here, e.g. take v := w). By Fodor’s
Lemma, there is a stationary subset S* C Sgﬁ, a term p,, M., n, < w and
ordinals 7§, ... Yn., B« 0 such that:

For every i € S*, we have p; = p,; n(i) = ny; m(i) = my; %i‘ = ; for
J < my;and Bip = Peo.

Set E := {0 < p* | ¢ is limit and EM,(J,®) " N = Ns}. This is a club.
Let 41y < i3 both be in S* N E. Then we have:

gtp (i, /Niy) = &t (P, Vs Yoo 1o -+ V)N N EM, (i, D))
=gtp (Pe(V]s o Vi Vi 1s - Vi2) /N NEM, (i1, ©))
= gtp (a’i2/Ni1>

where all the types are computed inside N. This is because the only
differences between a;, and a;, lie entirely above 7;.

We have that g;, : (N;,, Ng, ,) = (Mg, My) and that p *-forks over M.
Thus, gtp(a;, /Ni,) = gi,(p) *-forks over Ng_,. On the other hand, Cj, is
cofinal in 49, so there is j < a such that ;, ; > ¢, and, thus, N;; <x- Ng,, ;-
Again, gi, : (Ng,, ;, Np,,) = (Mj, My) and p | M; does not *-fork over My
by assumption. Thus, gtp(ai,/Ns,, ;) = gi,(p [ M;) does not *-fork over
N3, ,. By monotonicity (M), gtp(as,/N;,) does not *-fork over Ng, ,. Thus,
gtp(a;, /N;y) # gtp(ai, /N;,), a contradiction.

(2) Let x be a big-enough cardinal and create an increasing, continuous el-
ementary chain of models of set theory (B; | i < u™) such that for all

i< pt
(a) B; < (H(x), €);
(b) 1Bl = 4

(¢) By contains, as elements®, &, EM(ut, ®), h, pt, (N; | i < p*), SE,
(a; | i€ S*7), and each f € 7(®); and
(d) B; N pt is an ordinal.
We will use the following fact which was originally proven in [She94, T11.2]
(or see [AM10, Theorem 2.17, Exercise 2.18.2]).

Fact 11. Let \ be a cardinal such that cf X > 0% for some reqular 6 and
let S C S be stationary. Then there is a S-club sequence (Cs | § € S)

such that, if E C X is club, then there are stationarily many 6 € S such
that Cs C F.

3When we say that By contains a sequence as an element, we mean that it contains the
function that maps an index to its sequence element.



SUPERSTABILITY FROM CATEGORICITY IN AECS 13

We have that a < [t, SO we can apply Fact 11 with A, 8, S there standing
for ut, a, S“ here. Let C be the S“ -club sequence that the fact gives.
Let (N € K | i < p) = N(C) be as in the Claim. Note that E = {i <
pt | BN /ﬁ =i} is a club. By the conclusion of Fact 11, there is some
iy € S* such that C;, C E. We have a;, = ps,(72, . .. ,7;2(1.2)), with:

71’2 TS 7m(12) <i2 S 723@2)4-1 <SS 7712(i2)
Since the 3;, ;’s enumerates a cofinal sequence in ¢, we can find j < «
such that 7:72(1.2) < Biy2j+1 < i. Recall that we have p | My;o does not
«-fork over M,y by assumption. Then (H(x), €) satisfies the following

formulas with parameters exactly the objects listed in item (2c) above and
ordinals below f3;, 2;2:

+
EL’L', Ym(ig)+1s - - - ,yn(i).(“l‘ € SZ K
A “x > Biyaj1” A “yp € (z, u") are increasing ordinals”

A “ax = Piy (’yf{Qa s 7’7:5(1'2)7 Ym(iz)+1y - - - ayn(iz))”
AN, C EM(z, )")

This is witnessed by = iy and y = 7,?. By elementarity, Bg_,,,, satis-
fies this formula as it contains all the parameters. Let iy € (8i,.2j41, #7) N
B, e = (Biy2ji1s Bin2jra)* witness this, along with 'an(iz)ﬂ < e <
Vniizy < ' Then we have:

@i, = piy (Vs Z(ig)v ’Y;n(z'g)+1> "o ’7’]’1@2))

with 85, 2541 < Yim(iz)+1. We want to compare gtp(as, /N;, ) and gtp(ai /N;,).

e From the elementarity, we get that N;, C EM, (i1, ®). We also know
that i1 < B, 242 < 72(i2)+1’77/n(i2)+1' Thus, as before, the types are
equal.

e We know that p [ Ma;,o does not +-fork over My; 1. Thus, gtp(ai,/Ng,, »;.,)
does not xfork over Ng, , ... Since we have Ng,_,. ., <x= Ni; Zk-
N, 2;40» this gives gtp(as, /Ni,) does not *-fork over Ng,_, ...

e We have f3;, 941 < 1, so there is some k& < « such that §;, 911 <
Bi,k < i'. By assumption, p x-forks over Mj. Thus g;, (p) *-forks over
Ng, - Thus, gtp(ai, /N;,) *-forks over N, .., <k Ng, -

As before, these three statements contradict each other.

4The equality here is the key use of club guessing.
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Proof of Theorem 5. By Remark 4, it suffices to show that .L has strong universal

local character at any regular o < p*. Pick a cardinal o < p* such that L has
weak universal local character at o (exists by assumption (8)). We proceed in
several steps.

(1) L has weak universal local character at any limit o’ € [0, u*). [By Remark

4].

(2) L has universal continuity at any regular @ < p*. [By Lemma 10].

(3) For any limit v < u* and any regular o < pt, L has no 4-limit alternations

at o. [By Lemma 10 when oo < 0. When a > o, combine (1) and Lemma

9.(1).).

(4) For any regular o < p*, L has strong universal local character at «. [By

[Ad109]
[AM10]
[Bal09]
[BG]

[BKO0Y]
[Gro02]

[GS86a]

[GS86b]

(2), (3), and Lemma 9.(7)].
0
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