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Abstract. We develop a notion of forking for Galois-types in the context of
Abstract Elementary Classes (AECs). Under the hypotheses that an AEC K is
tame, type-short, and failure of an order-property, we consider

Definition 1. Let M0 ≺ N be models from K and A be a set. We say that the
Galois-type of A over N does not fork over M0, written A^

M0

N , iff for all small

a ∈ A and all small N− ≺ N , we have that Galois-type of a over N− is realized
in M0.

Assuming property (E) (Existence and Extension, see Definition 3.3) we show
that this non-forking is a well behaved notion of independence, in particular
satisfies symmetry and uniqueness and has a corresponding U-rank. We find
conditions for a universal local character, in particular derive superstability-like
property from little more than categoricity in a “big cardinal”. Finally, we show
that under large cardinal axioms the proofs are simpler and the non-forking is
more powerful.

In [BGKV], it is established that, if this notion is an independence notion,
then it is the only one.
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1. Introduction

Much of modern model theory has focused on Shelah’s forking. In the last twenty
years, significant progress has been made towards understanding of unstable theo-
ries, especially simple theories (Kim [Kim98] and Kim and Pillay [KiPi97]), NIP
theories (surveys by Adler [Ad09] and Simon [Si]), and, most recently, NTP2 (Ben-
Yaacov and Chernikov [BYCh14] and Chernikov, Kaplan, and Shelah [CKS1007]).

In the work on classification theory for Abstract Elementary Classes (AECs),
such a nicely behaved notion is not known to exist. However, much work has been
done towards this goal. Around 2005, homogeneous model theory–working under
the assumption that there exists a monster model which is sequential homoge-
neous (but not necessarily saturated as in the first-order sense) and types consists
of sets of first-order formulas–reached a stage of development that parallels that of
first-order model theory in the seventies. There is a Morley-like categoricity the-
orem (Keisler [Kei71] and Lessmann [Les00]), forking exists (Buechler and Less-
man [BuLe03]), and even a main gap is true (Grossberg and Lessmann [GrLe05]).
Hyttinen and Kesälä studied a further extension of homogeneous model theory
called finitary AECs in [HyKe06] and in [HyKe11]. They established both Mor-
leys categoricity theorem and that non-splitting is a variant of forking under the
assumptions of ℵ0-stability and what they call simplicity (like our extension prop-
erty) in a countable language.

However, as AECs are much more general the situation for AECs is more com-
plicated. There are classes axiomatized by Lω1,ω that do not fit into the framework
of homogeneous model theory:

(1) Marcus [Mar75] constructed an Lω1,ω sentence that is categorical in all
cardinals but does not have even an ℵ1-homogenous model.

(2) Hart and Shelah [HaSh323] constructed, for each k < ω, an Lω1,ω sentence
ψk which is categorical in all ℵn for n ≤ k but not categorical in higher
cardinals. By the categoricity theorem for finitary AECs [HyKe11], this
means that Mod(ψk) is not homogeneous as it is not even finitary.

In [Sh:h, Chapter N], Shelah explains the importance of classification theory for
AECs. At the referee’s suggestion, we summarize the argument here, although the
truly interested reader should consult the source.

As mentioned above, classification theory has become the main focus of model
theory. Shelah and other early workers were motivated by purely abstract prob-
lems, such as the main gap in [Sh:c]. The machinery used to solve these problems
turned out to be very powerful and, about 20 years later, Chatzidikis, Hrushovski,
Scanlon, and others discovered deep applications to geometry, algebra, and other
fields.

However, this powerful machinery was restricted because it only applied to first-
order model theory. This is natural from a logical point of view as first-order logic
has many unique features (e. g., compactness), but there are many mathematical
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classes that are not first order axiomatizable: we list some in this introduction and
in Section 5 and each of Grossberg [Gro02], Baldwin [Bal09], and [Sh:h, Chapter
N] contain their own lists. The logic needed to axiomatize each context varies,
from Lω1,ω(Q) for quasiminimal classes to L|R|+,ω for torsion R-modules. Varying
the substructure relation (e. g., subgroup vs. pure subgroup) complicates the
picture further.

A unifying perspective is given by AECs and Shelah began their classification
(and their study) in the late 1970s. Here again questions of number of noniso-
morphic models have formed the basic test questions. The most central one here
is Shelah’s Categoricity Conjecture; Shelah proposed this conjecture for Lω1,ω in
the late seventies as a way to measure the development of the relevant classifi-
cation theory. At present, there are many partial results that approximates this
conjecture and harder questions for AECs. Despite an estimated of more than
2,000 published pages, the full conjecture is not within reach of current methods,
in contrast to the existence of relatively simple proofs of the conjecture for the
cases of homogeneous models and finitary AECs. Due to the lack of compactness
and syntax, extra set-theoretic assumptions (in addition to new techniques) have
been needed to get these results; the strong Devlin-Shelah diamonds on successors
in [Sh576] and large cardinals in [MaSh285] are excellent examples of this.

Differing from Shelah, our vision is that model-theoretic assumptions (espe-
cially tameness and type-shortness here) will take the place of set-theoretic ones.
The hope here is two-fold: first, that, although these assumptions don’t hold ev-
erywhere, they can be shown to hold in many natural and, second, that these
model-theoretic assumptions are enough to develop a robust classification theory.
This paper (and follow-ups by Boney, Grossberg, Kolesnikov, and Vasey) provide
evidence for the first hope and examples described in Section 5 provide evidence
for the first.

In [Sh394], Shelah introduced analogues of splitting and strong splitting for
AECs. Building on this, Shelah [Sh576], and Grossberg, VanDieren, and Villave-
ces [GVV], Grossberg and VanDieren [GV06c,GV06a] used tameness to prove an
upward categoricity transfer. This helped cement tameness as an important prop-
erty in the classification of AECs. Working in a stronger context, Makkai and
Shelah [MaSh285] studied the case when a class is axiomatized by an Lκ,ω theory
and κ is strongly compact. They managed to obtain an eventual categoricity theo-
rem by introducing a forking-like relation on types. In this particular case, Galois
types (defined in §2) can be identified with complete set of formulas taken from
a fragment of Lκ,κ. In their paper, Makkai and Shelah assumed not only that κ
is strongly compact but also that the class of structures is categorical in some λ+

where λ ≥ i(2κ)+ .
Our paper is an extension and generalization of the above results of Makkai

and Shelah, but with assumptions closer to those of Grossberg and VanDieren.
We introduce a notion that, like the one from [MaSh285], is an analogue of the



4 WILL BONEY AND RAMI GROSSBERG

first order notion of coheir. One of our main results is that, given certain model
theoretic assumptions, this notion is in fact an independence notion.

Theorem (5.1). Let K be an AEC with amalgamation, joint embedding, and no
maximal models. If there is some κ > LS(K) so that

(1) K is fully < κ-tame;
(2) K is fully < κ-type short;
(3) K doesn’t have an order property; and
(4) ^ satisfies existence and extension,

then ^ is an independence relation.

Sections 2, 3, and 4 give precise definitions and discussions of the terms in the
theorem. After proving the main theorem in Section 5, we delve into a discussion
of the assumptions used; the difficulties of the proof compared with first-order; and
some examples of where the theorem can be applied. At the referee’s suggestion,
we have included a list of the other main results in the paper; these all take place
under the hypothesis of amalgamation, joint embedding, and no maximal models
and κ > LS(K).

Theorem. • If K has no weak κ-order property, is categorical in λ ≥ κ, and
Galois stable in κ, then κ∗ω(^) = ω; see Theorem 6.8.
• If K is fully < κ-tame and -type short, doesn’t have the weak κ-order

property, is categorical in λ > κ, and ^ satisfies existence and extension,
then K[κ,λ) has unique limit models in each cardinality; see Corollary 6.18.

• If
∗
^ is an independence relation, then the forking rank characterizes non-

forking on ordinal-ranked Galois types; see Theorem 7.7.
• If κ is strongly compact and K is categorical in λ = λ<κ, then ^ is an inde-

pendence relation with superstable-like local character; see Theorem 8.2.(3).

The main theorem also generalizes the work of [Sh472]. This has several advan-
tages over previous work.

(1) We generalize Makkai and Shelah [MaSh285] in two key ways. First, we
replace Lκ,ω classes and syntactic types by AECs and Galois types. This
allows the results to apply to classes not axiomatizable in Lκ,ω, such as
quasiminimal excellent classes (which require the ‘Q’ quantifier) and the
example of Baldwin, Eklof, and Trlifaj [BET07]. Second, we replace large
cardinal axioms by purely model theoretic hypotheses: tameness and type
shortness. Section 5 gives some ZFC examples of AECs with these prop-
erties. Together, tameness and type shortness give a locality condition for
when an injection with domain not necessarily a model can be extended
into a K embedding; see [Bon14b].§3 for a longer discussion.

(2) When reduced to the special case where K has a first-order axiomatization
by a complete theory, the independence relation we introduce is coheir,



FORKING IN SHORT AND TAME ABSTRACT ELEMENTARY CLASSES 5

which is equivalent to first-order forking in the stable case we consider. This
is unlike the relatives of splitting and strong splitting used by [HyKe06]
and [GrLe02]. This allows us to mimic some first order arguments; see
Section 6.

(3) Motivated by a test question of Grossberg1, Shelah [Sh576], [Sh600], and
[Sh705] and Jarden and Shelah [JrSh875] have dealt with the problem
whether I(λ,K) = 1 ≤ I(λ+, K) < 2λ

+
implies existence of model of cardi-

nality λ++. While this question is still open (even under strong set-theoretic
assumptions), Shelah managed to get several approximations. For this, he
needed to discover and develop a very rich conceptual infrastructure that
occupies more than 500 pages. One of the more important notions is that
of good λ-frame. This is a forking-like relation defined using Galois-types
over models of cardinality λ. Our approach is orthogonal to Shelah’s recent
work on good λ-frames and we manage to obtain a forking notion on the
class of all models above a natural threshold size, instead of models of a
single cardinality. Instead of using I(λ+n, K) < 2λ

+n
for all 1 ≤ n < ω,

we assume the lack of an order property, which follows from few models in
a single big cardinal. Unlike Shelah, our treatment does not make use of
diamond-like principles as we work in ZFC. More comparison is given after
Definition 3.3.

The main theorem allows us to shed light on other questions in the classifica-
tion theory of AECs, especially concerning superstability. Superstability in AECs
suffers from “schizophrenia” [Sh:h, p. 19]. The main result shows a connection
between two conditions, namely that a local character κ∗(^) = ω implies unique-
ness of limit models; see Section 6. Another question involves properties of ranks
(see [Vi06, Question 3]) and Section 7 introduces a rank based on the properties
of the independence relation that is ordinal valued exactly when a local character
for ^ holds.

Unfortunately, there is no free lunch and we pay for this luxury. Our payment
is essentially in assuming tameness and type-shortness. As was shown by Boney
in [Bon14b], these assumptions are corollaries of certain large cardinal axioms,
including the one assumed by Makkai and Shelah; indeed, more recent work of
Boney and Unger [BoUn] show that assuming every AEC is tame is equivalent to
a large cardinal axiom. However, many natural AECs are tame, and it seems to
be plausible that tameness and type shortness will be derived in the future from
categoricity above a certain Hanf number that depends only on LS(K).

After circulating early drafts of this paper, some of our results were used by
Sebastien Vasey [Vasb] and [Vasc], e. g., Theorem 6.8 is crucial in his proof of
superstability from categoricity. Also Theorem 8.2.(2) is used in a forthcoming
article by Grossberg and Vasey [GVas].

1This first appeared in Grossberg’s 1981 MSc thesis.
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Section 2 gives the necessary background information for AECs. Section 3 gives
a list of common axioms for independence relations and defines the forking relation
that we will consider in this paper. Section 4 gives a fine analysis of when param-
eterized versions of the axioms from Section 3 hold about our forking relation.
Section 5 gives the global assumptions that make our forking relation an indepen-
dence relation. Section 6 introduces a notion that generalizes heir and deduces
local character of our forking from this and categoricity. Section 7 introduces a
U rank and shows that it is well behaved. Section 8 continues the study of large
cardinals from [Bon14b] and shows that large cardinal assumptions simplify many
of the previous sections.

This paper was written while the first author was working on a Ph.D. under
the direction of Rami Grossberg at Carnegie Mellon University, and he would
like to thank Professor Grossberg for his guidance and assistance in his research
in general and relating to this work specifically. He would also like to thank
his wife Emily Boney for her support. A preliminary version of this paper was
presented in a seminar at Carnegie Mellon and we appreciate comments from
the participants, in particular Jose Iovino. We would also like to thank John
Baldwin, Adi Jarden, Sebastien Vasey and Andres Villaveces. We are very grateful
to the referee for comments on several versions of this paper, the referee’s reports
significantly improved our paper.

2. Preliminaries

The definition of an Abstract Elementary Class was first given by Shelah in
[Sh88]. The definitions and concepts in this section are all part of the literature;
in particular, see the books by Baldwin [Bal09] and Shelah [Sh:h], the article by
Grossberg [Gro02], or the forthcoming book by Grossberg [Gro1X] for general
information.

Definition 2.1. We say that (K,≺K) is an Abstract Elementary Class iff

(1) There is some language L = L(K) so that every element of K is an L-
structure;

(2) ≺K is a partial order on K;
(3) for every M,N ∈ K, if M ≺K N , then M is an L-substructure of N ;
(4) (K,≺K) respects L isomorphisms: if f : N → N ′ is an L isomorphism and

N ∈ K, then N ′ ∈ K and if we also have M ∈ K with M ≺K N , then
f(M) ≺K N ′;

(5) (Coherence) if M0,M1,M2 ∈ K with M0 ≺K M2, M1 ≺K M2, and M0 ⊆
M1, then M0 ≺M1;

(6) (Tarski-Vaught axioms) suppose 〈Mi ∈ K : i < α〉 is a ≺K-increasing
continuous chain, then
(a) ∪i<αMi ∈ K and, for all i < α, we have Mi ≺K ∪i<αMi; and
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(b) if there is some N ∈ K so that, for all i < α, we have Mi ≺K N , then
we also have ∪i<αMi ≺K N .

(7) (Lowenheim-Skolem number) LS(K) is the first infinite cardinal λ ≥ |L(K)|
such that for any M ∈ K and A ⊂ M , there is some N ≺K M such that
A ⊂ N and ‖N‖ ≤ |A|+ λ.

Remark 2.2. As is typical, we drop the subscript on ≺K when it is clear from
context and abuse notation by calling K an AEC when we mean (K,≺K) is an
AEC. Also, we follow the convention of Shelah that, for M ∈ K, we denote the
cardinality of its universe by ‖M‖. Also, in this paper, K is always an AEC that
has no models of size smaller than the Lowenheim-Skolem number.

We will briefly summarize some of the necessary basic notations, definitions,
and results for AECs; the references contain a more detailed description and de-
velopment.

Definition 2.3.
(1) A K embedding from M to N is an injective L(K)-morphism f : M → N

so f(M) ≺K N .
(2)

Kλ = {M ∈ K : ‖M‖ = λ}
K≤λ = {M ∈ K : ‖M‖ ≤ λ}

(3) K has the amalgamation property (AP) iff for any M ≺ N0, N1 ∈ K, there
is some N∗ ∈ K and fi : M → Ni such that

N1
f1 // N∗

M

OO

// N0

f2

OO

commutes.
(4) K has the joint embedding property (JEP) iff for any M0,M1 ∈ K, there

is some M∗ ∈ K and fi : Mi →M∗.
(5) K has no maximal models iff for all M ∈ K, there is N ∈ K so M � N .

Note that it is a simple exercise to show that, if K has the joint embedding
property, then having arbitrarily large models is equivalent to having no maximal
models.

We will use the above three assumptions in tandem throughout this paper.
This allows us to make use of a monster model, as in the complete, first order
setting; [Gro1X, Section 4.4] gives details. The monster model C is of large size
and is universal and model homogeneous for all models that we consider. As is
typical, we assume all elements come from the monster model.

We use a monster model to streamline our treatment. However, amalgamation
is the only one of the properties that is crucial because it simplifies Galois types.
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Joint embedding and no maximal models are rarely used; one major exception is
Proposition 5.3 in the discussion of the order property. After giving the definition
of nonforking in the next section, we briefly detail the differences when we are not
working in the context of a monster model.

In AECs, a consistent set of formulas is not a strong enough definition of type;
any of the examples of non-tameness will be an example of this and it is made
explicit in [BK09]. However, Shelah isolated a semantic notion of type in [Sh300]
that Grossberg suggested to call Galois type in [Gro02]. In his book [Sh:h], Shelah
calls this orbital type. This notion replaces the first order notion of type for AECs.
Crucially, we allow Galois types of infinite lengths.

Definition 2.4. Let K be an AEC, λ ≥ LS(K), and I be a nonempty set.

(1) Let M in K and 〈ai ∈ C : i ∈ I〉 be a sequence of elements. The Galois
type of 〈ai ∈ C : i ∈ I〉 over M is denoted gtp(〈ai ∈ C : i ∈ I〉/M) and is
the orbit of 〈ai : i ∈ I〉 under the action of automorphisms of C fixing M .
That is, 〈ai ∈ C : i ∈ I〉 and 〈bi : i ∈ I〉 have the same Galois type over M
iff there is f ∈ AutMC so that f(ai) = bi for all i ∈ I.

(2) For M ∈ K, gSI(M) = {gtp(〈ai : i ∈ I〉/M) : ai ∈ C for all i ∈ I}.
(3) Suppose p = gtp(〈ai : i ∈ I〉/M) ∈ gSI(M) and N ≺ M and I ′ ⊂ I.

Then, p � N ∈ gSI(N) is gtp(〈ai : i ∈ I〉/N) and pI
′ ∈ gSI

′
(M) is

gtp(〈ai : i ∈ I ′〉/M).
(4) Given a Galois type p ∈ gSI(M), then the domain of p is M and the length

of p is I.
(5) If p = gtp(A/M) is a Galois type and f ∈ Aut C, then f(p) = gtp(f(A)/f(M)).

Remark 2.5. We sometimes write that the type of two sets (say X and Y ) are
equal; given the above definitions, this really means there is some enumeration
X = 〈xi : i ∈ I〉 and Y = 〈yi : i ∈ I〉 so that the types of the sequences are equal.
If we reference some x ⊂ X and the ‘corresponding part of Y ,’ then this refers to
y ⊂ Y indexed by the same set that indexes x; that is, y = 〈yi : i ∈ I and xi ∈ x〉.

Along with types comes a notion of saturation, called Galois saturation. A
degree of Galois saturation will be necessary when we deal with our independence
relation, so we offer a definition here. Additionally, we include a lemma of Shelah
that characterizes saturation by model homogeneity.

Definition 2.6. (1) A model M ∈ K is µ-Galois saturated iff for all N ≺ M
such that ‖N‖ < µ and p ∈ gS(N), we have that p is realized in M .

(2) A model M ∈ K is µ-model homogeneous iff for all N ≺ M and N ′ � N
such that ‖N ′‖ < µ, there is f : N ′ →N M .

Lemma 2.7 ( [Sh576].0.26.1). Let λ > LS(K) and M ∈ K and suppose that K
has the amalgamation property. Then M is λ-Galois saturated iff M is λ-model
homogeneous.
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We conclude the preliminaries by recalling two locality properties that are key for
this paper: tameness and type shortness. Tameness was first isolated by Grossberg
and VanDieren [GV06b, Definition 3.2], although a weaker version had been used
by Shelah [Sh394] in the midst of a proof. Later, Grossberg and VanDieren [GV06c]
[GV06a] showed that a strong form of Shelah’s Categoricity Conjecture holds for
tame AECs. Type shortness was defined by the first author in [Bon14b, Definition
3.3] as a dual property for tameness. There, type shortness and tameness were
derived from large cardinal hypotheses.
Recall that PκI = {I0 ⊂ I : |I0| < κ} and P ∗κM = {M− ≺M : ‖M−‖ < κ}.
Definition 2.8. (1) K is (< κ, λ)-tame for θ-length types iff, for all p, q ∈

gSI(M) with ‖M‖ = λ and |I| = θ, we have p = q iff, for all M− ∈ P ∗κM ,
p �M− = q �M−.

(2) K is (< κ, λ)-type short for θ-sized domains iff, for all p, q ∈ gSI(M) with
|I| = λ and ‖M‖ = θ, we have p = q iff, for all I0 ∈ PκI, pI0 = qI0.

(3) K is fully < κ-tame and -type short iff it is (< κ, λ)-tame for θ-length
types and (< κ, λ)-type short for θ-sized domains for all θ and all λ ≥ κ.

We parameterize the properties to get exact results in Proposition 4.1, but the
reader can focus on the “fully < κ-tame and -type short” case if desired. Note,
by [Bon14b, Theorem 3.5], the type shortness implies the tameness. However, we
include both hypotheses for clarity.

3. Axioms of an independence relation and the definition of
forking

The following hypothesis and definition of non-forking is central to this paper:

Hypothesis 3.1. Assume that K has no maximal models and satisfies the λ-joint
embedding and λ-amalgamation properties for all λ ≥ LS(K).

Fix a cardinal κ > LS(K). The nonforking is defined in terms of this κ and all
subsequent uses of κ will refer to this fixed cardinal, until Section 8. If we refer to
a model, tuple, or Galois type as ‘small,’ then we mean its size is < κ, its length
is of size < κ, or both its domain and its length are small.

Definition 3.2. Let M0 ≺ N be models and A be a set. We say that gtp(A/N)
does not fork over M0, written A^

M0

N , iff for all small a ∈ A and all small

N− ≺ N , we have that tp(a/N−) is realized in M0. We call this κ-coheir or
< κ-satisfiability.

That is, a type does not fork over a base model iff all small approximations to
it, both in length and domain, are realized in the base model. This definition is
a relative of the finite satisfiability–also known as coheir–notion of forking that is
extensively studied in stable theories. It is an AEC version of the non-forking de-
fined in Makkai and Shelah [MaSh285, Definition 4.5] for categorical Lκ,ω theories
when κ is strongly compact.
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We now list the properties that, our nonforking notion will have. These proper-
ties can be thought of as axiomatizing an independence relation. The ones listed
below are commonly considered and are similar to the properties that character-
ize nonforking in first order, stable theories, although this list is most inspired
by [MaSh285, Proposition 4.4]. However, many of these properties have been
changed because we require the bottom and right inputs to be models. This is
similar to good λ-frames, which appear in [Sh:h, Section II.2], although we don’t
require the parameter set A to be a singleton and we allow the sets and models to
be of any size.

The properties we introduce are heavily parameterized. The interesting and
hard to prove properties–Existence, Extension, Uniqueness, and Symmetry–are
each given with parameters among λ, µ, χ, and θ. These parameters allows us to
conduct a fine analysis of exactly what assumptions are required to derive these
properties. The order of these parameters is designed to be as uniformized as
possible: if appropriate, when referring to A^

M0

N , the λ refers to the size of A,

µ refers to the size of M0, and χ refers to the size of N . If we write a property
without parameters, then we mean that property for all possible parameters.

Definition 3.3. Fix an AEC K. Let
∗
^ be a ternary relation on models and sets

so that A
∗
^
M0

N implies that A is a subset of the monster model and M0 ≺ N are

both models. We say that
∗
^ is an independence relation iff it satisfies all of the

following properties for all cardinals referring to sets and all cardinals that are at
least κ when the cardinal refers to a model.

(I) Invariance

Let f ∈ Aut C be an isomorphism. Then A
∗
^
M0

N implies f(A)
∗
^

f(M0)
f(N).

(M) Monotonicity

If A
∗
^
M0

N and A′ ⊂ A and M0 ≺M ′
0 ≺ N ′ ≺ N , then A′

∗
^
M ′0

N ′.

(T ) Transitivity

If A
∗
^
M ′0

N and M ′
0

∗
^
M0

N with M0 ≺M ′
0, then A

∗
^
M0

N .

(C)<κ Continuity
(a) If for all small A′ ⊂ A and small N ′ ≺ N , there are M ′

0 ≺ M0 and

N ′ ≺ N∗ ≺ N such that M ′
0 ≺ N∗ and A′

∗
^
M ′0

N∗, then A
∗
^
M0

N .

(b) If I is a κ-directed partial order and 〈Ai,M i
0 | i ∈ I〉 are increasing

such that Ai
∗
^
M i

0

N for all i ∈ I, then ∪i∈IAi
∗
^

∪i∈IM i
0

N .
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(E)(λ,µ,χ,θ) (a) Existence
Let A be a set and M0 be a model of sizes λ and µ, respectively. Then

A
∗
^
M0

M0.

(b) Extension
Let A be a set and M0 and N be models of sizes λ, µ, and χ, respec-

tively, so that M0 ≺ N and A
∗
^
M0

N . If N+ � N of size θ, then there

is A′ so A′
∗
^
M0

N+ and gtp(A′/N) = gtp(A/N).

(S)(λ,µ,χ) Symmetry
Let A1 be a set, M0 be a model, and A2 be a set of sizes λ, µ, and χ,
respectively, so that there is a model M2 with M0 ≺M2 and A2 ⊂M2 such

that A1

∗
^
M0

M2. Then there is a model M1 �M0 that contains A1 such that

A2

∗
^
M0

M1.

(U)(λ,µ,χ) Uniqueness
Let A and A′ be sets and M0 ≺ N be models of sizes λ, λ, µ, and χ,

respectively. If gtp(A/M0) = gtp(A′/M0) and A
∗
^
M0

N and A′
∗
^
M0

N , then

tp(A/N) = tp(A′/N).

A discussion of these axioms and their relation to other nonforking notions is in
order.

As mentioned in the introduction, this notion is somewhat orthogonal to Shelah’s
notion of good λ-frames (see [Sh:h, Definition II.2.1]). While both attempt to
axiomatize a nonforking relation, we allow greater generality by considering Galois
types of arbitrary length over all models of a sufficiently large size. In contrast,
Shelah deals with a subclass of unary Galois types only over a fixed size λ. On
the other hand, since good λ-frames attempt to axiomatize superstability (rather
than stability as we do here), good λ-frames have stronger continuity and local
character properties.

Notice that the Existence property implies that M0 ∈ K≥κ is κ-Galois saturated
when ^ is κ-coheir. However, this is not a serious restriction in comparison with
other work. In other cases where AECs have a strong nonforking notions, some
level of categoricity is assumed; see Makkai and Shelah [MaSh285], Shelah [Sh:h,
Section II.3], and Vasey [Vasa]. The categoricity hypotheses are used to ensure
large amounts of Galois saturation, as we have here. Indeed, Theorem 5.4 below
shows that categoricity in some λ = λ<κ implies that all sufficiently large models
are κ-Galois saturated.

The monotonicity and invariance properties are actually necessary to justify our
formulation of nonforking as based on Galois types. Without them, whether or
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not a Galois type doesn’t fork over a base model could depend on the specific
realization of the chosen type. Since these properties are clearly satisfied by our
definition of nonforking, this is not an issue.

The axiom (E)(λ,µ,χ,θ) combines two notions. The first is Existence: that a
Galois type does not fork over its domain. This is similar to the consequence of
simplicity in first order theories that a type does not fork over the algebraic closure
of its domain. As mentioned above, in this context, existence is equivalent to every
model being κ-Galois saturated. In the first order case, where finite satisfiability
is the proper analogue of our non-forking, existence is an easy consequence of the
elementary substructure relation. In [MaSh285], this holds for < κ satisfiability,
their nonforking, because types are formulas from Lκ,κ and, due to categoricity,
the strong substructure relation is equivalent to ≺Lκ,κ .

The second notion is the extension of nonforking Galois types. In first order
theories (and in [MaSh285]), this follows from compactness, but is more difficult
in a general AEC. We have separated these notions for clarity and consistency with
other sources, but could combine them in the following statement of (E)(λ,µ,µ,χ):

Let A be a set and M0 and N be models of sizes λ, µ, and χ, respectively,
so that M0 ≺ N . Then there is some A′ so that gtp(A′/M0) = gtp(A/M0)

and A′
∗
^
M0

N .

As an alternative to assuming (E), and thus assuming all models are κ-Galois
saturated, we could simply work with the definition and manipulate the nonforking
relationships that occur. This is the strategy in Section 6. In such a situation,
κ-Galois saturated models, which will exist in λ<κ, will satisfy the existence axiom.

The relative complexity of the symmetry property is necessitated by the fact
that the right side object is required to be a model that contains the base. If the
left side object already satisfied this, then there is a simpler statement.

Proposition 3.4. If (S)(λ,µ,χ) holds, then so does the following

(S∗)(λ,µ,χ) Let M , M0, and N be models of size λ, µ, and χ, respectively so that

M0 ≺ N and M0 ≺M . Then M
∗
^
M0

N iff N
∗
^
M0

M .

In first order stability theory, many of the key dividing lines depend on the local
character κ(T ), which is the smallest cardinal so that any type doesn’t fork over
some subset of its of domain of size less than κ(T ). The value of this cardinal can
be smaller than the size of the theory, e.g. in an uncountable, superstable theory.
However, since types and nonforking occur only over models, the smallest value
the corresponding cardinal could take would be LS(K)+. This is too coarse for
many situations, although see Boney and Vasey [BoVa] for a comparison. Instead,
we follow [ShVi635], [Sh:h, Chapter II], and [GV06b] by defining a local character
cardinal based on the length of a resolution of the base rather than the size of car-
dinals. As different requirements appear in different places, we give two definitions
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of local character: one with no additional requirement, as in [Sh:h, Chapter II],
and one requiring that successor models be universal, as in [ShVi635] and [GV06b].

Definition 3.5. κα(
∗
^) = min{λ ∈ REG ∪ {∞} : for all regular µ ≥ λ and all

increasing, continuous chains 〈Mi : i < µ〉 and all sets A of size less than α, there

is some i0 < µ so A
∗
^
Mi0

∪i<µMi}

κ∗α(
∗
^) = min{λ ∈ REG ∪ {∞} : for all µ = cf µ ≥ λ and all increasing,

continuous chains〈Mi : i < µ〉 with Mi+1 universal over Mi which is κ-saturated

and all sets A of size less than α, there is some i0 < µ so A
∗
^
Mi0

∪i<µMi}

In either case, if we omit α, then we mean α = ω.

In Section 6, we return to these properties and find a natural, sufficient condition
that implies that κ∗(^) = ω.

Although we do not do so here, the notions of κ-coheir makes sense in AECs with
some level of amalgamation but without the full strength of a monster model. In
such an AEC, the definition of the Galois type of A over N must be augmented by

a model containing both; that is, some M̂ ∈ K so A ⊂ M̂ and N ≺ M̂ . We denote

this type gtp(A/N, M̂). Similarly, we must add this fourth input to the nonforking

relation that contains all other parameters. Then A
M̂

^
M0

N iff M0 ≺ N ≺ M̂ and

A ⊂ |M̂ | and all of the small approximations to the Galois type of A over N as

computed in M̂ are realised in M0. The properties are expanded similarly with

added monotonicity for changing the ambient model M̂ and the allowance that
new models that are found by properties such as existence or symmetry might

exist in a larger big model N̂ . All theorems proved in this paper about nonforking
only require amalgamation, although some of the results referenced make use of
the full power of the monster model.

We end this section with an easy exercise in the definition of nonforking that
says that A and N must be disjoint outside of M0.

Proposition 3.6. If we have A^
M0

N , then A ∩ |N | ⊂ |M0|.

Proof: Let a ∈ A∩ |N |. Since N is a model, we can find a small N− ≺ N that
contains a. Then, by the definition of nonforking, gtp(a/N−) must be realized in
M0. But since a ∈ |N−|, this type is algebraic so the only thing that can realize it
is a. Thus, a ∈ |M0|. †

4. Connecting Existence, Symmetry and Uniqueness

In this section, we investigate what AEC properties cause the axioms of our
independence relation to hold; recall that we are working under Hypothesis 3.1
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that K is an AEC with amalgamation, joint embedding, and no maximal models
and that κ > LS(K) is fixed. The relations are summarized in the proposition
below.

Proposition 4.1. Suppose that K doesn’t have the weak κ-order property and is
(< κ, λ+χ)-type short for θ-sized domains and (< κ, θ)-tame for < κ length types.
Then, for the κ-coheir relation,

(1) (E)(χ,θ,θ,λ) implies (S)(λ,θ,χ).
(2) (S)(<κ,θ,<κ) implies (U)(λ,θ,χ).

Recall Definition 2.8 for tameness and type shortness. This proposition and the
lemma used to prove it below rely on an order property.

Definition 4.2. K has the weak κ-order property iff there are lengths α, β < κ,
a model M ∈ K<κ, and types p 6= q ∈ gSα+β(M) such that there are sequences
〈ai ∈ αC : i < κ〉 and 〈bi ∈ βC : i < κ〉 such that, for all i, j < κ,

i ≤ j =⇒ gtp(aibj/M) = p

i > j =⇒ gtp(aibj/M) = q

This order property is a generalization of the first order version to our context of
Galois types and infinite sequences. This is one of many order properties proposed
for the AEC context and is similar to 1-instability that is studied by Shelah in
[Sh1019] in the context of Lθ,θ theories where θ is strongly compact. The adjective
‘weak’ is in comparison to the (< κ, κ)-order property in Shelah [Sh394, Definition
4.3]. The key difference is that [Sh394] requires the existence of ordered sequences
of any length (i.e. the existence of 〈ai, bi : i < δ〉 for all ordinals δ), while we only
require a sequence of length κ. We discuss the implications of the weak κ-order
property in the next section. For now, we use it’s negation to prove the following
result, similar to one in [MaSh285, Proposition 4.6], based on first order versions
due to Poizat and Lascar.

Lemma 4.3. Suppose K is an AEC that is (< κ, θ)-tame for < κ length types and
doesn’t have the weak κ-order property. Let M0 ≺ M,N such that ‖M0‖ = θ and
let a, b, a′ ∈ <κC such that b ∈ N and a′ ∈M . If

gtp(a/M0) = gtp(a′/M0) and a^
M0

N and b^
M0

M

then gtp(ab/M0) = gtp(a′b/M0).

Proof: Assume for contradiction that gtp(ab/M0) 6= gtp(a′b/M0). We will build
sequences that witness the weak κ-order property. By tameness, there is some
M− ≺M0 of size < κ such that gtp(ab/M−) 6= gtp(a′b/M−). Set p = gtp(ab/M−)
and q = gtp(a′b/M−). We will construct two sequences 〈ai ∈ `(a)M0 : i < κ〉 and
〈bi ∈ `(b)M0 : i < κ〉 by induction. We will have, for all i < κ

(1) aib � p;



FORKING IN SHORT AND TAME ABSTRACT ELEMENTARY CLASSES 15

(2) aibj � q for all j < i;
(3) abi � q; and
(4) aibj � p for all j ≥ i.

Note that, since bi ∈ `(b)M0, (3) is equivalent to a′bi � q.
This is enough: (2) and (4) are the properties necessary to witness the weak

κ-order property.
Construction: Let i < κ and suppose that we have constructed the sequences

for all j < i. Let N+ ≺ N of size < κ contain b, M−, and {bj : j < i}. Be-
cause a^

M0

N , there is some ai ∈ M0 that realizes gtp(a′/N+). This is witnessed

by f ∈ AutN+C with f(a) = ai.
Claim: (1) and (2) hold.
f fixes M− and b, so it witnesses that gtp(ab/M−) = gtp(aib/M

−). Similarly, it
fixes bj for j < i, so it witnesses q = gtp(abj/M

−) = gtp(aibj/M
−). †Claim

Similarly, pick M+ ≺M of size < κ to contain M−, a′, and {aj : j ≤ i}. Because
b^
M0

M ′, there is bi ∈M0 that realizes gtp(b/M+). As above, (3) and (4) hold. †

Now we are ready to prove our theorems regarding when the properties of ^
hold. The first four properties always hold from the definition of nonforking.

Proposition 4.4. ^ satisfies (I), (M), (T ), and (C)<κ.

To get the other properties, we have to rely on some degree of tameness, type
shortness, no weak order property, and the property (E).

Proof of Proposition 4.1:

(1) Suppose (E)(χ,θ,θ,λ) holds. Let A2 ^
M0

M1 and A1 ⊂ |M1| with |A2| = λ,

‖M0‖ = θ, and |A1| = χ; WLOG ‖M1‖ = χ. Let M2 contain A2 and
M0 be of size λ. By (E)(χ,θ,θ,λ), there is some A′1 such that gtp(A1/M0) =
gtp(A′1/M0) and A′1 ^

M0

M2. It will be enough to show that gtp(A1A2/M0) =

gtp(A′1A2/M0). By (< κ, λ + χ)-type shortness over θ-sized domains, it is
enough to show that, for all a2 ∈ A2 and corresponding a1 ∈ A1 and
a′1 ∈ A′1 of length < κ, we have gtp(a1a2/M0) = gtp(a′1a2/M0). By (M),
we have that a′1 ^

M0

M2 and a2 ^
M0

M1, so this follows by Lemma 4.3 above.

Now that we have shown the type equality, let f ∈ AutM0C such that
f(A1A2) = A′1A2. Applying f to A′1 ^

M0

M2, we get that A1 ^
M0

f(M2) and

A2 = f(A2) ⊂ f(M2), as desired.
(2) Suppose (S)(<κ,θ,<κ). Let A and A′ be sets of size λ and M0 ≺ N0 of size θ

and χ, respectively, so that

gtp(A/M0) = gtp(A′/M0) and A^
M0

N and A′^
M0

N
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As above, it is enough to show that gtp(AN/M0) = gtp(A′N/M0). By
type shortness, it is enough to show this for every n ∈ N and corresponding
a ∈ A and a′ ∈ A′ of lengths less than κ. By (M), we know that a^

M0

N

and a′^
M0

N . By applying (S)(<κ,θ,<κ) to the former, there is Na � M0

containing a such that n^
M0

Na. As above, Lemma 4.3 gives us the desired

conclusion. †

5. The main theorem

We now state the ideal conditions under which our nonforking works. We reit-
erate Hypothesis 3.1 in the statement of the theorem for clarity.

Theorem 5.1. Let K be an AEC with amalgamation, joint embedding, and no
maximal models. If there is some κ > LS(K) such that

(1) K is fully < κ-tame and -type short;
(2) K doesn’t have the weak κ-order property; and
(3) ^ satisfies (E)

then ^ is an independence relation.

Proof: First, by Proposition 4.4, ^ always satisfies (I), (M), (T ), and (C)<κ.
Second, (E) is part of the hypothesis. Third, by the other parts of the hypothesis,
we can use Proposition 4.1. Let χ, θ, and λ be cardinals. We know that (E)(χ,θ,θ,λ)

holds, so (S)(λ,θ,χ) holds. From this, we also know that (S)(<κ,θ,<κ) holds. Thus,
(U)(λ,θ,χ) holds. So ^ is an independence relation as in Definition 3.3. †

In the following sections, we will assume the hypotheses of the above theorem
and use ^ as an independence relation. First, we discuss the hypotheses and argue
for their naturality.

“amalgamation, joint embedding, and no maximal models”
These are a common set of assumptions when working with AECs that appear often
in the literature; see [Sh394], [GV06a], and [GVV] for examples. Readers interested
in work on AECs without these assumptions are encouraged to see [Sh576] or
Shelah’s work on good λ-frames in [Sh:h] and [JrSh875].

“fully < κ-tame and -type short”
As discussed in [Bon14b], these assumptions say that Galois types are equivalent to
their small approximations. Without this equivalence, there is no reason to think
that our nonforking, which is defined in terms of small approximations, would say
anything useful about an AEC.

On the other hand, we argue that these properties will occur naturally in any set-
ting with a notion of independence or stability theory. The introduction of [GV06a]
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observes that this happens in all known cases. Additionally, the following proposi-
tion says that the existence of a nonforking-like relation that satisfies stability-like
assumptions implies tameness and some stability.

Proposition 5.2. If there is a nonforking-like relation
∗
^ that satisfies (U), (M),

and κα(
∗
^) < ∞, then K is (< µ, µ) tame for less than α length types for all

regular µ ≥ κα(
∗
^).

Proof: Let p 6= q ∈ gS<α(M) so their restriction to any smaller submodel is
equal and let 〈Mi ∈ K<µ : i < µ〉 be a resolution of M . By the local charac-
ter, there are ip and iq such that p does not fork over Mip and q does not fork
over Miq . By (M), both of the types don’t fork over Mip+iq and, by assumption,
p �Mip+iq = q �Mip+iq . Thus, by (U), we have p = q. †

The results of [Bon14b, Section 3] allow us to get a similar result for type
shortness.

The arguments of [MaSh285, Proposition 4.14] show that this can be used to
derive stability-like bounds on the number of Galois types.

“no weak κ order property”
In first order model theory, the order property and its relatives (the tree order prop-
erty, etc) are well-studied as the non-structure side of dividing lines. In broader
contexts such as ours, much less is known. Still, there are some results, such as
Shelah [Sh:e, Chapter III], which shows that a strong order property, akin to get-
ting any desired order of a certain size in an EM model, implies many models. Note
that Shelah does not explicitly work inside an AEC, but the proofs and definitions
are sufficiently general and syntax free to apply here.

Ideally, the weak κ-order property could be shown to imply non-structure for
an AEC. While this is not currently known in general, we have two special cases
where many models follows by combinatorial arguments and the work of Shelah.

First, if we suppose that κ is inaccessible, then we can use Shelah’s work to show
that there are the maximum number of models in every size above κ. We will show
that, given any linear order, there is an EM model with the order property for that
order. This implies [Sh:e]’s notion of “weakly skeleton-like”, which then implies
many models by [Sh:e, Conclusion III.3.25].

Proposition 5.3. Let κ be inaccessible and suppose K has the weak κ-order prop-
erty. Then, for all linear orders I, there is EM model M∗, small N ≺ M∗,
p 6= q ∈ gS(M), and 〈ai, bi ∈M∗ : i ∈ I〉 such that, for all i, j ∈ I,

i ≤ j =⇒ gtp(aibj/M) = p

i > j =⇒ gtp(aibj/M) = q

Thus, for all χ > κ, Kχ has 2χ nonisomorphic models.
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We sketch the proof and refer the reader to [Sh:e] for more details.
Proof Outline: Let p 6= q ∈ gS(N) and 〈ai, bi : i < κ〉 witness the weak
order property. Since K has no maximal models, we may assume that this occurs
inside an EM model. In particular, there is some Φ proper for linear orders so
N ≺ EM(κ,Φ) � L that contains 〈ai, bi : i < κ〉, L(Φ) contains Skolem functions,
and κ is indiscernible in EM(κ,Φ) � L. Recall that, for X ⊂ EM(κ,Φ), we have
Contents(X) := ∩{I ⊂ κ : X ⊂ |EM(I,Φ)|}. By inaccessibility, we can thin out
{Contents(aibi) : i < κ} to {Contents(aibi) : i ∈ J} that is a head-tail ∆ system
of size κ and are all generated by the same term and have the same quantifier
free type in κ. Since κ is regular and Contents(N) is of size < κ, we may further
assume the non-root portion of this ∆ system is above sup(Contents(N)).

By the definition of EM models, we can put in any linear order into EM(·,Φ) � L
and get a model in K. Thus, we can take the blocks that generate each aibi with
i ∈ J and arrange them in any order desired. In particular, we can arrange them
such that they appear in the order given by I. Then, the order indiscernibility
implies that the order property holds as desired.

We have shown the hypothesis of [Sh:e, Conclusion III.3.25] and the final part
of our hypothesis is that theorem’s conclusion. †

We can also make use of these results without large cardinals. To do so, we
‘forget’ some of the tameness and type shortness our class has to get a slightly
weaker relation. Suppose K is < κ′ tame and type short. Let λ be regular such
that λκ

′
= λ > κ′. By the definitions, K is also < λ tame and type short, so take

λ to be our fixed cardinal κ. In this case, the ordered sequence constructed in the
proof of Lemma 4.3 is actually of size < κ′. This situation allows us to repeat
the above proof and construct 2κ non-isomorphic models of size κ. Many other
cardinal arithmetic set-ups suffice for many models.

(E)
We have already mentioned that Existence for κ-coheir is equivalent to the fact
every model is κ-Galois saturated. The following theorem shows that this follows
from categoricity in a κ-closed cardinal.

Theorem 5.4. Suppose K is an AEC satisfying the amalgamation property, JEP
and has no maximal models. If K is categorical in a cardinal λ satisfying λ = λ<κ,
then every member of K≥χ is κ-Galois saturated, where χ = min{λ, supµ<κ(i(2µ)+)}.

Proof: First, note that by the assumptions on K and the assumption that
λ = λ<κ we can construct a κ-Galois saturated member of Kλ. Since this class is
categorical, all members of Kλ are κ-Galois saturated.

The easy case is when λ < χ: Suppose M ∈ K is not κ-saturated and ‖M‖ > λ.
Then there is some small M− ≺ M and p ∈ gS(M−) such that p is not realized
in M . Then let N ≺ M be any substructure of size λ containing M−. Then N
doesn’t realize p, which contradicts its κ-Galois saturation.
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For the hard part, suppose M ∈ K is not κ-Galois saturated and ‖M‖ ≥
supµ<κ(i(2µ)+). There is some small M− ≺M and p ∈ gS(M−) such that p is not
realized in M . We define a new class (K+,≺+) that depends on K, p and M− as
follows:
L(K+) := L(K) ∪ {cm : m ∈ |M−|} by

K+ = {N : N is an L(K+) structure st N � L(K) ∈ K, there exists

h : M− → N � L(K) a K-embedding such that h(m) = (cm)N

for all m ∈M− and N � L(K) omits h(p)}.
N1 ≺+ N2 ⇐⇒ N1 � L(K) ≺ N2 � L(K) and N1 ⊂L(K+) N2.

This is clearly an AEC with LS(K+) = ‖M−‖ < κ and 〈M,m〉m∈|M−| ∈ K+.
By Shelah’s Presentation Theorem K+ is a PCµ,2µ for µ := LS(K+). By [Sh:c,

Theorem VII.5.5] the Hanf number of K+ is ≤ i(2µ)+ ≤ χ.
Thus, K+ has arbitrarily large models. In particular, there exists N+ ∈ K+

λ .
Then N+ � L(K) ∈ Kλ is not κ-Galois saturated as it omits its copy of p. †

Regarding Extension, the strength of this assumption is not entirely clear. The
first order version is proved with compactness and the fact that it holds under
strongly compact cardinals (see Theorem 8.2) does not work to separate from
compactness. However, it does indeed hold in nonelementary classes; see the
discussion of quasiminimal classes and λ-saturated models below. Very recently,
Vasey [Vasc] is able to show that, if κ = iκ in addition to our other hypotheses
and K is λ-Galois stable for λ ≥ κ instead of no order property and χ-tame for
some χ < κ, then Extension holds (and moreover that κ-coheir is an independence
relation) for the class of λ+-saturated models.

Remark 5.5. While the rest of the results use that K satisfies all of Hypothesis
3.1, the proof of Theorem 5.4 only uses the amalgamation property and also avoid
any use of tameness or type shortness. Note that Propositions 5.2 and 5.3 and
Theorem 5.4 are not used in the rest of the paper, but are intended to motivate the
hypotheses of Theorem 5.1 as natural.

At the referee’s request, we explain the difficulties in adapting the first-order
proof to the current context. The main difficulty is the standard one in trying
to transfer results from first-order to AECs: the lack of syntax and compactness.
The lack of syntax was helped by the recent isolation of the properties of tameness
and type shortness. These properties allow us to treat Galois types as maximal
collections of small Galois types, in the same way they are maximal collections
of formulas in first-order. However, this does not solve all problems as there
are still two key differences: types are only well-behaved over models and types
cannot be constructed inductively in an effective manner (i. e., every type is
complete over it’s domain). Nonetheless, this intuition allows the authors to adapt
many arguments from first-order. Regarding compactness, tameness and type
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shortness are approximations, but assuming Extension outright is the strongest
approximation.

Before continuing, we also identify a few contexts which are known to satisfy
this hypothesis, especially (1), (2), and (3) of Theorem 5.1.

• First order theories: Since types are syntactic and over sets, they are <
ℵ0 tame and < ℵ0 type short and (4) follows by compactness. Additionally,
when (3) holds, the theory is stable so coheirs are equivalent to non-forking.
• Large cardinals: Boney [Bon14b] proves that (1),(2), and Extension hold

for any AEC K that are essentially below a strongly compact cardinal κ
(this holds, for instance, if LS(K) < κ). Slightly weaker (but still useful)
versions of (1) and (2) also hold if κ is measurable or weakly compact. See
Section 8 for more.
• Homogeneous model theory: The sequential homogeneity of the mon-

ster model means that Galois types are syntactic, so we have < ℵ0 tame-
ness and type shortness as above. See, for instance, Grossberg and Less-
mann [GrLe02] for more discussion and references.
• Quasiminimal classes: The quasiminimal closure operation means that

Galois types are quantifier free types and amalgamation and other proper-
ties are proved in the course of proving categoricity; see [Bal09, p. 190].
• Saturated models of a superstable theory: Let T be a superstable

first-order theory and Kλ
T be the class of λ-saturated models of T ordered

by elementary substructure. This is a nonelementary class, but still satisfies
our hypotheses.
• Averageable classes: Averageable classes are EC(T,Γ) classes that have

a suitable ultraproduct-like relation (that averages the structures), see
Boney [Bonb]. Examples of averageable classes are dense ordered group
with a cofinal Z-chain and ordered vector fields. The existence of an
ultraproduct-like operation mean that (E) (and much more) can be proved
similar to the first order version. Amongst these classes, the question of
stability in the guise of no order property becomes crucial. Torsion modules
over a PID are an example that lie on the stable side of the line.

Since the circulation of early drafts, the notion of κ-coheir has been used and
extended by various authors, especially Boney, Grossberg, Kolesnikov, and Vasey
in [BGKV] and Vasey in [Vasb], [Vasc] and [GVas]. Moreover, [BGKV, Theorem
6.7] has shown that, if κ-coheir is an independence relation, then it is the only
independence relation.

Theorem 5.6 ( [BGKV]). Under the hypotheses of Theorem 5.1, ^ is the only

independence relation on K≥κ. In particular, if
∗
^ satisfies (I), (M), (E), and

(U), then
∗
^ = ^ on K≥κ.
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6. Getting Local Character

Local character is a very important property for identifying dividing lines. In
the first order context, some of the main classes of theories–superstable, strictly
stable, strictly simple, and unsimple–can be identified by the value of κ(T ). By
finding values for κα(^) under different hypotheses, we get candidates for dividing
lines in AECs.

Readers familiar with first order stability theory will recall that there is a notion
of an heir of a type that is the dual notion to coheir, which our nonforking is
based on. Heir is equivalent to the notion of coheir under the assumption of no
order; see [Pil83] as a reference. We develop a Galois version of heir and show
it is equivalent to heir under the assumption of no weak κ-order property. This
equivalence allows us to adapt an argument of [ShVi635] to calculate κ∗ω(^) from
categoricity.

Recall that we are working under Hypothesis 3.1. This means that, unless
stated in the hypothesis, we only have the properties of nonforking that follow
immediately from the definition, like those in Theorem 4.4. We explicitly state
any other assumptions. In particular, note that Theorem 6.8 doesn’t assume (E),
tameness, or type shortness.

Recall that ‘small’ refers to objects of size < κ.

Definition 6.1. We say that p ∈ gSI(N) is an heir over M ≺ N iff for all small
I0 ⊂ I, M− ≺ M , and M− ≺ N− ≺ N (with M− possibly being empty), there is
some f : N− →M− M such that f(pI0 � N−) ≤ p; that is, f(p)I0 � f(N−) = pI0 �
f(N−). We also refer to this by saying p is a heir of p �M .

M // N

M− //

OO

N−

f
bbEEEEEEEE

OO

Remark 6.2. Note that the diagram above and the related diagrams in the proof of
Theorem 6.8 are not commutative diagrams; this would require that f fix all of N−,
trivializing it. Instead, this diagram is included to help visualize the definition.

At first glance, this property seems very different from the first order version
of heir. However, if we follow the remark after Theorem 5.1, we can think of
restrictions of p as formulas and small models as parameters. Then, M− is a
parameter from M , N− is a parameter from N , f(N−) is the parameter from M
that corresponds to N− (notice that it fixes M−), and f(p � N−) ≤ p witnesses
that it the original formula p � N− is still in p with a parameter from M . Vasey
has made this intuition explicit in [Vasb, Proposition 5.3] with the notion of Galois
Morleyization.

If we restrict ourselves to models, then the notions of heir over and nonforking
(coheir over) are dual with no additional assumptions.
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Proposition 6.3. Suppose M0 ≺ M,N . Then gtp(M/N) does not fork over M0

iff gtp(N/M)is an heir over M0.

Proof: First, suppose that M ^
M0

N and let a ∈ <κN . To show gtp(N/M) is

an heir over M0, let M−
0 ≺ M0 and M− ≺ M both be of size < κ such that

M−
0 ≺M−. Find N− ≺ N of size < κ containing M−

0 and a. By the definition of
nonforking, gtp(M−/N−) is realized in M0. This means that there is g ∈ AutN−C
such that g(M−) ≺ M0. Set f = g � M−. Then f : M− →M−0

M0 such that

f(gtp(a/M−)) = gtp(a/f(M−)). Since a, M−
0 , and M− were arbitrary, gtp(N/M)

is an heir over M0, where gtp(N/M), N , and M0 here stand for p, N , and M in
Definition 6.1.

Second, suppose that gtp(N/M) is an heir over M0. Let b ∈ M and N− ≺ N
both be of size < κ. Since M is a model, we may expand b to a model M− ≺ M
of size < κ. Then, if we can realize gtp(M−/N−) in M0, we can find a realization
of tp(b/N−) there as well. By assumption, there is some f : M− → M0 such that
gtp(f(N−)/f(M−)) = gtp(N−/f(M−)). This type equality means that there is
some g ∈ Autf(M−)C such that g◦f is the identity on N−. Thus, g◦f is in AutN−C
and sends M− to f(M−) ≺ M0. Thus, gtp(M−/N−) = gtp(g ◦ f(M−)/N−) and
is realized in M0, as desired. Since b and N− were arbitrary, gtp(M/N) does not
fork over M0. †

Proposition 6.3 was proven just from the definitions, without assuming any
tameness or type shortness. If we assume even the weak symmetry (S∗), then we
have that nonforking and heiring are equivalent for models. However, the goal is
to show that they are equivalent for all Galois types. Assuming full symmetry (S)
is enough to get this implication in one direction.

Theorem 6.4. Suppose ^ satisfies (S). If p ∈ gS(N) and M ≺ N , then p does
not fork over M holds implies p is an heir over M .

Proof: Suppose p ∈ gS(N) does not fork over M . Then, given A that realizes
p, we have A^

M
N . By (S), we can find M+ �M containing A such N ^

M
M+. By

Proposition 6.3, we then have gtp(M+/N) is an heir over M . By monotonicity,
p = gtp(A/N) is an heir over M . †

For the other direction, we use the weak κ-order property (recall Definition 4.2).

Theorem 6.5. Suppose M ≺ N and M is κ-Galois saturated. If there is p ∈
gS(N) that is an heir over M and not a coheir over M , then K has the weak
κ-order property and it is witnessed in M .

Proof: It suffices to show this under the assumption that |`(p)| < κ. Suppose
p = gtp(b/N) is a heir over M but not a coheir. Thus, there is some N− ≺ N
such that gtp(b/N−) is not realized in M . Possibly by expanding N−, we may
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assume that there is some small M0 ≺ M such that M0 ≺ N−2. Because p is a
heir, there is some f : N− →M0 M such that f(p � N−) = p � f(N−). By κ-Galois
saturation, there is some b′ ∈M such that

b′f(N−) � gtp(bf(N−)/M0) = gtp(f(b)f(N−)/M0) = gtp(bN−/M0)

Set p0 := gtp(N−b/M0) and q0 := gtp(N−b′/M0)3. Note that these are different;
we know that N−b′ does not realize p0 by assumption. Now we will construct, by
induction, sequences ai, bi ∈M such that

(1) aib � p0 for i < κ (note that this implies ai ∼= N−);
(2) N−bj � q0 for i < κ; and
(3)

i ≤ j =⇒ gtp(aibj/M0) = p0

i > j =⇒ gtp(aibj/M0) = q0

Note that (3) immediately implies the weak κ-order property.
For i = 0, the elements are already built: b0 = b′ and a0 = f(N−).
Suppose i < κ and {aj, bj : j < i} are already defined. By induction, the

following is true

(1) ajb � p0 for all j < i;
(2) N−bj � q0 for all j < i; and
(3) N−b � p0.

Take some M− ≺ M that contains {aj, bj : j < i} ∪M0 and let N+ ≺ N contain
M− and N−. Because p ∈ gS(N) is an heir over M , there is g : N+ →M− M such
that gtp(b/g(N+)) = gtp(g(b)/g(N+)). For j < i, g fixes M0 and bj. Thus,

gtp
(
g(N−)bj/M0

)
= gtp

(
g(N−)g(bj)/M0

)
= gtp(N−bj/M0)

Additionally, we have that gtp(bg(N+)/M0) = gtp(bN+/M0) and, thus, gtp(aig(N−)/M0) =
gtp(aiN

−/M0). Setting ai := g(N−), we have shown

(1) ajb � p0 for all j < i;
(2) aibj � q0 for all j < i; and
(3) aib � p0.

Now take small M+ ≺M to contain M− and ai. By κ-Galois saturation, there is
some bi ∈M such that gtp(bi/M

+) = gtp(b/M+). Because M+ contains {aj : j ≤
i}, this means that

(1) ajbi � p0 for all j < i;
(2) aibj � q0 for all j < i; and

2The introduction of M0 is not necessary, but avoids added complication that would be nec-
essary to introduce Galois types over the empty set

3In stating this, we have given the sets N−b and N−b′ a “natural” enumeration: N is listed
first and in the same order in each enumeration; then, b is listed in the order inherited from p
and b′ is inherited in the order inherited from realizing the same type as b over M0. Note we
have switched the ordering of b and N− to make our conclusion match Definition 4.2.
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(3) aibi � p0.

This completes the induction and the proof. †

Now that we have established an equivalence between nonforking and being
an heir, we aim to derive local character. For this, we use heavily the proof
of [ShVi635, Theorem 2.2.1], which shows that, under certain assumptions, the
universal local character cardinal for non-splitting is ω (recall Definition 3.5). Ex-
amining the proof, much of the work is done by basic independence properties–
namely (I), (M), and (T)–and the other assumptions on K–namely categoricity,
amalgamation, and EM models, which follow from no maximal models. Only in
case (c), defined below, do they need the exact definition of their independence
relation (non µ-splitting) and GCH. In this case, we can use the definition of heir
to complete the proof without any appeal to cardinal arithmetic.

At the referee’s insistence, we include a complete proof. This gives us an oppor-
tunity to expand on the proof given in [ShVi635] and correct some mistakes (e. g.,
they cite a different club guessing principle than the one they use). We would like
to thank Monica VanDieren and Sebastien Vasey in helping bridge some of the
gaps. A write up of a detailed proof for common generalization of [ShVi635] and
Theorem 6.8 can be found in [BGVV]. Note that the argument below assumes κ
regular, but [BGVV] shows how to remove that assumption.

The proof uses the notion of limit models.

Definition 6.6. Let M ∈ Kλ and α < λ+ be a limit ordinal. N is (λ, α)-limit
over M iff there is a resolution 〈Ni ∈ Kλ : i < α〉 of N so N0 = M and Mi+1 is
universal over Mi.

Limit models have been suggested as a substitute for Galois saturated models
and the question of uniqueness of limit models has been suggested as a dividing
line for AECs; see Shelah [Sh576]. We discuss the uniqueness of limit models
after the proof, but the key use of uniqueness of limit models in this proof are the
following basic facts.

Fact 6.7.

(1) If M ` is (µ, α`)-limit and cf α1 = cf α2, then M1 ∼= M2. Moreover, if both
are limit over M0, then M1 ∼=M0 M

2.
(2) If 〈M `

j | j ≤ δ〉 are increasing continuous chains for ` = 1, 2 and M `
j+1 is

(λ, β)-limit over M `
j for all j < δ, then there is f : M1

δ
∼= M2

δ such that

f(M1
j ) = M2

j for each j ≤ δ.

Proof sketch: The first is proved by a back and forth and the second is a
consequence of the first. †
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Theorem 6.8. Let κ ≤ µ < λ and suppose κ is regular4. Suppose that K has no
weak κ-order property and is categorical in λ. Then κ∗ω(^) = ω. That is, for each
α = cf α < µ+, if

(1) 〈Mi ∈ Kµ : i ≤ α〉 is increasing and continuous;
(2) each Mi+1 is universal over Mi; and
(3) p ∈ gS<ω(Mα)

then, for some i < α, p does not fork over Mi

Proof: As mentioned above, we follow the proof of [ShVi635, Theorem 2.2.1].
By [Bal09, Theorem 8.21], we have Galois stability in µ and κ.

We want to show that any failure of the theorem implies there is a failure that
takes one of three possible forms:

(a) There exists a sequence 〈Mi : i ≤ α〉 and p as in the hypothesis with Mi+1

being (µ, κ)-limit over Mi such that for all i < α, p �Mi does not fork over
M0 and p forks over Mi.

(b) There exists a sequence 〈Mi : i ≤ α〉 and p as in the hypothesis with Mi+1

being (µ, κ)-limit over Mi and κ ≤ α such that for all i < α, p �Mi+1 and
p fork over Mi.

(c) There exists a sequence 〈Mi : i ≤ α〉 and p as in the hypothesis with Mi+1

being (µ, κ)-limit over Mi and α < κ such that, for all i < α, p � M2i+1

forks over M2i, p �M2i+2 does not fork over M2i+1, and p forks over Mi.

Note that (µ, κ)-limit implies κ-saturation and the crucial restriction on α in
(b) and (c). Additionally, in cases (b) and (c), the condition that p forks over each
Mi follows from other forking in the case, so doesn’t need to be guaranteed during
the construction.

Claim 6.9. If (a) and (b) are false, then for every 〈Mi : i ≤ α〉 and p as in the
hypothesis with α ≥ κ, there is i < α such that p does not fork over Mi.

The assumption that 〈Mi : i ≤ α〉 and p are as in the hypothesis includes that
α is regular.

Proof: We do a proof by contradiction. Let 〈Mi | i ≤ α〉 and p be as in the
hypothesis with p forking over each Mi. First, using amalgamation and stability
in µ, we can assume that each Mi+1 is (µ, κ)-limit over Mi.

Subclaim: If (a) is false, then for any 〈Ni | i ≤ α〉 and q as in the hyptohesis
with q forking over each Ni, there is an increasing, continuous sequence 〈ji | i ≤ α〉
of ordinals such that q � Nji+1

forks over Nji .

Proof: For each i < α, consider the sequence 〈Nj | i ≤ j ≤ α〉 starting at i.
Since (a) fails, there is some j(i) > i such that q � Nj(i) forks over Ni. Form ji by

4Note that we don’t make this assumption elsewhere.



26 WILL BONEY AND RAMI GROSSBERG

setting j0 = 0, taking unions at limits, and setting ji+1 = j(ji). Then q � Nji+1

forks over Nji , as desired. †Subclaim

This gives us an increasing sequence 〈ji | i ≤ α〉. Define an increasing, con-
tinuous 〈M∗

i | i ≤ α〉 by M∗
i = Mji . Since amalgamation holds, M∗

i+1 is still
(µ, κ)-limit over M∗

i . Thus, 〈M∗
i | i ≤ α〉 is a sequence that the hypothesis says

does not exist. †Claim 6.9

Claim 6.10. If the theorem is false, then at least one of (a), (b), and (c) holds.

Proof: Suppose that 〈Mi | i ≤ α〉 and p are in the hypothesis such that, for all
i < α, p forks over Mi and that (a) and (b) are false. Claim 6.9 shows that the
failure of (a) and (b) means any such counterexample must have α < κ. Again,
with amalgamation and stability, we can assume that Mi+1 is (µ, κ)-limit over Mi.
Let 〈Mi,j | j ≤ κ〉 witness this. Since we know the theorem holds for κ length
sequences, there is some ji < κ such that p � Mi+1 does not fork over Mi,ji . Also
by (M), we have that p �Mi+1,ji forks over Mi. Then define increasing continuous
〈M∗

i | i ≤ α〉 by

M∗
i =

{
M2k if i = 2k

M2k+1,j2k+1
if i = 2k + 1

This gives a sequence as in (c). †Claim 6.10

Now we show that each of (a), (b), and (c) is false, which will finish the proof. We
examine case (b) first, as it is the most different from the argument in [ShVi635].
Then, we examine cases (a) and (c) together as the initial construction is the same
in each.

Case (b): Suppose that 〈Mi : i ≤ α〉 and p are as in (b). Find the minimum σ
such that 2σ > κ. Then σ ≤ κ and 2<σ ≤ κ. By using the contrapositive of (M),
we have that p � Mσ forks over Mi for all i < σ. Thus, 〈Mi : i ≤ σ〉 and p � Mσ

satisfy the forking relations of (b), although we don’t know that σ is regular.
Set M = Mσ. By Theorem 6.5 and the assumption of no weak κ-order prop-

erty, we know that p � Mi+1 is not a heir over Mi for all i < σ. We are going to
contradict stability in κ by finding 2σ many types over a model of size 2<σ.

Construction 1: There are 〈M i, N i ∈ K<κ | i < σ〉 such that

(1) M i ≺Mi and N i ≺Mi+1; and
(2) if f : N i →M i Mi, then f(p � N i) 6= p � f(N i).

This follows directly from the hypothesis: for each i < σ, p � Mi+1 is not a heir
over Mi. Negating Definition 6.1 gives us the models.
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Construction 2: There are models {M̂i, N̂i ∈ K<κ | i < σ}5 andK-embeddings
{gi | i < σ} such that

(1) 〈M̂i | i < σ〉 is increasing;

(2) M i+1 ≺ M̂i ≺Mi+1 and M̂i ≺ N̂i ≺ M̂i+1;

(3) N i+1 ≺ N̂i; and

(4) gi : N̂i →M̂i
Mi+1 with gi(N̂i) ≺ M̂i+1.

We build this by induction. Set M̂0 := M0. If i is limit, let M̂i ≺ Mi+1 be of
size < κ that contains M i+1 and ∪j<iM̂j.

Given M̂i, we wish to build N̂i, gi, and M̂i+1 (this will complete the construc-

tion). Let N̂i ≺Mi+2 be of size < κ that contains M̂i and N i+1. Mi+1 is κ-Galois

saturated, so it realizes gtp(N̂i/M̂i). This is witnessed by some gi : N̂i → Mi+1.

Now let M̂i+1 ≺Mi+2 be of size < κ that contains N̂i and gi(N̂i). This completes
the construction.

Construction 3: There are increasing 〈Nη ∈ K<κ | η ∈ <σ2〉 and increasing
isomorphisms {hη | η ∈ <σ2} such that

(1) hη : M̂`(η)
∼= Nη; and

(2) hη_〈0〉 ◦ g`(η)(N̂`(η)) ≺ Nη_〈0〉 ∩Nη_〈1〉.

We build this by induction on the length of η. For the base case η = ∅, set
Nη = M̂0 and hη to be the identity. If `(η) is limit, then we have h−η = ∪α<`(η)hη�α

is an isomorphism from ∪α<`(η)M̂α to ∪α<`(η)Nη�α. We have ∪α<`(η)M̂α ≺M`(η), so
we can extend h−η to an isomorphism with domain M`(η). Set Nη := hη(M`(η)).

Suppose we are given Nη and hη. Since we are working inside the monster model
C, we can extend hη to h+

η ∈ AutC and g`(η) to g+
`(η) ∈ AutC. Then set

• hη_〈0〉 := h+
η � M̂`(η)+1;

• hη_〈1〉 := h+
η ◦ g+

`(η) � M̂`(η)+1; and

• Nη_〈i〉 := hη_〈i〉(M`(η)+1) for i = 0, 1.

Since g`(η) fixes M̂`(η), hη_〈1〉 extends hη. Now, we have N̂`(η) ≺ M̂`(η)+1, so

hη_〈0〉 ◦ g`(η)(N̂`(η)) ≺ Nη_〈1〉 by applying hη_〈1〉 to both sides. Similarly, we have

g`(η)(N̂`(η)) ≺ M̂`(η)+1, so hη_〈0〉 ◦ g`(η)(N̂`(η)) ≺ Nη_〈0〉 by applying hη_〈0〉 to both
sides.

Now that we have completed our constructions, define the following:

• M̂σ = ∪i<σM̂i;
• for η ∈ σ2, set hη := ∪α<σhη�α and Nη = ∪α<σNη�α so hη : M̂σ

∼= Nη; and
• N∗ ≺ C of size κ to contain ∪η∈<σNη.

5Note we have truncated the chain to length σ. We could continue this construction all the
way to κ, but going beyond this would require greater saturation.



28 WILL BONEY AND RAMI GROSSBERG

For each η ∈ σ2, we have hη(Nη) ≺ N∗. Let pη be some extension of the type

hη(p � M̂σ) to N∗.

Claim 6.11. If η 6= ν ∈ σ2, then pη 6= pν.

Set ρ = η ∩ ν and WLOG assume ρ_〈0〉 ⊂ η and ρ_〈1〉 ⊂ ν. Set i = `(ρ). We

built gi : N̂i →M̂i
Mi+1 with N i+1 ≺ N̂i and M i+1 ≺ M̂i in Construction 2. By

Construction 1, this implies

gi(p � N
i+1) 6= p � gi(N

i+1)

Inequality of Galois types transfers up, so

gi(p � N̂i) 6= p � gi(N̂i)

Applying hρ_〈0〉 to both sides, we get

hρ_〈0〉 ◦ gi(p � N̂i) 6= hρ_〈0〉(p � gi(N̂i))

From Construction 3, we have that hρ_〈1〉 � N̂i = hρ_〈0〉 ◦ gi � N̂i. Thus, we can
rewrite the above as

hρ_〈1〉(p � N̂i) 6= hρ_〈0〉(p � gi(N̂i))

Then

• p � N̂i ≤ p � M̂σ and hν � N̂i = hρ_〈1〉 � N̂i by construction, so hρ_〈1〉(p �
N̂i) ≤ pν ; and, similarly,

• p � gi(N̂i) ≤ p � M̂σ and hη � gi(N̂i) = hρ_〈0〉 � gi(Ni), so hρ_〈0〉(p �
gi(N̂i)) ≤ pη.

Thus, pν 6= pη, as desired. †Claim 6.11

Thus, we have constructed 2σ > κ many Galois types over a model of size κ,
contradicting Galois stability in κ. †Case (b)

Cases (a) and (c): Suppose we have 〈Mi | i ≤ α〉 and p as in (a) or (c). Recall
the notation Sµ

+

α = {δ < µ+ | cf δ = α}. We say that C̄ = 〈Cδ | δ ∈ Sµ
+

α 〉 is
a Sµ

+

α -club sequence if each Cδ ⊂ δ is club. It is easy to see that club sequences
exist (this will be enough for case (a)), and Shelah [Sh:g] proves the existence of
club guessing club sequences in ZFC under various hypotheses. We will describe
a construction of a sequence of models N̄(C̄) based on a club sequence and then
plug in the necessary club sequence in each case.

Given a Sµ
+

α -club sequence C̄, enumerate each club Cδ ∪ {δ} in increasing order
as 〈βδ,j | j ≤ α〉; Cδ and the enumerations depend on the club sequence C̄ and
should be adorned with a C̄ to indicate this dependence, but we will not do this.

Claim 6.12. We can build increasing, continuous N̄(C̄) = 〈Ni ∈ Kµ | i < µ+〉
such that
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(1) Ni+1 is (µ, κ)-limit over Ni;
(2) when i ∈ Sµ+α , there is gi : Mα

∼= Ni such that gi(Mj) = Nβi,j for all j ≤ α;
and

(3) when i ∈ Sµ+α , there is ai ∈ Ni+1 that realizes gi(p).

The proof uses Fact 6.7. Build an increasing, continuous chain of models such
that successors are (µ, κ)-limit over their predecessors and take limits at unions.
At successors of limits i of cofinality α, use Fact 6.7 to build an isomorphism gi
between 〈Mj | j ≤ α〉 and 〈Nβi,j | j ≤ α〉 as described in (2). For (3), find
N ∈ Kµ and b ∈ N such that p = gtp(b/Mα) and let g+

i ∈ AutC extend gi. Since
Ni+1 is universal over Ni, there is some fi : g+

i (N) →Ni Ni+1. Since Ni = gi(M),
ai := fi(g

+
i (b)) ∈ Ni+1 realizes gi(p). †Claim 6.12

Because there are arbitrarily large models, by [Bal09, Theorem 8.18], there is Φ
that is proper for K with |Φ| = LS(K) < κ. Our crucial use of categoricity (other
than deriving stability) is that we may assume that N := ∪i<µ+Ni ≺ EMτ (µ

+,Φ).
Thus, we can write ai = τi(γ

i
1, . . . , γ

i
n(i)) with γi1 < · · · < γim(i) < i ≤ γim(i)+1 <

· · · < γin(i) < µ+.
Now we begin to differentiate between the two cases. In each, we will find

i1 < i2 ∈ Sµ
+

α such that gtp(ai1/Ni1) and gtp(ai2/Ni1) are both the same (because
of the EM structure) and different (because they exhibit different forking behav-
ior), which is our contradiction.

Case (a): Let C̄ be an Sµ
+

α -club sequence, and set 〈Ni ∈ Kµ | i < µ+〉 = N̄(C̄)

from Claim 6.12. There is a stationary subset S∗ ⊂ Sµ
+

α such that

(1) for every i ∈ S∗, we have τi = τ∗; n(i) = n∗; m(i) = m∗; γ
i
j = γ∗j for

j ≤ m∗; and βi,0 = β∗,0.

Set E = {δ < µ+ | δ is limit and EMτ (δ,Φ) ∩ N = Nδ}. This is a club. Let
i1 < i2 ∈ S∗ ∩ E. Then we have

gtp (ai1/Ni1) = gtp
(
τ∗(γ

∗
1 , . . . , γ

∗
m∗ , γ

i1
m∗+1, . . . , γ

i1
n∗)/N ∩ EMτ (i1,Φ)

)
= gtp

(
τ∗(γ

∗
1 , . . . , γ

∗
m∗ , γ

i2
m∗+1, . . . , γ

i2
n∗)/N ∩ EMτ (i1,Φ)

)
= gtp (ai2/Ni1)

because the only difference in the two lie entirely above i1.

We have that gi1 : (Mα,M0) ∼= (Ni1 , Nβ∗,0) and that p forks over M0. Thus,
gtp(ai1/Ni1) = gi1(p) forks over Nβ∗,0 . On the other hand, Ci2 is cofinal in
i2, so there is j < α such that βi2,j > i1 and, thus, Ni1 ≺ Nβi2,j

. Again,
gi2 : (Mj,M0) ∼= (Nβi2,j

, Nβ∗,0) and p � Mj does not fork over M0 because we
are in case (a). Thus, gtp(ai2/Nβi2,j

) = gi2(p � Mj) does not fork over Nβ∗,0 . By
(M), gtp(ai2/Ni1) does not fork over Nβ∗,0 . Thus, gtp(ai1/Ni1) 6= gtp(ai2/Ni2), a
contradiction. †Case (a)
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Case (c): Let χ be a big enough cardinal and create an increasing, continuous
elementary chain 〈Bi | i < µ+〉 such that

(1) Bi ≺ (H(χ),∈);
(2) ‖Bi‖ = µ;
(3) B0 contains, as elements6, Φ, EM(λ+,Φ), h, µ+, 〈Ni | i < µ+〉, Sµ+α ,
〈ai | i ∈ Sµ

+

α 〉, and each f ∈ τ(Φ); and
(4) Bi ∩ µ+ is an ordinal.

In this case, we use the following:

Fact 6.13 ( [Sh:g].Claim 2.3). Let λ be a cardinal such that cf λ ≥ χ++ for
some regular χ and let S ⊂ Sλχ be stationary. Then there is a S-club sequence
〈Cδ | δ ∈ S〉 such that, if E ⊂ λ is club, then there are stationarily many δ ∈ S
such that Cδ ⊂ E.

We have that α < κ < µ+, so there is an Sµ
+

α -club sequence C̄ as in Fact 6.13.
Set 〈Ni ∈ Kµ | i < µ+〉 = N̄(C̄) from Claim 6.12. Note that E = {i < µ+ |
Bi ∩ µ+ = i} is a club. By Fact 6.13, there is some i2 ∈ S such that Ci2 ⊂ E. We
have

ai2 = τi2(γ
i2
1 , . . . , γ

i2
n(i2))

with γi21 < · · · < γi2m(i2) < i2 ≤ γi2m(i2)+1 < · · · < γi2n(i2). Since the βi2,j enumerates

a cofinal sequence in i2, we can find j < α such that γi2m(i2) < βi2,2j+1 < i. Recall

that we have p � M2j+2 does not fork over M2j+1 by the case hypothesis. Then
(H(χ),∈) satisfies the following formulas with parameters exactly the things listed
in item (3) above and ordinals below βi2,2j+2

∃x, ym(i2)+1, . . . , yn(i).(“x ∈ S” ∧ “x > βi2,2j+1” ∧ “yk ∈ (x, µ+) are increasing ordinals”

∧“ax = τi2(γ
i2
1 , . . . , γ

i2
m(i2), ym(i2)+1, . . . , yn(i2))” ∧ “Nx ⊂ EM(x,Φ)”)

witnessed by x = i2 and yk = γi2k . By elementarity, Bβi2,2j+2
thinks this as it

contains all the parameters. Let i1 ∈ (βi2,2j+1, µ
+) ∩Bβi2,2j+2

= (βi2,2j+1, βi2,2j+2)7

witness this, along with γ′m(i2)+1 < · · · < γ′n(i2) < µ+. Then we have

ai1 = τi2(γ
i2
1 , . . . , γ

i2
m(i2), γ

′
m(i2)+1, . . . , γ

′
n(i2))

with βi2,2j+1 < γm(i2)+1. We want to compare gtp(ai2/Ni1) and gtp(ai1/Ni1).

• From the elementarity, we get that Ni1 ⊂ EM(i1,Φ). We also know that
i1 < βi2,2j+2 < γi2m(i2)+1, γ

′
m(i2)+1. Thus, as before, the types are equal.

• We know that p �M2j+2 does not fork over M2j+1. Thus, gtp(ai2/Nβi2,2j+2
)

does not fork over Nβi2,2j+1
. Since we have Nβi2,2j+1

≺ Ni1 � Nβi2,2j+2
, this

gives gtp(ai2/Ni1) does not fork over Nβi2,2j+1
.

6When we say that B0 contains a sequence as an element, we mean that it contains the
function that maps an index to its sequence element.

7This equality holds because βi2,2j+2 ∈ Ci2 ⊂ E and is the key use of club guessing.
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• We have βi2,2j+1 < i1, so there is some k < α such that βi2,2j+1 < βi1,k < i′.
By assumption, p forks over Mk. Thus gi1(p) forks over Nβi1,k

. Thus,
gtp(ai1/Ni1) forks over Nβi2,2j+1

≺ Nβi1,k
.

As before, these three statements contradict each other. †Case (c), Theorem 6.8

Remark 6.14. In the hypotheses of Theorem 6.8, we can replace the regularity of
κ with the assumption that µ > κ. To prove this statement, we replace κ with κ+

in several instances, e. g., making models (µ, κ+)-limit rather than (µ, κ)-limit.

Once we have the universal local character, we can get results on the unique-
ness of limit models. Shelah and Villaveces [ShVi635] claimed uniqueness of limit
models from categoricity. However, VanDieren discovered a gap in the proof that
the authors have not fixed. VanDieren [Van06] [Van13] proved uniqueness of limit
models from categoricity with weaker assumptions than we have here, namely in-
stead of full amalgamation it was assumed that only unions of limit models are
amalgamation bases. Further results can be found in Grossberg, VanDieren, and
Villaveces [GVV].

Definition 6.15. (1) K has unique limit models in λ iff if M,N1, N2 ∈ Kλ

and α1, α2 < λ+ so that N` is (λ, α`)-limit over M , then N1
∼=M N2.

It is an easy exercise to show that (2) holds if cf α1 = cf α2. While many
of the above papers prove the uniqueness of limit models in different contexts,
the most relevant for our context is the proof that is outlined in [Sh:h, Section
II.4] and detailed in Boney [Bon14a]. There, Shelah’s frames are used to create
a matrix of models to show that limit models are isomorphic. Inspecting the
proof, the only property used that is not a part of an independence property is a
stronger continuity restricted to universal chains. This follows from universal local
character.

Fact 6.16 ( [Bon14a].8.2). If ^ is an independence relation so κ∗ω(^) = δ, then
any two limit models of length at least δ are isomorphic. Thus, if κ∗ω(^) = ω, then
K has unique limit models.

Remark 6.17. It is unclear if this theorem is indeed an improvement of [Van06],
[Van13] and [GVV]. In Theorem 6.16 full amalgamation is used. Notice that the
proof of Theorem 6.16 uses that ^ is symmetric. The other approaches for unique-
ness of limit models don’t use symmetry. Additionally, the necessary existence and
extension properties for nonsplitting can be proved from more natural hypotheses
than we have here.

A proof for the original uniqueness statement from [ShVi635] is still not known.

Corollary 6.18. Suppose there is some κ > LS(K) so that

(1) K is fully < κ-tame and -type short;
(2) K doesn’t have the weak κ-order property;
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(3) ^ satisfies (E); and
(4) it is categorical in some λ > κ

Then K has a unique limit model in each size in [κ, λ). Moreover, if λ is a
successor, then K has unique limit models in each size above κ.

Proof: The first part follows from Theorems 5.1, 6.5 and 6.8 and Fact 6.16.
The moreover follows from the categoricity transfer of [GV06a, Theorem 5.2]. †

Note that the uniqueness of limit models as stated does not follow trivially from
categoricity because it requires that the isomorphism fixes the base.

7. The U-Rank

Here we develop a U -rank for our forking and show that, under suitable con-
ditions, it behaves as desired. The U -rank was first introduced by Lascar [Las75]
for first order theories and first applied to AECs by [Sh394]. They have also been
studied by Hyttinen, Kesala, and Lessman in various non-elementary contexts;
see [Les00], [Les03], [HyLe02], and [HyKe06].

For this section, we work with an abstract independence relation
∗
^ in the sense

of Definition 3.3. As a corollary, this means that, if the hypotheses of Theorem
5.1 hold, then the following holds for the U -rank defined in terms of κ-coheir.

Hypothesis 7.1. Suppose that
∗
^ is an independence relation. Recall that Hy-

pothesis 3.1 is also in effect.

Because we are working with
∗
^ instead of ^, we will say that gtp(A/N) does

not ∗-fork over M to mean A
∗
^
M
N .

Definition 7.2. We define U with domain a type and range an ordinal or ∞ by,
for any p ∈ gS(M)

(1) U(p) ≥ 0;
(2) U(p) ≥ α limit iff U(p) ≥ β for all β < α;
(3) U(p) ≥ β+ 1 iff there is M ′ �M with ‖M ′‖ = ‖M‖ and p′ ∈ gS(M ′) such

that p′ is a ∗-forking extension of p and U(p′) ≥ β;
(4) U(p) = α iff U(p) ≥ α and ¬(U(p) ≥ α + 1); and
(5) U(p) =∞ iff U(p) ≥ α for every α.

First we prove a few standard rank properties. The first several results are true
without the clause about the sizes of the model, but this is necessary later when
we give a condition for the finiteness of the rank for Lemma 7.8.

Lemma 7.3 (Monotonicity). If M ≺ N , p ∈ gS(M), q ∈ gS(N), and p ≤ q, then
U(q) ≤ U(p).

Proof: We prove by induction on α that p ≤ q implies that U(q) ≥ α implies
U(p) ≥ α. For limit α, this is clear, so assume α = β + 1 and U(q) ≥ β + 1.



FORKING IN SHORT AND TAME ABSTRACT ELEMENTARY CLASSES 33

Then there is a N ′ � N and q+ ∈ gS(N ′) that is a ∗-forking extension of q and
U(q+) ≥ β. By (M), it is also a ∗-forking extension of p. Then U(p) ≥ α as
desired. †

Lemma 7.4 (Invariance). If f ∈ AutC and p ∈ gS(M), then U(p) = U(f(p)).

Proposition 7.5 (Ultrametric). The U rank satisfies the ultrametric property; that
is, if we have M ≺ Ni, p ∈ gS(M) and distinct 〈qi ∈ gS(Ni) | i < α〉 are such that
a |= p iff there is an i0 < α such that a |= qi0, then we have U(p) = maxi<α U(qi).

Note that, as always, we assume α is well below the size of the monster model.
Proof: We know that p ≤ qi for all i < α, so, by Lemma 7.3, we have

maxi<α U(qi) ≤ U(p). Since we have a monster model, we can find some N∗ ∈ K
that contains all Ni. By (E), we can find some p+ ∈ gS(N∗) such that p+ is
a non-forking extension of p. Now, let a |= p+. Since p ≤ p+, a |= p. Since
p(C) = ∪i<αqi(C), there is some i0 < α such that a |= qi0 . But then a^

M
N∗ im-

plies a^
M
Ni0 by (M), so gtp(a/Ni0) = qi0 does not fork over M . Then, by Theorem

7.7 (proved independently), we have

U(p) = U(qi0) = max
i<α

U(qi)

†

We show that same rank extensions correspond exactly to non-forking when
the U -rank is ordinal valued. One direction is clear from the definition. For the
other, we generalize first order proofs to the AEC context; our proof follows the
one for [Pil83, Proposition 5.13]. First, we prove the following lemma.

Lemma 7.6. Let N0 ≺ N1 ≺ N̄1, N0 ≺ N̄0 ≺ N̄1, and N0 ≺ N2 be models with
some c ∈ N̄0. If

N1

∗
^
N0

N̄0 and N2

∗
^
N̄0

N̄1

then there is some N3 extending N1 and N2 such that

c
∗
^
N2

N3

Proof: We can use (S) twice on N2

∗
^
N̄0

N̄1 to find N̄2 extending N2 and N̄0 such

that N̄2

∗
^
N̄0

N̄1. This contains c, so (M) implies that N2c
∗
^
N̄0

N1. By applying (S)

to the other non-∗-forking from our hypothesis, we know N̄0

∗
^
N0

N1. By (T ), this

means that N2c
∗
^
N0

N1.
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Applying (S) to this, there is some N ′3 extending N2 and containing c such that

N1

∗
^
N0

N ′3. By (M), we have that N1

∗
^
N2

N ′3. Applying (S) one final time, we can

find an N3 extending N1 and N2 such that c
∗
^
N2

N3. †

Theorem 7.7. Let p ∈ gS(M0) and q ∈ gS(M1) such that p ≤ q and U(p), U(q) <
∞. Then

U(p) = U(q) ⇐⇒ q is a non-∗-forking extension of p

Proof: By definition, U(p) = U(q) implies q does not ∗-fork over M0. For the
other direction, we show by induction on α that, for any q that is a non-∗-forking
extension of some p, U(p) ≥ α implies U(q) ≥ α.

If α is 0 or limit, this is straight from the definition.
Suppose that U(p) ≥ α + 1. Then, there are M2 � M0 and p1 ∈ gS(M2) such

that p1 is a ∗-forking extension of p and U(p1) ≥ α.
Claim: We may pick M2 and p1 such that there is a M3 extending M1 and M2

and q1 ∈ gS(M3) so

• q1 ≥ q, p1; and
• q1 does not ∗-fork over M2.

This Claim is enough: Assume for contradiction that q1 does not ∗-fork over

M1. By [BGKV, Lemma 5.9], a right version of transitivity also holds for
∗
^:

if A
∗
^
M0

M1 and A
∗
^
M1

M2 with M0 ≺M1 ≺M2, then A
∗
^
M0

M2

Thus, q1 would also not ∗-fork over M0. By (M), this would imply that p1 does
not ∗-fork over M0, a contradiction.

Thus, q1 is a ∗-forking extension of q. Since p1 ≤ q1 and U(p1) ≥ α, Lemma 7.3
implies that U(q1) ≥ α. Thus, U(q) ≥ α + 1.

Proof of claim: Let d realize q and d′ realize p1. Since both of these types
extend p, there is some f ∈ AutM0C such that f(d′) = d. Set M ′

2 = f(M2).

We know that d
∗
^
M0

M1, so by (S), there is some M̄0 � M0 that contains d so

M1

∗
^
M0

M̄0. Pick M̄1 ≺ C that contains M̄0 and M1. By (E), there is some M ′′
2

so that gtp(M ′
2/M̄0) = gtp(M ′′

2 /M̄0) and M ′′
2

∗
^
M̄0

M̄1. Let g ∈ AutM̄0
C such that

g(M ′
2) = M ′′

2 ; note that this fixes d.
We may now apply Lemma 7.6. This means there is some M3 that extends M ′′

2

and M1 such that d
∗
^
M ′′2

M3. Now this proves our claim with M ′′
2 and gtp(d/M ′′

2 ) =

g(f(p1)) and witnesses M3 and q1 = gtp(d/M3). †
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We now give a condition for the U rank to be ordinal valued, as in [Sh394, Section
5]. First, note that clause about the model sizes in the definition of U gives a bound
for the rank.

Lemma 7.8 (Ordinal Bound). For each µ ≥ κ, there is some αK,µ < (2µ)+ such
that for any M ∈ Kµ and p ∈ gS(M), if U(p) ≥ αK,µ, then U(p) =∞.

Proof: First, by Lemma 7.4, the restriction to models of the same size means
that there are at most 2µ-many ordinals that are U -ranks of types over models
of size µ. Second, there can be gaps below an ordinal valued rank; that is, given
N ∈ Kµ and q ∈ gS(N), if α < U(q) < ∞, then there is a ∗-forking extension q′

of q such that U(q′) = α. If this were not the case, then a construction like the
one in the next theorem would imply that q has rank ∞.

Putting these together, we have that {U(p) : p ∈ gS(M),M ∈ Kµ}−{∞} is an
interval of size at most 2µ. Setting αK,µ to be the first ordinal not in this interval
finishes the proof. †

This bound allows us to give a characterization of superstability in terms of an
ordinal bound on the U -rank.

Theorem 7.9 (Superstability). Let M ∈ Kµ and p ∈ gS(M). Then the following
are equivalent:

(1) U(p) =∞.
(2) There is an increasing sequence of types 〈pn : n < ω〉 such that p0 = p and

pn+1 is a ∗-forking extension of pn for all n < ω.

Proof: First, suppose U(p) =∞ and set p0 = p. We will construct our sequence
by induction such that U(pn) = ∞. Then U(pn) ≥ αK,µ + 1, so there is a ∗-
forking extension pn+1 with the same sized domain and U(pn+1) ≥ αK,µ. But then
U(pn+1) =∞ by Lemma 7.8 and our induction can continue.

Second, suppose we have such a sequence 〈pn : n < ω〉 and we will show, by
induction on α, that U(pn) ≥ α for all n < ω. The 0 and limit stages are clear.
At stage α + 1, pn+1 is a ∗-forking extension of pn with rank at least α. Thus,
U(pn) ≥ α + 1. †

Ranks in a tame AEC have also been explored by Lieberman [Lie13]. Under a
tameness assumption, he introduces a series of ranks that emulate Morley’s Rank.

Definition 7.10 ( [Lie13].3.1). Let λ ≥ κ, where K is κ-tame. For M ∈ Kλ and
p ∈ gS(M), we define Rλ(p) inductively by

• Rλ[p] ≥ 0;
• Rλ[p] ≥ α for limit α iff Rλ[p] ≥ β for all β < α; and
• Rλ[p] ≥ β + 1 iff there is M ′ � M and distinct 〈pi ∈ gS(M ′) : i < λ+〉

such that p ≤ pi and Rλ[pi] ≥ β for all i < λ+.
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If ‖M‖ > λ and p ∈ gS(M), then

Rλ[p] = min{Rλ[p � N ] : N ≺M, ‖N‖ = λ}

The U -rank for any independence relation dominates these Morley Ranks at
least for domains of size λ. Thus, the finiteness of the U -rank, which follows
from local character, implies that an AEC is totally transcendental and that the
stability transfer results of [Lie13, Section 5] apply.

Theorem 7.11. Suppose K is < κ-tame. Let M ∈ Kλ, p ∈ gS(M), and λ ≥ κ.
Then U(p) ≥ Rλ(p).

Proof: We prove, simultaneously for all types, that Rλ(p) ≥ α implies U(p) ≥ α
for all α by induction. For α = 0 or limit, this is easy.

Suppose Rλ(p) ≥ α + 1. Let M ′ and 〈pi ∈ gS(M ′) : i < λ+〉 witness this. p has
a unique ∗-nonforking extension to M ′, call it p∗. Thus, almost all of the pi ∗-fork
over M ; let pi0 be one of them. Then, pi0 6= p∗, so by < κ-tameness, there is some
M0 ≺M ′ of size < κ such that pi0 �M0 6= p∗ �M0. Let M ′′ ≺M ′ contain M and
M0 such that ‖M‖ = ‖M ′′‖ and p′ = pi0 �M

′′. Then

• p′ extends p;
• p′ is a ∗-forking extension of p because it differs from the non-∗-forking

extension, p∗ �Mi0 ; and
• Rλ(p′) ≥ Rλ(pi0) by [Lie13, Proposition 3.3]. So Rλ(p′) ≥ α. By induction,

this means U(p′) ≥ α.

So U(p) ≥ α + 1, as desired. †

8. Large cardinals revisited

In this section, we discuss the behavior of non-forking in the presence of large
cardinals. We return to just assuming Hypothesis 3.1, that K satisfies amalgama-
tion, joint embedding, and no maximal models.

Recall that κ is strongly compact iff κ is regular and every κ complete filter
can be extended to a κ complete ultrafilter; see [Jec06, Chapter 20] for a refer-
ence. Boney [Bon14b, Theorem 4.5] proved that the tameness and type shortness
hypotheses of Theorem 5.1 follow from κ being a strongly compact cardinal.

Fact 8.1 ( [Bon14b]). If κ is strongly compact and K is an AEC with LS(K) < κ,
then K is fully < κ tame and fully < κ type short.

A similar result holds for AECs axiomatized in Lκ,ω. However, [MaSh285] deals
with this case more fully, so we focus on LS(K) < κ. In fact, extending the results
of [MaSh285] to general AECs via the methods of [Bon14b] was the motivation for
this paper. The key tool of [Bon14b] is a  Loś’ Theorem for AECs (see [Bon14b,
Theorems 4.3 and 4.7]) that says that such AECs are closed under sufficiently
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complete ultraproducts, that ultraproducts of embeddings is an embedding of the
ultraproducts, and more.

We now detail a construction that will be used often in the following proof.
This construction and the proof of the following theorem draw inspiration from
[MaSh285, Proposition 4.9].

Suppose that M ≺ N and U is a κ complete ultrafilter over I. Then  Loś’
Theorem for AECs states that the canonical ultrapower embedding h : N →
ΠN/U that takes n to the constant function [i 7→ n]U is a K-embedding. We
can expand h to some h+ that is an L(K)-isomorphism with range ΠN/U and set
NU := (h+)−1[ΠN/U ]. This is a copy of the ultraproduct that actually contains
N . Similarly, we can set MU := (h+)−1[ΠM/U ]. The following claim is key.

Claim: MU
^
M
N .

Proof: Let N− ≺ N be small and a ∈ MU . Then h+(a) = [f ]U for some
[f ]U ∈ ΠM/U . Denote gtp(a/N−) by p. Then, by [Bon14b, Theorem 4.7], we
have

a � p

h+(a) = [f ]U � h+(p) = h(p)

X := {i ∈ I : f(i) � p} ∈ U
Since [f ]U ∈ ΠM/U , there is some i0 ∈ X such that f(i0) ∈M . Then f(i0) � p as
desired. †

We now show that non-forking is very well behaved in the presence of a strongly
compact cardinal. Note that the second part says that the local character property
follows from Existence and the third part improves on Theorem 5.4 by showing
that categoricity implies an analogue of superstability instead of just an analogue
of simplicity.

Theorem 8.2. Suppose κ is strongly compact and K is an AEC such that LS(K) <
κ. Then

(1) ^ satisfies Extension.
(2) Suppose ^ satisfies Existence. Let M = ∪i<αMi such that α = cf α. If

• |A| < α when |A| < κ; or
• |A|<κ < α when |A| ≥ κ,

then there is i∗ < α such that A ^
Mi∗

M .

(3) If K is categorical in some λ = λ<κ, then ^ is an independence relation
with

κα(^) ≤

{
ω + |α| α < κ

|α|<κ α ≥ κ

Moreover, Hypothesis 3.1 can be weakened to just referring to K<κ.
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Proof:

(1) Suppose that A^
M0

N and let N+ � N . This means that every < κ-

approximation to gtp(A/N) is realized in M0. We use the same argu-
ment as [Bon14b, Theorem 4.10], even though this is not a type over
M0. Let U be a κ-complete, fine ultrafilter over PκA × P ∗κN and let
〈bA0,N−
a ∈ M0 : a ∈ A0〉 realize gtp(A0/N

−). Then A′ = 〈[(A0, N
−) 7→

bA0,N−
a ]U : a ∈ A〉 is a realization of h(gtp(A/N)) by [Bon14b, Theorem

4.7]. By the above claim, MU
0 ^
M0

N+. By (M), this implies h−1(A′)^
M0

N+.

Since gtp(A/N) = gtp(h−1(A′)/N), this finishes the proof.
(2) Note that A^

M
M by Existence. First suppose that |A| < κ. We break into

cases based on the size of α.
If α < κ, then, as before, we can use the fact that A^

M
M to find a

κ-complete ultrafilter U on I such that p is realized in MU . Since α < κ
and U is κ-complete, we have that MU = ∪i<αMU

i . Let A′ ∈MU realize p.
Since |A′| < α and α is regular, there is some i∗ < α such that A′ ∈ MU

i∗ .
Thus, by the claim,

MU
i∗ ^
Mi∗

M

A′ ^
Mi∗

M

By (I), A ^
Mi∗

M .

Now suppose that α ≥ κ. For contradiction, suppose that A 6 ^
Mi

M for

all i < α. We now build an increasing and continuous sequence of ordinals
〈ij : j < |A|+〉 by induction. Let i0 = 0. Given ij, we know that p forks
over Mij . By the definition, there is a small M− ≺M such that gtp(A/M−)
is not realized in Mij . Since α ≥ κ is regular, there is some ij+1 > ij such
that M− ≺ Mij+1

. Then A 6 ^
Mij

Mij+1
. Set M∗ = ∪j<|A|+Mij . Then, by

Monotonicity, p � M∗ forks over Mij for all j < |A|+. Since |A|+ < κ, this
contradicts the previous paragraph.

Second suppose that |A| ≥ κ. For each a ∈ <κA, there is some ia < α
such that a ^

Mia

M . Set i∗ = sup ia; by assumption i∗ < α. Then A ^
Mi∗

M .

(3) From inaccessibility, we know that supµ<κ(i(2µ)+) = κ, so Existence holds
by Theorem 5.4. Then Extension holds by the first part, so (E) holds.
Theorem 8.1 tells us that K is < κ-tame and -type short. Finally, as out-
lined in the discussion after Theorem 5.1, the weak κ-order property with
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κ inaccessible implies many models in all cardinals above κ, which is con-
tradicted by categoricity in λ.

For the moreover, Baldwin and Boney [BaBo, Corollary 3.16] show that
amalgamation and joint embedding on K<κ imply those properties for all
of K. No maximal models above κ follows from strong compactness by
taking nonprincipal ultrapowers. †

Additionally, with the full strength of a strongly compact cardinal, we can re-
prove much or all of [MaSh285, Section 4] in an AEC context. One complication is
that [MaSh285, Definition 4.23] defines weakly orthogonal types by having an ele-
ment in the nonforking relation where we require a model. However, this definition
has already been generalized at [Sh:h, Section III.6].

[Bon14b] also proves weaker versions of Theorem 8.1 from assumptions of mea-
surable or weakly compact cardinals. These in turn could be used to produce
weaker versions of Theorem 8.2. However, [MaSh285] is not the only time inde-
pendence relations have been studied in infinitary contexts with large cardinals.
Kolman and Shelah [KoSh362] and Shelah [Sh472] investigate the consequences
of categoricity in Lκ,ω when κ is measurable. In [KoSh362], they use κ-complete
ultralimits. They denote such an ultralimit of M by Op(M) and the canonical
embedding by fOp : M → Op(M). In [Sh472], Shelah introduces the following
independence relation.

Definition 8.3 ( [Sh472].1.5). Let K be essentially below κ measurable. Define

a 4-place relation S
^ by M1

S
M3

^
M0

M2 iff there is an ultralimit operation Op with

embedding fOp and h : M3 → Op(M1) such that the following commutes

M1

fOp //

!!B
BB

BB
BB

B
Op(M1)

M3

h
::vvvvvvvvv

M2

OO

h

$$H
HH

HH
HH

HH

M0

OO

==|||||||| fOp // Op(M0)

OO

We would like to show that κ-coheir and Shelah’s nonforking are dual8 in all
situations. However, this does not seem to be the case as the proofs depend on the

8By Proposition 6.3, this would mean it is equivalent to heir.
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existence of regular ultrafilters or structure results from [Sh472]. One direction
always holds.

For the following results, we assume that K is an AEC essentially below9 κ.

Proposition 8.4. If κ is measurable, then, for all M0,M1,M2 ∈ K,

∃M3 so M2
S
M3

^
M0

M1 =⇒ M1 ^
M0

M2

Proof: Suppose that there is an M3 such that M2
S
M3

^
M0

M1. The claim above

generalized to ultralimits implies f−1
Op (Op(M0))^

M0

M2 for the ultralimit witness-

ing M2. We have that h : M1 → Op(M0), so, by Monotonicity, we have that
f−1
Op (h(M1))^

M0

M2. By the diagram, f−1
Op◦h fixesM2, we have that gtp(f−1

Op (h(M1))/M2) =

gtp(M1/M2). By Invariance, this means that M1 ^
M0

M2. †

For the other direction, if κ is simply measurable, then the result only holds on
Kκ.

Proposition 8.5. If κ is measurable, then, for all M0,M1,M2 ∈ Kκ,

M1 ^
M0

M2 =⇒ ∃M3 so M2
S
M3

^
M0

M1

Proof: Suppose that M1 ^
M0

M2. Adapting the proof that every countably in-

complete measure is ω-regular (see [ChKe90, Proposition 4.3.4]), every maximally
κ-complete ultrafilter is κ-regular. Let U be a maximally κ-complete ultrafilter
(such as the one arising from a measurable embedding). Adapting first order
arguments (see [Sh:c, Theorem VI.1.4]), we have the following.

Claim: For M ∈ Kκ, if N ∈ Kκ and p ∈ gSκ(N) is a Galois type such that
every small subtype is realized in M , then p is realized in MU .

By the claim at the start of the section, we have that MU
0 ^
M0

M2. Since M1 ^
M0

M2,

the hypothesis of the above claim is satisfied with M0 and gtp(M1/M2). Thus,
it is realized in MU

0 and there is f ∈ AutM2C such that f(M1) ≺ MU
0 . Set

M3 = f−1[MU
2 ]. Then we have the following commuting diagram:

9This means LS(K) < κ or K is axiomatized by a Lκ,ω-theory and ordered by elementary
submodel according a suitable fragment; see [Bon14b, Definition 2.10].
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M2
//

!!B
BB

BB
BB

B
MU

2
h+ // ΠM2/U

M3

f
=={{{{{{{{

M1

OO

f

!!C
CC

CC
CC

C

M0

OO

==||||||||
// MU

0

OO

h+ // ΠM0/U

OO

Collapsing this diagram gives

M2
h //

!!B
BB

BB
BB

B
ΠM2/U

M3

h◦f
::vvvvvvvvv

M1

OO

h◦f

$$H
HH

HH
HH

HH

M0

OO

==||||||||
h // ΠM0/U

OO

Note that an ultraproduct is a suitable ultralimit operation and the ultrapower

embedding is its corresponding embedding. Thus M2
S
M3

^
M0

M1. †

As can be seen from the proof, moving beyond Kκ would require κ-complete
ultrafilters of higher regularity. This seems to require more than just a measurable
cardinal and, in particular, strongly compact is enough.

Proposition 8.6. If κ is λ-strongly compact, then, for all M0,M1,M2 ∈ K[κ,λ],

M1 ^
M0

M2 =⇒ ∃M3 so M2
S
M3

^
M0

M1

The proof of this proposition is nearly identical to the one above; the extra step
is that the κ complete, fine ultrafilter on Pκλ gives a λ regular ultrafilter. Another
option would be to take advantage of continuity properties of S^ and use direct
limits of κ sized models; however, [Sh472] indicates that these continuity properties
require additional hypotheses.

This gives the following corollary.
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Corollary 8.7. Let K be an AEC essentially below κ strongly compact and let
M0 ≺M1,M2 ∈ K. Then

M1 ^
M0

M2 ⇐⇒ ∃M3 so M2
S
M3

^
M0

M1
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