

MORLEY SEQUENCES IN ABSTRACT ELEMENTARY CLASSES

RAMI GROSSBERG AND MONICA VANDIEREN

ABSTRACT. In this paper, we explore stability results in the new context of *tame* abstract elementary classes with the amalgamation property. The main result is:

Theorem 0.1. *Let \mathcal{K} be a tame abstract elementary class satisfying the amalgamation property without maximal models. There exists a cardinal $\mu_0(\mathcal{K})$ such that for every $\mu \geq \mu_0(\mathcal{K})$ and every $M \in \mathcal{K}_{>\mu}$, $A, I \subset M$ such that $|I| \geq \mu^+ > |A|$, if \mathcal{K} is Galois stable in μ , then there exists $J \subset I$ of cardinality μ^+ , Galois indiscernible indiscernible over A . Moreover J can be chosen to be a Morley sequence over A .*

This result strengthens Claim 4.16 of [Sh 394] as we do not assume categoricity. This is also an improvement of a result from [GrLe] concerning the existence of indiscernible sequences.

This is used to get a stability spectrum theorem.

INTRODUCTION

Already in the fifties model theorists studied non-elementary classes of structures (e.g. Jónsson [Jo1], [Jo2] and Fraïssé [Fr]). In [Sh 88], Shelah introduced the framework of abstract elementary classes and embarked on the ambitious program of developing a *classification theory for Abstract Elementary Classes*. For a survey of some of the basics, see [Gr2] or Chapter 13 of [Gr1]. While much is known about abstract elementary classes, especially when \mathcal{K} is an AEC under the additional assumption that there exists a cardinal $\lambda > \text{Hanf}(\mathcal{K})$ such that \mathcal{K} is categorical in λ , little progress has been made towards a full-fledged stability theory. One of the open problems from [Sh 394] (Remark 4.10(1)) is to identify of a good (forking-like) notion of independence for abstract elementary classes. This is open even for classes that have the amalgamation property and are categorical above the Hanf number. In [Sh 394], several weak notions of independence are introduced under the assumption that the class is categorical. Among these notions is the Galois-theoretic notion of non-splitting. Here we study the notion of

Date: This **draft** is from January 11, 2002.

AMS Subject Classification: Primary: 03C45, 03C52, 03C75. Secondary: 03C05, 03C55 and 03C95.

This paper is part of the second author's Ph.D. thesis written under the guidance of Rami Grossberg.

non-splitting in a more general context than categorical AEC: *Tame stable classes*. We plan to use Morley sequences for non-splitting as a bootstrap to define a dividing-like concept for these classes.

We are grateful to John Baldwin for reading a preliminary version, many discussions and suggesting to consider the stability spectrum problem for AECs.

1. BACKGROUND

Definition 1.1. Let \mathcal{K} be a class of structures all in the same similarity type $L(\mathcal{K})$, and let $\prec_{\mathcal{K}}$ be a partial order on \mathcal{K} . The ordered pair $\langle \mathcal{K}, \prec_{\mathcal{K}} \rangle$ is an *abstract elementary class, AEC for short* iff

A0 (Closure under isomorphism)

- (a) For every $M \in \mathcal{K}$ and every $L(\mathcal{K})$ -structure N if $M \cong N$ then $N \in \mathcal{K}$.
- (b) Let $N_1, N_2 \in \mathcal{K}$ and $M_1, M_2 \in \mathcal{K}$ such that there exist $f_l : N_l \cong M_l$ (for $l = 1, 2$) satisfying $f_1 \subseteq f_2$ then $N_1 \prec_{\mathcal{K}} N_2$ implies that $M_1 \prec_{\mathcal{K}} M_2$.

A1 For all $M, N \in \mathcal{K}$ if $M \prec_{\mathcal{K}} N$ then $M \subseteq N$.

A2 Let M, N, M^* be $L(\mathcal{K})$ -structures. If $M \subseteq N$, $M \prec_{\mathcal{K}} M^*$ and $N \prec_{\mathcal{K}} M^*$ then $M \prec_{\mathcal{K}} N$.

A3 (Downward Löwenheim-Skolem) There exists a cardinal $LS(\mathcal{K}) \geq \aleph_0 + |L(\mathcal{K})|$ such that for every $M \in \mathcal{K}$ and for every $A \subseteq |M|$ there exists $N \in \mathcal{K}$ such that $N \prec_{\mathcal{K}} M$, $|N| \supseteq A$ and $\|N\| \leq |A| + LS(\mathcal{K})$.

A4 (Tarski-Vaught Chain)

- (a) For every regular cardinal μ and every $N \in \mathcal{K}$ if $\{M_i \prec_{\mathcal{K}} N : i < \mu\} \subseteq \mathcal{K}$ is $\prec_{\mathcal{K}}$ -increasing (i.e. $i < j \implies M_i \prec_{\mathcal{K}} M_j$) then $\bigcup_{i < \mu} M_i \in \mathcal{K}$ and $\bigcup_{i < \mu} M_i \prec_{\mathcal{K}} N$.
- (b) For every regular μ , if $\{M_i : i < \mu\} \subseteq \mathcal{K}$ is $\prec_{\mathcal{K}}$ -increasing then $\bigcup_{i < \mu} M_i \in \mathcal{K}$ and $M_0 \prec_{\mathcal{K}} \bigcup_{i < \mu} M_i$.

Notation 1.2. If λ is a cardinal and \mathcal{K} is a class of models, \mathcal{K}_λ is the subclass of models from \mathcal{K} of cardinality λ .

Definition 1.3. For models $M, N \in \mathcal{K}$, $f : M \rightarrow N$ is an $\prec_{\mathcal{K}}$ -embedding iff $f[M] \prec_{\mathcal{K}} N$.

Definition 1.4. (1) We say that a model M is an *amalgamation base* if for every $N_i \succ M$ with $\|N_i\| = \|M\|$ ($i = 1, 2$), there are $\prec_{\mathcal{K}}$ -embeddings g_i , ($i = 1, 2$) and a model N such that the following diagram commutes:

$$\begin{array}{ccc}
N_1 & \xrightarrow{g_1} & N \\
id \uparrow & & \uparrow g_2 \\
M & \xrightarrow{id} & N_2
\end{array}$$

(2) $\mathcal{K}^{am} := \{M \in \mathcal{K} \mid M \text{ is an amalgamation base}\}.$

Definition 1.5. Let $\beta > 0$ be an ordinal. For triples (\bar{a}_l, M_l, N_l) where $\bar{a}_l \in {}^\beta N_l$ and $M_l \prec_{\mathcal{K}} N_l \in \mathcal{K}$ for $l = 0, 1$, we define a binary relation E as follows: $(\bar{a}_0, M_0, N_0)E(\bar{a}_1, M_1, N_1)$ iff $M_0 = M_1$ and there exists $N \in \mathcal{K}$ and elementary mappings f_0, f_1 such that $f_l : N_l \rightarrow N$ and $f_l \upharpoonright M = id_M$ for $l = 0, 1$ and $f_0(\bar{a}_0) = f_1(\bar{a}_1)$:

$$\begin{array}{ccc}
N_1 & \xrightarrow{f_1} & N \\
id \uparrow & & \uparrow f_2 \\
M & \xrightarrow{id} & N_2
\end{array}$$

Remark 1.6. E is an equivalence relation on the class of triples of the form (\bar{a}, M, N) where $M \prec_{\mathcal{K}} N$, $\bar{a} \in N$ and both $M, N \in \mathcal{K}^{am}$. When only $M \in \mathcal{K}^{am}$, E may fail to be transitive, but the transitive closure of E could be used instead.

While it is standard to use the E relation to define types in abstract elementary classes, we will discuss and make use of stronger relations between triples in section 3 of this paper.

In order to avoid confusing this new notion of “type” with the conventional one (i.e. set of formulas) we will follow [Gr1] and [Gr2] and introduce it below under the name of *Galois type*.

Definition 1.7. Let β be a positive ordinal (can be one).

- (1) For $M, N \in \mathcal{K}^{am}$ and $\bar{a} \in {}^\beta N$. The *Galois type of \bar{a} in N over M* , written $ga\text{-tp}(\bar{a}/M, N)$, is defined to be $(\bar{a}, M, N)/E$.
- (2) We abbreviate $ga\text{-tp}(\bar{a}/M, N)$ by $ga\text{-tp}(\bar{a}/M)$.
- (3) For $M \in \mathcal{K}^{am}$,

$$ga\text{-S}^\beta(M) := \{ga\text{-tp}(\bar{a}/M, N) \mid M \prec N \in \mathcal{K}_{\|M\|}^{am}, \bar{a} \in {}^\beta N\}.$$

We write $ga\text{-S}(M)$ for $ga\text{-S}^1(M)$.

- (4) Let $p := ga\text{-tp}(\bar{a}/M', N)$ for $M \prec_{\mathcal{K}} M'$ we denote by $p \upharpoonright M'$ the type $ga\text{-tp}(\bar{a}/M, N)$. The *domain of p* is denoted by $\text{dom } p$ and it is by definition M' .
- (5) Let $p = ga\text{-tp}(\bar{a}/M, N)$, suppose that $M \prec_{\mathcal{K}} N' \prec_{\mathcal{K}} N$ and let $\bar{b} \in {}^\beta N'$ we say that \bar{b} *realizes p* iff $ga\text{-tp}(\bar{b}/M, N') = p \upharpoonright M$.

(6) For types p and q , we write $p \leq q$ if $\text{dom}(p) \subseteq \text{dom}(q)$ and there exists \bar{a} realizing p in some N extending $\text{dom}(p)$ such that $(\bar{a}, \text{dom}(p), N) \in q \upharpoonright \text{dom}(p)$.

Definition 1.8. We say that \mathcal{K} is β -stable in μ if for every $M \in \mathcal{K}_\mu^{\text{am}}$, $|\text{ga-S}^\beta(M)| = \mu$. The class \mathcal{K} is Galois stable in μ iff \mathcal{K} is 1-stable in μ .

Definition 1.9. We say that $M \in \mathcal{K}$ is Galois saturated if for every $N \prec_{\mathcal{K}} M$ of cardinality $< \|M\|$, and every $p \in \text{ga-S}(N)$, we have that M realizes p .

Remark 1.10. When $\mathcal{K} = \text{Mod}(T)$ for a first-order T , using the compactness theorem one can show (Theorem 2.2.3 of [Gr1]) that for $M \in \mathcal{K}$, the model M is Galois saturated iff M is saturated in the first-order sense.

It is interesting to mention

Theorem 1.11 (Shelah [Sh 300]). *Let $\lambda > LS(\mathcal{K})$. Suppose that \mathcal{K} has the amalgamation property and $N \in \mathcal{K}_\lambda$. The following are equivalent*

- (1) N is Galois saturated.
- (2) N is model-homogeneous. I.e. if $M \prec_{\mathcal{K}} N$ and $M' \succ M$ of cardinality less than λ then there exists a \mathcal{K} -embedding over M from M' into N .

Unfortunately [Sh 300] has an incomplete skeleton of a proof, a complete and correct proof appeared in [Sh 576]. See also [Gr2].

In first order logic, it is natural to consider saturated models for a stable theory. In this context, saturated models are model homogeneous and hence unique. In abstract elementary classes, the existence and even the uniqueness of saturated models is often difficult to derive. To combat this, Shelah introduced a replacement for saturated models, namely, limit-models, which in certain contexts can be shown to exist and be unique.

Definition 1.12. For $M', M \in \mathcal{K}_\lambda$, we say that M' is universal over M (abbreviated $M \prec_{\mathcal{K}}^{\text{univ}} M'$) iff for every $N \in \mathcal{K}_\lambda$ with $M \prec N$, there exists a $\prec_{\mathcal{K}}$ -embedding, g , such that $g : N \rightarrow M'$ and $g \upharpoonright M = \text{id}_M$.

Definition 1.13. For $M', M \in \mathcal{K}_\mu$, we say that M' is a (μ, σ) -limit over M iff there exists a $\prec_{\mathcal{K}}$ -increasing and continuous sequence of amalgamation bases $\langle M_i \in \mathcal{K}_\mu \mid i \leq \sigma \rangle$ such that

- (1) $M \prec_{\mathcal{K}} M_0$,
- (2) $M' = M_\sigma$ and
- (3) M_{i+1} is universal over M_i .

When $\mathcal{K} = \text{Mod}(T)$ for a first-order and stable T then automatically (by Theorem III.3.12 of [Shc]):

$$M \in \mathcal{K}_\mu \text{ is saturated} \implies M \text{ is } (\mu, \sigma)\text{-limit for all } \sigma < \mu^+ \text{ of cofinality } \geq \kappa(T).$$

When T is countable, stable but not superstable then the saturated model of cardinality μ is (μ, \aleph_1) -limit but not (μ, \aleph_0) -limit.

Claim 1.14 (Claim 1.14.1 from [Sh 600]). *Suppose \mathcal{K} is an abstract elementary class with the amalgamation property. If \mathcal{K} is Galois stable in μ , then for every $M \in \mathcal{K}_\mu$, there exists $M' \in \mathcal{K}_\mu$ such that M' is universal over M . Moreover M' can be chosen to be a (μ, σ) -limit over M for any $\sigma < \mu^+$.*

The following lemma holds in the context of abstract elementary classes with no maximal models and provides an alternative proof to the existence of universal extensions.

Lemma 1.15 (Theorem 1.3.1 from [ShVi 635]). *Categoricity in some $\lambda > LS(\mathcal{K})$ implies the existence universal extensions in every μ such that $LS(\mathcal{K}) < \mu < \lambda$. Furthermore, this implies the existence of (μ, σ) -limits for $\omega \leq \sigma < \mu^+$.*

While the existence of limit models is useful, it is desirable that these models be unique. The following Lemma provides one level of uniqueness, namely, limit models of the same length are isomorphic:

Lemma 1.16 (Fact 1.3.6 from [ShVi 635]). *Let $\mu \geq LS(\mathcal{K})$ and $\sigma \leq \mu^+$. If M_1 and M_2 are (μ, σ) -limits over M , then there exists an isomorphism $g : M_1 \rightarrow M_2$ such that $g \upharpoonright M = id_M$. Moreover if M_1 is a (μ, σ) -limit over M_0 ; N_1 is a (μ, σ) -limit over N_0 and $g : M_0 \cong N_0$, then there exists a $\prec_{\mathcal{K}}$ -mapping, \hat{g} , extending g such that $\hat{g} : M_1 \cong N_1$.*

Showing that two (μ, σ) -limit models are isomorphic for different σ s is a central (dichotomy) property even for first-order theories: E.g. Let T be a countable (for simplicity), stable, non-superstable first-order theory. Suppose T is stable in μ . By Harnik's theorem ([Har]) T has a saturated model of cardinality μ , in fact for $\sigma < \mu^+$ the theory has (μ, σ) -limit models. Since T is not superstable there exists a union of an ω -sequence of saturated models which is not saturated (see [AlGr]) thus it is not isomorphic to a (μ, ω_1) -limit model (that was obtained by taking a union of saturated models, see Theorem III.3.12 of [Shc]).

2. EXISTENCE OF INDISCERNIBLES

Assumption 2.1. For the remainder of this section, we will fix \mathcal{K} , an abstract elementary class with the amalgamation property.

Remark 2.2. The focus of this paper are classes with the amalgamation property. Several of the proofs in this section can be adjusted to the context of abstract elementary classes with density of amalgamation bases as in [ShVi 635].

The most obvious attempt to generalize Shelah's argument from Lemma I.2.5 of [Shc] does not apply since the notion of type cannot be identified with a set of first order formulas. Moreover, the notion of a type over an arbitrary set does not exist in the context of abstract elementary classes.

From [Sh 394]:

Definition 2.3. A type $p \in S^\beta(N)$ μ -splits over $M \prec_{\mathcal{K}} N$ if and only if $\|M\| \leq \mu$, there exist $N_1, N_2 \in \mathcal{K}_{\leq \mu}$ and h , a \mathcal{K} -embedding such that $M \prec_{\mathcal{K}} N_l \prec_{\mathcal{K}} N$ for $l = 1, 2$ and $h : N_1 \rightarrow N_2$ such that $h \upharpoonright M = id_M$ and $p \upharpoonright N_2 \neq h(p \upharpoonright N_1)$.

Notice that non splitting is monotonic: I.e. If $p \in \text{ga-}S(N)$ does not split over M (for some $M \prec_{\mathcal{K}} N$) then p does not split over M' for every $M \prec_{\mathcal{K}} M' \prec_{\mathcal{K}} N$.

Similarly to $\kappa(T)$ when T is first-order the following is a natural cardinal invariant of \mathcal{K} :

Definition 2.4. Let $\beta > 0$. We define an invariant $\kappa_\mu^\beta(\mathcal{K})$ to be the minimal κ such that for every $\langle M_i \in \mathcal{K}_\mu \mid i \leq \kappa \rangle$ which satisfies

- (1) $\kappa = \text{cf}(\kappa) < \mu^+$,
- (2) $\langle M_i \mid i \leq \kappa \rangle$ is $\prec_{\mathcal{K}}$ -increasing and continuous and
- (3) for every $i < \kappa$, M_{i+1} is a (μ, θ) -limit over M_i for some $\theta < \mu^+$,

and for every $p \in \text{ga-}S^\beta(M_\kappa)$, there exists $i < \kappa$ such that p does not μ -split over M_i . If no such κ exists, we say $\kappa_\mu^\beta(\mathcal{K}) = \infty$.

The following theorem in conjunction with Lemma 1.15 states that categorical abstract elementary classes with no maximal models satisfy $\kappa_\mu^1(\mathcal{K}) \leq \omega$, for various μ .

Theorem 2.5 (Theorem 2.2.1 from [ShVi 635]). *Suppose \mathcal{K} is categorical in $\lambda > LS(\mathcal{K})$. Let $\mu < \lambda$. If $\langle M_i \in \mathcal{K}_\mu \mid i \leq \kappa \rangle$ and $p \in S(M_\kappa)$ satisfy*

- (1) $\kappa = \text{cf}(\kappa) < \mu^+$,
- (2) $\langle M_i \mid i \leq \kappa \rangle$ is $\prec_{\mathcal{K}}$ -increasing and continuous and
- (3) for every $i < \kappa$, M_{i+1} is a (μ, θ) -limit over M_i for some $\theta < \mu^+$,

then there exists $i < \kappa$ such that p does not μ -split over M_i .

A slight modification of the argument of Claim 3.3 from [Sh 394] can be used to prove:

Theorem 2.6. *Let $\beta > 0$. Suppose that \mathcal{K} is β -stable in μ . For every $p \in \text{ga-}S^\beta(N)$ there exists $M \prec_{\mathcal{K}} N$ of cardinality μ such that p does not μ -split over M . Thus $\kappa_\mu^\beta(\mathcal{K}) \leq \mu$.*

In Theorem 4.7 below we present an improvement of Theorem 2.6 for tame AECs: In case \mathcal{K} is β -stable in μ for some μ above its Hanf number then $\kappa_\mu^\beta(\mathcal{K})$ is bounded by the Hanf number. Notice that the bound does not depend on μ .

The following is a new Galois-theoretic notion of indiscernible sequence.

Definition 2.7. (1) $\langle \bar{a}_i \mid i < i^* \rangle$ is a *Galois indiscernible sequence over M* iff for every $i_1 < \dots < i_n < i^*$ and every $j_1 < \dots < j_n < i^*$, $\text{ga-tp}(\bar{a}_{i_1} \dots \bar{a}_{i_n} / M) = \text{ga-tp}(\bar{a}_{j_1} \dots \bar{a}_{j_n} / M)$.

(2) $\langle \bar{a}_i \mid i < i^* \rangle$ is a *Galois indiscernible sequence over A* iff for every $i_1 < \dots < i_n < i^*$ and every $j_1 < \dots < j_n < i^*$, there exists $M_i, M_j, M^* \in \mathcal{K}$ and $\prec_{\mathcal{K}}$ -mappings f_i, f_j such that

- (a) $A \subseteq M_i, M_j$;
- (b) $f_l : M_l \rightarrow M^*$, for $l = i, j$;
- (c) $f_i(\bar{a}_{i_0}, \dots, \bar{a}_{i_n}) = f_j(\bar{a}_{j_0}, \dots, \bar{a}_{j_n})$ and
- (d) and $f_i \upharpoonright A = f_j \upharpoonright A = id_A$.

Remark 2.8. This is on the surface a weaker notion of indiscernible sequence than is presented in [Sh 394]. However, this definition coincides with the first order definition. Additionally, it is suspected that, under some reasonable assumptions, this definition and the definition in [Sh 394] are equivalent.

The following lemma provides us with sufficient conditions to find an indiscernible sequence.

Lemma 2.9. *Let $\mu \geq LS(\mathcal{K})$, κ, λ be ordinals and β a positive ordinal. Suppose that $\langle M_i \mid i < \lambda \rangle$ and $\langle \bar{a}_i \mid i < \lambda \rangle$ satisfy*

- (1) $\langle M_i \mid i < \lambda \rangle$ are $\preceq_{\mathcal{K}}$ -increasing;
- (2) $M_i \in \mathcal{K}_\mu$;
- (3) M_{i+1} is a (μ, κ) -limit over M_i ;
- (4) $\bar{a}_i \in {}^\beta M_{i+1}$;
- (5) $p_i := \text{ga-tp}(\bar{a}_i / M_i, M_{i+1})$ does not μ -split over M_0 and
- (6) for $i < j < \lambda$, $p_i \leq p_j$.

Then, $\langle \bar{a}_i \mid i < \lambda \rangle$ is a Galois indiscernible sequence over M_0 .

Definition 2.10. A sequence $\langle \bar{a}_i, M_i \mid i < \lambda \rangle$ satisfying conditions (1) – (6) of Lemma 2.9 is called a *Morley sequence*.

Remark 2.11. While the statement of the lemma is similar to Shelah's Lemma I.2.5 in [Shc], the proof differs, since types are not sets of formulas.

Proof. We prove that for $i_0 < \dots < i_n < \lambda$ and $j_0 < \dots < j_n < \lambda$, $\text{ga-tp}(\bar{a}_{i_0}, \dots, \bar{a}_{i_n} / M_0, M_{i_{n+1}}) = \text{ga-tp}(\bar{a}_{j_0}, \dots, \bar{a}_{j_n} / M_0, M_{j_{n+1}})$ by induction on $n < \omega$.

$n = 0$: Let $i_0, j_0 < \lambda$ be given. Condition 6, gives us

$$\text{ga-tp}(\bar{a}_{i_0} / M_0, M_{i_0+1}) = \text{ga-tp}(\bar{a}_{j_0} / M_0, M_{j_0+1}).$$

$n > 0$: Suppose that the claim holds for all increasing sequences \bar{i} and $\bar{j} \in \lambda$ of length n . Let $i_0 < \dots < i_n < \lambda$ and $j_0 < \dots < j_n < \lambda$ be given. Without loss of generality, $i_n \leq j_n$. Define $M^* := M_1$. From condition 3 and uniqueness of (μ, ω) -limits, we can find a $\prec_{\mathcal{K}}$ -isomorphism, $g : M_{j_n} \rightarrow M_{i_n}$ such that $g \upharpoonright M_0 = id_{M_0}$. Moreover we can extend g to $g : M_{j_{n+1}} \rightarrow M_{i_{n+1}}$. Denote by $\bar{b}_{j_l} := g(\bar{a}_{j_l})$ for $l = 0, \dots, n$. Notice that $b_{j_l} \in M_{i_n}$ for $l < n$. Since $\text{ga-tp}(\bar{b}_{j_0}, \dots, \bar{b}_{j_n} / M_0, M_{i_{n+1}}) = \text{ga-tp}(\bar{a}_{j_0}, \dots, \bar{a}_{j_n} / M_0, M_{j_{n+1}})$ it suffices to prove that $\text{ga-tp}(\bar{b}_{j_0}, \dots, \bar{b}_{j_n} / M_0, M_{i_{n+1}}) = \text{ga-tp}(\bar{a}_{i_0}, \dots, \bar{a}_{i_n} / M_0, M_{i_{n+1}})$.

Also notice that the \prec_K -mapping preserves some properties of p_j . Namely, since p_j does not μ -split over M_0 , $g(p_j \upharpoonright M_{j_n}) = p_j \upharpoonright M_{i_n}$.

Thus, $\text{ga-tp}(\bar{b}_{j_n}/M_{i_n}, M_{i_n+1}) = \text{ga-tp}(\bar{a}_{j_n}/M_{i_n}, M_{i_n+1})$. In particular we have that $\text{ga-tp}(\bar{b}_{j_n}/M_{i_n}, M_{i_n+1})$ does not μ -split over M_0 .

By the induction hypothesis

$$\text{ga-tp}(\bar{b}_{j_0}, \dots, \bar{b}_{j_{n-1}}/M_0, M_{i_n}) = \text{ga-tp}(\bar{a}_{i_0}, \dots, \bar{a}_{i_{n-1}}/M_0, M_{i_n}).$$

Thus we can find $h_i : M_{i_n+1} \rightarrow M^*$ and $h_j : M_{i_n+1} \rightarrow M^*$ such that $h_i(\bar{a}_{i_0}, \dots, \bar{a}_{i_{n-1}}) = h_j(\bar{b}_{j_0}, \dots, \bar{b}_{j_{n-1}})$. Let us abbreviate $\bar{b}_{j_0}, \dots, \bar{b}_{j_{n-1}}$ by $\bar{b}_{\bar{j}}$. Similarly we will write $\bar{a}_{\bar{i}}$ for $\bar{a}_{i_0}, \dots, \bar{a}_{i_{n-1}}$.

By appealing to condition 5, we derive several equalities that will be useful in the latter portion of the proof. Since p_j does not μ -split over M_0 , we have that $p_j \upharpoonright h_j(M_{i_n}) = h_j(p_j \upharpoonright M_{i_n})$, rewritten as

$$(*) \quad \text{ga-tp}(\bar{b}_{j_n}/h_j(M_{i_n}), M_{i_n+1}) = \text{ga-tp}(h_j(\bar{b}_{j_n})/h_j(M_{i_n}), M^*).$$

Similarly as p_i does not μ -split over M_0 , we get $p_i \upharpoonright h_j(M_{i_n}) = h_j(p_i \upharpoonright M_{i_n})$ and $p_i \upharpoonright h_i(M_{i_n}) = h_i(p_i \upharpoonright M_{i_n})$. These equalities translate to

$$(**)_j \quad \text{ga-tp}(\bar{a}_{i_n}/h_j(M_{i_n}), M_{i_n+1}) = \text{ga-tp}(h_j(\bar{a}_{i_n})/h_j(M_{i_n}), M^*) \text{ and}$$

$$(**)_i \quad \text{ga-tp}(\bar{a}_{i_n}/h_i(M_{i_n}), M_{i_n+1}) = \text{ga-tp}(h_i(\bar{a}_{i_n})/h_i(M_{i_n}), M^*), \text{ respectively.}$$

Finally, from condition 6., notice that

$$(***) \quad \text{ga-tp}(\bar{a}_{i_n}/M_{i_n}, M_{i_n+1}) = \text{ga-tp}(\bar{b}_{j_n}/M_{i_n}, M_{i_n+1}).$$

Applying h_j to $(***)$ yields

$$(\dagger) \quad \text{ga-tp}(h_j(\bar{b}_{j_n})/h_j(M_{i_n}), M^*) = \text{ga-tp}(h_j(\bar{a}_{i_n})/h_j(M_{i_n}), M^*).$$

Since $h_i(\bar{a}_{\bar{i}}) = h_j(\bar{b}_{\bar{j}}) \in h_j(M_{i_n})$, we can draw from (\dagger) the following:

$$(1) \quad \text{ga-tp}(h_j(\bar{b}_{j_n}) \hat{\cup} h_j(\bar{b}_{\bar{j}})/M_0, M^*) = \text{ga-tp}(h_j(\bar{a}_{j_n}) \hat{\cup} h_i(\bar{a}_{\bar{i}})/M_0, M^*).$$

Equality $(**)_i$ allows us to see

$$(2) \quad \text{ga-tp}(\bar{a}_{i_n} \hat{\cup} h_i(\bar{a}_{\bar{i}})/M_0, M^*) = \text{ga-tp}(h_i(\bar{a}_{i_n}) \hat{\cup} h_i(\bar{a}_{\bar{i}})/M_0, M^*).$$

Since $\text{ga-tp}(h_j(\bar{a}_{i_n})/h_j(M_{i_n}), M^*) = \text{ga-tp}(\bar{a}_{i_n}/h_j(M_{i_n}), M_{i_n+1})$ (equality $(**)_j$) and $h_i(\bar{a}_{\bar{i}}) = h_j(\bar{b}_{\bar{j}}) \in h_j(M_{i_n})$, we get that

$$(3) \quad \text{ga-tp}(h_j(\bar{a}_{i_n}) \hat{\cup} h_i(\bar{a}_{\bar{i}})/M_0, M^*) = \text{ga-tp}(\bar{a}_{i_n} \hat{\cup} h_i(\bar{a}_{\bar{i}})/M_0, M^*).$$

Combining equalities (1), (2) and (3), we get

$$(\dagger\dagger) \quad \text{ga-tp}(h_i(\bar{a}_{\bar{i}}) \hat{\cup} h_i(\bar{a}_{i_n})/M_0, M^*) = \text{ga-tp}(h_j(\bar{b}_{\bar{j}}) \hat{\cup} h_j(\bar{b}_{j_n})/M_0, M^*).$$

Recall that $h_i \upharpoonright M_0 = h_j \upharpoonright M_0 = id_{M_0}$. Thus $(\dagger\dagger)$, witnesses that

$$\text{ga-tp}(\bar{a}_{i_0}, \dots, \bar{a}_{i_n}/M_0, M_{i_n+1}) = \text{ga-tp}(\bar{b}_{j_0}, \dots, \bar{b}_{j_n}/M_0, M_{i_n+1}).$$

⊤

3. TAME ABSTRACT ELEMENTARY CLASSES

By Lindström's Theorem, one obvious feature of non-elementary abstract elementary classes is the absence of the compactness theorem. A method of combating this is to view types as equivalences classes of triples (Definition 1.7) instead of sets of formulas. While this notion of type has led to several profound results in the study of abstract elementary classes, a stronger equivalence relation (denoted E_μ) is eventually utilized in various partial solutions to Shelah's Categoricity Conjecture (see [Sh 394] and [Sh 576])?.

Shelah identified E_μ as an interesting relation in [Sh 394]. Here we recall the definition.

Definition 3.1. Triples (\bar{a}_1, M, N_1) and (\bar{a}_2, M, N_2) are said to be E_μ -related provided that for every $M' \prec_K M$ with $M' \in \mathcal{K}_{<\mu}$,

$$(\bar{a}_1, M', N_1)E(\bar{a}_2, M', N_2).$$

Notice that in first order logic, the finite character of consistency implies that two types are equal if and only if they are E_ω -related.

In Main Claim 9.3 of [Sh 394], Shelah ultimately proves that, under categoricity in some $\lambda > \text{Hanf}(\mathcal{K})$ and under the assumption that \mathcal{K} has the amalgamation property, for types over saturated models, E -equivalence is the same as E_μ equivalence for some $\mu < \text{Hanf}(\mathcal{K})$.

We now define a context for abstract elementary classes where consistency has small character.

Definition 3.2. Let χ be a cardinal number. We say the abstract elementary class \mathcal{K} with the amalgamation property is χ -tame provided that for types, E -equivalence is the same as the E_χ relation. In other words, for $M \in \mathcal{K}_{>\text{Hanf}(\mathcal{K})}$, $p \neq q \in \text{ga-S}(M)$ implies existence of $N \prec_K M$ of cardinality χ such that $p \upharpoonright N \neq q \upharpoonright N$.

\mathcal{K} is tame iff there exists such that \mathcal{K} is χ -tame for some $\chi < \text{Hanf}(\mathcal{K})$

Remark 3.3. We actually only use that E -equivalence is the same as E_χ -equivalence for types over limit models.

Notice that if \mathcal{K} is a finite diagram (i.e. we have amalgamation not only all models but also over subsets of models) then it is a tame AEC.

Example 3.4. There are tame AECs with amalgamation which are not finite diagrams. WILL BE ADDED

Example 3.5. For $\mu_1 < \mu_2 < \beth_{\omega_1}$, there is a class which is μ_2 -tame but not μ_1 -tame. WILL BE ADDED

4. THE ORDER PROPERTY

Remark 4.1. For the remainder of this section we will assume that \mathcal{K} is an abstract elementary class which satisfies the amalgamation property.

The order property, defined next, is an analog of the first order definition of order property using formulas. The order property for non-elementary classes was introduced by Shelah in [Sh 394].

Definition 4.2. \mathcal{K} is said to have the κ -order property provided that for every α , there exists $\langle \bar{d}_i \mid i < \alpha \rangle$ and where $\bar{d}_i \in {}^\kappa \mathfrak{C}$ such that if $i_0 < j_0 < \alpha$ and $i_1 < j_1 < \alpha$,

$$(*) \text{ then for no } f \in \text{Aut}(\mathfrak{C}) \text{ do we have } f(\bar{d}_{i_0} \hat{\bar{d}}_{j_0}) = \bar{d}_{j_1} \hat{\bar{d}}_{i_1}.$$

Remark 4.3 (Trivial monotonicity). Notice that for $\kappa_1 < \kappa_2$ if a class has the κ_1 -order property then it has the κ_2 -order property.

Claim 4.4 (Claim 4.6.3 of [Sh 394]). *We may replace the phrase every α in Definition 4.2 with every $\alpha < \beth_{(2^{\kappa+LS(\mathcal{K})})^+}$ and get an equivalent definition.*

Theorem 4.5 (Claim 4.8.2 of [Sh 394]). *If \mathcal{K} has the κ -order property and $\mu \geq \kappa$, then for some $M \in \mathcal{K}_\mu$ we have that $|\text{ga-S}^\kappa(M)/E_\kappa| \geq \mu^+$. Moreover, we can conclude that \mathcal{K} is not Galois stable in μ .*

Question 4.6. *Can we get a version of the stability spectrum theorem for tame stable classes?*

Theorem 4.7. *Let $\beta > 0$. Suppose that \mathcal{K} is a κ -tame abstract elementary class. If \mathcal{K} is β -stable in μ with $\beth_{(2^{\kappa+LS(\mathcal{K})})^+} \leq \mu$, then $\kappa_\chi^\beta(\mathcal{K}) < \beth_{(2^{\kappa+LS(\mathcal{K})})^+}$.*

Proof. Let $\chi := \beth_{(2^{\kappa+LS(\mathcal{K})})^+}$. Suppose that the conclusion of the theorem does not hold. Let $\langle M_i \in \mathcal{K}_\mu \mid i \leq \chi \rangle$ and $p \in \text{ga-S}^\beta(M_\chi)$ witness the failure. Namely, the following hold:

- (1) $\langle M_i \mid i \leq \chi \rangle$ is $\prec_{\mathcal{K}}$ -increasing and continuous,
- (2) for every $i < \chi$, M_{i+1} is a (μ, θ) -limit over M_i for some $\theta < \mu^+$ and
- (3) for every $i < \mu^+$, p μ -splits over M_i .

For every $i < \chi$ let f_i, N_i^1 and N_i^2 witness that p μ -splits over M_i . Namely,

$$\begin{aligned} M_i &\prec_{\mathcal{K}} N_i^1, N_i^2 \prec_{\mathcal{K}} M, \\ f_i : N_i^1 &\cong N_i^2 \text{ with } f_i \upharpoonright M_i = \text{id}_{M_i} \\ \text{and } f_i(p \upharpoonright N_i^1) &\neq p \upharpoonright N_i^2. \end{aligned}$$

By κ -tameness, there exist B_i and $A_i := f_i^{-1}(B_i)$ of size $< \kappa$ such that

$$f_i(p \upharpoonright A_i) \neq p \upharpoonright B_i.$$

By renumbering our chain of models, we may assume that

- (4) $A_i, B_i \subset M_{i+1}$.

Since M_{i+1} is a limit model over M_i , we can additionally conclude that

- (5) $\bar{c}_i \in M_{i+1}$ realizes $p \upharpoonright M_i$.

For each $i < \mu$, let $\bar{d}_i := A_i \hat{B}_i \hat{\bar{c}}_i$.

Claim 4.8. $\langle \bar{d}_i \mid i < \chi \rangle$ witnesses the κ -order property.

Proof. Suppose for the sake of contradiction that there exist $g \in \text{Aut}(\mathfrak{C})$, $i_0 < j_0 < \chi$ and $i_1 < j_1 < \chi$ such that

$$g(\bar{d}_{i_0} \hat{d}_{j_0}) = \bar{d}_{j_1} \hat{d}_{i_1}.$$

Notice that since $i_0 < j_0 < \alpha$ we have that $\bar{c}_{i_0} \in M_{j_0}$. So $f_{j_0}(\bar{c}_{i_0}) = \bar{c}_{i_0}$. Recall that $f_{j_0}(A_{j_0}) = B_{j_0}$. Thus, f_{j_0} witnesses that

$$(*) \text{ga-tp}(\bar{c}_{i_0} \hat{A}_{j_0} / \emptyset) = \text{ga-tp}(\bar{c}_{i_0} \hat{B}_{j_0} / \emptyset).$$

Applying g to $(*)$ we get

$$(**) \text{ga-tp}(\bar{c}_{j_1} \hat{A}_{i_1} / \emptyset) = \text{ga-tp}(\bar{c}_{j_1} \hat{B}_{i_1} / \emptyset).$$

Applying f_{i_1} to the RHS of $(**)$, we notice that

$$(\#) \text{ga-tp}(f_{i_1}(\bar{c}_{j_1}) \hat{B}_{i_1} / \emptyset) = \text{ga-tp}(\bar{c}_{j_1} \hat{B}_{i_1} / \emptyset).$$

Because $i_1 < j_1$, we have that \bar{c}_{j_1} realizes $p \upharpoonright M_{i_1}$. Thus, $(\#)$ implies

$$(\#\#) f_{i_1}(p \upharpoonright A_{i_1}) = p \upharpoonright B_{i_1},$$

which contradicts our choice of f_{i_1} , A_{i_1} and B_{i_1} . \dashv

By Claim 4.4 and Theorem 4.5, we have that \mathcal{K} is unstable in μ , contradicting our hypothesis. \dashv

5. MORLEY'S SEQUENCES

Hypothesis 5.1. For the rest of the paper we make the following assumption: \mathcal{K} is a tame abstract elementary class, has no maximal models and satisfies the amalgamation property.

Theorem 5.2. Suppose $\mu \geq \beth_{(2^{\text{Hanf}(\mathcal{K})})^+}$. Let $M \in \mathcal{K}_{>\mu}$, $A, I \subset M$ be given such that $|I| \geq \mu^+ > |A|$. If \mathcal{K} is Galois stable in μ , then there exists $J \subset I$ of cardinality μ^+ , Galois indiscernible over A . Moreover J can be chosen to be a Morley sequence over A .

Proof. Fix $\kappa := \text{cf}(\mu)$. Let $\{\bar{a}_i \mid i < \mu^+\} \subseteq I$ be given. Define $\langle M_i \in K_\mu \mid i < \mu^+ \rangle$ $\prec_{\mathcal{K}}$ -increasing and continuous satisfying

- (1) $A \subseteq |M_0|$
- (2) M_{i+1} is a (μ, κ) -limit over M_i
- (3) $\bar{a}_i \in M_{i+1}$

Let $p_i := \text{ga-tp}(\bar{a}_i / M_i, M_{i+1})$ for every $i < \mu^+$. Define $f : S_\kappa^{\mu^+} \rightarrow \mu^+$ by

$$f(i) := \min\{j < \mu^+ \mid p_i \text{ does not } \mu\text{-split over } M_j\}.$$

By Theorem 4.7, f is regressive. Thus by Fodor's Lemma, there are a stationary set $S \subseteq S_\kappa^{\mu^+}$ and $j_0 \in I$ such that for every $i \in S$,

$$(\dagger) \quad p_i \text{ does not } \mu\text{-split over } M_{j_0}.$$

By stability and the pigeon-hole principle there exists $p^* \in \text{ga-S}(M_{j_0})$ and $S^* \subseteq S$ of cardinality μ^+ such that for every $i \in S^*$, $p^* = p_i \upharpoonright M_{j_0}$. Enumerate and rename S^* . Let $M^* := M_1$. Again, by stability we can find $J \subset S^*$ of cardinality μ^+ such that for every $i \in S^*$, $p^{**} = p_i \upharpoonright M^*$. Enumerate and rename J .

Subclaim 5.3. *For $i < j \in J$, $p_i = p_j \upharpoonright M_i$.*

Proof. Let $0 < i < j \in J$ be given. Since M_{i+1} and M_{j+1} are (μ, κ) -limits over M_i , there exists an isomorphism $g : M_{j+1} \rightarrow M_{i+1}$ such that $g \upharpoonright M_i = id_{M_i}$. Let $\bar{b}_j := g(\bar{a}_j)$. Since the type p_j does not μ -split over M_{j_0} , g cannot witness the splitting. Therefore, it must be the case that $\text{ga-tp}(\bar{b}_j/M_i, M_{i+1}) = p_i \upharpoonright M_i$. Then, it suffices to show that $\text{ga-tp}(\bar{b}_j/M_i, M_{i+1}) = p_i$.

Since $p_i \upharpoonright M_0 = p_j \upharpoonright M_0$, we can find \prec_K -mappings witnessing the equality. Furthermore since M^* is universal over M_0 , we can find $h_l : M_{l+1} \rightarrow M^*$ such that $h_l \upharpoonright M_0 = id_{M_0}$ for $l = i, j$ and $h_i(\bar{a}_i) = h_j(\bar{b}_j)$.

We will use (\dagger) to derive several inequalities. Consider the following possible witness to splitting. Let $N_1 := M_i$ and $N_2 := h_i(M_i)$. Since p_i does not μ -split over M_0 , we have that $p_i \upharpoonright N_2 = h_i(p_i \upharpoonright N_1)$, rewritten as

$$(*) \quad \text{ga-tp}(\bar{a}_i/h_i(M_i), M_{i+1}) = \text{ga-tp}(h_i(\bar{a}_i)/h_i(M_i), M^*).$$

Similarly we can conclude that

$$(**) \quad \text{ga-tp}(\bar{b}_j/h_j(M_i), M_{i+1}) = \text{ga-tp}(h_j(\bar{b}_j)/h_j(M_i), M^*).$$

By choice of J , we know that

$$(***) \quad \text{ga-tp}(\bar{b}_j/M^*) = \text{ga-tp}(\bar{a}_i/M^*).$$

Now let us consider another potential witness of splitting. $N_1^* := h_i(M_i)$ and $N_2^* := h_j(M_i)$ with $H^* := h_j \circ h_i^{-1} : N_1^* \rightarrow N_2^*$. Since $p_j \upharpoonright M_i$ does not μ -split over M_0 , $p_j \upharpoonright N_2^* = H^*(p_j \upharpoonright N_1^*)$. Thus by $(**)$ we have

$$(\sharp) \quad H^*(p_j \upharpoonright N_1^*) = \text{ga-tp}(h_j(\bar{b}_j)/h_j(M_i), M^*).$$

Now let us translate $H^*(p_j \upharpoonright N_1^*)$. By monotonicity and $(***)$, we have that $p_j \upharpoonright N_1^* = \text{ga-tp}(\bar{b}_j/h_j(M_i), M_{i+1}) = \text{ga-tp}(\bar{a}_i/h_i(M_i), M_{i+1})$. We can then conclude by $(*)$ that $p_j \upharpoonright N_1^* = \text{ga-tp}(h_i(\bar{a}_i)/h_i(M_i), M_{i+1})$. Applying H^* to this equality yields

$$(\sharp\sharp) \quad H^*(p_j \upharpoonright N_1^*) = \text{ga-tp}(h_j(\bar{a}_i)/h_j(M_i), M^*).$$

By combining the equalities from (\sharp) and $(\sharp\sharp)$ and applying h_j^{-1} we get that

$$\text{ga-tp}(\bar{b}_j/M_i, M_{i+1}) = \text{ga-tp}(\bar{a}_i/M_i, M_{i+1}).$$

⊣

Notice that by Subclaim 5.3 and our choice of J , $\langle M_i \mid i \in J \rangle$ and $\langle \bar{a}_i \mid i \in J \rangle$ satisfy the conditions of Lemma 2.9. Applying Lemma 2.9, we get that $\langle \bar{a}_i \mid i \in J \rangle$ is a morley sequence over M_0 . In particular, since $A \subset M_0$, we have that $\langle \bar{a}_i \mid i \in J \rangle$ is a Morley sequence over A .

⊣

6. BOUNDED MULTIPLICITY

Definition 6.1. Suppose $M \prec_{\mathcal{K}} N$ and let $\bar{a}, \bar{b} \in |N|$.

$\bar{a} \sim_M \bar{b}$ iff there are $n < \omega$ and there exists a sequence $\langle \mathbf{J}_k \mid k \leq 2n \rangle$ satisfying the following conditions:

- (1) every \mathbf{J}_k is an infinite sequence, Galois indiscernible over M ;
- (2) $\bar{a} \in \mathbf{J}_0$ and $\bar{b} \in \mathbf{J}_{2n}$;
- (3) For every $k < n$ the sequence $\mathbf{J}_{2k} \hat{\mathbf{J}}_{2k+1}$ is Galois indiscernible over M ;
- (4) For every $k < n$ the sequence $\mathbf{J}_{2k+2} \hat{\mathbf{J}}_{2k+1}$ is Galois indiscernible over M .

Theorem 6.2. Let \mathcal{K} be as in Hypothesis 5.1. Suppose $\mu \geq \beth_{(2^{\text{Hanf}(\mathcal{K})})^+}$. Let $M \in \mathcal{K}_{>\mu}$, $N \prec_{\mathcal{K}} M$. If \mathcal{K} is stable in μ then

$$|\{p \in \text{ga-S}(M) : p \text{ does not split over } N\}| \leq 2^\mu.$$

Corollary 6.3 (partial stability spectrum).

7. DIVIDING

In this section we define dividing and derive some of its properties.

Definition 7.1. Let $p \in \text{ga-S}(M)$ and $N \prec_{\mathcal{K}} M$. We say that p divides over N iff there are $\bar{a} \in M$ non-algebraic over N and a Morley sequence, $\{\bar{a}_n \mid n < \omega\}$ for the ga-tp($\bar{a}/N, M$) such that for every collection $\{f_n \in \text{Aut}_M \mathfrak{C} \mid n < \omega\}$ with $f_n(\bar{a}) = \bar{a}_n$ we have

$$\{f_n(p) \mid n < \omega\} \text{ is inconsistent.}$$

Theorem 7.2 (Existence). Suppose that \mathcal{K} is stable in μ and κ -tame for some $\kappa < \mu$. For every $p \in \text{ga-S}(M)$ with $M \in \mathcal{K}_{\geq \mu}$ there exists $N \prec_{\mathcal{K}} M$ of cardinality μ such that p does not divide over N .

Proof. Suppose that p and M form a counter-example. WLOG we may assume that $M = \mathfrak{C}$. Through the proof of Claim 3.3.1 of [Sh 394], in order to contradict stability in μ , it suffices to find N_i, N_i^1, N_i^2, h_i for $i < \mu$ satisfying

- (1) $\langle N_i \in \mathcal{K}_\mu \mid i \leq \mu \rangle$ is a $\prec_{\mathcal{K}}$ -increasing and continuous sequence of models;
- (2) $N_i \prec_{\mathcal{K}} N_i^l \prec_{\mathcal{K}} N_{i+1}$ for $i < \mu$ and $l = 1, 2$;
- (3) for $i < \mu$, $h_i : N_i^1 \cong N_i^2$ and $h_i \upharpoonright N_i = \text{id}_{N_i}$ and
- (4) $p \upharpoonright N_i^2 \neq h_i(p \upharpoonright N_i^1)$.

Suppose that N_i has been defined. Since p divides over every substructure of cardinality μ , we may find \bar{a} , $\{\bar{a}_n \mid n < \omega\}$ and $\{f_n \mid n < \omega\}$ witnessing that p divides over N_i . Namely, we have that $\{f_n(p) \mid n < \omega\}$ is inconsistent. Let $n < \omega$ be such that $f_0(p) \neq f_n(p)$. Then $p \neq f_0^{-1} \circ f_n(p)$. By κ -tameness, we can find $N^* \prec_{\kappa} \mathfrak{C}$ of cardinality μ containing N such that $p \upharpoonright N^* \neq (f_0^{-1} \circ f_n(p)) \upharpoonright N^*$. WLOG $f_0^{-1} \circ f_n \in \text{Aut}_N N^*$.

Let $h_i := f_0^{-1} \circ f_n$, $N_i^1 := N^*$ and $N_i^2 := N^*$. Choose $N_{i+1} \prec_{\kappa} \mathfrak{C}$ to be an extension of N^* of cardinality μ . \dashv

Next step:

- (1) *extension?*
- (2) *symmetry?*
- (3) *uniqueness (over very saturated models)?*

REFERENCES

- [AlGr] Michael Albert and Rami Grossberg. Rich models. *Journal of Symbolic Logic* **55**(1990) 1292–1298.
- [CK] C.C. Chang and H.J. Keisler. Model Theory. North-Holland, Amsterdam, 1973.
- [DS] K.J. Devlin and S. Shelah. A weak version of \diamond which follows from $2^{\aleph_0} < 2^{\aleph_1}$. *Israel J. Math.*, **29**, 239–247, 1978.
- [Fr] R. Fraïssé. Sur quelques classifications des systèmes de relations, *Publ. Sci. Univ. Alger. Sér A* **1** (1954), 35–182.
- [Gr1] R. Grossberg. **A Course in Model Theory**. Book in Preparation.
- [Gr2] R. Grossberg. Classification Theory for Nonelementary Classes. Preprint. www.math.cmu.edu/~rami/Bilgi.pdf
- [GrLe] The local order property in non elementary classes, *Arch Math Logic* **39** (2000) 6, 439–457.
- [Har] Victor Harnik. On existence of saturated models of stable theories. *Proc. of AMS*, **52**, 361–367, 1973.
- [HaSh] B. Hart and S. Shelah. Categoricity over P for first order T or categoricity for $\varphi \in L_{\omega_1, \omega}$ can stop at \aleph_k while holding for $\aleph_0, \dots, \aleph_{k-1}$. *Israel J. Math.*, **70**, 219–235, 1990.
- [Je] T. Jech. **Set Theory** Academic Press, New York, 1978.
- [Jo1] Bjarni Jónsson. Universal relational systems, *Math. Scand.* **4** (1956) 193–208.
- [Jo2] Bjarni Jónsson. Homogeneous universal systems. *Math. Scand.*, **8**, 1960, 137–142.
- [KoSh] O. Kolman and S. Shelah. Categoricity of Theories in $L_{\kappa, \omega}$ when κ is a measurable cardinal. Part I. *Fundamenta Mathematicae*, **151**, 209–240, 1996.
- [Lo] J. Los. On the categoricity in power of elementary deductive systems and related problems. *Colloq. Math.*, **3**, 58–62, 1954.
- [MaSh] M. Makkai and S. Shelah. Categoricity of theories $L_{\kappa, \omega}$ with κ a compact cardinal. *Annals of Pure and Applied Logic*, **47**, 41–97, 1990.
- [Mo] M.D. Morley. Categoricity in power. *Trans. Amer. Math. Soc.*, **114**, 514–538, 1965.
- [Sh 48] S. Shelah. Categoricity in \aleph_1 of sentences in $L_{\omega_1, \omega}(Q)$. *Israel J. Math.*, 1975.
- [Sh 70c] S. Shelah. Solution of Los conjecture for uncountable languages. *Notices A.M.S.*, **17**, 968, Oct 1970.
- [Shc] S. Shelah. **Classification Theory and the Number of Non-isomorphic Models** 2nd edition. North Holland Amsterdam, 1990.
- [Sh 87a] S. Shelah. Classification theory for nonelementary classes, I. The number of uncountable models of $\psi \in L_{\omega_1, \omega}$. Part A. *Israel J. Math.*, 1983.
- [Sh 87b] S. Shelah. Classification theory for nonelementary classes, I. The number of uncountable models of $\psi \in L_{\omega_1, \omega}$. Part B. *Israel J. Math.*, 1983.

- [Sh 88] S. Shelah. Classification of nonelementary classes. II. Abstract elementary classes. In *Classification Theory of Lecture Notes in Mathematics*, **1292**, pages 419–497. Springer-Berlin, 1987.
- [Sh 300] S. Shelah. Universal Classes. In *Classification Theory of Lecture Notes in Mathematics*, **1292**, 264–418. Springer-Berlin, 1987.
- [Sh 394] S. Shelah. Categoricity of abstract classes with amalgamation. *Annals of Pure and Applied Logic*, **98**(1-3), pages 141–187, 1999.
- [Sh 472] S. Shelah. Categoricity of Theories in $L_{\kappa^*, \omega}$ when κ^* is a measurable cardinal. Part II. *Fundamenta Mathematica*.
- [Sh 576] S. Shelah. Categoricity of an abstract elementary class in two successive cardinals. *Israel J. of Math.*.
- [Sh 600] S. Shelah. Categoricity in abstract elementary classes: going up inductive step. In preparation. 82 pages.
- [Sh 666] S. Shelah. Rutgers Seminar on what I do not understand (and have something to say), set theory. *Bull of JSL*, 2000.
- [Sh 702] S. Shelah. On what I do not understand (and have something to say), model theory. *Math Japonica*, **51**, pages 329–377, 2000.
- [ShVi 635] S. Shelah and A. Villaveces. Categoricity in abstract elementary classes with no maximal models. *Annals of Pure and Applied Logic*, **97**(1-3), pages 1-25, 1999.
- [Va] M. VanDieren. A substitute for saturation in abstract elementary classes. In preparation.

E-mail address, Rami Grossberg: `rami@andrew.cmu.edu`
E-mail address, Monica VanDieren: `monicav@andrew.cmu.edu`

DEPARTMENT OF MATHEMATICAL SCIENCES, CARNEGIE MELLON UNIVERSITY, PITTSBURGH, PA 15213