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We prove:

Main Theorem: Let K be an abstract elementary class satisfying the joint embedding and the amalgamation
properties with no maximal models of cardinality p. Let i be a cardinal above the the Lowenheim-Skolem
number of the class. If KC is pu-Galois-stable, has no p-Vaughtian Pairs, does not have long splitting chains, and
satisfies locality of splitting, then any two (u, o¢)-limits over M, for £ € {1,2}, are isomorphic over M.

This theorem extends results of Shelah from [Sh 394], [Sh 576], [Sh 600], Kolman and Shelah in [KoSh] and
Shelah and Villaveces from [ShVi]. A preliminary version of our uniqueness theorem, which was circulated in
2006, was used by Grossberg and VanDieren to prove a case of Shelah’s categoricity conjecture for tame abstract
elementary classes in [GrVa2]. Preprints of this paper have also influenced the Ph.D. theses of Drueck [Dr]
and Zambrano [Za]. This paper also serves the expository role of presenting together the arguments in [Val]
and [Va2] in a more natural context in which the amalgamation property holds and this work provides an
approach to the uniqueness of limit models that does not rely on Ehrenfeucht-Mostowski constructions.
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1 Introduction

We work in the general context of abstract elementary classes (AECs) with the amalgamation property (AP) and
Galois-stability at one fixed cardinality ;2 above the Lowenheim-Skolem number. We assume there is a model
of cardinality . We prove the uniqueness of limit models under a unidimensionality-like assumption of no
w-Vaughtian pairs and superstability-like assumptions of the u-splitting dependence relation.

The basic model theory of abstract elementary classes (definitions, the role of the AP and the JEP, the existence
of a “monster model” €, Galois types and the foundational development of stability theory in that context) can
be checked in the monograph [Gr2] and the books [Ba], [Sh i]. For the sake of completeness, we include some
of the notation and fundamentals of this context here. We fix an abstract elementary class K with ordering <.
For a cardinal i, we use the notation C,, for the class of models of K of cardinality p.

In practice, abstract elementary classes were not as approachable as one would hope and much work in non-
elementary model theory takes place in contexts which additionally satisfy the amalgamation property so that a
monster model can be utilized. The following fact can be traced back to Jénsson’s 1960 paper [Jo]; the present
formulation is from [Grl]:

Theorem 1.1 Ler (K, <x) be an AEC with no maximal models and suppose that there is A > k > LS(K)
such that K has the AP and the JEP. Suppose M € K. If A\<" = X\ > ||M|| then there exists N = M of
cardinality \ which is k-model-homogeneous.

Thus if an AEC K has AP and JEP, then like in first-order stability theory we may assume that there is a large
model-homogeneous € € K that acts like a monster model. We will refer to the model € as the monster model.

* The second author was partially sponsored for this work by grant DMS 0801313 of the National Science Foundation. Corresponding
author E-mail: vandieren@rmu.edu

** The third author was partially sponsored for this work by the research project Métodos de Estabilidad en Clases No estables of the
Departamento Administrativo de Ciencia, Tecnologia e Innovacion, Colciencias.
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2 R. Grossberg, M. VanDieren, and A. Villaveces: Uniqueness of Limit Models under Amalgamation

All models considered will be of size less than ||€||, and we will find realizations of types we construct inside
this monster model. From now on, we assume that the monster model € has been fixed. We use the notation
Aut s (€) to denote the set of automorphisms of € fixing M pointwise.

The notion of type as a set of formulas, even when the class is described in some infinitary logic, does not
behave as nicely as in first-order logic. A replacement was introduced by Shelah in [Sh 300]. In order to avoid
confusion between this and the classical, syntactic notion, we will use the terminology in [Gr2] and call this
alternative notion the Galois type.

Since in this paper we deal only with AECs with the AP property, the notion of Galois type has a simpler
definition than in the general case.

Definition 1.2 (Galois types) Suppose that /C has the AP.

(1) Given M € K consider the action of Aut,;(€) on €, for an element a € |€] let ga-tp(a/M) denote the
Galois type of a over M which is defined as the orbit of ¢ under Aut /().

(2) For M € K, we let

ga-S(M) = { ga-tp(a/M) : a € |€|}.

(3) K is A\-Galois-stable iff

NeKy = |ga-S(N)| <\

(4) Givenp € ga-S(M) and N € K such that N = M, we say that p is realized by a € N iff ga-tp(a/M) =
p. Just as in the first-order case we will write a |= p when a is a realization of p.

(5) For h € Aut(€) and p = ga-tp(a/M), then the notation h(p) refers to ga-tp(h(a)/h(M)).

For a more detailed discussion of Galois types, their extensions, restrictions, equivalent forms and generaliza-
tions, the reader may consult [Gr2].

The next notion to consider is that of a saturated model. In homogeneous abstract elementary classes (see,
for example, [GrLe]) where one may study classes of models omitting given sets of types, the existence of a
saturated model presents some problems. One solution is to consider models which realize as many types as
possible. Such models are called Galois-saturated. More formally, a model M of size x > LS(K) is Galois-
saturated if it realizes all Galois types over submodels N <y M of cardinality < x. When stability theory has
been ported to contexts more general than first order logic, many situations have appeared when Galois-saturated
models do not fulfill the main roles that saturated models play in elementary classes.

The main concept of this paper is Shelah’s limit model which (among other things) serves as a substitute for the
role of saturation in stability theory (see [Gr2], [ShVi], [Sh i], etc.) or at least serves as a stepping stone to prove
the properties of Galois-saturated models. For example, under the assumption of categoricity with reasonable
stability conditions, the existence of Galois-saturated models in singular cardinals is not straightforward and is
proved by first considering limit models [Sh 394]. In some contexts limit models have been successfully used as
“tools” towards finding Galois-saturated models ( [KoSh] and [Sh 472]). Furthermore, the notion of limit model
refines the notion of saturation; more detailed information is given on the particular way one model is embedded
inside another.

Limit models appear in [KoSh] and in [Sh 576] under the name (u, «)-saturated models. In [Sh 600], Shelah
calls this notion brimmed. Later papers, beginning with Shelah-Villaveces [ShVi], adopt the name limit models.
We use the more recent terminology. Before defining limit models, we must introduce their building blocks,
universal extensions.

Definition 1.3 (1) Let x be a cardinal > LS(K). We say M* >~ N is s-universal over N iff for every
N’ € K, with N <) N’ there exists a K-embedding g : N’ = M* such that the following diagram

commutes:
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(2) We say M* is universal over N or M* is a universal extension of N iff M* is || N ||-universal over N.

Definition 1.4 [Limit models] Consider ¢ > LS(K) and o < g a limit ordinal and N € K,,. We say that
M is (u, o)-limit model over N iff there exists an increasing and continuous chain (M; € KC,, | i < «) such that
My=N; M = UKQ M;; M; is a proper K-submodel of M;1; and M, is universal over M, for all i < «.

From Theorem 1.5 we get that for v < u™ there always exists a (p, )-limit model provided K has the AP,
has no maximal models and is p-Galois-stable. This theorem was stated without proof as Claim 1.16 in [Sh 600],
for a proof see [GrVal] or [Grl].

Theorem 1.5 (Existence) Let K be an AEC without maximal models and suppose it is Galois-stable in 1. If K
has the amalgamation property then for every N € K, there exists M* Zx N, universal over N of cardinality
L

The following theorem partially clarifies the analogy with saturated models:

Theorem 1.6 Let T be a stable, complete, first-order theory and let K be the elementary class of models of T
with the usual notion of elementary submodel. If M is a (u, 6)-limit model for 6 a limit ordinal with cf(6) > x(T),
then M is saturated.

Proof. Use an argument similar to the proof of [Sh e, Theorem III 3.11]. -

Thus in elementary classes superstability implies that limit models are saturated, in particular are unique. This
raises the following natural question for AECs about the uniqueness of limit models:

Let IC be an AEC, p > LS(K), M € K, and 01, 0 limit ordinals < w™, and suppose that for £ = 1,2,
Ny is a (p, 0¢)-limit model over M. What “reasonable” assumptions on /C will imply that there exists
f : N1 %M N2‘7

This question is non-trivial only for the case where cf(o1) # cf(o2). Using a back and forth argument one
can show that when cf (o) = cf(02), we get uniqueness without any assumptions on K. More precisely:

Theorem 1.7 Let p > LS(K) and o < p*. If My and My are (u,o)-limits over M, then there exists
an isomorphism g : My — Ms such that g | M = idy;. Moreover if My is a (u, o)-limit over My, if Ny is a
(v, 0)-limit over Ny and if g : Mo = Ny, then there exists a KC-embedding, §, extending g such that § : My = Nj.

Theorem 1.8 Let 1 be a cardinal and o a limit ordinal with o < p™. If M is a (j1, o)-limit model, then M is
a (p, ct(o))-limit model.

The main result of this paper provides an answer to the question of uniqueness of limit models:

Theorem 1.9 (Main Theorem) Let K be an AEC and > LS(K). Suppose K satisfies the AP and JEP
and has no maximal models of cardinality p. If KC is p-Galois-stable, does not have long splitting chains, has
no p-Vaughtian pairs and satisfies locality of splitting', then any two (, o¢)-limits over M, for ¢ € {1,2}, are
isomorphic over M.

Remark 1.10 In a preprint of this paper, the assumption of disjoint amalgamation was made in Theorem
1.9. After reading a preprint of this paper, Fred Drueck in his Ph.D. thesis [Dr] pointed out that the disjoint
amalgamation property is not necessary to carry out the arguments here. In particular, it is not needed in Theorem
4.6.

The last section of this paper (see pages 14 and ff.) describes different approaches to the question of the
uniqueness of limit models.

We thank John Baldwin, Tapani Hyttinen, Pedro Zambrano, and the referee for helping to clarify the presen-
tation.

I See Assumption 2.8 for the precise description of long splitting chains and locality.
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4 R. Grossberg, M. VanDieren, and A. Villaveces: Uniqueness of Limit Models under Amalgamation

2 The Setting

In what follows, K is assumed to be an AEC, and i is a cardinal > LS(K). In this section we summarize all of
the assumptions that will be made on the class K, and in the subsequent sections we introduce two of the main
components of the proof of the uniqueness of limit models: strong types and towers.

We will prove the uniqueness of limit models in p-Galois stable AECs that are essentially unidimensional and
are equipped with a moderately well-behaved dependence relation. We will use p-splitting as the dependence
relation, but any dependence relation which is local and has existence, uniqueness and extension properties
suffices.

Definition 2.1 A type p € ga-S(M) p-splits over N € K<, if and only if N is a <x-submodel of M and
there exist N1, No € K, and a KC-mapping h such that N <x N; <x M forl = 1,2 and h : Ny — Ny with
hIN=idyandp | Ny #h(p | V).

The existence property for non-pu-splitting types follows from Galois stability in p:

Theorem 2.2 (Existence - Claim 3.3 of [Sh 394]) Assume KC has AP and is Galois-stable in n. For every
M € K>, and p € ga-S(M), there exists N € K,, such that p does not p-split over N.

The uniqueness and extension properties of non-u-splitting types hold for types over limit models:

Theorem 2.3 (Uniqueness - Theorem 1.4.15 of [Val]) Let N <x M <x M’ be models in K,, such that M’
is universal over M and M is universal over N. If p € ga-S(M) does not p-split over N, then there is a unique
p' € ga-S(M") such that p' extends p and p’ does not p-split over N.

A variation of this fact is later used in an induction construction in the proof of Theorem 5.8. We state it
explicitly here:

Theorem 2.4 (Theorem 1.4.10 of [Val]) Let M, N, M* be models in K,,. Suppose that M is universal over
N and that M* is an extension of M. If a type p = ga-tp(a/M) does not p-split over N then there exists an
automorphism g of € fixing M such that ga-tp(g(a)/M*) does not u-split over N and ga-tp(g(a)/M) = p.

The other concepts that show up in the assumptions of the main theorem of this paper are minimal types [Sh
394] and p-Vaughtian Pairs [GrVa2].

Definition 2.5 (1) For M a model of cardinality u, p € ga-S(M) is minimal if it is non-algebraic and for
each N extending M of cardinality p if there are non-algebraic extensions p; and ps of p to N, then p; = ps.

(2) For M a limit model of cardinality x4 a u-Vaughtian Pair is a pair of limit models M’ and N’ of cardinality
e so that there exist M < M’ <x N’ and p € ga-S(M) a minimal type for which N’/ contains no new
realizations of p, in other words, p(M') = p(N').

Theorem 2.6 (Existence of minimal types - Fact (x)5 in Theorem 9.8 of [Sh 394]) Ler u > LS(K). If K is
Galois-stable in i, then for every M € KC,, and every q € ga-S(M), there are N € K,, and p € ga-S(N) such
that M <x N, q < p and p is minimal.

Theorem 2.7 (Claim (x)g of Theorem 9.8 of [Sh 394]) If K is categorical in some successor cardinal AT >
LS(K)*, then for every p satisfying LS(K) < p < )\, there are no ji-Vaughtian Pairs.

It is worth mentioning that our “no p-Vaughtian pairs” assumption is much weaker in general than assuming
categoricity (as in earlier version of the proof): even in First Order, theories such as the theory of Real Closed
Fields are quite far from being categorical but also have no Vaughtian pairs. Of course, under w-stability, no
Vaughtian pairs and categoricity are equivalent (in First Order). But our stability assumptions are of “superstable”
nature - under these, categoricity is quite stronger than no p-Vaughtian pairs.

Here are the assumptions of the paper:

Assumption 2.8 C is an AEC with the AP and JEP with no maximal models of cardinality y, and /C satisfies
the following properties:

(1) All models are submodels of a fixed monster model €.
(2) K is stable in p.
(3) There are no p-Vaughtian Pairs.
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(4) p-splitting in KC satisfies the following locality (sometimes called continuity) and no long splitting chains
properties.
For all infinite «, for every sequence (M; | i < «) of limit models of cardinality p with M, universal
over M; and for every p € ga-S(M,, ), where M, = |J,,, M;, we have that

(a) If for every i < a, the type p [ M; does not p-split over My, then p does not pu-split over M.

(b) There exists ¢ < « such that p does not pu-split over M.

In the context of an AEC with the full amalgamation property and JEP, categoricity in a cardinal A > y implies
all parts of Assumption 2.8. For a proof of Assumption 2.8.2 from categoricity, see Claim 1.7 of [Sh 394] or [Ba].
Claim (x)s of Theorem 9.8 of [Sh 394] is Assumption 2.8.3 when A is a successor cardinal. The observation
that Assumption 2.8(4a) follows from categoricity is a consequence of Observation 6.2 and Main Lemma 9.4
of [Sh 394]. Lemma 6.3 of [Sh 394] is the statement that assumption 2.8(4b) follows from categoricity when the
cofinality of the categoricity cardinal is larger than .

The amalgamation and JEP hold in homogeneous classes (see [Sh 3] or [Po]), in excellent classes (see [Sh
87b]) and are axioms in the definition of finitary classes (see [HyKe]). They also hold for cats consisting of
existentially closed models of positive Robinson theories ( [Za]). In each of these contexts dependence relations
satisfying Assumption 2.8 have been developed. Finally, the locality and existence of non-u-splitting extensions
are akin to consequences of superstability in first order logic.

Theorem 2.9 (“No long splitting chains” follows from stability in FO) Suppose that T is first order complete.
If T is stable then Assumption 2.8(4b) holds for o such that cf(o)) > |T|T.

Proof. Let (M;|i < «) be an increasing sequence of saturated models. Let M, := J;_, M;. Suppose
p € S(M,) is such that Vi < «, p u-splits over M;. Because for every i < «, we know there exists i < j(i) < «
such that p [ M ;) splits over M;, we may assume that for all i < «, p [ M; 1 splits over M;. Let ¢; (Z,7) be
a formula witnessing the splitting of p | M; 1 over M;. As cf(a) > |T'|T, there exists S C « infinite such that

Without loss of generality, suppose that (M, |n < w) is an increasing sequence of saturated models, and
p € S,(M,,) is such that a;, b; € M, witness that p | M1 splits over M;. Then p(x1,%1, 21, T2, Ja2, Z2) and
{d;]i < w} witness that p has the order property, where d; = @;’b;"c;, ¢; € M, and

ci = p I {an, brlk < i} U {dplk < i}.
Now use [Grl, Lemma VII, 2.12]. 4

Note that Assumption 2.8.3 is used only to show that reduced towers are continuous (see Theorem 5.8). It is
conjectured that this assumption may be eliminated or replaced with a weaker assumption related to superstability
in first order logic.

3 Strong Types

Under the assumption of j-stability, we can define strong types as in [ShVi]. These strong types will allow us to
achieve a better control of extensions of towers of models than what we obtain using just Galois types.

Definition 3.1 (Definition 3.2.1 of [ShVi]) For M a (u, #)-limit model, let

N <x M;

N is a (u, 0)-limit model;
St(M) =< (p,N) | M isuniversal over IV,

p € ga-S(M) is non-algebraic

and p does not p-split over V.

Elements of &t(M) are called strong types. Two strong types (p1, N1) € Gt(M;) and (p2, N2) € Gt(My) are
parallel iff for every M’ of cardinality p extending M; and Ms there exists ¢ € ga-S(M’) such that ¢ extends
both p; and p, and ¢ does not p-split over /N7 nor over N,.
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6 R. Grossberg, M. VanDieren, and A. Villaveces: Uniqueness of Limit Models under Amalgamation

Remark 3.2 Under the assumption of the existence of universal extensions, it is equivalent to say two strong
types (p1, N1) € St(My) and (pa, No) € St(My) are parallel iff for some M’ of cardinality x4 universal over
some common extension of M; and Ms there exists ¢ € ga-S(M') such that g extends both p; and py and ¢ does
not u-split over N; and No.

Lemma 3.3 (Monotonicity of parallel types) Suppose My, My € K,, and My <x My and (p, N) € St(My).
If My is universal over N, then we have (p | My, N) is parallel to (p, N).

Proof. Straightforward using the uniqueness of non-p-splitting extensions. 4

Notation 3.4 Let M, M’ € IC,, and suppose that M <, M’. For (p, N) € &t(M'), if M is universal over
N, we define the restriction (p, N) | M € &t(M) tobe (p [ M, N). If we write (p, N) | M, we mean that
p does not p-split over N and M is universal over N. We denote by ~ the parallelism relation between strong
types in &t(M), for fixed M.

Notice that ~ is an equivalence relation on Gt(M ) (see [Val]). Stability in x implies that there are few strong
types over any model of cardinality s

Theorem 3.5 [Claim 3.2.2 (3) of [ShVi]] If K is Galois-stable in i, then for any M € K, | St(M)/ ~ | < p.

The referee has pointed out that several of our uses of parallel types fit into the more simplified situation
described in the remark below. In particular, parallel types can be replaced by equal restrictions in Theorem 4.6.

Remark 3.6 Let (p1, N1) and (p2, N2) be parallel strong types with p; € ga-S(M;). If My <, Mo, then by
uniqueness of non-splitting extensions p; = py [ M.

However, we cannot replace parallelism with equality of types everywhere. In particular parallelism shows its
necessity in the proof that the union of a <-chain of relatively full towers in K:Z7a is relatively full. The strength
of parallel types can be seen in the following situation which arises in the proof of Claim 5.11. Suppose that
M <y M’ and that there are types p and p’ over M and M’, respectively. Suppose p does not p-split over N,
p’ = ga-tp(a’/M’) does not p-split over both N and N’, and p’ | M = p. Without having any understanding
of the relationship between N and N’ (and this is the case in the definition of towers: the N;’s of Definition 4.1
are bases for non-splitting but are not in principle related to one another) or the stronger condition that the strong
types are parallel, it is not possible to predict when M * extending M will have the property that ga-tp(a’/M*)
does not p-split over N. Under the assumption that (p, N) and (p, N’) are parallel, we only need to be able
to extend M* to a model M** for which ga-tp(a’/M™**) does not p-split over N’ to be able to conclude that
ga-tp(a’/M*) also does not u-split over N.

4 Towers

We use the technology of towers in our proof. Towers have been used before by Shelah and Villaveces [ShVi] and
VanDieren [Val, Va2, Va3]. Towers enable us to control in multidimensional arrays notions of “relative saturation”
apt to our aim: obtaining limits that can be approached through chains of two different cofinalities requires
controlling the way in which we gradually “saturate” the models with realizations of Galois types. Properties of
towers are “filtered” analogues of properties of Galois types (extension and other properties of independence).

To each (u, 0)-limit model M we can naturally associate a <c-increasing chain M = (M; € K,, | i < 0)
witnessing that M is a (i, 6)-limit model (that is, Ul <9 M; = M and M; is universal over M;). Furthermore,
by Theorems 1.7 and 1.8 we can require that this chain satisfies additional requirements such as M, is a limit
model over M;. In this section we will be considering a related chain of models which we will refer to as a tower
(see Definition 4.1). But first, we will describe how towers will be used to prove the main theorem of this paper.

To prove the uniqueness of limit models we will construct a model which is simultaneously a (1, 67)-limit
model over some fixed model M and a (u, 02)-limit model over M. Notice that, by Theorem 1.7, it is enough to
construct a model M* that is simultaneously a (1, w)-limit model and a (1, 8)-limit model for arbitrary ordinal
6 < p*. By Theorem 1.8 we may assume that 6 is a limit ordinal < p* such that @ = . - 6.

So, we actually construct an array of models with w + 1 rows and the number of columns of this array will
have the same cofinality as 6 + 1. See the big picture of the construction on page 13. We intend to carry out
the construction down and to the right in that picture. In the array, the bottom right hand corner (M *) will be a
(14, w)-limit model witnessed by a chain of models as described in the first paragraph of this section. This chain
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will appear in the last column of the array. We will see that M* is a (u, #)-limit model by examining the last
(the wth) row of the array. This last row will be an < -increasing sequence of models, M* whose length will
have the same cofinality as 6. However we will not be able to guarantee that M, , is universal over M in this
last row. Thus we need another method to conclude that M* is a (u, #)-limit model. This involves attaching
more information to our sequence M *. We call this accessorized sequence of models a tower (see Definition 4.1
below). Each row in our construction of the array of models will be such a tower.

Under the assumption of Galois-superstability, given any sequence (a; | i < 6) of elements with a; €
M; 11\ M;, we can identify some N; <y M; such that ga-tp(a;/M;) does not p-split over N;. Furthermore, by
Assumption 2.8, we may choose this /V; such that M; is a limit model over N;. We abbreviate this situation by
the triple (M, a, N).

Definition 4.1 (Towers) Let (I, <) be a well ordering of cardinality < p*. For cleaner notation, we will
identify I with 6, its order-type, and we will denote the successor of ¢ in the ordering I by ¢ + 1 when it is clear.
Then, we define a tower to be a triple (M, a, N) where M = (M; | i < 6) is a <-increasing sequence of limit
models of cardinality ;@ = (a; | i +1 < @) and N = (N; | i + 1 < 0)* satisfy a; € M; 1\ M;; ga-tp(a;/M;)
does not p-split over N;; and M; is a (u, o)-limit model over IV;.

Notation 4.2 We denote by K, ; the set of towers of the form (M, a, N) where the sequences M, @ and N
are indexed by I. Occasionally, I will be an ordinal 8 with the usual ordering, and we write ICZ, o for this set of
towers. At times, we will be considering towers based on different well orderings I and I’ simultaneously. In
these contexts if ¢ € I (") I’, the notation 7 + 1 is not necessarily well-defined so we will use the notation succy(4)
for the successor of 7 in the ordering I. Finally when I is a sub-order of I’ for any (M,a, N) € K}, ;, we write
(M,a, N) | I for the tower in K}, ; given by the subsequences (M; | i € I), (N; | i4+1 € I)and (a; | i+1 € I).

In addition to having control over the last row of the array, we also need to be able to guarantee that the last
column of the tower witnesses that M* is a (1, w)-limit model. This will be done by prescribing the following
ordering on rows of the array:

Definition 4.3 For towers (M,a,N) € K}, ; and (M',a’,N') € K}, ;, with I C I, we write (M,a, N) <
(M';a’, N') if and only if for every i € I, a; = a}, N; = N/ and M is a universal extension of M;.

Remark 4.4 The ordering < on towers is identical to the ordering <j; defined in [ShVi]. The superscript was
used by Shelah and Villaveces to distinguish this ordering from others. We only use one ordering on towers, so
we omit the superscripts and subscripts here.

Once we have established an ordering on towers, we can define a specific tower which will be called a union

of an increasing sequence of towers. Suppose that ((M,a, N)? € K. I, | v < B) is an increasing sequence of

towers such that the index set I, of (M, a, N)? is a sub-ordering of the index set I+ for (M, a, N )?" whenever
v <7 LetIs :=J,_z 1. Then denote by (M, a, N)s e K,..1, the “union” of the sequence of towers where
5 _ min{yliel,}

a, = a; 5

NB _ Nimin{’y\ief,y} and

K2

MP = (M[ |ieIg)with M = | | M.
y<Bicly

By Assumption 2.8.4a, (M,a, N)? is indeed a tower. In particular, this assumption guarantees that for i € I 8»
ga-tp(a; /Mf ) does not pu-split over N;.

Notice that we do not assume an individual tower to be continuous. Nor do we assume that inside of a
tower M, is universal over M;. If one considers the approach of defining an array of models row by row,
then generally (even in the first order case) even if all rows are continuous and satisfy the universality property
mentioned in this paragraph, it is not necessarily true that the union of these rows will be a tower in which every
model is universal over its predecessors.

2 Since a; ¢ M, if the sequence M has order type o + 1 (with My, the final model in the sequence), it does not make sense to define
aq which would lie outside of the top model in the tower. Therefore in the situation that the sequence M has order type v + 1, the sequences
a and N will have order type a.
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8 R. Grossberg, M. VanDieren, and A. Villaveces: Uniqueness of Limit Models under Amalgamation

For a tower (M ,a, N ), it was shown in [ShVi], that even if M, is not universal over M;, one can conclude
that J, o M; is a (u,6)-limit model provided that all types over each of the M; are realized by a sufficient
number of a;s in the tower. Unfortunately constructing such a tower meeting these along with all of our other
requirements is beyond reach. However, in [Val], VanDieren showed that slightly less was needed (see Definition
4.5). In [Val], the amalgamation property is not assumed resulting in noise that can be avoided in our context.
Thus because we have at our disposal the AP, we provide a complete, undistracted proof here.

Definition 4.5 (Relatively Full Towers) Suppose that I is a well-ordered set. Let (M, a@, N) be a tower indexed
by I such that each M; is a (p1, o)-limit model. For each i, let (M, | v < o) witness that M; is a (u, o)-limit
model.

The tower (M, a, N) is full relative to (M) <o icr iff

- there exists a cofinal sequence (i, | @ < 6) of I of order type 6 such that there are i - w many elements
between ¢,, and 7,1 and

- for every v < o and every (p, M) € St(M;) with i, < i < ig41, there exists j € I with i < j < ig41
such that (ga-tp(a;/M;), N;) and (p, M) are parallel.

Theorem 4.6 (Relatively full towers provide limit models) Let 0 be a limit ordinal < p satisfying 6 = p - 0.
Suppose that I is a well-ordered set as in Definition 4.5.
Let (M,a,N) € K, 1 be a continuous tower made up of (p, o)-limit models, for some fixed o < p*. If

(M,a,N) € K, 1 is full relative to (M} )ic1 <o, then M :=J;c; M; is a (1, 0)-limit model over M.

7

Proof. Let M’ be a (i, 0)-limit model over M;, witnessed by (M, | a < 8). By u-DAP over limit models,
we may assume that M’ N M = M;,. Since § = u - 6, we may also arrange things so that the universe of M, is
p-cand o € M/, |, by renaming the elements of A/;, if necessary.

We will construct an isomorphism between M and M’ by induction on o < 6. Define an increasing and
continuous sequence of <c-mappings (h, | @ < 6) such that

(1) ho : M;, 4 — M/, forsome j < p-w
(2) ho =1idn;, and

(3) (OAS rg(hoHrl)'

For o« = 0 take hg = id My - For « a limit ordinal let h, = |J B<a hg. Since M is continuous, the induction
hypothesis gives us that h, is a <x-mapping from M;_ into M/ allowing us to satisfy condition (1) of the
construction.

Suppose that h,, has been defined. Let j < p - w be such that hy : M;_ 4; — M/, ;. There are two cases:
either a € rg(hy) or o ¢ rg(he ). First suppose that o € rg(hy ). Since M/, , , is universal over M, ,, it is also
universal over A, (M;, 4 ;). This allows us to extend hq t0 haq1 : M;, ., — M/, .

Now consider the case when « ¢ rg(h,, ). By our choice of M’ disjoint from M outside of M;,, we know that
a ¢ M;, 1. Thus ga-tp(a/M;_ ;) is non-algebraic. For cleaner indices, let k = i, + j. Since (M} | v < o)
witnesses that My, is a (u, o)-limit model, by Assumption 2.8, there exists v < o such that ga-tp(a/Mjy)
does not p-split over M,. By relative fullness of (M, a, N), there exists k' with k < k' < in41 so that
(ga~tp(a/My,), M) is parallel to (ga-tp(axs /My ), Ni). In particular

(*)  ga-tp(ar /M) = ga-tp(a/My).

We can extend h,, to an automorphism %’ of €. Since the domain of h,, is My, an application of h’ to () gives
us

() gartp(h'(ar)/ha(My)) = ga-tp(er/ha(My)).

Since M/, , , is universal over hq (M}) and k" < iq41, we can actually extend hq, to b1 @ M;
in such a way that h41(ar) = «

Let h := J, g ha. Clearly h : M — M’. To see that h is an isomorphism, notice that condition (3) of the
construction forces h to be surjective since the universe of M’ is p -0 = 6. n

/
a+1 - Ma+2
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Remark 4.7 The referee has pointed out that our proof of Theorem 4.6 gives a slightly stronger result. In
particular, the hypothesis of Theorem 4.6 can be weakened by replacing the relatively full tower with a tower that
has the property that for every v < o and every p € ga-S(M;) with i, < i < i,1, there exists j € [ with
i < J < iq41 such that a; = p. Constructing a <-increasing chain of towers satisfying this weaker condition
becomes problematic at limit stages, so we will ultimately need to work with relatively full towers.

S Uniqueness of Limit Models

We now begin the construction of our array of models and M*. Let 0 be an ordinal as in the previous section.
The goal is to build an array of models with w 4 1 rows so that the bottom row of the array is a relatively full
tower indexed by a set of cofinality 6. To do this, we will be adding elements to the index set of towers row by
row so that at stage n of our construction the tower that we build is indexed by I,, described here:

Notation 5.1 The index sets [,, will be defined inductively so that (I,, | n < w + 1) is an increasing and
continuous chain of well-ordered sets. We fix I to be an index set of order type # + 1 and will denote it by
(ia | @ < 6). We will refer to the members of Iy by name in many stages of the construction. These indices
serve as anchors for the members of the remaining index sets in the array. Next we demand that for each n < w,
{j € I, | ia < J < iat+1} has order type u - n such that each [,, has supremum ig. An example of such
(I, | n <w)is I, =60 x (u-n)J{is} ordered lexicographically, where i is an element > each i € | J
Also, let I = L,.

To prove the main theorem of the paper, we need to prove that for a fixed M € K of cardinality p any (u, 6)-
limit and (y, w)-limit model over M are isomorphic over M. Let us begin by fixing a limit model M € K,

and 6 such that i - = 6. We define by induction on n < w a <-increasing and continuous sequence of towers
(M,a, N)™ such that

n<w

nw

(1) (M,a,N)°is a tower with M = M.
2) (M a, N)" € K I

(3) For every (p,N) € &t(M]") with iq, < i < ig4q there is j € I,y with i < j < iq41 so that
(ga-tp(a; /MI*"), NI*') and (p, N) are parallel.

Given M, we can find a tower (M,a, N)° € K, 1, with M§ = M because of the existence of universal
extensions and because of Assumption 2.8.4b. The last pages (Page 13 onward) of this section provide a picture
of this construction of an array of models, explanations for carrying out the final stage of the construction and a
proof that this is sufficient to prove the main theorem. We spend most of the remainder of this section verifying
that it is possible to carry out the induction step of the construction. This is a particular case of Theorem 11.7.1
of [Val]. But since our context is somewhat easier, we do not encounter so many obstacles as in [Val] and we
provide a different, more direct proof here:

,N) € K}, ;. there exists (M',a,N) € K}, |

a
Gt (M;) wnh I <1 < igt1, there exists j € I, 11
N) are parallel. Here, the M;’s are defined fori € I,

Theorem 5.2 (Dense <-extension property) Given (M,
such that (M ,a, N) < (M',a, N) and for each (p, N) €
with i < j < iqy1 such that (ga-tp(a; /M), N;) and (p,
and the M are defined for j € Ip 1.

Before we prove Theorem 5.2, we prove a slightly weaker extension property, one in which we can find an

extension of the tower (M, a, N) of the same index set. Variations of this lemma appear in various places for
instance Theorem I1.8.2 of [Val].

Lemma 5.3 (<-extension property) Given (M a, N ) € IC/ [, there exists a (dzscontmuous) <-extension

(M',a,N) € K}, ; of (M,a, N) such that for each i, M} is a (1, u) limit model over | J; _; M

Proof. Given (M,a, N) € K}, ; we will define a <-extension (M’,a, N') by induction on i € I. Notice that
a straightforward induction proof is not sufficient here for if we have defined (M | j < i) as a tower extending
(M,a,N) restricted to (j | j < i) and are at the stage of defining M/, |, we may be faced with an impossible
task: during our construction we may have inadvertently placed inside M/ witnesses for the splitting of the type
of a;;1 over N;;1; this would prevent us from extending M| to M/, ; so that ga-tp(a;1/M;j, ;) does not p-split
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10 R. Grossberg, M. VanDieren, and A. Villaveces: Uniqueness of Limit Models under Amalgamation

over ;4. Therefore, we will instead define approximations, M:r , for M/ by induction on i € I and at each
stage 4 of the induction we will make adjustments of the previously defined approximation M j+ for j < 4. This
leads us into defining M;" and a directed system of <j-embeddings (f;; | j < i € I) such that fori € I,
M; <x M forj <i, fj;: M;r — M;" and f;; | M; = idas,. We further require that M;', | is a limit model
over fi 11 (MZ‘L) and ga-tp(a;/ fii+1 (M;r)) does not p-split over N;. When i is a limit, we choose M;r tobea
(1, p1)-limit model over |, _; f;.:(M;").

This construction is done by induction on ¢ € I using the existence of non-u-splitting extensions. Suppose
that (M;" | k < i) and (fi; | k <1 < i) have been defined. We explain how to define M | and f; ;1. The
rest of the definitions required for the 7 + 18t stage are dictated by the requirement that we are forming a directed
system. Let M, ; be a limit model over both M;L and M;4. Since ga-tp(a;+1/M;y1) does not p-split over
N1, by Theorem 2.4 there exists f € Autyy,,, (€) so that ga-tp(a;1/f (M, ,)) does not p-split over Ny 1.
Take M| == (M} ) and f; 41 == f | M}

At limit stages we take direct limits so that f;; [ M; = idps,. This is possible by Subclaims I1.7.10 and
I1.7.11 of [Val] or see Claim 2.17 of [GrVa2]. Take an extension of the direct limit that is both universal over
M; and is a (p, p)-limit over (U, _, f;,:(M;) and call this M;". Notice that we do not obtain a continuous tower;
continuity will be recovered later using reduced towers.

Let fjsup(ry and Méup{l} be the direct limit of this system such that f; qp(ry [ M; = idp,. We can now
define M := fj,sup{l}(Mj*) for each j € I. By construction, we have that ga-tp(a;/f; i+1(M;")) does not
p-split over ;. Mapping into M1y by fit1,sup(r)> and noting that both a; and N; are fixed by f; 1 sup(r), We
conclude that ga-tp(a;/M]) does not p-split over N; as required.

_|

We can now use the extension property for towers of the same index set from Lemma 5.3 to prove the dense
extension property which allows us to grow the index set as we add elements to the models in the extension.

Proof of Theorem 5.2. Given (M,a, N) € K}, ; ,let (M',a, N) € K}, ; be an extension of (M, @, N) as in
!/

Lemma 5.3 so that each M s a (p, )-limit model over | J,_, = M.
tat1 I<ta+1 )]

For each i, let (M| | I € Inq1, o + p-n <1 < ig41) witness that M, is a (u, p)-limit model
over i< M 7’ Without loss of generality we may assume that each of these M is a limit model over its
predecessor.

Fix {(p, N)¥ |0 < k < p} an enumeration of [ J{&t(M;) : i € I,,,iq < i < iat1}. By our choice of I, 11,
stability in p, and Theorem 3.5, such an enumeration is possible. lfor each k < pu, we will consider th_e model
indexed by | = 4, + i + k. These are the models in the sequence M’ which do not appear indexed in M. Since

is universal over M/, there exists a realization in M éuccl 0 of the non-p-splitting extension of
n+1

/

succr,, (1)
pi—"a to M]. Let a; be such a realization and take N, := N}a.

Notice that ((MJ | j € Iny1),{(a; | j € Iny1), (N; | j € Iny1)) provide the desired extension of (M, a, N)
: *
in ICH!I”H. -

We are almost ready to carry out the complete construction. However, notice that Theorem 5.2 does not
provide us with a continuous extension. Therefore the bottom (i.e. the w + 1%¢) row of our array may not be
continuous which would prevent us from applying Theorem 4.6 to conclude that M* is a (u, #)-limit model.
So we will further require that the towers that occur in the rows of our array are all continuous. This can be
guaranteed by restricting ourselves to reduced towers as in [ShVi] and [Val].

Definition 5.4 A tower (M,a, N) € K, ; is said to be reduced provided that for every (M',a, N) € K}, ;
with (M, a, N) < (M',a, N) we have that for every i € I,

(1) M0 M; =M,
jel

If we take a <-increasing chain of reduced towers, the union will be reduced. The following fact appears as
Theorem 3.1.14 of [ShVi]. We provide the proof for completeness.
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Theorem 5.5 Let (M,a,N)" € K., | v < B) be a <-increasing and continuous sequence of reduced
towers such that the sequence is contlnuous in the sense that for a limit v < 3, the tower (M ,a, N)? is the union
of the towers (M ,a, N)S for ¢ < +y. Then the union of the sequence of towers {(M,a, N)7 € ICZJ7 | v < B)is
itself a reduced tower.

Proof. Suppose that (M, a, N)? is not reduced. Let (M, a, N) € K,..1, witness this. Then there exists an
i € Iz and an element b such that b € (M’ﬂU]eIﬂ Mﬁ)\Mﬁ There exists v < 3 such that b € UJEH MI\M;.
Notice that (M’, @, N) | I, witnesses that (M, a, N)” is not reduced. -

The following appears in [ShVi] (Theorem 3.1.13).

Theorem 5.6 (Density of reduced towers) There exists a reduced <-extension of every tower in ICZ’ I

Proof. Assume for the sake of contradiction that no <-extension of (M,a, N) is reduced. This allows
us to construct a <-increasing and continuous sequence of towers ((M,a, N)¢ € K7 ; | ¢ < p*) such that
(M,a, N)“*! witnesses that (M, @, N)¢ is not reduced. The construction is done inductively in the obvious way.

Foreachb € U, ,+ ic; M define

b):=min{iel|be U UMf}and

C<pt j<i
Cb):==min{¢ <pt|be Mf(b)}.

¢(+) can be viewed as a function from ut to pt. Since |I| = p and each Mf has cardinality p, there exists a
club E = {6 < puT | Vb€ U;c; M7, ((b) < 6}. Actually, all we need is that E is non-empty.

Fix § € E. By construction (M a, N)°*! witnesses the fact that (M, a, N)° is not reduced. So we may fix
i€Tandbe M) NJ;c; M such that b gé M. Since b € M2, we have that i(b) < i. Since § € E, we

know that there exists ( < ¢ such that b € M i) Because ¢ < § and i(b) < i, this implies that b € Mf as well.
This provides a contradiction since on the one hand b € Mf and on the other hand, it is not. -

By revising the proof of Lemma 5.3, we can conclude:

Lemma 5.7 Suppose that (M ,a, N) € K, 1 is reduced. If 1y is an initial segment of I, then (M,a,N) | I
is reduced.

Proof. Suppose that (M,a, N) | Iy is not reduced. Let (M',a | Io,N | Iy) and § < j € Iy with
b € (Mg N M;)\Mjs witness this. We can apply the inductive step of Lemma 5.3 (replacing an initial segment of
the construction there with M), to find (M",a, N) an extension of (M, a, N) such that there is a <) -mapping
f from the models of A’ into the models of M” with f | M; = idyy,. Notice that (M”,a, N) and b, 4, j will
witness that (M, a, N) is not reduced. =

The following theorem makes use of the unidimensionality assumption. This generalizes a special case of
the uniqueness of limit models result in the series of papers [Val] and [Va2] by replacing the assumption of
categoricity in 7 with the weaker unidimensionality assumption. Further work of VanDieren in [Va3] weakens
this assumption.

Theorem 5.8 (Reduced towers are continuous) If(M,a,N) € K}, 1 is reduced, then it is continuous, namely

for each limit i in I, M; = J; ; M

Proof of Theorem 5.8. Suppose the theorem fails for ;. Let 6 be the minimal limit ordinal such that there
exists an index set I and (M,a, N) € K,  a reduced tower which is discontinuous at the 5t element of 1. We
can apply Lemma 5.7 to assume without loss of generality that [ = § + 1. Fix (M,a, N) € IC;’C; 41 reduced
and discontinuous at § with b € M;\ |J, .5 M;. By Theorem 2.6, there exists a minimal type p over My. So
by our unidimensionality Assumption 3, we know that the Galois type of p must be realized in Ms\ |J,_s M;.
Therefore, we may assume that b |= p.

<0
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12 R. Grossberg, M. VanDieren, and A. Villaveces: Uniqueness of Limit Models under Amalgamation

Claim 5.9 There exists a <-extension of (M ,a, N) | 8, containing b. We will refer to such a tower in ’Cfm as
(M';a | 6,N | §). Furthermore, b may be assumed to be an element of M.

_Proof of Claim 5.9. We use the minimality of ¢ and the <-extension property to find a tower of length 4,
(M*,a | 6, N | §), that is a proper extension of (M,a, N) [ §. By the definition of <-extension, M is
universal over My; so we can find b* € M\ M, realizing p.

Notice that by Lemma 5.7, (M,a,N) | & is reduced. Thus we can conclude that b* € M\ U, .5 M;
and ga-tp(b*/J, .5 M;) is non-algebraic. Since p is minimal, it must be the case that ga-tp(b*/ U, .5 M;) =
ga-tp(b/ U, 5 Mi). Let f € Autyy,_ n, € take b* to b.

_Consider the image of (M*, a, N) under f; denote this tower by (M',a,N). Because f fixes (M,a, N) | 6,
(M’ a, N) is an extension of (M ,a, N) | ¢ as required. =

Using (M’, @, N) from Claim 5.9, define Mj to be a limit model of cardinality x containing | J; _s M/ so that it
is universal over M. Notice that the tower (M"*(Mj),a, N) extends (M, a, N) with b € (Mg\ U, 5 M;) (N Ms.
This contradicts our assumption that (M, @, N) is reduced and completes the proof of Theorem 5.8.

Corollary 5.10 In Theorem 5.2, we can choose (M, a, N) to be reduced, and hence continuous.

Proof. As in the proof of Theorem 5.2, first take (A", a’, N') extending (M, @, N) to realize the required
the strong types. By Theorem 5.6 we can find a reduced extension (M',a’, N') of (M",a’, N'), which realizes
the same required strong types. By Theorem 5.8, (M’,a’, N”) is continuous. o

Now we return to the construction in the proof of the Main Theorem.
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Corollary 5.10 tells us that the construction of our array of models as an increasing sequence of towers is
possible in successor cases. In the limit case, let I, = |J Iy, and simply define (M,a, N)“ € K, ; to be
the union of the towers (M, a, N)™.

To see that the construction satisfies our requirements, first notice that the last column of the array, (M’ | n <
w), witnesses that M* is a (u,w)-limit model. In light of Theorem 4.6 we need only verify that the last row of
the array is a relatively full tower of cofinality 6.

Claim 5.11 (M, a, N)* is full relative to (M) <w.ic1.,-

m<w

Proof. Given i with i, < i < in41, let (p, M]") be some strong type in Gt(M). Notice that by mono-
tonicity of non-splitting (p [ M ™', M}*) € &t(M"""). By construction there is a j € I,, ;1 Withi < j < i1y
such that (ga-tp(a; /M;?), N7?) is parallel to p | M;"*". We will show that (ga-tp(a; /M), N¥) is parallel
to (p, N).

First notice that ga-tp(a;/M;’) does not p-split over N¥* = N. J’“Q because (M,a, N)“ is a tower. Since
(ga—tp(aj/MfH),Nf”) is parallel to (p [ Mt M) there is ¢ € ga-S(M3’) such that ¢ extends both
p [ M and ga-tp(a; /M ;LH). By two separate applications of the uniqueness of non-u-splitting extensions
we know that ¢ [ M = p and ¢ = ga-tp(a;/M{). To see that (g, Ny’) is parallel to (p, M), let M’ be
an extension of M¥ of cardinality po. Since (p | M, M) and (¢ | M}"** N"*?) are parallel, there is
¢ € ga-S(M’) extending both p | M**' and ¢ | M}*? and not p-splitting over both M;* and N/"*?. By the
uniqueness of non-u-splitting extensions, we have that ¢’ is also an extension of ¢ and p. Thus ¢’ witnesses that
(g, Ny’) and (p, M}") are parallel. =
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14 R. Grossberg, M. VanDieren, and A. Villaveces: Uniqueness of Limit Models under Amalgamation

This completes the proof of Theorem 1.9.

6 Concluding remarks

In this section we discuss other results related to the question of the uniqueness of limit models. First to un-
derstand the boundaries of the question of the uniqueness of limit models, consider the elementary case. Limit
models are not necessarily unique even for first order complete stable theories.

Theorem 6.1 Suppose T is a complete, stable theory. Let 1 > 2\T1 such that ;|7 = pi. If T is not superstable,
then no (u, w)-limit model is isomorphic to any (i, k)-limit model for any r with cf (k) > k(T).

Proof. Let T be a stable, but not superstable, complete theory, and fix « and p as in the statement of the
theorem. As T is not superstable, by [Sh e, Lemma VII, 3.5 (2)], for A := (2#)", there are (a,|n € Z)\) and
{(on(Z, Yn)|n < w) such that for every n < w, v € "\, and all € ¥\,

(€ Epnla,,a)]) <= v=nln
By induction on n < w define (M, |n < w) all of cardinality x and (), v,|n < w) such that

(1) M, 4 is universal over M, and saturated of cardinality f,

(2) Mn+1 > MNns Vn+1 > Mns and Tn+1 7& Vn+1,

3 a’fln+17aw,+1 € M7L+1 and

(4) tp(ann+1/Mn) = tp(aVn,+1 /Mn)

THIS CONSTRUCTION IS ENOUGH: Let N’ |= T be a (u, )-limit over My. By Theorem 1.6, N’ must
be saturated. Let N = |J,,_, M. Clearly N is a (p,w)-limit over M. To conclude that N and N’ are non-
isomorphic, it is enough to show that N is not saturated. Consider p := {@y41(Z; Gy, ., ) AN=@p41(Z; 0, )0 <
w}. The set of formulas p is a type since it is realized in € by a,, where 7 := J,, ., 7. Notice that N cannot
satisfy p. If @ € N would satisfy p, then M, realizes p for some n < w. Thus by condition (4), we would have

(& ': (pn+1[&,dnn+l} — ¢ ': Son+1[da &Dn+1]

which would contradict the assumption that a satisfies p.

THIS IS POSSIBLE: By stability and ;/”! = i, using the proof of [Sh e, Th. III 3.12], every model of
cardinality p has a saturated proper elementary extension. Let M be a saturated model of cardinality x and
take 9 = vy := (). Given n,,, v, M, using Theorem 1.5 let M* be universal over M,, of cardinality ;. Let
M** = M of cardinality ; containing a,,, and a,,, . By [Sh e, Th. III 3.12], we can take M,, 1 > M™* saturated
of cardinality p. Clearly it is universal over M,,. For n < w, consider F,(a) := tp(ay,-o/M,). As X is regular
and X > |S(M,,)|, there is S C A of cardinality A such that o« # 8 € S = F,(a) = F,,(8). Pickaa # 3 € S
and define 7,41 := 1, @ and v, 41 == 1, B. =

In the non-elementary setting, many authors have considered approximations to Theorem 1.9. Several authors
have proved and used the uniqueness of limit models in AECs under the assumption of categoricity: [Sh 394]
[Ba], [KoSh], [Sh 576], [ShVi], [Val], and [Va2]. Also, Shelah’s [Sh i] examines (as an aside) the uniqueness of
limit models in good frames. Below we briefly describe the results and techniques of these papers and distinguish
them from our context.

In Theorem 6.5 of [Sh 394], Shelah claims uniqueness of limit models of cardinality p for classes with the
amalgamation property under little more than categoricity in some A > p > LS(K) together with existence
of arbitrarily large models. Shelah’s claim in Theorem 6.5 of [Sh 394] (isomorphism over the base) seems too
strong for the proof that he suggests. Instead, he proves that (u, <)-limit models are Galois saturated, which
implies uniqueness only over models of size < p. The argument in [Sh 394] depends in a crucial way on an
analysis of Ehrenfeucht-Mostowski models. In our paper, we cannot employ Ehrenfeucht-Mostowski machinery
because we do not assume here categoricity or the existence of models above the Hanf number. For an exposition
of this result see [Ba].
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Kolman and Shelah in [KoSh] prove the uniqueness of limit models of cardinality y in A-categorical AECs
that are axiomatized by a L, ,,-sentence where A > ;1 and ~ is a measurable cardinal. Then Kolman and Shelah
use this uniqueness result to prove that amalgamation occurs below the categoricity cardinal in L, ,-theories with
x measurable. Both the measurability of « and the categoricity are used integrally in their proof of uniqueness.

Shelah in [Sh 576] (see Claim 7.8) proved a special case of the uniqueness of limit models under the assump-
tion of ;i-AP, categoricity in 4 and in g+ as well as assuming K ,++ % (. In that paper Shelah needs to produce
reduced types and use some of their special properties.

In [ShVi], Shelah and Villaveces attempted to prove a uniqueness theorem without assuming any form of
amalgamation; however, they assumed that /C is categorical in some sufficiently large A, that every model in X
has a proper extension and that 92X < 22" VanDieren in [Val] and [Va2] managed to prove the uniqueness
statement under the assumptions of [ShVi] together with the additional assumptions that the class is categorical
in p* and K := {M € K, | M is an amalgamation base} is closed under unions of increasing < chains.

In [Sh i] the most important new concept is that of a A\-good frame, which is an axiomatization of the notion
of superstability, with hypothesis on just one cardinal A. Its full definition is more than a page long. Shelah’s
assumptions on the AEC include, among other things, the amalgamation property, the existence of a forking like
dependence relation and of a family of types playing a role akin to that of regular types in first order superstable
theories — Shelah calls them bs-types. One of the axioms of a good frame is the existence of a non-maximal
super-limit model. This axiom along with p-stability implies the uniqueness of limit models of cardinality . In
Lemma I1.4.8 of [Sh i] he states that in a good frame, limit models are unique. (While we don’t claim that we
understand Shelah’s proof or believe in its correctness, he explicitly uses the interplay between bs-types and the
forking notion as well as no long forking chains and continuity of forking.)

The formal differences between our approach and Shelah’s [Sh i] can be summarized as follows:

(1) Suppose that IC is an AEC with no maximal models satisfying the JEP and amalgamation property and is
categorical in AT for some A > LS(K); we then get uniqueness of limit models. By way of comparison,
in order to get a uniqueness of limit models, Shelah needs results of [Sh 576] (a 99 pages-long paper) and
significant parts of his book [Sh i] along with the stronger assumptions of categoricity in several consecutive
cardinals together with several additional set-theoretic axioms. All our results are in ZFC.

(2) When specialized to the case where /C is the class of models of a complete first order theory 7', Shelah’s
proof in [Sh i, Lemma I1.4.8] really uses the full power of assuming that 7 is superstable, in particular
symmetry of the dependence relation. The proof of uniqueness in this paper just needs, in addition to the
stability and unidimensionality of 7', no splitting chains of length w. As the main interest of our theorem
is for the general case of AEC, rather than just for first order theories, the difference between this paper
and [Sh i, Lemma I1.4.8] is clearer when understood in light of the greater picture.

We are particularly interested in Theorem 1.9 not only for the sake of generalizing Shelah’s result from [Sh
576] but due to the fact that the first and second author originally used an earlier draft of this uniqueness theorem
(which did not assume unidimensionality) along with tools from [Sh 394] in a crucial step to prove:

Theorem 6.2 (Upward categoricity theorem, [GrVa2]®) Suppose that K has arbitrarily large models, is x-
tame and satisfies the amalgamation and joint embedding properties. Let X\ be such that A > LS(K) and \ > x.
If K is categorical in AT then K is categorical in all ;1 > \*.

After the addition of the unidimensionality assumption in 2014 to resolve an error found in 2012 in the proof
of Theorem 5.8, Grossberg and VanDieren have revisited the proof of Theorem 6.2 to insure that the upward
categoricity transfer still holds [GrVa3]. Grossberg and VanDieren’s initial use of the uniqueness of limit models
in this theorem hints at a connection between classical definitions of superstability in first order logic and the
uniqueness of limit models. This link is explored in further work of VanDieren [Va3].

It is worth mentioning that the links between classical notions of superstability from first order logic and the
uniqueness of limit models have also produced interesting results in the connections between “continuous model
theory” and so-called “metric AECs”. Villaveces and Zambrano [ViZal] have adapted our proofs and notions of
independence used here to the metric AEC context, under the stronger hypothesis of categoricity ( [ViZa2] but

3 Some time after Grossberg and VanDieren announced Theorem 6.2, Baldwin circulated an alternative proof of Theorem 6.2 that
eventually appeared in [Ba]. Lessmann in [Le] proved the result for K with LS(K) = Rg beginning with categoricity in N;.
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for the wider ambit of metric AECs) and at the same time explored various consequences of assuming forms of
uniqueness of limit models in that metric (continuous) context.
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