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We prove:
Main Theorem: Let K be an abstract elementary class satisfying the joint embedding and the amalgamation
properties with no maximal models of cardinality µ. Let µ be a cardinal above the the Löwenheim-Skolem
number of the class. If K is µ-Galois-stable, has no µ-Vaughtian Pairs, does not have long splitting chains, and
satisfies locality of splitting, then any two (µ, σℓ)-limits over M , for ℓ ∈ {1, 2}, are isomorphic over M .

This theorem extends results of Shelah from [Sh 394], [Sh 576], [Sh 600], Kolman and Shelah in [KoSh] and
Shelah and Villaveces from [ShVi]. A preliminary version of our uniqueness theorem, which was circulated in
2006, was used by Grossberg and VanDieren to prove a case of Shelah’s categoricity conjecture for tame abstract
elementary classes in [GrVa2]. Preprints of this paper have also influenced the Ph.D. theses of Drueck [Dr]
and Zambrano [Za]. This paper also serves the expository role of presenting together the arguments in [Va1]
and [Va2] in a more natural context in which the amalgamation property holds and this work provides an
approach to the uniqueness of limit models that does not rely on Ehrenfeucht-Mostowski constructions.
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1 Introduction

We work in the general context of abstract elementary classes (AECs) with the amalgamation property (AP) and

Galois-stability at one fixed cardinality µ above the Löwenheim-Skolem number. We assume there is a model

of cardinality µ+. We prove the uniqueness of limit models under a unidimensionality-like assumption of no

µ-Vaughtian pairs and superstability-like assumptions of the µ-splitting dependence relation.

The basic model theory of abstract elementary classes (definitions, the role of the AP and the JEP, the existence

of a “monster model” C, Galois types and the foundational development of stability theory in that context) can

be checked in the monograph [Gr2] and the books [Ba], [Sh i]. For the sake of completeness, we include some

of the notation and fundamentals of this context here. We fix an abstract elementary class K with ordering ≺K.

For a cardinal µ, we use the notation Kµ for the class of models of K of cardinality µ.

In practice, abstract elementary classes were not as approachable as one would hope and much work in non-

elementary model theory takes place in contexts which additionally satisfy the amalgamation property so that a

monster model can be utilized. The following fact can be traced back to Jónsson’s 1960 paper [Jo]; the present

formulation is from [Gr1]:

Theorem 1.1 Let 〈K,≺K〉 be an AEC with no maximal models and suppose that there is λ ≥ κ > LS(K)
such that K<λ has the AP and the JEP. Suppose M ∈ K. If λ<κ = λ ≥ ‖M‖ then there exists N ≻ M of

cardinality λ which is κ-model-homogeneous.

Thus if an AEC K has AP and JEP, then like in first-order stability theory we may assume that there is a large

model-homogeneous C ∈ K that acts like a monster model. We will refer to the model C as the monster model.

∗ The second author was partially sponsored for this work by grant DMS 0801313 of the National Science Foundation. Corresponding

author E-mail: vandieren@rmu.edu
∗∗ The third author was partially sponsored for this work by the research project Métodos de Estabilidad en Clases No estables of the

Departamento Administrativo de Ciencia, Tecnologı́a e Innovación, Colciencias.
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2 R. Grossberg, M. VanDieren, and A. Villaveces: Uniqueness of Limit Models under Amalgamation

All models considered will be of size less than ‖C‖, and we will find realizations of types we construct inside

this monster model. From now on, we assume that the monster model C has been fixed. We use the notation

AutM (C) to denote the set of automorphisms of C fixing M pointwise.

The notion of type as a set of formulas, even when the class is described in some infinitary logic, does not

behave as nicely as in first-order logic. A replacement was introduced by Shelah in [Sh 300]. In order to avoid

confusion between this and the classical, syntactic notion, we will use the terminology in [Gr2] and call this

alternative notion the Galois type.

Since in this paper we deal only with AECs with the AP property, the notion of Galois type has a simpler

definition than in the general case.

Definition 1.2 (Galois types) Suppose that K has the AP.

(1) Given M ∈ K consider the action of AutM (C) on C, for an element a ∈ |C| let ga-tp(a/M) denote the

Galois type of a over M which is defined as the orbit of a under AutM (C).

(2) For M ∈ K, we let

ga-S(M) = { ga-tp(a/M) : a ∈ |C|}.

(3) K is λ-Galois-stable iff

N ∈ Kλ =⇒ | ga-S(N)| ≤ λ.

(4) Given p ∈ ga-S(M) and N ∈ K such that N ≻K M , we say that p is realized by a ∈ N iff ga-tp(a/M) =
p. Just as in the first-order case we will write a |= p when a is a realization of p.

(5) For h ∈ Aut(C) and p = ga-tp(a/M), then the notation h(p) refers to ga-tp(h(a)/h(M)).

For a more detailed discussion of Galois types, their extensions, restrictions, equivalent forms and generaliza-

tions, the reader may consult [Gr2].

The next notion to consider is that of a saturated model. In homogeneous abstract elementary classes (see,

for example, [GrLe]) where one may study classes of models omitting given sets of types, the existence of a

saturated model presents some problems. One solution is to consider models which realize as many types as

possible. Such models are called Galois-saturated. More formally, a model M of size κ > LS(K) is Galois-

saturated if it realizes all Galois types over submodels N ≺K M of cardinality < κ. When stability theory has

been ported to contexts more general than first order logic, many situations have appeared when Galois-saturated

models do not fulfill the main roles that saturated models play in elementary classes.

The main concept of this paper is Shelah’s limit model which (among other things) serves as a substitute for the

role of saturation in stability theory (see [Gr2], [ShVi], [Sh i], etc.) or at least serves as a stepping stone to prove

the properties of Galois-saturated models. For example, under the assumption of categoricity with reasonable

stability conditions, the existence of Galois-saturated models in singular cardinals is not straightforward and is

proved by first considering limit models [Sh 394]. In some contexts limit models have been successfully used as

“tools” towards finding Galois-saturated models ( [KoSh] and [Sh 472]). Furthermore, the notion of limit model

refines the notion of saturation; more detailed information is given on the particular way one model is embedded

inside another.

Limit models appear in [KoSh] and in [Sh 576] under the name (µ, α)-saturated models. In [Sh 600], Shelah

calls this notion brimmed. Later papers, beginning with Shelah-Villaveces [ShVi], adopt the name limit models.

We use the more recent terminology. Before defining limit models, we must introduce their building blocks,

universal extensions.

Definition 1.3 (1) Let κ be a cardinal ≥ LS(K). We say M∗ ≻K N is κ-universal over N iff for every

N ′ ∈ Kκ with N ≺K N ′ there exists a K-embedding g : N ′ →
N

M∗ such that the following diagram

commutes:
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N ′

g

!!
N

id

OO

id
// M∗

(2) We say M∗ is universal over N or M∗ is a universal extension of N iff M∗ is ‖N‖-universal over N .

Definition 1.4 [Limit models] Consider µ ≥ LS(K) and α < µ+ a limit ordinal and N ∈ Kµ. We say that

M is (µ, α)-limit model over N iff there exists an increasing and continuous chain 〈Mi ∈ Kµ | i < α〉 such that

M0 = N ; M =
⋃

i<α Mi; Mi is a proper K-submodel of Mi+1; and Mi+1 is universal over Mi for all i < α.

From Theorem 1.5 we get that for α ≤ µ+ there always exists a (µ, α)-limit model provided K has the AP,

has no maximal models and is µ-Galois-stable. This theorem was stated without proof as Claim 1.16 in [Sh 600],

for a proof see [GrVa1] or [Gr1].

Theorem 1.5 (Existence) Let K be an AEC without maximal models and suppose it is Galois-stable in µ. If K
has the amalgamation property then for every N ∈ Kµ there exists M∗ �K N , universal over N of cardinality

µ.

The following theorem partially clarifies the analogy with saturated models:

Theorem 1.6 Let T be a stable, complete, first-order theory and let K be the elementary class of models of T
with the usual notion of elementary submodel. If M is a (µ, δ)-limit model for δ a limit ordinal with cf(δ) ≥ κ(T ),
then M is saturated.

P r o o f. Use an argument similar to the proof of [Sh e, Theorem III 3.11]. ⊣

Thus in elementary classes superstability implies that limit models are saturated, in particular are unique. This

raises the following natural question for AECs about the uniqueness of limit models:

Let K be an AEC, µ ≥ LS(K), M ∈ Kµ and σ1, σ2 limit ordinals < µ+, and suppose that for ℓ = 1, 2,

Nℓ is a (µ, σℓ)-limit model over M . What “reasonable” assumptions on K will imply that there exists

f : N1
∼=M N2?

This question is non-trivial only for the case where cf(σ1) 6= cf(σ2). Using a back and forth argument one

can show that when cf(σ1) = cf(σ2), we get uniqueness without any assumptions on K. More precisely:

Theorem 1.7 Let µ ≥ LS(K) and σ < µ+. If M1 and M2 are (µ, σ)-limits over M , then there exists

an isomorphism g : M1 → M2 such that g ↾ M = idM . Moreover if M1 is a (µ, σ)-limit over M0, if N1 is a

(µ, σ)-limit over N0 and if g : M0
∼= N0, then there exists a K-embedding, ĝ, extending g such that ĝ : M1

∼= N1.

Theorem 1.8 Let µ be a cardinal and σ a limit ordinal with σ < µ+. If M is a (µ, σ)-limit model, then M is

a (µ, cf(σ))-limit model.

The main result of this paper provides an answer to the question of uniqueness of limit models:

Theorem 1.9 (Main Theorem) Let K be an AEC and µ > LS(K). Suppose K satisfies the AP and JEP
and has no maximal models of cardinality µ. If K is µ-Galois-stable, does not have long splitting chains, has

no µ-Vaughtian pairs and satisfies locality of splitting1, then any two (µ, σℓ)-limits over M , for ℓ ∈ {1, 2}, are

isomorphic over M .

Remark 1.10 In a preprint of this paper, the assumption of disjoint amalgamation was made in Theorem

1.9. After reading a preprint of this paper, Fred Drueck in his Ph.D. thesis [Dr] pointed out that the disjoint

amalgamation property is not necessary to carry out the arguments here. In particular, it is not needed in Theorem

4.6.

The last section of this paper (see pages 14 and ff.) describes different approaches to the question of the

uniqueness of limit models.

We thank John Baldwin, Tapani Hyttinen, Pedro Zambrano, and the referee for helping to clarify the presen-

tation.

1 See Assumption 2.8 for the precise description of long splitting chains and locality.
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2 The Setting

In what follows, K is assumed to be an AEC, and µ is a cardinal ≥ LS(K). In this section we summarize all of

the assumptions that will be made on the class K, and in the subsequent sections we introduce two of the main

components of the proof of the uniqueness of limit models: strong types and towers.

We will prove the uniqueness of limit models in µ-Galois stable AECs that are essentially unidimensional and

are equipped with a moderately well-behaved dependence relation. We will use µ-splitting as the dependence

relation, but any dependence relation which is local and has existence, uniqueness and extension properties

suffices.

Definition 2.1 A type p ∈ ga-S(M) µ-splits over N ∈ K≤µ if and only if N is a ≺K-submodel of M and

there exist N1, N2 ∈ Kµ and a K-mapping h such that N ≺K Nl ≺K M for l = 1, 2 and h : N1 → N2 with

h ↾ N = idN and p ↾ N2 6= h(p ↾ N1).

The existence property for non-µ-splitting types follows from Galois stability in µ:

Theorem 2.2 (Existence - Claim 3.3 of [Sh 394]) Assume K has AP and is Galois-stable in µ. For every

M ∈ K≥µ and p ∈ ga-S(M), there exists N ∈ Kµ such that p does not µ-split over N .

The uniqueness and extension properties of non-µ-splitting types hold for types over limit models:

Theorem 2.3 (Uniqueness - Theorem I.4.15 of [Va1]) Let N ≺K M ≺K M ′ be models in Kµ such that M ′

is universal over M and M is universal over N . If p ∈ ga-S(M) does not µ-split over N , then there is a unique

p′ ∈ ga-S(M ′) such that p′ extends p and p′ does not µ-split over N .

A variation of this fact is later used in an induction construction in the proof of Theorem 5.8. We state it

explicitly here:

Theorem 2.4 (Theorem I.4.10 of [Va1]) Let M,N,M∗ be models in Kµ. Suppose that M is universal over

N and that M∗ is an extension of M . If a type p = ga-tp(a/M) does not µ-split over N then there exists an

automorphism g of C fixing M such that ga-tp(g(a)/M∗) does not µ-split over N and ga-tp(g(a)/M) = p.

The other concepts that show up in the assumptions of the main theorem of this paper are minimal types [Sh

394] and µ-Vaughtian Pairs [GrVa2].

Definition 2.5 (1) For M a model of cardinality µ, p ∈ ga-S(M) is minimal if it is non-algebraic and for

each N extending M of cardinality µ if there are non-algebraic extensions p1 and p2 of p to N , then p1 = p2.

(2) For M a limit model of cardinality µ a µ-Vaughtian Pair is a pair of limit models M ′ and N ′ of cardinality

µ so that there exist M �K M ′ ≺K N ′ and p ∈ ga-S(M) a minimal type for which N ′ contains no new

realizations of p, in other words, p(M ′) = p(N ′).

Theorem 2.6 (Existence of minimal types - Fact (∗)5 in Theorem 9.8 of [Sh 394]) Let µ > LS(K). If K is

Galois-stable in µ, then for every M ∈ Kµ and every q ∈ ga-S(M), there are N ∈ Kµ and p ∈ ga-S(N) such

that M �K N , q ≤ p and p is minimal.

Theorem 2.7 (Claim (∗)8 of Theorem 9.8 of [Sh 394]) If K is categorical in some successor cardinal λ+ >
LS(K)+, then for every µ satisfying LS(K) ≤ µ ≤ λ, there are no µ-Vaughtian Pairs.

It is worth mentioning that our “no µ-Vaughtian pairs” assumption is much weaker in general than assuming

categoricity (as in earlier version of the proof): even in First Order, theories such as the theory of Real Closed

Fields are quite far from being categorical but also have no Vaughtian pairs. Of course, under ω-stability, no

Vaughtian pairs and categoricity are equivalent (in First Order). But our stability assumptions are of “superstable”

nature - under these, categoricity is quite stronger than no µ-Vaughtian pairs.

Here are the assumptions of the paper:

Assumption 2.8 K is an AEC with the AP and JEP with no maximal models of cardinality µ, and K satisfies

the following properties:

(1) All models are submodels of a fixed monster model C.

(2) K is stable in µ.

(3) There are no µ-Vaughtian Pairs.
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(4) µ-splitting in K satisfies the following locality (sometimes called continuity) and no long splitting chains

properties.

For all infinite α, for every sequence 〈Mi | i < α〉 of limit models of cardinality µ with Mi+1 universal

over Mi and for every p ∈ ga-S(Mα), where Mα =
⋃

i<α Mi, we have that

(a) If for every i < α, the type p ↾ Mi does not µ-split over M0, then p does not µ-split over M0.

(b) There exists i < α such that p does not µ-split over Mi.

In the context of an AEC with the full amalgamation property and JEP, categoricity in a cardinal λ > µ implies

all parts of Assumption 2.8. For a proof of Assumption 2.8.2 from categoricity, see Claim 1.7 of [Sh 394] or [Ba].

Claim (∗)8 of Theorem 9.8 of [Sh 394] is Assumption 2.8.3 when λ is a successor cardinal. The observation

that Assumption 2.8(4a) follows from categoricity is a consequence of Observation 6.2 and Main Lemma 9.4

of [Sh 394]. Lemma 6.3 of [Sh 394] is the statement that assumption 2.8(4b) follows from categoricity when the

cofinality of the categoricity cardinal is larger than µ.

The amalgamation and JEP hold in homogeneous classes (see [Sh 3] or [Po]), in excellent classes (see [Sh

87b]) and are axioms in the definition of finitary classes (see [HyKe]). They also hold for cats consisting of

existentially closed models of positive Robinson theories ( [Za]). In each of these contexts dependence relations

satisfying Assumption 2.8 have been developed. Finally, the locality and existence of non-µ-splitting extensions

are akin to consequences of superstability in first order logic.

Theorem 2.9 (“No long splitting chains” follows from stability in FO) Suppose that T is first order complete.

If T is stable then Assumption 2.8(4b) holds for α such that cf(α) ≥ |T |+.

P r o o f. Let 〈Mi|i < α〉 be an increasing sequence of saturated models. Let Mα :=
⋃

i<α Mi. Suppose

p ∈ S(Mα) is such that ∀i < α, p µ-splits over Mi. Because for every i < α, we know there exists i < j(i) < α
such that p ↾ Mj(i) splits over Mi, we may assume that for all i < α, p ↾ Mi+1 splits over Mi. Let ϕi(x̄, ȳ) be

a formula witnessing the splitting of p ↾ Mi+1 over Mi. As cf(α) ≥ |T |+, there exists S ⊂ α infinite such that

i, j ∈ S ⇒ ϕi = ϕj .

Without loss of generality, suppose that 〈Mn|n ≤ ω〉 is an increasing sequence of saturated models, and

p ∈ Sϕ(Mω) is such that āi, b̄i ∈ Mi+1 witness that p ↾ Mi+1 splits over Mi. Then p(x1, ȳ1, z̄1, x2, ȳ2, z̄2) and

{d̄i|i < ω} witness that p has the order property, where d̄i = āî b̄î ci, ci ∈ Mi+2 and

ci |= p ↾ {āk, b̄k|k ≤ i} ∪ {dk|k < i}.

Now use [Gr1, Lemma VII, 2.12]. ⊣

Note that Assumption 2.8.3 is used only to show that reduced towers are continuous (see Theorem 5.8). It is

conjectured that this assumption may be eliminated or replaced with a weaker assumption related to superstability

in first order logic.

3 Strong Types

Under the assumption of µ-stability, we can define strong types as in [ShVi]. These strong types will allow us to

achieve a better control of extensions of towers of models than what we obtain using just Galois types.

Definition 3.1 (Definition 3.2.1 of [ShVi]) For M a (µ, θ)-limit model, let

St(M) :=























(p,N)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N ≺K M ;
N is a (µ, θ)-limit model;
M is universal over N ;
p ∈ ga-S(M) is non-algebraic

and p does not µ-split over N.























Elements of St(M) are called strong types. Two strong types (p1, N1) ∈ St(M1) and (p2, N2) ∈ St(M2) are

parallel iff for every M ′ of cardinality µ extending M1 and M2 there exists q ∈ ga-S(M ′) such that q extends

both p1 and p2 and q does not µ-split over N1 nor over N2.
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6 R. Grossberg, M. VanDieren, and A. Villaveces: Uniqueness of Limit Models under Amalgamation

Remark 3.2 Under the assumption of the existence of universal extensions, it is equivalent to say two strong

types (p1, N1) ∈ St(M1) and (p2, N2) ∈ St(M2) are parallel iff for some M ′ of cardinality µ universal over

some common extension of M1 and M2 there exists q ∈ ga-S(M ′) such that q extends both p1 and p2 and q does

not µ-split over N1 and N2.

Lemma 3.3 (Monotonicity of parallel types) Suppose M0,M1 ∈ Kµ and M0 ≺K M1 and (p,N) ∈ St(M1).
If M0 is universal over N , then we have (p ↾ M0, N) is parallel to (p,N).

P r o o f. Straightforward using the uniqueness of non-µ-splitting extensions. ⊣

Notation 3.4 Let M,M ′ ∈ Kµ and suppose that M ≺K M ′. For (p,N) ∈ St(M ′), if M is universal over

N , we define the restriction (p,N) ↾ M ∈ St(M) to be (p ↾ M,N). If we write (p,N) ↾ M , we mean that

p does not µ-split over N and M is universal over N . We denote by ∼ the parallelism relation between strong

types in St(M), for fixed M .

Notice that ∼ is an equivalence relation on St(M) (see [Va1]). Stability in µ implies that there are few strong

types over any model of cardinality µ:

Theorem 3.5 [Claim 3.2.2 (3) of [ShVi]] If K is Galois-stable in µ, then for any M ∈ Kµ, |St(M)/ ∼ | ≤ µ.

The referee has pointed out that several of our uses of parallel types fit into the more simplified situation

described in the remark below. In particular, parallel types can be replaced by equal restrictions in Theorem 4.6.

Remark 3.6 Let (p1, N1) and (p2, N2) be parallel strong types with pl ∈ ga-S(Ml). If M1 ≺K M2, then by

uniqueness of non-splitting extensions p1 = p2 ↾ M1.

However, we cannot replace parallelism with equality of types everywhere. In particular parallelism shows its

necessity in the proof that the union of a <-chain of relatively full towers in K∗
µ,α is relatively full. The strength

of parallel types can be seen in the following situation which arises in the proof of Claim 5.11. Suppose that

M ≺K M ′ and that there are types p and p′ over M and M ′, respectively. Suppose p does not µ-split over N ,

p′ = ga-tp(a′/M ′) does not µ-split over both N and N ′, and p′ ↾ M = p. Without having any understanding

of the relationship between N and N ′ (and this is the case in the definition of towers: the Ni’s of Definition 4.1

are bases for non-splitting but are not in principle related to one another) or the stronger condition that the strong

types are parallel, it is not possible to predict when M∗ extending M will have the property that ga-tp(a′/M∗)
does not µ-split over N . Under the assumption that (p,N) and (p,N ′) are parallel, we only need to be able

to extend M∗ to a model M∗∗ for which ga-tp(a′/M∗∗) does not µ-split over N ′ to be able to conclude that

ga-tp(a′/M∗) also does not µ-split over N .

4 Towers

We use the technology of towers in our proof. Towers have been used before by Shelah and Villaveces [ShVi] and

VanDieren [Va1,Va2,Va3]. Towers enable us to control in multidimensional arrays notions of “relative saturation”

apt to our aim: obtaining limits that can be approached through chains of two different cofinalities requires

controlling the way in which we gradually “saturate” the models with realizations of Galois types. Properties of

towers are “filtered” analogues of properties of Galois types (extension and other properties of independence).

To each (µ, θ)-limit model M we can naturally associate a ≺K-increasing chain M̄ = 〈Mi ∈ Kµ | i < θ〉
witnessing that M is a (µ, θ)-limit model (that is,

⋃

i<θ Mi = M and Mi+1 is universal over Mi). Furthermore,

by Theorems 1.7 and 1.8 we can require that this chain satisfies additional requirements such as Mi+1 is a limit

model over Mi. In this section we will be considering a related chain of models which we will refer to as a tower

(see Definition 4.1). But first, we will describe how towers will be used to prove the main theorem of this paper.

To prove the uniqueness of limit models we will construct a model which is simultaneously a (µ, θ1)-limit

model over some fixed model M and a (µ, θ2)-limit model over M . Notice that, by Theorem 1.7, it is enough to

construct a model M∗ that is simultaneously a (µ, ω)-limit model and a (µ, θ)-limit model for arbitrary ordinal

θ < µ+. By Theorem 1.8 we may assume that θ is a limit ordinal < µ+ such that θ = µ · θ.

So, we actually construct an array of models with ω + 1 rows and the number of columns of this array will

have the same cofinality as θ + 1. See the big picture of the construction on page 13. We intend to carry out

the construction down and to the right in that picture. In the array, the bottom right hand corner (M∗) will be a

(µ, ω)-limit model witnessed by a chain of models as described in the first paragraph of this section. This chain
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will appear in the last column of the array. We will see that M∗ is a (µ, θ)-limit model by examining the last

(the ωth) row of the array. This last row will be an ≺K-increasing sequence of models, M̄∗ whose length will

have the same cofinality as θ. However we will not be able to guarantee that M∗
i+1 is universal over M∗

i in this

last row. Thus we need another method to conclude that M∗ is a (µ, θ)-limit model. This involves attaching

more information to our sequence M̄∗. We call this accessorized sequence of models a tower (see Definition 4.1

below). Each row in our construction of the array of models will be such a tower.

Under the assumption of Galois-superstability, given any sequence 〈ai | i < θ〉 of elements with ai ∈
Mi+1\Mi, we can identify some Ni ≺K Mi such that ga-tp(ai/Mi) does not µ-split over Ni. Furthermore, by

Assumption 2.8, we may choose this Ni such that Mi is a limit model over Ni. We abbreviate this situation by

the triple (M̄, ā, N̄).

Definition 4.1 (Towers) Let (I,<) be a well ordering of cardinality < µ+. For cleaner notation, we will

identify I with θ, its order-type, and we will denote the successor of i in the ordering I by i+ 1 when it is clear.

Then, we define a tower to be a triple (M̄, ā, N̄) where M̄ = 〈Mi | i < θ〉 is a ≺K-increasing sequence of limit

models of cardinality µ; ā = 〈ai | i+ 1 < θ〉 and N̄ = 〈Ni | i+ 1 < θ〉2 satisfy ai ∈ Mi+1\Mi; ga-tp(ai/Mi)
does not µ-split over Ni; and Mi is a (µ, σ)-limit model over Ni.

Notation 4.2 We denote by K∗
µ,I the set of towers of the form (M̄, ā, N̄) where the sequences M̄ , ā and N̄

are indexed by I . Occasionally, I will be an ordinal θ with the usual ordering, and we write K∗
µ,θ for this set of

towers. At times, we will be considering towers based on different well orderings I and I ′ simultaneously. In

these contexts if i ∈ I
⋂

I ′, the notation i+1 is not necessarily well-defined so we will use the notation succI(i)
for the successor of i in the ordering I . Finally when I is a sub-order of I ′ for any (M̄, ā, N̄) ∈ K∗

µ,I′ we write

(M̄, ā, N̄) ↾ I for the tower in K∗
µ,I given by the subsequences 〈Mi | i ∈ I〉, 〈Ni | i+1 ∈ I〉 and 〈ai | i+1 ∈ I〉.

In addition to having control over the last row of the array, we also need to be able to guarantee that the last

column of the tower witnesses that M∗ is a (µ, ω)-limit model. This will be done by prescribing the following

ordering on rows of the array:

Definition 4.3 For towers (M̄, ā, N̄) ∈ K∗
µ,I and (M̄ ′, ā′, N̄ ′) ∈ K∗

µ,I′ with I ⊆ I ′, we write (M̄, ā, N̄) <

(M̄ ′, ā′, N̄ ′) if and only if for every i ∈ I , ai = a′i, Ni = N ′
i and M ′

i is a universal extension of Mi.

Remark 4.4 The ordering < on towers is identical to the ordering <c
µ defined in [ShVi]. The superscript was

used by Shelah and Villaveces to distinguish this ordering from others. We only use one ordering on towers, so

we omit the superscripts and subscripts here.

Once we have established an ordering on towers, we can define a specific tower which will be called a union

of an increasing sequence of towers. Suppose that 〈(M̄, ā, N̄)γ ∈ K∗
µ,Iγ

| γ < β〉 is an increasing sequence of

towers such that the index set Iγ of (M̄, ā, N̄)γ is a sub-ordering of the index set Iγ′ for (M̄, ā, N̄)γ
′

whenever

γ < γ′. Let Iβ :=
⋃

γ<β Iγ . Then denote by (M̄, ā, N̄)β ∈ K∗
µ,Iβ

the “union” of the sequence of towers where

aβi = a
min{γ|i∈Iγ}
i ,

Nβ
i = N

min{γ|i∈Iγ}
i and

M̄β = 〈Mβ
i | i ∈ Iβ〉 with Mβ

i =
⋃

γ<β

⋃

i∈Iγ

Mγ
i .

By Assumption 2.8.4a, (M̄, ā, N̄)β is indeed a tower. In particular, this assumption guarantees that for i ∈ Iβ ,

ga-tp(ai/M
β
i ) does not µ-split over Ni.

Notice that we do not assume an individual tower to be continuous. Nor do we assume that inside of a

tower Mi+1 is universal over Mi. If one considers the approach of defining an array of models row by row,

then generally (even in the first order case) even if all rows are continuous and satisfy the universality property

mentioned in this paragraph, it is not necessarily true that the union of these rows will be a tower in which every

model is universal over its predecessors.

2 Since ai /∈ Mi, if the sequence M̄ has order type α + 1 (with Mα the final model in the sequence), it does not make sense to define

aα which would lie outside of the top model in the tower. Therefore in the situation that the sequence M̄ has order type α+1, the sequences

ā and N̄ will have order type α.
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8 R. Grossberg, M. VanDieren, and A. Villaveces: Uniqueness of Limit Models under Amalgamation

For a tower (M̄, ā, N̄), it was shown in [ShVi], that even if Mi+1 is not universal over Mi, one can conclude

that
⋃

i<θ Mi is a (µ, θ)-limit model provided that all types over each of the Mi are realized by a sufficient

number of ajs in the tower. Unfortunately constructing such a tower meeting these along with all of our other

requirements is beyond reach. However, in [Va1], VanDieren showed that slightly less was needed (see Definition

4.5). In [Va1], the amalgamation property is not assumed resulting in noise that can be avoided in our context.

Thus because we have at our disposal the AP, we provide a complete, undistracted proof here.

Definition 4.5 (Relatively Full Towers) Suppose that I is a well-ordered set. Let (M̄, ā, N̄) be a tower indexed

by I such that each Mi is a (µ, σ)-limit model. For each i, let 〈Mγ
i | γ < σ〉 witness that Mi is a (µ, σ)-limit

model.

The tower (M̄, ā, N̄) is full relative to (Mγ
i )γ<σ,i∈I iff

· there exists a cofinal sequence 〈iα | α < θ〉 of I of order type θ such that there are µ · ω many elements

between iα and iα+1 and

· for every γ < σ and every (p,Mγ
i ) ∈ St(Mi) with iα ≤ i < iα+1, there exists j ∈ I with i ≤ j < iα+1

such that (ga-tp(aj/Mj), Nj) and (p,Mγ
i ) are parallel.

Theorem 4.6 (Relatively full towers provide limit models) Let θ be a limit ordinal < µ+ satisfying θ = µ · θ.

Suppose that I is a well-ordered set as in Definition 4.5.

Let (M̄, ā, N̄) ∈ K∗
µ,I be a continuous tower made up of (µ, σ)-limit models, for some fixed σ < µ+. If

(M̄, ā, N̄) ∈ K∗
µ,I is full relative to (Mγ

i )i∈I,γ<σ, then M :=
⋃

i∈I Mi is a (µ, θ)-limit model over Mi0 .

P r o o f. Let M ′ be a (µ, θ)-limit model over Mi0 witnessed by 〈M ′
α | α < θ〉. By µ-DAP over limit models,

we may assume that M ′ ∩M = Mi0 . Since θ = µ · θ, we may also arrange things so that the universe of M ′
α is

µ · α and α ∈ M ′
α+1, by renaming the elements of Mi0 if necessary.

We will construct an isomorphism between M and M ′ by induction on α < θ. Define an increasing and

continuous sequence of ≺K-mappings 〈hα | α < θ〉 such that

(1) hα : Miα+j → M ′
α+1 for some j < µ · ω

(2) h0 = idMi0
and

(3) α ∈ rg(hα+1).

For α = 0 take h0 = idMi0
. For α a limit ordinal let hα =

⋃

β<α hβ . Since M̄ is continuous, the induction

hypothesis gives us that hα is a ≺K-mapping from Miα into M ′
α allowing us to satisfy condition (1) of the

construction.

Suppose that hα has been defined. Let j < µ · ω be such that hα : Miα+j → M ′
α+1. There are two cases:

either α ∈ rg(hα) or α /∈ rg(hα). First suppose that α ∈ rg(hα). Since M ′
α+2 is universal over M ′

α+1, it is also

universal over hα(Miα+j). This allows us to extend hα to hα+1 : Miα+1
→ M ′

α+2.

Now consider the case when α /∈ rg(hα). By our choice of M ′ disjoint from M outside of Mi0 , we know that

α /∈ Miα+j . Thus ga-tp(α/Miα+j) is non-algebraic. For cleaner indices, let k = iα + j. Since 〈Mγ
k | γ < σ〉

witnesses that Mk is a (µ, σ)-limit model, by Assumption 2.8, there exists γ < σ such that ga-tp(α/Mk)
does not µ-split over Mγ

k . By relative fullness of (M̄, ā, N̄), there exists k′ with k ≤ k′ < iα+1 so that

(ga-tp(α/Mk),M
γ
k ) is parallel to (ga-tp(ak′/Mk′), Nk′). In particular

(∗) ga-tp(ak′/Mk) = ga-tp(α/Mk).

We can extend hα to an automorphism h′ of C. Since the domain of hα is Mk, an application of h′ to (∗) gives

us

(∗∗) ga-tp(h′(ak′)/hα(Mk)) = ga-tp(α/hα(Mk)).

Since M ′
α+2 is universal over hα(Mk) and k′ < iα+1, we can actually extend hα to hα+1 : Miα+1

→ M ′
α+2

in such a way that hα+1(ak′) = α
Let h :=

⋃

α<θ hα. Clearly h : M → M ′. To see that h is an isomorphism, notice that condition (3) of the

construction forces h to be surjective since the universe of M ′ is µ · θ = θ. ⊣
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Remark 4.7 The referee has pointed out that our proof of Theorem 4.6 gives a slightly stronger result. In

particular, the hypothesis of Theorem 4.6 can be weakened by replacing the relatively full tower with a tower that

has the property that for every γ < σ and every p ∈ ga-S(Mi) with iα ≤ i < iα+1, there exists j ∈ I with

i ≤ j < iα+1 such that aj |= p. Constructing a <-increasing chain of towers satisfying this weaker condition

becomes problematic at limit stages, so we will ultimately need to work with relatively full towers.

5 Uniqueness of Limit Models

We now begin the construction of our array of models and M∗. Let θ be an ordinal as in the previous section.

The goal is to build an array of models with ω + 1 rows so that the bottom row of the array is a relatively full

tower indexed by a set of cofinality θ. To do this, we will be adding elements to the index set of towers row by

row so that at stage n of our construction the tower that we build is indexed by In described here:

Notation 5.1 The index sets In will be defined inductively so that 〈In | n < ω + 1〉 is an increasing and

continuous chain of well-ordered sets. We fix I0 to be an index set of order type θ + 1 and will denote it by

〈iα | α ≤ θ〉. We will refer to the members of I0 by name in many stages of the construction. These indices

serve as anchors for the members of the remaining index sets in the array. Next we demand that for each n < ω,

{j ∈ In | iα < j < iα+1} has order type µ · n such that each In has supremum iθ. An example of such

〈In | n ≤ ω〉 is In = θ × (µ · n)
⋃

{iθ} ordered lexicographically, where iθ is an element ≥ each i ∈
⋃

n<ω In.

Also, let I =
⋃

n<ω In.

To prove the main theorem of the paper, we need to prove that for a fixed M ∈ K of cardinality µ any (µ, θ)-
limit and (µ, ω)-limit model over M are isomorphic over M . Let us begin by fixing a limit model M ∈ Kµ

and θ such that µ · θ = θ. We define by induction on n ≤ ω a <-increasing and continuous sequence of towers

(M̄, ā, N̄)n such that

(1) (M̄, ā, N̄)0 is a tower with M0
0 = M .

(2) (M̄, ā, N̄)n ∈ K∗
µ,In

.

(3) For every (p,N) ∈ St(Mn
i ) with iα ≤ i < iα+1 there is j ∈ In+1 with i < j < iα+1 so that

(ga-tp(aj/M
n+1
j ), Nn+1

j ) and (p,N) are parallel.

Given M , we can find a tower (M̄, ā, N̄)0 ∈ K∗
µ,I0

with M0
0 = M because of the existence of universal

extensions and because of Assumption 2.8.4b. The last pages (Page 13 onward) of this section provide a picture

of this construction of an array of models, explanations for carrying out the final stage of the construction and a

proof that this is sufficient to prove the main theorem. We spend most of the remainder of this section verifying

that it is possible to carry out the induction step of the construction. This is a particular case of Theorem II.7.1

of [Va1]. But since our context is somewhat easier, we do not encounter so many obstacles as in [Va1] and we

provide a different, more direct proof here:

Theorem 5.2 (Dense <-extension property) Given (M̄, ā, N̄) ∈ K∗
µ,In

there exists (M̄ ′, ā, N̄) ∈ K∗
µ,In+1

such that (M̄, ā, N̄) < (M̄ ′, ā, N̄) and for each (p,N) ∈ St(Mi) with iα ≤ i < iα+1, there exists j ∈ In+1

with i < j < iα+1 such that (ga-tp(aj/M
′
j), Nj) and (p,N) are parallel. Here, the Mi’s are defined for i ∈ In

and the M ′
j are defined for j ∈ In+1.

Before we prove Theorem 5.2, we prove a slightly weaker extension property, one in which we can find an

extension of the tower (M̄, ā, N̄) of the same index set. Variations of this lemma appear in various places for

instance Theorem II.8.2 of [Va1].

Lemma 5.3 (<-extension property) Given (M̄, ā, N̄) ∈ K∗
µ,I , there exists a (discontinuous) <-extension

(M̄ ′, ā, N̄) ∈ K∗
µ,I of (M̄, ā, N̄) such that for each i, M ′

i is a (µ, µ)-limit model over
⋃

j<i M
′
j .

P r o o f. Given (M̄, ā, N̄) ∈ K∗
µ,I we will define a <-extension (M̄ ′, ā, N̄) by induction on i ∈ I . Notice that

a straightforward induction proof is not sufficient here for if we have defined 〈Mj | j ≤ i〉 as a tower extending

(M̄, ā, N̄) restricted to 〈j | j ≤ i〉 and are at the stage of defining M ′
i+1, we may be faced with an impossible

task: during our construction we may have inadvertently placed inside M ′
i witnesses for the splitting of the type

of ai+1 over Ni+1; this would prevent us from extending M ′
i to M ′

i+1 so that ga-tp(ai+1/M
′
i+1) does not µ-split
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10 R. Grossberg, M. VanDieren, and A. Villaveces: Uniqueness of Limit Models under Amalgamation

over Ni+1. Therefore, we will instead define approximations, M+
i , for M ′

i by induction on i ∈ I and at each

stage i of the induction we will make adjustments of the previously defined approximation M+
j for j < i. This

leads us into defining M+
i and a directed system of ≺K-embeddings 〈fj,i | j < i ∈ I〉 such that for i ∈ I ,

Mi ≺K M+
i for j ≤ i, fj,i : M

+
j → M+

i and fj,i ↾ Mj = idMj
. We further require that M+

i+1 is a limit model

over fi,i+1(M
+
i ) and ga-tp(ai/fi,i+1(M

+
i )) does not µ-split over Ni. When i is a limit, we choose M+

i to be a

(µ, µ)-limit model over
⋃

j<i fj,i(M
+
j ).

This construction is done by induction on i ∈ I using the existence of non-µ-splitting extensions. Suppose

that 〈M+
k | k ≤ i〉 and 〈fk,l | k ≤ l ≤ i〉 have been defined. We explain how to define M+

i+1 and fi,i+1. The

rest of the definitions required for the i+1st stage are dictated by the requirement that we are forming a directed

system. Let M∗
i+1 be a limit model over both M+

i and Mi+1. Since ga-tp(ai+1/Mi+1) does not µ-split over

Ni+1, by Theorem 2.4 there exists f ∈ AutMi+1
(C) so that ga-tp(ai+1/f(M

∗
i+1)) does not µ-split over Ni+1.

Take M+
i+1 := f(M∗

i+1) and fi,i+1 := f ↾ M+
i .

At limit stages we take direct limits so that fj,i ↾ Mj = idMj
. This is possible by Subclaims II.7.10 and

II.7.11 of [Va1] or see Claim 2.17 of [GrVa2]. Take an extension of the direct limit that is both universal over

Mi and is a (µ, µ)-limit over
⋃

j<i fj,i(Mj) and call this M+
i . Notice that we do not obtain a continuous tower;

continuity will be recovered later using reduced towers.

Let fj,sup{I} and M ′
sup{I} be the direct limit of this system such that fj,sup{I} ↾ Mj = idMj

. We can now

define M ′
j := fj,sup{I}(M

+
j ) for each j ∈ I . By construction, we have that ga-tp(ai/fi,i+1(M

+
i )) does not

µ-split over Ni. Mapping into Msup(I) by fi+1,sup(I), and noting that both ai and Ni are fixed by fi+1,sup(I), we

conclude that ga-tp(ai/M
′
i) does not µ-split over Ni as required.

⊣

We can now use the extension property for towers of the same index set from Lemma 5.3 to prove the dense

extension property which allows us to grow the index set as we add elements to the models in the extension.

Proof of Theorem 5.2. Given (M̄, ā, N̄) ∈ K∗
µ,In

, let (M̄ ′, ā, N̄) ∈ K∗
µ,In

be an extension of (M̄, ā, N̄) as in

Lemma 5.3 so that each M ′
iα+1

is a (µ, µ)-limit model over
⋃

j<iα+1
M ′

j .

For each iα, let 〈M ′
l | l ∈ In+1, iα + µ · n < l < iα+1〉 witness that M ′

iα+1
is a (µ, µ)-limit model

over
⋃

j<iα+1
M ′

j . Without loss of generality we may assume that each of these M ′
l is a limit model over its

predecessor.

Fix {(p,N)kiα | 0 < k < µ} an enumeration of
⋃

{St(Mi) : i ∈ In, iα ≤ i < iα+1}. By our choice of In+1,

stability in µ, and Theorem 3.5, such an enumeration is possible. For each k < µ, we will consider the model

indexed by l = iα + µ+ k. These are the models in the sequence M̄ ′ which do not appear indexed in M̄ . Since

M ′
succIn+1

(l) is universal over M ′
l , there exists a realization in M ′

succIn+1
(l) of the non-µ-splitting extension of

pkiα to M ′
l . Let al be such a realization and take Nl := N l

iα
.

Notice that (〈M ′
j | j ∈ In+1〉, 〈aj | j ∈ In+1〉, 〈Nj | j ∈ In+1〉) provide the desired extension of (M̄, ā, N̄)

in K∗
µ,In+1

. ⊣

We are almost ready to carry out the complete construction. However, notice that Theorem 5.2 does not

provide us with a continuous extension. Therefore the bottom (i.e. the ω + 1st) row of our array may not be

continuous which would prevent us from applying Theorem 4.6 to conclude that M∗ is a (µ, θ)-limit model.

So we will further require that the towers that occur in the rows of our array are all continuous. This can be

guaranteed by restricting ourselves to reduced towers as in [ShVi] and [Va1].

Definition 5.4 A tower (M̄, ā, N̄) ∈ K∗
µ,I is said to be reduced provided that for every (M̄ ′, ā, N̄) ∈ K∗

µ,I

with (M̄, ā, N̄) ≤ (M̄ ′, ā, N̄) we have that for every i ∈ I ,

(∗)i M ′
i ∩

⋃

j∈I

Mj = Mi.

If we take a <-increasing chain of reduced towers, the union will be reduced. The following fact appears as

Theorem 3.1.14 of [ShVi]. We provide the proof for completeness.
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Theorem 5.5 Let 〈(M̄, ā, N̄)γ ∈ K∗
µ,Iγ

| γ < β〉 be a <-increasing and continuous sequence of reduced

towers such that the sequence is continuous in the sense that for a limit γ < β, the tower (M̄, ā, N̄)γ is the union

of the towers (M̄, ā, N̄)ζ for ζ < γ. Then the union of the sequence of towers 〈(M̄, ā, N̄)γ ∈ K∗
µ,Iγ

| γ < β〉 is

itself a reduced tower.

P r o o f. Suppose that (M̄, ā, N̄)β is not reduced. Let (M̄ ′, ā, N̄) ∈ K∗
µ,Iβ

witness this. Then there exists an

i ∈ Iβ and an element b such that b ∈ (M ′
i∩

⋃

j∈Iβ
Mβ

j )\M
β
i . There exists γ < β such that b ∈

⋃

j∈Iγ
Mγ

j \M
γ
i .

Notice that (M̄ ′, ā, N̄) ↾ Iγ witnesses that (M̄, ā, N̄)γ is not reduced. ⊣

The following appears in [ShVi] (Theorem 3.1.13).

Theorem 5.6 (Density of reduced towers) There exists a reduced <-extension of every tower in K∗
µ,I .

P r o o f. Assume for the sake of contradiction that no <-extension of (M̄, ā, N̄) is reduced. This allows

us to construct a ≤-increasing and continuous sequence of towers 〈(M̄, ā, N̄)ζ ∈ K∗
µ,I | ζ < µ+〉 such that

(M̄, ā, N̄)ζ+1 witnesses that (M̄, ā, N̄)ζ is not reduced. The construction is done inductively in the obvious way.

For each b ∈
⋃

ζ<µ+,i∈I M
ζ
i define

i(b) := min
{

i ∈ I | b ∈
⋃

ζ<µ+

⋃

j≤i

M ζ
j

}

and

ζ(b) := min
{

ζ < µ+ | b ∈ M ζ

i(b)

}

.

ζ(·) can be viewed as a function from µ+ to µ+. Since |I| = µ and each M ζ
i has cardinality µ, there exists a

club E = {δ < µ+ | ∀b ∈
⋃

i∈I M
δ
i , ζ(b) < δ}. Actually, all we need is that E is non-empty.

Fix δ ∈ E. By construction (M̄, ā, N̄)δ+1 witnesses the fact that (M̄, ā, N̄)δ is not reduced. So we may fix

i ∈ I and b ∈ M δ+1
i ∩

⋃

j∈I M
δ
j such that b /∈ M δ

i . Since b ∈ M δ+1
i , we have that i(b) ≤ i. Since δ ∈ E, we

know that there exists ζ < δ such that b ∈ M ζ

i(b). Because ζ < δ and i(b) ≤ i, this implies that b ∈ M δ
i as well.

This provides a contradiction since on the one hand b ∈ M δ
i and on the other hand, it is not. ⊣

By revising the proof of Lemma 5.3, we can conclude:

Lemma 5.7 Suppose that (M̄, ā, N̄) ∈ K∗
µ,I is reduced. If I0 is an initial segment of I , then (M̄, ā, N̄) ↾ I0

is reduced.

P r o o f. Suppose that (M̄, ā, N̄) ↾ I0 is not reduced. Let (M̄ ′, ā ↾ I0, N̄ ↾ I0) and δ < j ∈ I0 with

b ∈ (M ′
δ ∩Mj)\Mδ witness this. We can apply the inductive step of Lemma 5.3 (replacing an initial segment of

the construction there with M̄ ′), to find (M̄ ′′, ā, N̄) an extension of (M̄, ā, N̄) such that there is a ≺K-mapping

f from the models of M̄ ′ into the models of M̄ ′′ with f ↾ Mj = idMj
. Notice that (M̄ ′′, ā, N̄) and b, δ, j will

witness that (M̄, ā, N̄) is not reduced. ⊣

The following theorem makes use of the unidimensionality assumption. This generalizes a special case of

the uniqueness of limit models result in the series of papers [Va1] and [Va2] by replacing the assumption of

categoricity in µ+ with the weaker unidimensionality assumption. Further work of VanDieren in [Va3] weakens

this assumption.

Theorem 5.8 (Reduced towers are continuous) If (M̄, ā, N̄) ∈ K∗
µ,I is reduced, then it is continuous, namely

for each limit i in I , Mi =
⋃

j<i Mj .

Proof of Theorem 5.8. Suppose the theorem fails for µ. Let δ be the minimal limit ordinal such that there

exists an index set I and (M̄, ā, N̄) ∈ K∗
µ,I a reduced tower which is discontinuous at the δth element of I . We

can apply Lemma 5.7 to assume without loss of generality that I = δ + 1. Fix (M̄, ā, N̄) ∈ K∗
µ,δ+1 reduced

and discontinuous at δ with b ∈ Mδ\
⋃

i<δ Mi. By Theorem 2.6, there exists a minimal type p over M0. So

by our unidimensionality Assumption 3, we know that the Galois type of p must be realized in Mδ\
⋃

i<δ Mi.

Therefore, we may assume that b |= p.
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Claim 5.9 There exists a <-extension of (M̄, ā, N̄) ↾ δ, containing b. We will refer to such a tower in K∗
µ,δ as

(M̄ ′, ā ↾ δ, N̄ ↾ δ). Furthermore, b may be assumed to be an element of M ′
0.

Proof of Claim 5.9. We use the minimality of δ and the <-extension property to find a tower of length δ,

(M̄∗, ā ↾ δ, N̄ ↾ δ), that is a proper extension of (M̄, ā, N̄) ↾ δ. By the definition of <-extension, M∗
0 is

universal over M0; so we can find b∗ ∈ M∗
0 \M0 realizing p.

Notice that by Lemma 5.7, (M̄, ā, N̄) ↾ δ is reduced. Thus we can conclude that b∗ ∈ M∗
0 \

⋃

i<δ Mi

and ga-tp(b∗/
⋃

i<δ Mi) is non-algebraic. Since p is minimal, it must be the case that ga-tp(b∗/
⋃

i<δ Mi) =
ga-tp(b/

⋃

i<δ Mi). Let f ∈ Aut⋃
i<δ Mi

C take b∗ to b.

Consider the image of (M̄∗, ā, N̄) under f ; denote this tower by (M̄ ′, ā, N̄). Because f fixes (M̄, ā, N̄) ↾ δ,

(M̄ ′, ā, N̄) is an extension of (M̄, ā, N̄) ↾ δ as required. ⊣

Using (M̄ ′, ā, N̄) from Claim 5.9, define M ′
δ to be a limit model of cardinality µ containing

⋃

i<δ M
′
i so that it

is universal over Mδ. Notice that the tower (M̄ ′ 〈̂M ′
δ〉, ā, N̄) extends (M̄, ā, N̄) with b ∈ (M ′

0\
⋃

i<δ Mi)
⋂

Mδ .

This contradicts our assumption that (M̄, ā, N̄) is reduced and completes the proof of Theorem 5.8.

⊣

Corollary 5.10 In Theorem 5.2, we can choose (M̄, ā, N̄) to be reduced, and hence continuous.

P r o o f. As in the proof of Theorem 5.2, first take (M̄ ′′, ā′, N̄ ′) extending (M̄, ā, N̄) to realize the required

the strong types. By Theorem 5.6 we can find a reduced extension (M̄ ′, ā′, N̄ ′) of (M̄ ′′, ā′, N̄ ′), which realizes

the same required strong types. By Theorem 5.8, (M̄ ′, ā′, N̄ ′) is continuous. ⊣

Now we return to the construction in the proof of the Main Theorem.
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(M̄, ā, N̄)n

(M̄, ā, N̄)n+1

Mn
iα+1

Mn+1
iα

Mn+1
iα+1

Mn+1
s(iα)

µ

Mn+2
iα

Mn+2
iα+1

(M̄, ā, N̄)0 i0 i1

(M̄, ā, N̄)1

iα iα+1

M
∗

(θ × (ω + 1))-towers

Mn
iα

µ · (n+ 1)

µ · (n+ 1)

Corollary 5.10 tells us that the construction of our array of models as an increasing sequence of towers is

possible in successor cases. In the limit case, let Iω =
⋃

m<ω Im, and simply define (M̄, ā, N̄)ω ∈ K∗
µ,Iω

to be

the union of the towers (M̄, ā, N̄)n.

To see that the construction satisfies our requirements, first notice that the last column of the array, 〈Mn
iθ

| n <
ω〉, witnesses that M∗ is a (µ, ω)-limit model. In light of Theorem 4.6 we need only verify that the last row of

the array is a relatively full tower of cofinality θ.

Claim 5.11 (M̄, ā, N̄)ω is full relative to (Mn
i )n<ω,i∈Iω .

P r o o f. Given i with iα ≤ i < iα+1, let (p,Mn
i ) be some strong type in St(Mω

i ). Notice that by mono-

tonicity of non-splitting (p ↾ Mn+1
i ,Mn

i ) ∈ St(Mn+1
i ). By construction there is a j ∈ In+1 with i < j < iα+1

such that (ga-tp(aj/M
n+2
j ), Nn+2

j ) is parallel to p ↾ Mn+1
i . We will show that (ga-tp(aj/M

ω
j ), N

ω
j ) is parallel

to (p,N).
First notice that ga-tp(aj/M

ω
j ) does not µ-split over Nω

j = Nn+2
j because (M̄, ā, N̄)ω is a tower. Since

(ga-tp(aj/M
n+2
j ), Nn+2

j ) is parallel to (p ↾ Mn+1
i ,Mn

i ) there is q ∈ ga-S(Mω
j ) such that q extends both

p ↾ Mn+1
i and ga-tp(aj/M

n+2
j ). By two separate applications of the uniqueness of non-µ-splitting extensions

we know that q ↾ Mω
i = p and q = ga-tp(aj/M

ω
j ). To see that (q,Nω

j ) is parallel to (p,Mn
i ), let M ′ be

an extension of Mω
j of cardinality µ. Since (p ↾ Mn+1

i ,Mn
i ) and (q ↾ Mn+2

j , Nn+2
j ) are parallel, there is

q′ ∈ ga-S(M ′) extending both p ↾ Mn+1
i and q ↾ Mn+2

j and not µ-splitting over both Mn
i and Nn+2

j . By the

uniqueness of non-µ-splitting extensions, we have that q′ is also an extension of q and p. Thus q′ witnesses that

(q,Nω
j ) and (p,Mn

i ) are parallel. ⊣
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This completes the proof of Theorem 1.9.

6 Concluding remarks

In this section we discuss other results related to the question of the uniqueness of limit models. First to un-

derstand the boundaries of the question of the uniqueness of limit models, consider the elementary case. Limit

models are not necessarily unique even for first order complete stable theories.

Theorem 6.1 Suppose T is a complete, stable theory. Let µ ≥ 2|T | such that µ|T | = µ. If T is not superstable,

then no (µ, ω)-limit model is isomorphic to any (µ, κ)-limit model for any κ with cf(κ) ≥ κ(T ).

P r o o f. Let T be a stable, but not superstable, complete theory, and fix κ and µ as in the statement of the

theorem. As T is not superstable, by [Sh e, Lemma VII, 3.5 (2)], for λ := (2µ)+, there are 〈āη|η ∈ ω ≥λ〉 and

〈ϕn(x̄, ȳn)|n < ω〉 such that for every n < ω, ν ∈ nλ, and all η ∈ ωλ,

(C |= ϕn[āη, āν ]) ⇐⇒ ν = η ↾ n.

By induction on n < ω define 〈Mn|n < ω〉 all of cardinality µ and 〈ηn, νn|n < ω〉 such that

(1) Mn+1 is universal over Mn and saturated of cardinality µ,

(2) ηn+1 > ηn, νn+1 > ηn, and ηn+1 6= νn+1,

(3) āηn+1
, āνn+1

∈ Mn+1 and

(4) tp(āηn+1
/Mn) = tp(āνn+1

/Mn).

THIS CONSTRUCTION IS ENOUGH: Let N ′ |= T be a (µ, κ)-limit over M0. By Theorem 1.6, N ′ must

be saturated. Let N =
⋃

n<ω Mn. Clearly N is a (µ, ω)-limit over M0. To conclude that N and N ′ are non-

isomorphic, it is enough to show that N is not saturated. Consider p := {ϕn+1(x̄; āηn+1
)∧¬ϕn+1(x̄; āνn+1

)|n <
ω}. The set of formulas p is a type since it is realized in C by āη where η :=

⋃

n<ω ηn. Notice that N cannot

satisfy p. If ā ∈ N would satisfy p, then Mn realizes p for some n < ω. Thus by condition (4), we would have

C |= ϕn+1[ā, āηn+1
] ⇐⇒ C |= ϕn+1[ā, āνn+1

]

which would contradict the assumption that ā satisfies p.

THIS IS POSSIBLE: By stability and µ|T | = µ, using the proof of [Sh e, Th. III 3.12], every model of

cardinality µ has a saturated proper elementary extension. Let M0 be a saturated model of cardinality µ and

take η0 = ν0 := 〈〉. Given ηn, νn,Mn, using Theorem 1.5 let M∗ be universal over Mn of cardinality µ. Let

M∗∗ ≻ M∗ of cardinality µ containing āηn
and āνn

. By [Sh e, Th. III 3.12], we can take Mn+1 ≻ M∗∗ saturated

of cardinality µ. Clearly it is universal over Mn. For n < ω, consider Fn(α) := tp(āηnˆα/Mn). As λ is regular

and λ > |S(Mn)|, there is S ⊂ λ of cardinality λ such that α 6= β ∈ S ⇒ Fn(α) = Fn(β). Pick α 6= β ∈ S
and define ηn+1 := ηn̂ α and νn+1 := ηn̂ β. ⊣

In the non-elementary setting, many authors have considered approximations to Theorem 1.9. Several authors

have proved and used the uniqueness of limit models in AECs under the assumption of categoricity: [Sh 394]

[Ba], [KoSh], [Sh 576], [ShVi], [Va1], and [Va2]. Also, Shelah’s [Sh i] examines (as an aside) the uniqueness of

limit models in good frames. Below we briefly describe the results and techniques of these papers and distinguish

them from our context.

In Theorem 6.5 of [Sh 394], Shelah claims uniqueness of limit models of cardinality µ for classes with the

amalgamation property under little more than categoricity in some λ > µ > LS(K) together with existence

of arbitrarily large models. Shelah’s claim in Theorem 6.5 of [Sh 394] (isomorphism over the base) seems too

strong for the proof that he suggests. Instead, he proves that (µ, κ)-limit models are Galois saturated, which

implies uniqueness only over models of size < µ. The argument in [Sh 394] depends in a crucial way on an

analysis of Ehrenfeucht-Mostowski models. In our paper, we cannot employ Ehrenfeucht-Mostowski machinery

because we do not assume here categoricity or the existence of models above the Hanf number. For an exposition

of this result see [Ba].
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Kolman and Shelah in [KoSh] prove the uniqueness of limit models of cardinality µ in λ-categorical AECs

that are axiomatized by a Lκ,ω-sentence where λ > µ and κ is a measurable cardinal. Then Kolman and Shelah

use this uniqueness result to prove that amalgamation occurs below the categoricity cardinal in Lκ,ω-theories with

κ measurable. Both the measurability of κ and the categoricity are used integrally in their proof of uniqueness.

Shelah in [Sh 576] (see Claim 7.8) proved a special case of the uniqueness of limit models under the assump-

tion of µ-AP, categoricity in µ and in µ+ as well as assuming Kµ++ 6= ∅. In that paper Shelah needs to produce

reduced types and use some of their special properties.

In [ShVi], Shelah and Villaveces attempted to prove a uniqueness theorem without assuming any form of

amalgamation; however, they assumed that K is categorical in some sufficiently large λ, that every model in K

has a proper extension and that 2λ < 2λ
+

. VanDieren in [Va1] and [Va2] managed to prove the uniqueness

statement under the assumptions of [ShVi] together with the additional assumptions that the class is categorical

in µ+ and Kam := {M ∈ Kµ | M is an amalgamation base} is closed under unions of increasing ≺K chains.

In [Sh i] the most important new concept is that of a λ-good frame, which is an axiomatization of the notion

of superstability, with hypothesis on just one cardinal λ. Its full definition is more than a page long. Shelah’s

assumptions on the AEC include, among other things, the amalgamation property, the existence of a forking like

dependence relation and of a family of types playing a role akin to that of regular types in first order superstable

theories – Shelah calls them bs-types. One of the axioms of a good frame is the existence of a non-maximal

super-limit model. This axiom along with µ-stability implies the uniqueness of limit models of cardinality µ. In

Lemma II.4.8 of [Sh i] he states that in a good frame, limit models are unique. (While we don’t claim that we

understand Shelah’s proof or believe in its correctness, he explicitly uses the interplay between bs-types and the

forking notion as well as no long forking chains and continuity of forking.)

The formal differences between our approach and Shelah’s [Sh i] can be summarized as follows:

(1) Suppose that K is an AEC with no maximal models satisfying the JEP and amalgamation property and is

categorical in λ+ for some λ > LS(K); we then get uniqueness of limit models. By way of comparison,

in order to get a uniqueness of limit models, Shelah needs results of [Sh 576] (a 99 pages-long paper) and

significant parts of his book [Sh i] along with the stronger assumptions of categoricity in several consecutive

cardinals together with several additional set-theoretic axioms. All our results are in ZFC.

(2) When specialized to the case where K is the class of models of a complete first order theory T , Shelah’s

proof in [Sh i, Lemma II.4.8] really uses the full power of assuming that T is superstable, in particular

symmetry of the dependence relation. The proof of uniqueness in this paper just needs, in addition to the

stability and unidimensionality of T , no splitting chains of length ω. As the main interest of our theorem

is for the general case of AEC, rather than just for first order theories, the difference between this paper

and [Sh i, Lemma II.4.8] is clearer when understood in light of the greater picture.

We are particularly interested in Theorem 1.9 not only for the sake of generalizing Shelah’s result from [Sh

576] but due to the fact that the first and second author originally used an earlier draft of this uniqueness theorem

(which did not assume unidimensionality) along with tools from [Sh 394] in a crucial step to prove:

Theorem 6.2 (Upward categoricity theorem, [GrVa2]3) Suppose that K has arbitrarily large models, is χ-

tame and satisfies the amalgamation and joint embedding properties. Let λ be such that λ > LS(K) and λ ≥ χ.

If K is categorical in λ+ then K is categorical in all µ ≥ λ+.

After the addition of the unidimensionality assumption in 2014 to resolve an error found in 2012 in the proof

of Theorem 5.8, Grossberg and VanDieren have revisited the proof of Theorem 6.2 to insure that the upward

categoricity transfer still holds [GrVa3]. Grossberg and VanDieren’s initial use of the uniqueness of limit models

in this theorem hints at a connection between classical definitions of superstability in first order logic and the

uniqueness of limit models. This link is explored in further work of VanDieren [Va3].

It is worth mentioning that the links between classical notions of superstability from first order logic and the

uniqueness of limit models have also produced interesting results in the connections between “continuous model

theory” and so-called “metric AECs”. Villaveces and Zambrano [ViZa1] have adapted our proofs and notions of

independence used here to the metric AEC context, under the stronger hypothesis of categoricity ( [ViZa2] but

3 Some time after Grossberg and VanDieren announced Theorem 6.2, Baldwin circulated an alternative proof of Theorem 6.2 that

eventually appeared in [Ba]. Lessmann in [Le] proved the result for K with LS(K) = ℵ0 beginning with categoricity in ℵ1.
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for the wider ambit of metric AECs) and at the same time explored various consequences of assuming forms of

uniqueness of limit models in that metric (continuous) context.
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