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ABSTRACT. We prove the statement from the title. As an application
we conclude (using a theorem of Shelah):

Corollary 0.1. Suppose V=L. Let T be a countable L, ., theory in
a countable language. If IRqy1,T) < 8o+l for every n < w then K :=
Mod(T)) is No-tame (i.e. for any p and q distinct Galois types there ezist
a countable M € IC such thatp [ M #q | M).

INTRODUCTION

In 1977 Shelah influenced by earlier work of Jénsson ([Jol] and [Jo2]) in
[Sh 88] introduced a semantic generalization of Keisler’s [Ke| treatment of
L, »(Q). It is the notion of Abstract Elementary Class:

Definition 0.2. Let K be a class of structures all in the same similarity
type L(K), and let <x be a partial order on K. The ordered pair (IC, <x) is
an abstract elementary class, AEC for short iff

A0 (Closure under isomorphism)
(a) For every M € K and every L(K)-structure N if M = N then
Nek.
(b) Let N1, Ny € K and M;, My € K such that there exist f; : N; &
M (for I = 1,2) satisfying f1 C fo then N7 <), No implies that
My <x Ms.
Al For all M,N € K if M <x N then M C N.

A2 Let M, N, M* be L(K)-structures. If M C N, M <x M* and N <
M* then M <x N.

A3 (Downward Lowenheim-Skolem) There exists a cardinal
LS(K) > R + | L(K)| such that for every
M € K and for every A C |M| there exists N € K such that N <
M, [N| 2 A and ||N| < |A| 4+ LS(K).

A4 (Tarski-Vaught Chain)
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(a) For every regular cardinal p and every
N e Kif {M; <¢ N : i < p} € K is <g-increasing (i.e.
1< ] = M; <g Mj) then Ui<uMi € K and Ui<#Mi < N.
(b) For every regular u, if {M; : i < u} C K is <g-increasing then
Ui<# M; € K and My < Ui<# M,;.
For M and N € K a monomorphism f : M — N is called an KC-embedding
iff f[M] <k N. Thus, M <x N is equivalent to “idys is a K-embedding
from M into N”.

Many of the fundamental facts on AECs were introduced in [Sh 88],
[Sh 394] and [Sh 576]. For a survey of some of the basics see [Grl] or Chapter
13 of [Cr2).

In the late seventies Shelah proposed the following as a test propblem:

Conjecture 0.3 (Shelah’s conjecture). Let ¢ € Ly, . be a sentence in a
countable language. If 1 is A-categorical in some A > 1, then v is p-
categorical for every p > 1, .

In 1990 Shelah proposed a generalization for AECs:

Conjecture 0.4 (see [Sh c|). Let K be an AEC. If K is categorical in some
A > Hanf(K) then K is p-categorical for every p > Hanf(KC).

Notation 0.5. Let i be a cardinal number and K a class of models. By
IC,, we denote the subclass {M € K : || M| = p}.

Two classical concepts that introduced in the fifties and studied exten-
sively by Fraisee, Robinson and Jonsson paly also an important role in AECs:

Definition 0.6. Let (I, <x) be an AEC nd suppose p > LS(K). We say
that IC has the p-amalgamation property iff for all M, € K, (for £ =0,1,2)
such that My < M, (for £ = 1,2) there exists N* € I, and fy : My — N*
(for ¢ = 1,2) such that f; | My = fo | My, i.e. the following diagram
commutes:

MILN*

4 s

M[) 1—d> MQ
My as above is called amalgamation base.
K has the p-joint mapping property iff for any M, € KC,, for £ = 1,2 there
are N* € K, and K-embeddings fy : My — N*.
We say that IC has the amalgamation property iff it has the y-amalgamation
property for all p > LS(K).

Using Axiom A0 from the definition of AEC it follows that both a stronger-
looking and a weaker-looking amalgamation properties are equivalent to
what we call above the amalgamation property:
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Lemma 0.7. Let KC be an AEC. The following are equivalent
(1) K has the p-amalgamation property,
(2) for all My € KC\y (for € = 0,1,2) such that My <x My (for £ =1,2)
there exists N* € K\, such that N* =x Na and there is f : M1 — N
satisfying f | Mo = idpyg,, i.e. the following diagram commutes:

Ml—f>N*

4 T

Moi—d>M2

(3) for all My € IC,, (for £ =0,1,2) such that go : Mo — My (for £ =1,2)
are K-embeddings there are N* € K, and there is f, : My — N*
satisfying fiogi | My = faooge [ My i.e. the next diagram commutes:

M1L>N*

A

Mo —= M

There are classical theorems of Robinson stating that if 7" is a complete
first-order theory than Mod(7') has both the amalgamation and the joint
mapping properties.

Galois types. In the theory of AECs the notion of complete first-order
type is replaced by that of a Galois type:

Definition 0.8. Let § > 0 be an ordinal. For triples (a;, M, N;) where
a € PN, and M; <¢ N; € K for | = 0,1, we define a binary relation
E as follows: (ag, M, No)E(a;, M, Ny) iff and there exists N € K and K-
mappings fo, f1 such that f; : Ny — N and f; | M = idy; for [ = 0,1 and
fo(ao) = fi(ar):

Ni —— N

fi
idT Th

MTN2

Remark 0.9. F is an equivalence relation on the class of triples of the form
(a, M,N) where M <x N, a € N and both M and N are amalgamation
bases. When N is not an amalgamation base, E may fail to be transitive,
but the transitive closure of E could be used instead.

Definition 0.10. Let § be a positive ordinal.

(1) For M,N € K and @ € ’N. The Galois type of @ in N over M,
written ga-tp(a/M, N), is defined to be (a, M,N)/E.
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(2) We abbreviate ga-tp(a/M, N) by ga-tp(a/M).
(3) For M € K,

ga-S”(M) := {ga-tp(a/M,N) | M < N € Kpy,a € °N}.

We write ga-S(M) for ga-S'(M).

(4) Let p := ga~tp(a/M’, N) for M <x M’ we denote by p | M the type
ga-tp(a/M, N). The domain of p is denoted by domp and it is by
definition M’.

(5) Let p = ga-tp(a/M, N), suppose that M <x N’ <x N andlet b € AN’
we say that b realizes p iff ga-tp(b/M,N') =p | M.

(6) For types p and ¢, we write p < ¢ if dom(p) C dom(q) and there exists
a realizing p in some N extending dom(p) such that (a,dom(p), N) =
¢ I dom(p).

In [GrV1] Grossberg and VanDieren introduced the notion of tameness as
a candidate for a further “reasonable” assumption an an AEC that permits
development of stability-like theory. In [GrV2] they recently proved the last
step Shelah’s categorcity conjecture for tame AECs with the amalgamation

property.
Definition 0.11. Let  be an AEC with the amalgamation property and
let x > LS(K). The class K is called x-tame iff

p#q = dN < M of cardinality < ysuchthatp [N #q [ N

for any M € K+, and every p,q € ga-S(M)
K is tame iff it is x-tame for some x < Hanf(K)
Suppose p > x. The class is (x, p)-tame iff

p#q = IN < M of cardinality < ysuchthatp [N #q [N
for any M € IC, and every p, q € ga-S(M)

In [Sh 394] Shelah proved that for an AEC with the amalgamation prop-
erty. If KC is A-categorical for some A > Hanf(K) then it is (< Hanf(K), p)-
tame for all Hanf(K) < p < A.

Definition 0.12. Let I be a subset of P(n) for some n < w that is down-
ward closed (i.e. t € I and s C t implies s € I).

For an S = (M | s € I) is an I-system iff for all s,t € T

(1) s <t = M, <x M; and

(2) Msny = Mg M,
S is a (A, I)-system iff in addition all the models are of cardinality .

Denote by

AS = U M
s<t

Some sets that are amalgamation bases play in important role since they
permit existence of Galois-types over them. Here is the formal
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Definition 0.13. Let £ be an AEC and suppose p > LS(K). Suppose
S=(Ms;eK,|sel)isan I-system for I C P~ (n) and t € P(n). For
A= AP we say that the set A is an amalgamation base iff for all M, € K
(for £ = 0,1,2) such that A C |M,| (for £ = 1,2) there exists N* € I,
such that N* >x Nz and there is a K-embedding f : M} — N satisfying
f I My=idy, i.e. the following diagram commutes:

By ida : A — M, we mean that My < M, holds for £ = 1,2 and every
s <t.

Notation 0.14. Denote by Ab(K) the class {A | A is an amalgamation base}.

Thus K has the A-amalgamation property iff £y C Ab(K).

Clearly under the assumption that K has the amalgamation property the
notion of Galois-type can be extended to include also ga-tp(a/A, M) for
A € Ab(K).

Examples 0.15. (1) Let T" be a complete first-order theory and € its
monster model. By Robinson’s consistency lemma any AP for an
I-system is an element of Ab(Mod(T))).

(2) On can prove that if K is the class of atomic models of a first-order
T satisfying all the assumptions of [Sh 87a] then

A e Ab(K) iff A is good.
1. THE BASIC FRAMEWORK AND CONCEPTS
Definition 1.1. A pair (K, L) is a weak forking notion iff K is an AEC,
where L is a three-place relation called non-forking a j B for @ € PM for

some M € K and A C B both elements of Ab(K) such that L is invariant

under automorphisms which means for any a, A, B as above for all N € I
containing A U B U a we have that
al B < f(a) L f(B) forall fe Aut(N).
A f(A)
the following conditions hold:

(0) Definability: There exists a cardinal number x such that the relation
a L B is (set-theoretically) definable over k i.e. thereis af.o. formula

A
©(x) in the similarity type LS(K) U {€, P,Q} such that

<H(X)7 €, K, Av Bv w(y»d}(y)Ele(L(IC)) }: (p[a] — a\j B for all finite a € a.
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(1) Disjointness:

al B = anBCcCA.
A

(2) Ewxistence: Let A € Ab(K) if a is such that there exists a model N
containing B but disjoint to @ then a .l A.

A
(3) Extension property: If a L B then for all C' € Ab(K) such that C O B
A

there exists @’ in some M € K such that

a' L C and ga-tp(a/A) = ga-tp(a/A).
A

(4) Symmetry: if a L Ab, then b L Aa.
A A

Examples 1.2.

(1) Let £ := Mod(7T') when T is a first-order complete theory, < is the
usual elementary submodel relation and L is the non-forking relation.

Clearly (K, <) is a weak forking notion iff 7" is simple. & in this case
is w(T).

(2) Let K := Mod(T") when T is a first-order complete theory, <i is
the usual elementary submodel relation and L is the non-dividing

relation. It is not difficult to show that (IC, <x) is a weak forking
notion with k = Ng iff T' is supersimple.

(3) Let T be a countable first-order theory, suppose that T'is Wg-atomically
stable, i.e. for R[p] < oo for every atomic type, let

K:={M ET | ga-tp(a/0, M) is an isolated type for every a € |M|}.

Where p € S(A) is called atomic iff AU{a} is atomic subset of € and
a = p. An atomic type is stationary iff there is a finite B C A and a
countable model N containing the set B and an atomic realization a
of p we have that

Rlp] = R[ga-tp(a/B)] = R[ga-tp(a/|N])].

An atomic set A C € is good iff for every consistent ¢(x;a) (with
a € A) there is an isolated type p € S(A) containing ¢(z;a).

Definition 1.3. For M € K% and a € M define by induction of «
when Rlp(x;a)] > «

a=0; M E Ixp(x;a)

For aa = 3+ 1;

There are b O a and 1(x;b) such that

Rlp(x;a) Ap(x;b)] >

Rlp(x;a) A "p(x;b)] > 3 and for every c O a
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there is x(x;c) complete s.t.
Rlp(x;a) Ax(x;0)] = 5
Notation 1.4.
D4 :={ga-tp(a/A) | AU {a} is atomic}.
Fact 1.5 ([Sh 87a]). If |[Da| < 2% then A is good.

(4) Let K be the class of elementary submodels of a sequentially ho-

mogeneous model. Let M; L My stand for ga-tp(a/Mz) does not
My
strongly-split over My for every a € | M.

Compare with XII.2 of [Sh c].
Definition 1.6 (Stable systems). Let (K, L) be weak forking notion. Sup-

pose I C P~ (n), suppose S = {M; | s € I} is a (A, n)-system. The system
S is called (A, n)-stable iff for every enumeration § := (s(i) | i < m) of I
(always without repetitions such that s(i1) <j s(iz) = i1 < i2)
(1) ss(i) is good for all 4,
(2) for every (b; € |Ms(i)| : i < j <m) there are
(b; € |Myi)ns(j)l = i < m) such that
(a)
gatp(bo, by, .. /[ Myl) = ga-tp(b b, . /|My])
and
(b) s(i) < s(j) = bj=hi
(3)

S
Ay L U M)
| My li<;

Axiom 1.7 (Generalized Symmetry). Let (K, L) be weak forking notion.
We say that (K, L) has the (A, n)-symmetry property iff for every I C

P~(n) and every S = {M, | s € I} (\,n)-system S. The system is (\,n)-
stable iff there exists an enumeration § of I satisfying requirements (1), (2)
and (3) of the previous definition.

CHECK if follows from symmetry.
Definition 1.8 (n-dimensional amalgamation). Let (K,.l) be weak fork-

ing notion, it has the (A, n)-existence property iff for every stable system
S = (M| s € P (n)) of models of cardinality A, there exists a model over
the set AS.

Definition 1.9 (systems are amalgamation bases). Let (IC, L) be weak fork-

ing notion, it has the (A, n)-non-uniqueness property iff for every stable sys-
tem S = (M, | s € P~(n)) we have that AS € Ab(K).
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Definition 1.10 (goodness). Let (IC, L) be weak forking notion, it has the
(A, n)-goodness property iff (K, L) has the (A, n)-symmetry property and for

every stable system S = (M, | s € P~ (n)) of models of cardinality A, has
the (A, n)-existence property and the (A, n)-non-uniqueness property.

Theorem 1.11 (characterizing goodness for f.0.). Let T be a complete count-
able f.o theory. Suppose T is superstable without dop If S = (Mg | s €
P~ (n)) is a stable system of models of cardinality Xy then TFAE

(1) the set AS is an amalgamation base
(2) Thee is a prime and minimal model over AS.

Definition 1.12 (excellence). Let (K,.L) be weak forking notion and let
A > LS(K). (K, L) is A-excellent iff (IC, L) has the (A, n)-goodness property

for every n < w. When A = LS(K) we say that K excellent instead of -
excellent.

Theorem 1.13 (Shelah 1982). Let T be a complete countable f.o theory.
Suppose T is superstable without dop. TFAE

(1) (Mod(T), <) is excellent.
(2) Mod(T) has the (Ro, 2)-goodness property.
(3) T does not have the otop.

For proof see [Sh c]....

Remark 1.14. Even for complete first-order theories in general the (A, n)-
amalgamation property may fail. Failure of (X, 3)-amalgamation is wit-
nessed by the example of a triangle-free random graph. Start with a triple
of models M;, i < 3, and fix some elements a; € M;. Take a triple of models
Moy, M2, and Mg that form an (Rg, P~ (3))-system over M;, and such that
M;; = R(a;,aj) for ¢ < j < 3. The system cannot be amalgamated since
the amalgam would witness a triangle.

COMMENT: this example was suggested by Shelah. It is an example
of a non-simple theory. It can be generalized to a failure of (Ng,n + 1)-
amalgamation by using n-dimensional tetrahedron-free graphs. Those ex-
amples will be simple first order theories.

There is an example of a triple of totally categorical theories T;;, ¢ < j < 3,
that are pairwise coherent, but cannot be “amalgamated” into a consistent
first order theory, i.e., 3-dimensional Robinson’s consistency test fails:

For i < 3, let T} be the theory of an infinite set. For i < 3, let L; :=
{P;, fi}, and T; says that the model is divided by P; into two parts of equal
size, as witnessed by f;. For i < j < 3, Tj; contains the union of 7; and
Tj, and says that P;(z) <= —Pj(x). Then clearly the union J Tij is
inconsistent.

Fact 1.15 (Hart and Shelah 1986). For everyn < w there is an Xg-atomically

stable class K, of atomic models of a countable f.o. theory such that IC is
has the (Ng, k)-goodness property for all k < n but is not excellent.

i<j<3
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Theorem 1.16. If (K, L) is excellent then it has the (X, n)-goodness prop-
erty for every n < w and every A > LS(K).
Proof. Will be added. -
K is
2. TAMENEsSS OF AEC WITH n-AMALGAMATION

In this section, K is an AEC with 2-amalgamation and arbitrarily large
models.

Theorem 2.1. If (K, L) is excellent then K is LS(K)-tame.

Proof. Let k be the least uncountable cardinal witnessing that K is not
LS(K)-tame.

Thus there are M, Ny, N1 be of size k, a; € N;, i = 0, 1, realize the same
Galois type over every K-submodel of M of size LS(K) such that the Galois
types of ag, a; over M are different. By renaming some of the elements we
may assume that Ng N N; = M.

By the existence and invariance properties we may assume that

Ny L Ny
M

Let x be a regular cardinal large enough so that Ny, No, M € H(y) and
also the definition of K is there as well as (H(x), €) reflects all the relevant
information e.g.

(H(x),€) = No L Ni.
M

Now pick {B; < (H(x),M, Ny, Ny ... €)|i < rk} such that

[Bi|| = |i| + LS(K) and (B; | j <) € Biy for all i < &

By minimality of x, the Galois types of ap, a; are the same over every
K-submodel of M of size less than x. To get a contradiction, we construct
a model Np; and embeddings fo : Ng — No1 and f1 : Ny — Npp that fix M
and map ag, a; to the same sequence.

Let {(M* N& Ni) | i < k} be the interpretation of the corresponding
models in B; so we have

(1) ag € N? for £ =0,1;

(2) M% N{, and N} are <j-increasing continuous chains of K-models

with union M, Ny, and Nj respectively.

(3) 207 = NG| = [ V]| = [i] + LS (), for all i < .

(4) Ni L Nj foralli <k, £=0,1.

Mi

By induction on i < £, define a model N}; and embeddings f{ : N} — N§;,
¢=0,1. In addition, we need to keep track of embeddings f¢} : N§; — Ng,
such that {N¢,, fo1 | i < j < a} form a direct system of K-submodels.
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Base i = 0: since the Galois types of ag, a; over M coincide, there is a
model NJ) and embeddings f{ : N{ — N, that map ag, a; together.

Successor step. We have fei : NZ — N}y for £ = 0,1. We also have the
identity embeddings M* — M**!, Ni — N;™' ¢ =0,1. the picture is:

i+1 i+1
M id Ny
. fi
(2 7
Ng Noy
id id /
id
f
; %
M : Ny

Let \ := |i| + LS(K). By 3-amalgamation, we get N};' and embeddings
fg“ : Ng“ — Néi"l for ¢ = 0, 1. For the direct system part, 3-amalgamation
gives NJi' =x N¢; and K-embeddings f; T : Njtt — N

Limit step. We have that {Ng,, f& | i < j < a} form an <x-chain.
Let Ng; be the union and f; be the union of the corresponding chain of
<x-embeddings. By Axiom A4 this is what we need.

Finally, the model N§;, and the maps f/, £ = 0,1 are as needed. The
image of ag under f§ is

fo(ao) = f1'(a1),

i.e., is the same as the image of a; under f7'. -
A similar proof gives several related theorems, e.g.:

Theorem 2.2. Let K be an AEC, and po > LS(K) if K has the (\,3)-AP
for all LS(K) < X\ < g then given M € K, for any p # q € ga-S(M) there
is N <x M of cardinality LS(KC) such thatp | N #q | N.

Theorem 2.3. Suppose that K has (o, n)-amalgamation property for all
n < w. Then K has (\,n)-amalgamation for all \.

Proof. The statement follows from the two claims:

Claim 2.4. Suppose that K has (A\,n + 1)-amalgamation. Then K has
(AT, n)-amalgamation.
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Claim 2.5. Suppose that X is a limit cardinal and K has (< A,n + 1)-
amalgamation. Then IC has (A, n)-amalgamation.

Indeed, (X, n)-amalgamation property for all n < w for K implies (Rq41,7)-
amalgamation property for all n < w for I by Claim 2.4. Claim 2.5 gives
(N, n)-amalgamation property for limit «, for all n < w.

Proof of Claim 2.4. Let {M; | s € P~(n)} C K\ be an incomplete n-
diagram of models in K. Our goal is to find M, and the embeddings
{fs|s Cpn-1n}, fs: Mg — M, that make the diagram commute.

Take {M! |i < AT, s € P~(n)} a resolution of the incomplete n-diagram.
We may assume that |M:| = X for all s, i.

By induction on i < A", define a model M and embeddings f! : M! —
M, for each s C,,_1 n. As before, we will keep track of embeddings fy :
M} — M, such that {M:, £/ | i < j < a} form a direct system of Ky-
submodels.

For the base case, we just take a completion of the n-diagram {M? | s €
P~(n)}. It exists since we are assuming (A, n + 1)-amalgamation.

Successor step. We have fi: M! — M. for s C,,_1 n. We also have the
identity embeddings M! — M1 s C n. By (\,n + 1)-amalgamation, we
get Mi+1 and embeddings fi+! : Mt — M+ for s C,,_1 n. For the direct
system part, (A, n + 1)-amalgamation also gives f2 : M: — Mi*1. So we let
= fio i for j < i, and fi'tt = fi

Limit step. We have that {M_, f;/ | i < j < a} form a direct system. Let
M be the direct limit of the system. As before, we define the maps from
M to MY by

fE=J e f
i<a
for s Cp,_1 1.
Finally, the model MT’L\+, and the maps fS/\Jr, § Cp—1 N, are as needed. -

Proof of Claim 2.5. Is almost exactly the same, the only difference is that
the cardinality of models in the resolution will be |i| 4+ Ng. =

_|
From the two theorems above we easily get

Corollary 2.6. If Ky, has n-amalgamation property for all n < w, then K
s No-tame.
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