

EXCELLENT ABSTRACT ELEMENTARY CLASSES ARE TAME

RAMI GROSSBERG AND ALEXEI S. KOLESNIKOV

ABSTRACT. We prove the statement from the title. As an application we conclude (using a theorem of Shelah):

Corollary 0.1. *Suppose $\mathbf{V}=\mathbf{L}$. Let T be a countable $L_{\omega_1, \omega}$ theory in a countable language. If $I(\aleph_{n+1}, T) < 2^{\aleph_{n+1}}$ for every $n < \omega$ then $\mathcal{K} := \text{Mod}(T)$ is \aleph_0 -tame (i.e. for any p and q distinct Galois types there exist a countable $M \in \mathcal{K}$ such that $p \upharpoonright M \neq q \upharpoonright M$).*

INTRODUCTION

In 1977 Shelah influenced by earlier work of Jónsson ([Jo1] and [Jo2]) in [Sh 88] introduced a semantic generalization of Keisler's [Ke] treatment of $L_{\omega_1, \omega}(\mathbf{Q})$. It is the notion of *Abstract Elementary Class*:

Definition 0.2. Let \mathcal{K} be a class of structures all in the same similarity type $L(\mathcal{K})$, and let $\prec_{\mathcal{K}}$ be a partial order on \mathcal{K} . The ordered pair $\langle \mathcal{K}, \prec_{\mathcal{K}} \rangle$ is an *abstract elementary class, AEC* for short iff

A0 (Closure under isomorphism)

- (a) For every $M \in \mathcal{K}$ and every $L(\mathcal{K})$ -structure N if $M \cong N$ then $N \in \mathcal{K}$.
- (b) Let $N_1, N_2 \in \mathcal{K}$ and $M_1, M_2 \in \mathcal{K}$ such that there exist $f_l : N_l \cong M_l$ (for $l = 1, 2$) satisfying $f_1 \subseteq f_2$ then $N_1 \prec_{\mathcal{K}} N_2$ implies that $M_1 \prec_{\mathcal{K}} M_2$.

A1 For all $M, N \in \mathcal{K}$ if $M \prec_{\mathcal{K}} N$ then $M \subseteq N$.

A2 Let M, N, M^* be $L(\mathcal{K})$ -structures. If $M \subseteq N$, $M \prec_{\mathcal{K}} M^*$ and $N \prec_{\mathcal{K}} M^*$ then $M \prec_{\mathcal{K}} N$.

A3 (Downward Löwenheim-Skolem) There exists a cardinal $\text{LS}(\mathcal{K}) \geq \aleph_0 + |L(\mathcal{K})|$ such that for every $M \in \mathcal{K}$ and for every $A \subseteq |M|$ there exists $N \in \mathcal{K}$ such that $N \prec_{\mathcal{K}} M$, $|N| \supseteq A$ and $\|N\| \leq |A| + \text{LS}(\mathcal{K})$.

A4 (Tarski-Vaught Chain)

Date: This very preliminary **draft** is from December 1, 2003.

1991 *Mathematics Subject Classification.* Primary: 03C45, 03C52. Secondary: 03C05, 03C95.

The research is part of the author's work towards his Ph.D. degree under direction of Prof. Rami Grossberg. I am deeply grateful to him for his guidance and support.

- (a) For every regular cardinal μ and every $N \in \mathcal{K}$ if $\{M_i \prec_{\mathcal{K}} N : i < \mu\} \subseteq \mathcal{K}$ is $\prec_{\mathcal{K}}$ -increasing (i.e. $i < j \implies M_i \prec_{\mathcal{K}} M_j$) then $\bigcup_{i < \mu} M_i \in \mathcal{K}$ and $\bigcup_{i < \mu} M_i \prec_{\mathcal{K}} N$.
- (b) For every regular μ , if $\{M_i : i < \mu\} \subseteq \mathcal{K}$ is $\prec_{\mathcal{K}}$ -increasing then $\bigcup_{i < \mu} M_i \in \mathcal{K}$ and $M_0 \prec_{\mathcal{K}} \bigcup_{i < \mu} M_i$.

For M and $N \in \mathcal{K}$ a monomorphism $f : M \rightarrow N$ is called an \mathcal{K} -embedding iff $f[M] \prec_{\mathcal{K}} N$. Thus, $M \prec_{\mathcal{K}} N$ is equivalent to “ id_M is a \mathcal{K} -embedding from M into N ”.

Many of the fundamental facts on AECs were introduced in [Sh 88], [Sh 394] and [Sh 576]. For a survey of some of the basics see [Gr1] or Chapter 13 of [Gr2].

In the late seventies Shelah proposed the following as a test problem:

Conjecture 0.3 (Shelah’s conjecture). *Let $\psi \in L_{\omega_1, \omega}$ be a sentence in a countable language. If ψ is λ -categorical in some $\lambda \geq \beth_{\omega_1}$ then ψ is μ -categorical for every $\mu \geq \beth_{\omega_1}$.*

In 1990 Shelah proposed a generalization for AECs:

Conjecture 0.4 (see [Sh c]). *Let \mathcal{K} be an AEC. If \mathcal{K} is categorical in some $\lambda \geq \text{Hanf}(\mathcal{K})$ then \mathcal{K} is μ -categorical for every $\mu \geq \text{Hanf}(\mathcal{K})$.*

Notation 0.5. Let μ be a cardinal number and \mathcal{K} a class of models. By \mathcal{K}_μ we denote the subclass $\{M \in \mathcal{K} : \|M\| = \mu\}$.

Two classical concepts that introduced in the fifties and studied extensively by Fraisse, Robinson and Jonsson play also an important role in AECs:

Definition 0.6. Let $\langle \mathcal{K}, \prec_{\mathcal{K}} \rangle$ be an AEC and suppose $\mu \geq \text{LS}(\mathcal{K})$. We say that \mathcal{K} has the μ -amalgamation property iff for all $M_\ell \in \mathcal{K}_\mu$ (for $\ell = 0, 1, 2$) such that $M_0 \prec_{\mathcal{K}} M_\ell$ (for $\ell = 1, 2$) there exists $N^* \in \mathcal{K}_\mu$ and $f_\ell : M_\ell \rightarrow N^*$ (for $\ell = 1, 2$) such that $f_1 \upharpoonright M_0 = f_2 \upharpoonright M_0$, i.e. the following diagram commutes:

$$\begin{array}{ccc} M_1 & \xrightarrow{f_1} & N^* \\ \text{id} \uparrow & & \uparrow f_2 \\ M_0 & \xrightarrow{\text{id}} & M_2 \end{array}$$

M_0 as above is called *amalgamation base*.

\mathcal{K} has the μ -joint mapping property iff for any $M_\ell \in \mathcal{K}_\mu$ for $\ell = 1, 2$ there are $N^* \in \mathcal{K}_\mu$ and \mathcal{K} -embeddings $f_\ell : M_\ell \rightarrow N^*$.

We say that \mathcal{K} has the *amalgamation property* iff it has the μ -amalgamation property for all $\mu \geq \text{LS}(\mathcal{K})$.

Using Axiom A0 from the definition of AEC it follows that both a stronger-looking and a weaker-looking amalgamation properties are equivalent to what we call above the amalgamation property:

Lemma 0.7. *Let \mathcal{K} be an AEC. The following are equivalent*

- (1) \mathcal{K} has the μ -amalgamation property,
- (2) for all $M_\ell \in \mathcal{K}_\mu$ (for $\ell = 0, 1, 2$) such that $M_0 \prec_{\mathcal{K}} M_\ell$ (for $\ell = 1, 2$) there exists $N^* \in \mathcal{K}_\mu$ such that $N^* \succ_{\mathcal{K}} N_2$ and there is $f : M_1 \rightarrow N^*$ satisfying $f \upharpoonright M_0 = \text{id}_{M_0}$, i.e. the following diagram commutes:

$$\begin{array}{ccc} M_1 & \xrightarrow{f} & N^* \\ \text{id} \uparrow & & \uparrow \text{id} \\ M_0 & \xrightarrow{\text{id}} & M_2 \end{array}$$

- (3) for all $M_\ell \in \mathcal{K}_\mu$ (for $\ell = 0, 1, 2$) such that $g_\ell : M_0 \rightarrow M_\ell$ (for $\ell = 1, 2$) are \mathcal{K} -embeddings there are $N^* \in \mathcal{K}_\mu$ and there is $f_\ell : M_\ell \rightarrow N^*$ satisfying $f_1 \circ g_1 \upharpoonright M_0 = f_2 \circ g_2 \upharpoonright M_0$ i.e. the next diagram commutes:

$$\begin{array}{ccc} M_1 & \xrightarrow{f_1} & N^* \\ g_1 \uparrow & & \uparrow f_2 \\ M_0 & \xrightarrow{g_2} & M_2 \end{array}$$

There are classical theorems of Robinson stating that if T is a complete first-order theory than $\text{Mod}(T)$ has both the amalgamation and the joint mapping properties.

Galois types. In the theory of AECs the notion of complete first-order type is replaced by that of a *Galois type*:

Definition 0.8. Let $\beta > 0$ be an ordinal. For triples (\bar{a}_l, M, N_l) where $\bar{a}_l \in {}^\beta N_l$ and $M_l \prec_{\mathcal{K}} N_l \in \mathcal{K}$ for $l = 0, 1$, we define a binary relation E as follows: $(\bar{a}_0, M, N_0)E(\bar{a}_1, M, N_1)$ iff and there exists $N \in \mathcal{K}$ and \mathcal{K} -mappings f_0, f_1 such that $f_l : N_l \rightarrow N$ and $f_l \upharpoonright M = \text{id}_M$ for $l = 0, 1$ and $f_0(\bar{a}_0) = f_1(\bar{a}_1)$:

$$\begin{array}{ccc} N_1 & \xrightarrow{f_1} & N \\ \text{id} \uparrow & & \uparrow f_2 \\ M & \xrightarrow{\text{id}} & N_2 \end{array}$$

Remark 0.9. E is an equivalence relation on the class of triples of the form (\bar{a}, M, N) where $M \prec_{\mathcal{K}} N$, $\bar{a} \in N$ and both M and N are amalgamation bases. When N is not an amalgamation base, E may fail to be transitive, but the transitive closure of E could be used instead.

Definition 0.10. Let β be a positive ordinal.

- (1) For $M, N \in \mathcal{K}$ and $\bar{a} \in {}^\beta N$. The *Galois type of \bar{a} in N over M* , written $\text{ga-tp}(\bar{a}/M, N)$, is defined to be $(\bar{a}, M, N)/E$.

(2) We abbreviate $\text{ga-tp}(\bar{a}/M, N)$ by $\text{ga-tp}(\bar{a}/M)$.
(3) For $M \in \mathcal{K}$,

$$\text{ga-S}^\beta(M) := \{\text{ga-tp}(\bar{a}/M, N) \mid M \prec N \in \mathcal{K}_{\|M\|}, \bar{a} \in {}^\beta N\}.$$

We write $\text{ga-S}(M)$ for $\text{ga-S}^1(M)$.

(4) Let $p := \text{ga-tp}(\bar{a}/M', N)$ for $M \prec_{\mathcal{K}} M'$ we denote by $p \upharpoonright M$ the type $\text{ga-tp}(\bar{a}/M, N)$. The *domain* of p is denoted by $\text{dom } p$ and it is by definition M' .
(5) Let $p = \text{ga-tp}(\bar{a}/M, N)$, suppose that $M \prec_{\mathcal{K}} N' \prec_{\mathcal{K}} N$ and let $\bar{b} \in {}^\beta N'$ we say that \bar{b} *realizes* p iff $\text{ga-tp}(\bar{b}/M, N') = p \upharpoonright M$.
(6) For types p and q , we write $p \leq q$ if $\text{dom}(p) \subseteq \text{dom}(q)$ and there exists \bar{a} realizing p in some N extending $\text{dom}(p)$ such that $(\bar{a}, \text{dom}(p), N) = q \upharpoonright \text{dom}(p)$.

In [GrV1] Grossberg and VanDieren introduced the notion of *tameness* as a candidate for a further “reasonable” assumption an an AEC that permits development of stability-like theory. In [GrV2] they recently proved the last step Shelah’s categoricity conjecture for tame AECs with the amalgamation property.

Definition 0.11. Let \mathcal{K} be an AEC with the amalgamation property and let $\chi \geq \text{LS}(\mathcal{K})$. The class \mathcal{K} is called χ -tame iff

$$p \neq q \implies \exists N \prec_{\mathcal{K}} M \text{ of cardinality } \leq \chi \text{ such that } p \upharpoonright N \neq q \upharpoonright N$$

for any $M \in \mathcal{K}_{>\chi}$ and every $p, q \in \text{ga-S}(M)$

\mathcal{K} is *tame* iff it is χ -tame for some $\chi < \text{Hanf}(\mathcal{K})$

Suppose $\mu > \chi$. The class is (χ, μ) -tame iff

$$p \neq q \implies \exists N \prec_{\mathcal{K}} M \text{ of cardinality } \leq \chi \text{ such that } p \upharpoonright N \neq q \upharpoonright N$$

for any $M \in \mathcal{K}_\mu$ and every $p, q \in \text{ga-S}(M)$

In [Sh 394] Shelah proved that for an AEC with the amalgamation property. If \mathcal{K} is λ -categorical for some $\lambda > \text{Hanf}(\mathcal{K})$ then it is $(< \text{Hanf}(\mathcal{K}), \mu)$ -tame for all $\text{Hanf}(\mathcal{K}) < \mu < \lambda$.

Definition 0.12. Let I be a subset of $\mathcal{P}(n)$ for some $n < \omega$ that is downward closed (i.e. $t \in I$ and $s \subseteq t$ implies $s \in I$).

For an $\mathbf{S} = \langle M_s \mid s \in I \rangle$ is an I -system iff for all $s, t \in I$

- (1) $s \leq t \implies M_s \prec_{\mathcal{K}} M_t$ and
- (2) $M_{s \cap t} = M_s \cap M_t$

\mathbf{S} is a (λ, I) -system iff in addition all the models are of cardinality λ .

Denote by

$$A_t^{\mathbf{S}} := \bigcup_{s < t} M_s$$

Some sets that are amalgamation bases play an important role since they permit existence of Galois-types over them. Here is the formal

Definition 0.13. Let \mathcal{K} be an AEC and suppose $\mu \geq \text{LS}(\mathcal{K})$. Suppose $\mathbf{S} = \langle M_s \in \mathcal{K}_\mu \mid s \in I \rangle$ is an I -system for $I \subseteq \mathcal{P}^-(n)$ and $t \in \mathcal{P}(n)$. For $A := A_t^\mathbf{S}$ we say that *the set A is an amalgamation base* iff for all $M_\ell \in \mathcal{K}_\mu$ (for $\ell = 0, 1, 2$) such that $A \subseteq |M_\ell|$ (for $\ell = 1, 2$) there exists $N^* \in \mathcal{K}_\mu$ such that $N^* \succ_{\mathcal{K}} N_2$ and there is a \mathcal{K} -embedding $f : M_1 \rightarrow N$ satisfying $f \upharpoonright M_0 = \text{id}_A$, i.e. the following diagram commutes:

$$\begin{array}{ccc} M_1 & \xrightarrow{f} & N^* \\ \text{id}_A \uparrow & & \uparrow \text{id}_{M_2} \\ A & \xrightarrow{\text{id}_A} & M_2 \end{array}$$

By $\text{id}_A : A \rightarrow M_\ell$ we mean that $M_s \prec_{\mathcal{K}} M_\ell$ holds for $\ell = 1, 2$ and every $s < t$.

Notation 0.14. Denote by $\text{Ab}(\mathcal{K})$ the class $\{A \mid A \text{ is an amalgamation base}\}$.

Thus \mathcal{K} has the λ -amalgamation property iff $\mathcal{K}_\lambda \subseteq \text{Ab}(\mathcal{K})$.

Clearly under the assumption that \mathcal{K} has the amalgamation property the notion of Galois-type can be extended to include also $\text{ga-tp}(\bar{a}/A, M)$ for $A \in \text{Ab}(\mathcal{K})$.

Examples 0.15. (1) Let T be a complete first-order theory and \mathfrak{C} its monster model. By Robinson's consistency lemma any $A_t^\mathbf{S}$ for an I -system is an element of $\text{Ab}(\text{Mod}(T))$.
(2) One can prove that if \mathcal{K} is the class of atomic models of a first-order T satisfying all the assumptions of [Sh 87a] then

$$A \in \text{Ab}(\mathcal{K}) \text{ iff } A \text{ is good.}$$

1. THE BASIC FRAMEWORK AND CONCEPTS

Definition 1.1. A pair $\langle \mathcal{K}, \perp \rangle$ is a *weak forking notion* iff \mathcal{K} is an AEC, where \perp is a three-place relation called *non-forking* $\bar{a} \perp B$ for $\bar{a} \in {}^\beta M$ for A some $M \in \mathcal{K}$ and $A \subseteq B$ both elements of $\text{Ab}(\mathcal{K})$ such that \perp is *invariant under automorphisms* which means for any \bar{a}, A, B as above for all $N \in \mathcal{K}$ containing $A \cup B \cup \bar{a}$ we have that

$$\bar{a} \perp B \iff \begin{array}{c} f(\bar{a}) \perp f(B) \\ A \qquad \qquad f(A) \end{array} \text{ for all } f \in \text{Aut}(N).$$

the following conditions hold:

(0) *Definability:* There exists a cardinal number κ such that the relation $\bar{a} \perp B$ is (set-theoretically) *definable over κ* i.e. there is a f.o. formula $\varphi(\mathbf{x})$ in the similarity type $\text{LS}(\mathcal{K}) \cup \{\in, P, Q\}$ such that

$$\langle H(\chi), \in, \kappa, A, B, \psi(\mathbf{y}) \rangle_{\psi(y) \in \text{Fml}(\text{L}(\mathcal{K}))} \models \varphi[\mathbf{a}] \iff \mathbf{a} \perp B \text{ for all finite } \mathbf{a} \in \bar{a}.$$

(1) *Disjointness:*

$$\bar{a} \perp \mathop{\perp}_{\bar{A}} B \implies \bar{a} \cap B \subseteq A.$$

(2) *Existence:* Let $A \in \text{Ab}(\mathcal{K})$ if \bar{a} is such that there exists a model N containing B but disjoint to \bar{a} then $\bar{a} \perp \mathop{\perp}_{\bar{A}} A$.

(3) *Extension property:* If $\bar{a} \perp \mathop{\perp}_{\bar{A}} B$ then for all $C \in \text{Ab}(\mathcal{K})$ such that $C \supseteq B$ there exists \bar{a}' in some $M \in \mathcal{K}$ such that

$$\bar{a}' \perp \mathop{\perp}_{\bar{A}} C \quad \text{and} \quad \text{ga-tp}(\bar{a}/A) = \text{ga-tp}(\bar{a}'/A).$$

(4) *Symmetry:* if $\bar{a} \perp \mathop{\perp}_{\bar{A}} A\bar{b}$, then $\bar{b} \perp \mathop{\perp}_{\bar{A}} A\bar{a}$.

Examples 1.2.

(1) Let $\mathcal{K} := \text{Mod}(T)$ when T is a first-order complete theory, $\prec_{\mathcal{K}}$ is the usual elementary submodel relation and \perp is the non-forking relation.

Clearly $\langle \mathcal{K}, \prec_{\mathcal{K}} \rangle$ is a weak forking notion iff T is simple. κ in this case is $\kappa(T)$.

(2) Let $\mathcal{K} := \text{Mod}(T)$ when T is a first-order complete theory, $\prec_{\mathcal{K}}$ is the usual elementary submodel relation and \perp is the non-dividing relation. It is not difficult to show that $\langle \mathcal{K}, \prec_{\mathcal{K}} \rangle$ is a weak forking notion with $\kappa = \aleph_0$ iff T is supersimple.

(3) Let T be a countable first-order theory, suppose that T is \aleph_0 -atomically stable, i.e. for $R[p] < \infty$ for every atomic type, let

$$\mathcal{K} := \{M \models T \mid \text{ga-tp}(\mathbf{a}/\emptyset, M) \text{ is an isolated type for every } \mathbf{a} \in |M|\}.$$

Where $p \in S(A)$ is called *atomic* iff $A \cup \{\mathbf{a}\}$ is atomic subset of \mathfrak{C} and $\mathbf{a} \models p$. An atomic type is *stationary* iff there is a finite $B \subseteq A$ and a countable model N containing the set B and an atomic realization \mathbf{a} of p we have that

$$R[p] = R[\text{ga-tp}(\mathbf{a}/B)] = R[\text{ga-tp}(\mathbf{a}/|N|)].$$

An atomic set $A \subseteq \mathfrak{C}$ is *good* iff for every consistent $\varphi(\mathbf{x}; \mathbf{a})$ (with $\mathbf{a} \in A$) there is an isolated type $p \in S(A)$ containing $\varphi(x; \mathbf{a})$.

Definition 1.3. For $M \in \mathcal{K}^a$ and $\mathbf{a} \in M$ define by induction of α when $R[\varphi(\mathbf{x}; \mathbf{a})] \geq \alpha$

$$\alpha = 0; \quad M \models \exists \mathbf{x} \varphi(\mathbf{x}; \mathbf{a})$$

For $\alpha = \beta + 1$;

There are $\mathbf{b} \supseteq \mathbf{a}$ and $\psi(\mathbf{x}; \mathbf{b})$ such that

$$R[\varphi(\mathbf{x}; \mathbf{a}) \wedge \psi(\mathbf{x}; \mathbf{b})] \geq \beta$$

$$R[\varphi(\mathbf{x}; \mathbf{a}) \wedge \neg \psi(\mathbf{x}; \mathbf{b})] \geq \beta \quad \text{and for every } \mathbf{c} \supseteq \mathbf{a}$$

there is $\chi(\mathbf{x}; \mathbf{c})$ complete s.t.

$$R[\varphi(\mathbf{x}; \mathbf{a}) \wedge \chi(\mathbf{x}; \mathbf{c})] \geq \beta$$

Notation 1.4.

$$D_A := \{\text{ga-tp}(\mathbf{a}/A) \mid A \cup \{\mathbf{a}\} \text{ is atomic}\}.$$

Fact 1.5 ([Sh 87a]). *If $|D_A| < 2^{\aleph_0}$ then A is good.*

(4) Let \mathcal{K} be the class of elementary submodels of a sequentially homogeneous model. Let $M_1 \perp M_2$ stand for $\text{ga-tp}(\mathbf{a}/M_2)$ does not strongly-split over M_0 for every $\mathbf{a} \in |M_1|$.

Compare with XII.2 of [Sh c].

Definition 1.6 (Stable systems). Let $\langle \mathcal{K}, \perp \rangle$ be weak forking notion. Suppose $I \subseteq \mathcal{P}^-(n)$, suppose $\mathbf{S} = \{M_s \mid s \in I\}$ is a (λ, n) -system. The system \mathbf{S} is called (λ, n) -stable iff for every enumeration $\bar{s} := \langle s(i) \mid i < m \rangle$ of I (always without repetitions such that $s(i_1) <_I s(i_2) \implies i_1 < i_2$)

- (1) $A_{s(i)}^{\mathbf{S}}$ is good for all i ,
- (2) for every $\langle \mathbf{b}_i \in |M_{s(i)}| \mid i \leq j \leq m \rangle$ there are $\langle \mathbf{b}'_i \in |M_{s(i) \cap s(j)}| \mid i \leq m \rangle$ such that

(a)

$$\text{ga-tp}(\mathbf{b}_0, \mathbf{b}_1, \dots / |M_\emptyset|) = \text{ga-tp}(\mathbf{b}'_0, \mathbf{b}'_1, \dots / |M_\emptyset|)$$

and

(b) $s(i) \leq s(j) \implies \mathbf{b}'_i = \mathbf{b}_i$.

(3)

$$A_{s(j)}^{\mathbf{S}} \perp_{|M_{s(j)}|} \bigcup_{i < j} |M_{s(i)}|.$$

Axiom 1.7 (Generalized Symmetry). *Let $\langle \mathcal{K}, \perp \rangle$ be weak forking notion.*

We say that $\langle \mathcal{K}, \perp \rangle$ has the (λ, n) -symmetry property iff for every $I \subseteq \mathcal{P}^-(n)$ and every $\mathbf{S} = \{M_s \mid s \in I\}$ (λ, n) -system \mathbf{S} . The system is (λ, n) -stable iff there exists an enumeration \bar{s} of I satisfying requirements (1), (2) and (3) of the previous definition.

CHECK if follows from symmetry.

Definition 1.8 (n -dimensional amalgamation). Let $\langle \mathcal{K}, \perp \rangle$ be weak forking notion, it has the (λ, n) -existence property iff for every stable system $\mathbf{S} = \langle M_s \mid s \in \mathcal{P}^-(n) \rangle$ of models of cardinality λ , there exists a model over the set $A_n^{\mathbf{S}}$.

Definition 1.9 (systems are amalgamation bases). Let $\langle \mathcal{K}, \perp \rangle$ be weak forking notion, it has the (λ, n) -non-uniqueness property iff for every stable system $\mathbf{S} = \langle M_s \mid s \in \mathcal{P}^-(n) \rangle$ we have that $A_n^{\mathbf{S}} \in \text{Ab}(\mathcal{K})$.

Definition 1.10 (goodness). Let $\langle \mathcal{K}, \perp \rangle$ be weak forking notion, it has the (λ, n) -goodness property iff $\langle \mathcal{K}, \perp \rangle$ has the (λ, n) -symmetry property and for every stable system $\mathbf{S} = \langle M_s \mid s \in \mathcal{P}^-(n) \rangle$ of models of cardinality λ , has the (λ, n) -existence property and the (λ, n) -non-uniqueness property.

Theorem 1.11 (characterizing goodness for f.o.). *Let T be a complete countable f.o theory. Suppose T is superstable without dop. If $\mathbf{S} = \langle M_s \mid s \in \mathcal{P}^-(n) \rangle$ is a stable system of models of cardinality \aleph_0 then TFAE*

- (1) *the set $A_n^{\mathbf{S}}$ is an amalgamation base*
- (2) *Thee is a prime and minimal model over $A_n^{\mathbf{S}}$.*

Definition 1.12 (excellence). Let $\langle \mathcal{K}, \perp \rangle$ be weak forking notion and let $\lambda \geq \text{LS}(\mathcal{K})$. $\langle \mathcal{K}, \perp \rangle$ is λ -excellent iff $\langle \mathcal{K}, \perp \rangle$ has the (λ, n) -goodness property for every $n < \omega$. When $\lambda = \text{LS}(\mathcal{K})$ we say that \mathcal{K} excellent instead of λ -excellent.

Theorem 1.13 (Shelah 1982). *Let T be a complete countable f.o theory. Suppose T is superstable without dop. TFAE*

- (1) $\langle \text{Mod}(T), \prec \rangle$ is excellent.
- (2) $\text{Mod}(T)$ has the $(\aleph_0, 2)$ -goodness property.
- (3) T does not have the otop.

For proof see [Sh c]....

Remark 1.14. Even for complete first-order theories in general the (λ, n) -amalgamation property may fail. Failure of $(\aleph_0, 3)$ -amalgamation is witnessed by the example of a triangle-free random graph. Start with a triple of models M_i , $i < 3$, and fix some elements $a_i \in M_i$. Take a triple of models M_{01} , M_{02} , and M_{12} that form an $(\aleph_0, \mathcal{P}^-(3))$ -system over M_i , and such that $M_{ij} \models R(a_i, a_j)$ for $i < j < 3$. The system cannot be amalgamated since the amalgam would witness a triangle.

COMMENT: this example was suggested by Shelah. It is an example of a non-simple theory. It can be generalized to a failure of $(\aleph_0, n+1)$ -amalgamation by using n -dimensional tetrahedron-free graphs. Those examples will be simple first order theories.

There is an example of a triple of totally categorical theories T_{ij} , $i < j < 3$, that are pairwise coherent, but cannot be “amalgamated” into a consistent first order theory, i.e., 3-dimensional Robinson’s consistency test fails:

For $i < 3$, let T_\emptyset be the theory of an infinite set. For $i < 3$, let $L_i := \{P_i, f_i\}$, and T_i says that the model is divided by P_i into two parts of equal size, as witnessed by f_i . For $i < j < 3$, T_{ij} contains the union of T_i and T_j , and says that $P_i(x) \iff \neg P_j(x)$. Then clearly the union $\bigcup_{i < j < 3} T_{ij}$ is inconsistent.

Fact 1.15 (Hart and Shelah 1986). *For every $n < \omega$ there is an \aleph_0 -atomically stable class \mathcal{K}_n of atomic models of a countable f.o. theory such that \mathcal{K} is has the (\aleph_0, k) -goodness property for all $k < n$ but is not excellent.*

Theorem 1.16. *If $\langle \mathcal{K}, \perp \rangle$ is excellent then it has the (λ, n) -goodness property for every $n < \omega$ and every $\lambda \geq \text{LS}(\mathcal{K})$.*

Proof. Will be added. \dashv

\mathcal{K} is

2. TAMENESS OF AEC WITH n -AMALGAMATION

In this section, \mathcal{K} is an AEC with 2-amalgamation and arbitrarily large models.

Theorem 2.1. *If $\langle \mathcal{K}, \perp \rangle$ is excellent then \mathcal{K} is $\text{LS}(\mathcal{K})$ -tame.*

Proof. Let κ be the least uncountable cardinal witnessing that \mathcal{K} is not $\text{LS}(\mathcal{K})$ -tame.

Thus there are M, N_0, N_1 be of size κ , $\mathbf{a}_i \in N_i, i = 0, 1$, realize the same Galois type over every \mathcal{K} -submodel of M of size $\text{LS}(\mathcal{K})$ such that the Galois types of $\mathbf{a}_0, \mathbf{a}_1$ over M are different. By renaming some of the elements we may assume that $N_0 \cap N_1 = M$.

By the existence and invariance properties we may assume that

$$\begin{array}{c} N_0 \perp N_1. \\ M \end{array}$$

Let χ be a regular cardinal large enough so that $N_1, N_0, M \in H(\chi)$ and also the definition of \mathcal{K} is there as well as $\langle H(\chi), \in \rangle$ reflects all the relevant information e.g.

$$\langle H(\chi), \in \rangle \models N_0 \perp N_1.$$

Now pick $\{\mathcal{B}_i \prec \langle H(\chi), M, N_0, N_1 \dots \in \rangle \mid i < \kappa\}$ such that

$\|\mathcal{B}_i\| = |i| + \text{LS}(\mathcal{K})$ and $\langle \mathcal{B}_j \mid j \leq i \rangle \in \mathcal{B}_{i+1}$ for all $i < \kappa$

By minimality of κ , the Galois types of $\mathbf{a}_0, \mathbf{a}_1$ are the same over every \mathcal{K} -submodel of M of size less than κ . To get a contradiction, we construct a model N_{01} and embeddings $f_0 : N_0 \rightarrow N_{01}$ and $f_1 : N_1 \rightarrow N_{01}$ that fix M and map $\mathbf{a}_0, \mathbf{a}_1$ to the same sequence.

Let $\{(M^i, N_0^i, N_1^i) \mid i < \kappa\}$ be the interpretation of the corresponding models in \mathcal{B}_i so we have

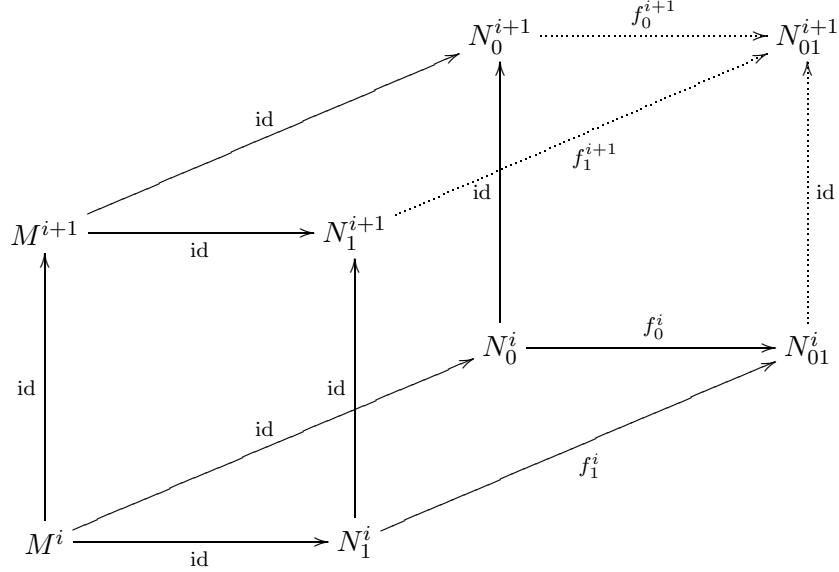
- (1) $\mathbf{a}_\ell \in N_\ell^0$ for $\ell = 0, 1$;
- (2) M^i, N_0^i , and N_1^i are $\prec_{\mathcal{K}}$ -increasing continuous chains of \mathcal{K} -models with union M, N_0 , and N_1 respectively.
- (3) $\|M^i\| = \|N_0^i\| = \|N_1^i\| = |i| + \text{LS}(\mathcal{K})$, for all $i < \kappa$.
- (4) $N_0^i \perp N_1^i$ for all $i < \kappa, \ell = 0, 1$.

$$M^i$$

By induction on $i \leq \kappa$, define a model N_{01}^i and embeddings $f_\ell^i : N_\ell^i \rightarrow N_{01}^i$, $\ell = 0, 1$. In addition, we need to keep track of embeddings $f_{01}^{ij} : N_{01}^i \rightarrow N_{01}^j$ such that $\{N_{01}^i, f_{01}^{ij} \mid i < j < \alpha\}$ form a direct system of \mathcal{K} -submodels.

Base $i = 0$: since the Galois types of $\mathbf{a}_0, \mathbf{a}_1$ over M^0 coincide, there is a model N_{01}^0 and embeddings $f_\ell^0 : N_\ell^0 \rightarrow N_{01}^0$ that map $\mathbf{a}_0, \mathbf{a}_1$ together.

Successor step. We have $f_\ell^i : N_\ell^i \rightarrow N_{01}^i$ for $\ell = 0, 1$. We also have the identity embeddings $M^i \rightarrow M^{i+1}$, $N_\ell^i \rightarrow N_\ell^{i+1}$, $\ell = 0, 1$. the picture is:



Let $\lambda := |i| + \text{LS}(\mathcal{K})$. By 3-amalgamation, we get N_{01}^{i+1} and embeddings $f_\ell^{i+1} : N_\ell^{i+1} \rightarrow N_{01}^{i+1}$ for $\ell = 0, 1$. For the direct system part, 3-amalgamation gives $N_{01}^{i+1} \succ_{\mathcal{K}} N_{01}^i$ and \mathcal{K} -embeddings $f_\ell^{i+1} : N_\ell^{i+1} \rightarrow N_{01}^{i+1}$.

Limit step. We have that $\{N_{01}^i, f_{01}^{ij} \mid i < j < \alpha\}$ form an $\prec_{\mathcal{K}}$ -chain. Let N_{01}^α be the union and f_ℓ^α be the union of the corresponding chain of $\prec_{\mathcal{K}}$ -embeddings. By Axiom A4 this is what we need.

Finally, the model N_{01}^κ , and the maps f_ℓ^κ , $\ell = 0, 1$ are as needed. The image of \mathbf{a}_0 under f_0^κ is

$$f_0^\kappa(\mathbf{a}_0) = f_1^\kappa(\mathbf{a}_1),$$

i.e., is the same as the image of \mathbf{a}_1 under f_1^κ . \dashv

A similar proof gives several related theorems, e.g.:

Theorem 2.2. *Let \mathcal{K} be an AEC, and $\mu_0 > \text{LS}(\mathcal{K})$ if \mathcal{K} has the $(\lambda, 3)$ -AP for all $\text{LS}(\mathcal{K}) \leq \lambda < \mu_0$ then given $M \in \mathcal{K}_{\mu_0}$ for any $p \neq q \in \text{ga-S}(M)$ there is $N \prec_{\mathcal{K}} M$ of cardinality $\text{LS}(\mathcal{K})$ such that $p \upharpoonright N \neq q \upharpoonright N$.*

Theorem 2.3. *Suppose that \mathcal{K} has (\aleph_0, n) -amalgamation property for all $n < \omega$. Then \mathcal{K} has (λ, n) -amalgamation for all λ .*

Proof. The statement follows from the two claims:

Claim 2.4. *Suppose that \mathcal{K} has $(\lambda, n+1)$ -amalgamation. Then \mathcal{K} has (λ^+, n) -amalgamation.*

Claim 2.5. *Suppose that λ is a limit cardinal and \mathcal{K} has $(< \lambda, n+1)$ -amalgamation. Then \mathcal{K} has (λ, n) -amalgamation.*

Indeed, (\aleph_α, n) -amalgamation property for all $n < \omega$ for \mathcal{K} implies $(\aleph_{\alpha+1}, n)$ -amalgamation property for all $n < \omega$ for \mathcal{K} by Claim 2.4. Claim 2.5 gives (\aleph_α, n) -amalgamation property for limit α , for all $n < \omega$.

Proof of Claim 2.4. Let $\{M_s \mid s \in \mathcal{P}^-(n)\} \subset \mathcal{K}_\lambda$ be an incomplete n -diagram of models in \mathcal{K} . Our goal is to find M_n and the embeddings $\{f_s \mid s \subset_{n-1} n\}$, $f_s : M_s \rightarrow M_n$ that make the diagram commute.

Take $\{M_s^i \mid i < \lambda^+, s \in \mathcal{P}^-(n)\}$ a resolution of the incomplete n -diagram. We may assume that $|M_s^i| = \lambda$ for all s, i .

By induction on $i \leq \lambda^+$, define a model M_n^i and embeddings $f_s^i : M_s^i \rightarrow M_n^i$, for each $s \subset_{n-1} n$. As before, we will keep track of embeddings $f_n^{ij} : M_n^i \rightarrow M_n^j$ such that $\{M_n^i, f_n^{ij} \mid i < j < \alpha\}$ form a direct system of \mathcal{K}_λ -submodels.

For the base case, we just take a completion of the n -diagram $\{M_s^0 \mid s \in \mathcal{P}^-(n)\}$. It exists since we are assuming $(\lambda, n+1)$ -amalgamation.

Successor step. We have $f_s^i : M_s^i \rightarrow M_n^i$ for $s \subset_{n-1} n$. We also have the identity embeddings $M_s^i \rightarrow M_s^{i+1}$, $s \subset_{n-1} n$. By $(\lambda, n+1)$ -amalgamation, we get M_n^{i+1} and embeddings $f_n^{i+1} : M_n^i \rightarrow M_n^{i+1}$ for $s \subset_{n-1} n$. For the direct system part, $(\lambda, n+1)$ -amalgamation also gives $f_n^i : M_n^i \rightarrow M_n^{i+1}$. So we let $f_n^{j,i+1} := f_n^i \circ f_n^{ji}$ for $j < i$, and $f_n^{i,i+1} := f_n^i$.

Limit step. We have that $\{M_n^i, f_n^{ij} \mid i < j < \alpha\}$ form a direct system. Let M_n^α be the direct limit of the system. As before, we define the maps from M_s^α to M_n^α by

$$f_s^\alpha := \bigcup_{i < \alpha} f_n^{i,\alpha} \circ f_s^i$$

for $s \subset_{n-1} n$.

Finally, the model $M_n^{\lambda^+}$, and the maps $f_s^{\lambda^+}$, $s \subset_{n-1} n$, are as needed. \dashv

Proof of Claim 2.5. Is almost exactly the same, the only difference is that the cardinality of models in the resolution will be $|i| + \aleph_0$. \dashv

\dashv

From the two theorems above we easily get

Corollary 2.6. *If \mathcal{K}_{\aleph_0} has n -amalgamation property for all $n < \omega$, then \mathcal{K} is \aleph_0 -tame.*

REFERENCES

- [Gr1] Rami Grossberg. Classification theory for non-elementary classes. **Logic and Algebra**, ed. Yi Zhang, *Contemporary Mathematics*, **302**, (2002) AMS, pp. 165–204.
- [Gr2] Rami Grossberg. **A Course in Model Theory**. Book in Preparation.
- [GrV1] Rami Grossberg and Monica VanDieren. Galois-stability for Tame Abstract Elementary Classes. (23 pages) submitted. URL: www.math.cmu.edu/~rami.

- [GrV2] Rami Grossberg and Monica VanDieren. Upward Categoricity Transfer Theorem for Abstract Elementary Classes. (18 pages) preprint. URL: www.math.cmu.edu/~rami.
- [Jo1] Bjarni Jónsson. Universal relational systems, *Math. Scand.*, **4** (1956) 193–208.
- [Jo2] Bjarni Jónsson. Homogeneous universal systems. *Math. Scand.*, **8**, 1960, 137–142.
- [Ke] H. Jerome Keisler, $L_{\omega_1, \omega}(\mathbf{Q})$ *Ann of Math Logic*, **1**, 1969.
- [Sh c] Saharon Shelah. **Classification Theory and the Number of Nonisomorphic Models**, Rev. Ed., North-Holland, 705 pages, 1990, Amsterdam.
- [Sh 87a] Saharon Shelah. Classification theory for nonelementary classes, I. The number of uncountable models of $\psi \in L_{\omega_1, \omega}$. Part A. *Israel J. Math.*, **46**:212–240, 1983.
- [Sh 87b] Saharon Shelah. Classification theory for nonelementary classes, I. The number of uncountable models of $\psi \in L_{\omega_1, \omega}$. Part B. *Israel J. Math.*, **46**:241–273, 1983.
- [Sh 88] Saharon Shelah. Classification of nonelementary classes, II. Abstract Elementary Classes. In **Classification Theory (Chicago IL 1985)**, volume 1292 of *Lecture Notes in Mathematics*, pages 419–497. Springer, Berlin, 1987. Proceedings of the USA-Israel Conference on Classification Theory, Chicago, December 1985; ed. Baldwin, J.T.
- [Sh 394] Saharon Shelah. Categoricity of abstract classes with amalgamation. *Annals of Pure and Applied Logic*, **98**(1-3), pages 141–187, 1999.
- [Sh 576] Saharon Shelah. Categoricity of an abstract elementary class in two successive cardinals. *Israel J. of Math.*, **126**, (2001), 29–128.

E-mail address, Rami Grossberg: rami@cmu.edu
URL: <http://www.math.cmu.edu/~rami>

DEPARTMENT OF MATHEMATICS, CARNEGIE MELLON UNIVERSITY, PITTSBURGH PA
 15213

E-mail address: alexei@andrew.cmu.edu
URL: <http://www.math.cmu.edu/~alexei>

DEPARTMENT OF MATHEMATICAL SCIENCES, CARNEGIE MELLON UNIVERSITY, PITTSBURGH, PA 15213