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superstability-like property for nonsplitting, a particular notion of independence.

We generalize their result as follows: given any abstract notion of independence for

Galois (orbital) types over models, we derive that the notion satisfies a superstability

property provided that the class is categorical and satisfies a weakening of

MSC: amalgamation. This extends the Shelah—Villaveces result (the independence notion

primary 03C48 there was splitting) as well as a result of the first and second author where the

secondary 03C45, 03C55, 03E05 independence notion was coheir. The argument is in ZFC and fills a gap in the
Shelah—Villaveces proof.
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1. Introduction
1.1. General motivation and history

Forking is one of the central notions of model theory, discovered and developed by Shelah in the sev-
enties for stable and NIP theories [13]. One way to extend Shelah’s first-order stability theory is to move
beyond first-order. In the mid seventies, Shelah did this by starting the program of classification theory
for mnon-elementary classes focusing first on classes axiomatizable in L, ,,(Q) [12] and later on the more

* This material is based upon work done while the first author was supported by the National Science Foundation under Grant
No. DMS-1402191.
* Corresponding author.
E-mail addresses: wboney@math.harvard.edu (W. Boney), rami@cmu.edu (R. Grossberg), vandieren@rmu.edu
(M.M. VanDieren), sebv@cmu.edu (S. Vasey).

http://dx.doi.org/10.1016/j.apal.2017.01.005
0168-0072/© 2017 Elsevier B.V. All rights reserved.


http://dx.doi.org/10.1016/j.apal.2017.01.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/apal
mailto:wboney@math.harvard.edu
mailto:rami@cmu.edu
mailto:vandieren@rmu.edu
mailto:sebv@cmu.edu
http://dx.doi.org/10.1016/j.apal.2017.01.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apal.2017.01.005&domain=pdf

1384 W. Boney et al. / Annals of Pure and Applied Logic 168 (2017) 1383-1395

general abstract elementary classes (AECs) [14]. Roughly, an AEC is a pair K = (K, <x) satisfying some
of the basic category-theoretic properties of (Mod(T), <) (but not the compactness theorem). Among the
central problems, there are the decades-old categoricity and eventual categoricity conjectures of Shelah. In
this paper, we assume that the reader has a basic knowledge of AECs, see for example [4] or [2].

One key shift in this program is the move away from syntactic types (studied in the Ly+ ., context by
[5,6,11] and others) and towards a semantic notion of type, introduced in [15] and named Galois type by
Grossberg [4].! This has an easy definition when the class K has amalgamation, joint embedding and no
maximal models, as these properties allow us to assume that all the elements of K we would like to discuss
are substructures of a “monster” model € € K. In that case, gtp(b/A) is defined as the orbit of b under
the action of the group Aut(€) on €. One can also develop the notion of Galois type without the above
assumption, however then the definition is more technical.

1.2. Independence, superstability, and no long splitting chains in AECs

In [17] a first candidate for an independence relation was introduced: the notion of p-splitting (for
My < M both in K, p € gS(M) p-splits over My provided there are My < My <x M, ¢ = 1,2 and
f o My =y, M such that f(p | My) #p | Ma).

This notion was used by Shelah to establish a downward version of his categoricity conjecture from a
successor for classes having the amalgamation property. Later similar arguments [7,8] were used to derive a
strong upward version of Shelah’s conjecture for classes satisfying the additional locality property of (Galois)
types called tameness.

In Chapter IT of [18], Shelah introduced good A-frames: an axiomatic definition of forking on Galois types
over models of size A. The notion is, by definition, required to satisfy basic properties of forking in superstable
first-order theories (e.g. symmetry, extension, uniqueness, and local character). The theory of good A-frames
is well-developed and has had several applications to the categoricity conjecture (see Chapters III and IV
of [18] and recent work of the fourth author [25-28]).

Constructions of good frames rely on weaker independence notions like nonsplitting, see e.g. [23,24]. A key
property of splitting in these constructions is that there is “no long splitting chains in IC,”: if (M; : i < ) is
an increasing continuous chain in K, (so a < p™ is a limit ordinal) and M, is universal over M; for each
i < a, then for any p € gS(M,) there exists i < « so that p does not u-split over M; (this is called strong
universal local character at « in the present paper, see Definition 6). This can be seen as a replacement
for the statement “every type does not fork over a finite set”. The property is already studied in [17], and
has several nontrivial consequences: for example (assuming amalgamation, joint embedding, no maximal
models, stability in x4, and tameness), no long splitting chains in C,, implies that I is stable everywhere
above p [24, Theorem 5.6] and has a good pt-frame on the subclass of saturated models of cardinality p™
[23, Corollary 6.14]. No long splitting chains has consequences for the uniqueness of limit models, another
superstability-like property saying in essence that saturated models can be built in few steps (see for example
[19-22]).

The first and second authors have explored another approach to independence by adapting the notion of
coheir to AECs. They have shown that for classes satisfying amalgamation which are also tame and short (a
strengthening of tameness, using the variables of a type instead of its parameters), failure of a certain order
property implies that coheir has some basic properties of forking from a stable first-order theory. There
the “no long coheir chain” property also has strong consequences (for example on the uniqueness of limit
models [3, Corollary 6.18]).

! Shelah uses the name orbital types in some later papers.
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1.8. No long splitting chains from categoricity

It is natural to ask whether no long splitting chains (or no long coheir chains) in K, follows from
categoricity above p. Shelah has shown that this holds for splitting (assuming amalgamation and no maximal
models) if the categoricity cardinal has cofinality greater than p [17, Lemma 6.3]. Without any cofinality
restriction, a breakthrough was made in a paper of Shelah and Villaveces when they proved no long splitting
chains assuming no maximal models and instances of diamond [19, Theorem 2.2.1]. Later, Boney and
Grossberg used the Shelah—Villaveces argument to derive the result in their context also for coheir [3,
Theorem 6.8]. It was also observed that the Shelah—Villaveces argument does not need diamond if one
assumes full amalgamation [9, 5.3]. In conclusion we have:

Fact 1. Let K be an AEC with no maximal models. Let LS(K) < pu < A and assume that K is categorical
n A

(1) [19. Theorem 2.2.1] If .+ holds then K has no long splitting chains in K.
cf p
(2) [3, Theorem 6.8] If K has amalgamation, k € (LS(K), u), K does not have the weak k-order property
and is fully (< k)-tame and short, then KC has no long coheir chains in IC,,.
(3) [9. Corollary 5.3] If K has amalgamation, then K has no long splitting chains in IC,,.

Remark 2. Fact 1 has applications to more “concrete” frameworks than AECs. One can deduce from it (and
the aforementioned fact that no long splitting chains implies stability on a tail in the presence of tameness)
an alternate proof that a first-order theory T categorical above |T| is superstable. More generally, one
obtains the same statement for the class K of models of a homogeneous diagram in T [10]. The later was
open for |T'| uncountable and K categorical in X, (|T]) (see [27, Section 4]).

1.4. Gaps in the Shelah—Villaveces proof

In a preliminary version of [3], the proof of Theorem 6.8 referred to the argument used in [19, Theo-
rem 2.2.1]. The referee of [3] insisted that the full argument necessary for Theorem 6.8 be included. After
looking closely at the argument in [19], we concluded that there was a small gap in the division of cases and
a need to specify the exact use of the club guessing principle that they imply.

More specifically, Shelah and Villaveces [19, Theorem 2.2.1] assume for a contradiction that no long
splitting chains fails and can divide the situation into three cases, (a), (b), and (c). In the division into cases
[19, Claim 2.2.3], just after the statement of property ®;, Shelah and Villaveces claim that they can “repeat
the procedure above” on a certain chain of models of length . However the “procedure above” was used on
a chain of length o, where o is a reqular cardinal and regularity was used in the proof. As p is a potentially
singular cardinal, there is a problem.

Once the division of cases is done, Shelah and Villaveces prove that cases (a), (b), (c¢) contradict cate-
goricity. When proving this for (b), they use a club-guessing principle for u+ on the stationary set of points
of cofinality o (see Fact 14). The principle only holds when ¢ < p, so the case o = p is missing.

1.5. Statement and discussion of the main theorem

In this paper, we give a generalized, detailed, and corrected proof of Fact 1 that does not rely on any
of the material in [19]. The key definitions are given at the start of the next section and the first seven
hypotheses are collected in Hypothesis 8.
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Theorem 3 (Main Theorem). If:

(1) K is an AEC.

(2) 4> IS(K).

(3) For every M € KC,,, there exists an amalgamation base M' € K,, such that M <x M'.

(4) For every amalgamation base M € K, there exists an amalgamation base M' € K, such that M’ is
universal over M.

(5) Ewery limit model in IC,, is an amalgamation base.

(6) L is as in Definition 6 with K* the class of amalgamation bases in K, (ordered with the strong sub-
structure relation inherited from K).

(7) L satisfies invariance (I) and monotonicity (M).
(8) L has weak universal local character at some cardinal o < p*.
9) K has an Ehrenfeucht-Mostowski (EM) blueprint ® with |7(®)| < u such that every M € Ky, ,,+1 embeds
[107]
inside EM, (u", @) (where we write 7 := 7(K)).

Then | has strong universal local character at all limit ordinals o < pt.

Remark 4. As in [19], when we say that M is an amalgamation base we mean that it is an amalgamation
base in the class K|, i.e. we do not require that larger models can be amalgamated over M.

Some of the hypotheses of Theorem 3 may appear technical. Let us give a little more motivation.

o Hypotheses (3-5) are the statements that Shelah and Villaveces derive (assuming instances of diamond)
from categoricity and no maximal models. It is well known that they hold in AECs with amalgamation.

o Hypothesis (4) implies stability in p.

o Hypothesis (8) can be seen as a consequence of stability (akin to “every type does not fork over a set of
size at most p”).

o Hypothesis (9) follows from categoricity (see the proof of Corollary 5). In fact, it is strictly weaker: for
a first-order theory T', (9) holds if and only if T is superstable by [9, Section 5].

How are the gaps mentioned in Section 1.4 addressed in our proof of Theorem 37 The first gap (in the
division into cases) is fixed in Lemma 11.(4). The second gap (in the use of the club guessing principle) is
addressed here by a division into cases in the proof of Theorem 3 at the end of this paper: there we use
Lemma 13 only when a < o.

Before starting to prove Theorem 3, we give several contexts in which its hypotheses hold. This shows in
particular that Fact 1 follows from Theorem 3.

Corollary 5. Let K be an AEC with arbitrarily large models. Let LS(K) < u < X and assume that K is
categorical in A and K<y has no mazimal models. Then:

(1) If <>S“+ holds, then the hypotheses of Theorem 3 hold with J, being non-u-splitting.

of 1

(2) If K, has amalgamation, then:
(a) The hypotheses of Theorem 3 hold with | being non-u-splitting.
(b) If k € (LS(K), u) is such that IC does not have the weak k-order property, then the hypotheses of
Theorem 3 hold with | being (< k)-coheir (see [3]).
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Proof. Fix an EM blueprint ¥ for K (with |7(¥)| < p). We first show that there exists an EM blueprint ®
with |7(®)| < p such that any M € K, ,+] embeds inside EM, (u*, ®). Let M € Ky, ,,+]. Using no maximal
models and categoricity, M embeds inside EM. (A, ¥), and hence inside EM, (S, ¥) for some S C A with
|S| < pt. Therefore M also embeds inside EM, (o, ¥), where a := otp(S) < put+. Now it is well known
(see e.g. [2, Claim 15.5]) that o embeds inside EM, (<“u*, ®). The class {<“I | I is a linear order} is an
AEC, therefore by composing EM blueprints there exists an EM blueprint ® for K such that |7(®)| < p and
EM,(I,®) = EM,(<“I, ¥) for any linear order I. In particular, M embeds inside EM.(u*, ®), as desired.

As for the hypotheses on density of amalgamation bases, existence of universal extension, and limit models

being amalgamation bases, in the first context this is proven in [19] (note that {,+ implies 2/ = ut).

of p

When K, has full amalgamation, existence of universal extension is due to Shelah. It is stated (but not
proven) in [17, Lemma 2.2|; see [2, Lemma 10.5] for a proof.

In all the contexts given, it is trivial that i satisfies (I) and (M). In the first context, it can be shown that
non p-splitting has weak universal local character at any o < u™* such that 27 > u (see the proof of case (c)
in [19, Theorem 2.2.1] or [2, Lemma 12.2]). Of course, this also holds when I, has full amalgamation. As
for (< k)-coheir, it has weak universal local character at any o < pu* such that 2° > x. This is given by
the proof of [3, Theorem 6.8] (note that using a back and forth argument, one can assume without loss of
generality that any M; 1 in the chain is k-saturated). O

1.6. Other advantages of the main theorem

As should be clear from Corollary 5, another advantage of the main theorem is that it separates the
combinatorial set theory from the model theory (it holds in ZFC) and also shows that there is nothing
special about splitting in [19].

Some results here are of independent interest. For example, any independence relation satisfying invari-
ance and monotonicity has (assuming categoricity) a certain continuity property (see Lemma 13).

2. Proof of the main theorem
We now define the weak framework for independence that we use.

Definition 6. Let * be an abstract class’ and | be a 4-ary relation such that if a | VM holds, then
My
My <+ M <y~ N are all in £* and a € |N|.

*

(1) The following are several properties we will assume about | (but we will always mention when we
assume them).

(a) | has invariance (I) if it is preserved under isomorphisms: if a | M and f : N = N’, then
My

fla) L N fm).

f[Mo]
(b) L has monotonicity (M) if:
() Ifa ] NM, My <+ M} <+ M' <xc- M, and N <x- N’, then a | V' M’; and:

M, Mg
(ii) If a | YM, N’ <k« N is such that M <« N’ and a € |N'|, then a | V' M.
M, My

2 That is, a partial order (K™, <x~) such that K™ is a class of structures in a fixed vocabulary closed under isomorphisms, <x-
is invariant under isomorphisms, and M <x- N implies that M is a substructure of N.
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(2) (I) and (M) mean that this relation is really about Galois types, so we write gtp(a/M; N) does not

x-fork over My for a | N M.
Mo

*

(3) For a limit ordinal v, | has weak universal local character at « if for any increasing continuous sequence
(M; € K* | i < «) and any type p € gS(M,,), if M;41 is universal over M; for each i < «, then there is
some %9 < a such that p [ M;,;+1 does not *-fork over M, .

*

(4) For a limit ordinal «, | has strong universal local character at « if for any increasing continuous
sequence (M; € K* | i < «) and any type p € gS(My,), if M;4 is universal over M; for each ¢ < «, then
there is some 7y < a such that p does not *-fork over M.

Remark 7.

(1) In the setup of Fact 1.(1), non-u-splitting on the class * of amalgamation bases of cardinality p will
have (I) and (M), see Fact 5

(2) If a < j are limit ordinals and | has weak universal local character at a, then | has weak universal
local character at 3, but this need not hold for strong universal local character (if say cf 5 < cf «).

(3) If \L has (M) and J/ has strong universal local character at cf a;, then J/ has strong universal local
character at a.

(4) If | has (M), strong universal local character at o implies weak universal local character at a.

(5) If (as will be the case in this note) * is a class of structures of a fixed size u, then we only care about
the properties when o < pt.

We collect the first seven hypotheses of Theorem 3 into a hypothesis that will be assumed for the rest of
the paper.

Hypothesis 8.

(1) K is an AEC.

(2) p=LS(K).

(3) For every M € IC,,, there exists an amalgamation base M' € K, such that M <y M'.

(4) For every amalgamatwn base M € K, there ezists an amalgamation base M’ € K, such that M' is
universal over M.

(5) Ewvery limit model in K,, is an amalgamation base.

*
(6) L is as in Definition 6 with K* the class of amalgamation bases in K, (ordered with the strong sub-
structure relation inherited from KC).

*

(7) L satisfies invariance (I) and monotonicity (M).

The proof of Theorem 3 can be decomposed into two steps. First, we study two more variations on local
character: continuity and absence of alternations. We show that if strong local character fails but enough
weak local character holds, then there must be some failure of continuity, or some alternations. Second, we
show that categoricity (or more precisely the existence of a universal EM model in ™) implies continuity
and absence of alternations. The first step uses the weak local character (but not categoricity, it is essentially
forking calculus) but the second does not (but does use categoricity).

The precise definitions of continuity and alternations are as follows.

Definition 9. Let £* and | be as in Definition 6 and let a be a limit ordinal.
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*

(1) | has universal continuity at « if for any increasing continuous sequence (M; € K* | i < ) and any
type p € gS(M,), if for each i < o M1 is universal over M; and p | M; does not -fork over My, then
p does not *-fork over Mj.

*
(2) For 6 < pt a limit, | has no §-limit alternations at « if for any increasing continuous sequence
(M; € K* | i < ) with M1 (u, 6)-limit over M; for all i < a and any type p € gS(M,,), there exists
1 < « such that the following fails: p [ My; 41 *-forks over My; and p [ Moo does not #-fork over
*

Mo, 1. If this fails, we say that | has 6-limit alternations at a.

Note that the failure of universal continuity and no §-limit alternation correspond respectively to cases (a)
and (b) in the proof of [19, Theorem 2.2.1]. Case (c) there corresponds to failure of weak universal local
character at p (which is assumed to hold here, see (8) of Theorem 3).

The following technical lemmas and proposition implement the first step described after the statement of
Hypothesis 8. In particular, Proposition 12 below says that if we can prove weak local character at some o,
continuity and no alternations at all «, then strong local character at all « follows. Lemma 11 is a collection
of preliminary steps toward proving Proposition 12. Lemma 10 is used separately in the proof of the main
theorem (it says that weak universal local character implies the absence of alternations). Throughout, recall
that we are assuming Hypothesis 8.

Lemma 10. Let 0 < ut be a (not necessarily regular) cardinal and § < u* be a limit ordinal. If | has weak

universal local character at o, then | has no 6-limit alternations at o.

Proof. Fix (M; : i < «), 4, p as in the definition of having no é-limit alternations. Apply weak universal
local character to the chain (My; :i < ). O

We now outline the proof of Proposition 12. Again, it may be helpful to remember that we will later
prove that (in the context of Theorem 3) continuity holds at all lengths and that there are no alternations.
Two important basic results are

e continuity together with weak local character imply strong local character at regular length
(Lemma 11.(1)); and

e it does not matter whether in the definition of weak and strong universal local character we require
“M; 41 limit over M;” or “M; ;1 universal over M;,” and the length of the limit models does not matter
(Lemma 11.(2)).

The first of these is proven by contradiction, and the second is a straightforward argument using universality.

Assume for a moment we have strong universal local character at some limit length +. Let us try to prove
weak universal local character at (say) w (then we can use the first basic result to get the strong version,
assuming continuity). By the second basic result, we can assume we are given an increasing continuous
sequence (M, : n < w) with M, 11 (u,7)-limit over M, for all n < w and p € gS(M,). By the strong
universal local character assumption we know that p [ M, 1 does not *-fork over some intermediate model
between M, and M, 11, so if we assume that p [ M,, 1 *-forks over M, for all n < w, we will end up getting
alternations. This is the essence of Lemma 11.(5).

Thus to prove strong universal local character at all cardinals, it is enough to obtain it at some cardinal.
Fortunately in the hypothesis of Proposition 12, we are already assuming weak universal local character at
some o. If o is regular we are done by the first basic result, but unfortunately o could be singular. In this
case Lemma 11.(4) (using Lemma 11.(3) as an auxiliary claim) shows that failure of strong universal local
character at o implies alternations, even when o is singular.
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Lemma 11. Let a < ™ be a regular cardinal, o < u* be a (not necessarily reqular) cardinal, and § < p* be
a limit ordinal.

(1) Ifl has universal continuity at o and weak universal local character at o, then i has strong universal
local character at .

(2) We obtain an equivalent definition of weak [strong] universal local character at o, if in Definition 6.(3)
[0.(4)] we ask in addition that “M;y1 is (u,d)-limit over M;” for alli < o.

(3) Assume that | has weak universal local character at o. Let (M; : i < o) be increasing continuous in
K* with M; 1 universal over M; for all i < o. For any p € gS(M,,) there exists a successor i < o such
that p | M;+1 does not x-fork over M;.

(4) If l has universal continuity at o, weak universal local character at o, and no §-limit alternations at
w, then \*L has strong universal local character at o.

(5) Assume that jL has strong universal local character at o. If j/ does not have weak universal local

*

character at o, then | has o-limit alternations at c.

Proof. (1) Suppose that (M; : ¢ < a), p is a counterexample.
Claim. For each i < «, there exists j; € (4,a) such that p [ M;, *-forks over M;.

Proof of Claim. If i < « is such that for all j € (i,a), p | M; does not *-fork over M;, then applying
universal continuity at o on the chain (M : k € [i, a]) we would get that p does not *-fork over M;,
contradicting the choice of (M; : i < @), p.  Tolim

Now define inductively for ¢ < a, ko := 0, ki41 := jk,, and when ¢ is limit k; := sup,; k;. Note that
(ki : i < @) is strictly increasing continuous and ¢ < a implies k; < « (this uses regularity of a; when «
is singular, see (4)).

Apply weak universal local character to the chain (My, : i < «) and the type p. We get that there exists
t < «a such that p [ My, ,
chose ji, so that p | M, —=-forks over Mj,.

does not *-fork over Mpy,. This is a contradiction since k;y+1 = jr, and we

(2) We prove the result for weak universal local character, and the proof for the strong version is similar.
Fix (M? : i < o), p witnessing failure of weak universal local character at o. We build a witness of failure
(M; :i < o), psuch that M, = M2, and M, is (i, d)-limit over M; for each i < a. Using existence of
universal extensions, we can extend each M to M} that is (u, §)-limit over M. Since M, is universal

over M?

o, we can find f; : M7 — o M.OH. Since limit models are amalgamation bases, f;(Mj, ) is

i
an amalgamation base. Now set M} := M for i < o limit or 0 and M}, = fi(M}, ;). This is an
increasing continuous chain of amalgamation bases with M}, (u,)-limit over M. Let M; := M3;.
This works: if there was an ¢ < ¢ such that p [ M;; does not x-fork over M;, this would mean that
p | My; o does not s-fork over My;, but since My; <+ M3, <+ M3 5 <+ My; o, we have by (M)
that p | M3, , does not x-fork over MY, a contradiction.

(3) Apply weak universal local character to the chain (My; : i < o) to get j < o such that p | Majio
does not *-fork over Ms;. By monotonicity, this implies that p [ Ma;j42 does not *-fork over Ma;q1. Let
i=2j+ 1.

(4) Suppose not, and let (M; : i < o),p be a counterexample. By (2), without loss of generality M;; is
(i, 8)-limit over M; for all ¢ < 0. As in the proof of (1), for each i < o, there exists j; € [i,0) such that
p | M, =-forks over M;. On the other hand, applying (3) to the chain (M, : j € [j;, o]), for each ¢ < o,
there exists a successor ordinal k; > j; such that p [ My, 1 does not *-fork over My, . Define by induction
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onn < w, mo := 0, Mapt1 = kmy,,, Mant2 = Kk, + 1, and my, := sup,,., my. By construction, the

sequence (M, :n < w) witnesses that l has d-limit alternations at w, a contradiction.

(5) Let v := 0-0. By (2), there exists (M; : i < a), p witnessing failure of weak universal local character at o
such that for all i < «, M1 is (i, 7)-limit over M;. Let (M, ; : j < ~y) witness that M, 1 is (i, ~)-limit
over M; (i.e. it is increasing continuous with M; ;41 universal over M, ; for all j < ~, M; o = M;, and
M; s = M;11). By strong universal local character at o, for all ¢ < «, there exists j; < = such that
p | Miy1 does not x-fork over M; j,. By replacing j; by j; + o if necessary we can assume without loss
of generality that cf j; = cf o.

Observe also that for any i < o, p [ M;11 4, *forks over M, (using (M) and the assumption that p |

*
M; 41 =forks over M;). Therefore (Mo, My ;,, M2, Ms j,,...), p witness that | has o-limit alternations
at . O

Proposmon 12. Let o < p be a regular cardinal and o < p* be a (not necessarily reqular) cardinal. Assume
that J/ has weak universal local character at o. IfJ/ has universal continuity at o and o, J/ has no o-limit

alternations at w, and J/ has no o-limit alternations at «, then J/ has strong universal local character at «.

Proof. By Lemma 11.(4), L has strong universal local character at o. By the contrapositive of

Lemma 11.(5), J/ has weak universal local character at «. By Lemma 11.(1), \L has strong universal
local character at a. O

The next lemma corresponds to the second step outlined at the beginning of this section. Note that
the added assumption is (9) from the hypotheses of Theorem 3 and recall we are assuming Hypothesis 8
throughout.

Lemma 13. Assume K has an EM blueprint ® with |7(®)| < p such that every M € Ky, ,+) embeds inside
EM, (u*, ®). Let a < u™ be a reqular cardinal. Then:

(1) L has universal continuity at c.

*

(2) If in addition o < p, then for any limit v < u*, | has no y-limit alternations at .

Proof. Let (M; | i < «) and p be as in the definition of universal continuity or 7-limit alternations. Let
SET = {5 < pT | cf§ = a}. We say that C = (Cy |6 € S#7) is an S*" -club sequence if each Cs C & is club.
Clearly, club sequences exist: just take Cs := d (this will be enough for proving universal continuity). Shelah
[16] proves the existence of club-guessing club sequences in ZFC under various hypotheses (the specific result
that we use will be stated later, see Fact 14). We will describe a construction of a sequence of models N (C)
based on a club sequence and then plug in the necessary club sequence in each case.

Given an Sg+—club sequence C, enumerate Cs U {§} in increasing order as (85, | j < o).

Claim. Let v < % be a limit ordinal. We can build increasing, continuous N(C) = (N; € K* | i < u*) such
that for all ¢ < pt:

(1) N;iqis (p,y)-limit over N;;
(2) when i € S&ﬁ, there is g; : M, = N; such that g;(M;) = Ng, ; for all j < a; and:
(3) when i € Sg+, there is a; € N;y1 that realizes g;(p).

Proof of Claim. Build the increasing continuous chain of models as follows: start with an amalgamation base
Ny, which exists by Hypothesis 8.(3). Given an amalgamation base N;, build N; 11 to be (p,~)-limit over
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it. This exists by Hypothesis 8.(4) of Theorem 3), and N;;1 is an amalgamation base by Hypothesis 8.(5).
At limits, it also guarantees we have an amalgamation base.

At limits ¢ of cofinality «, use the uniqueness of (u,)-limits models to find the desired isomorphisms:
the weak version gives My = Mg, ,, and the strong (over the base) version allows this isomorphism to be
extended to get an isomorphism g; between (M; | j < a) and (Ng, ; | j < ) as described. Since Nj;; is
universal over N;, we there is some a; € N;;1 that realizes ¢;(p).  tclaim

By assumption, we may assume that N := Ui<M+ N; <x+ EM,(ut,®). Thus, we can write a; =
pi(V4, ... 772(2‘)) with:

)

M < < Uiy <8< Tngiyr < < Ty < AT

Now we begin to prove each part of the lemma. In each, we will find i; < is € S/Oer such that
gtp(ai, /Ni,; N) and gtp(a;, /N;,; N) are both the same (because of the EM structure) and different (because
they exhibit different *-forking behavior), which is our contradiction.

(1) Assume that p [ M; does not fork over My, for all j < a.
Let C' be an S* -club sequence, and set (N; € K* | i < ut) = N(C) as in the Claim (the value of
~ doesn’t matter here, e.g. take v := w). By Fodor’s Lemma, there is a stationary subset S* C S’g+,
a term p., My, ny < w and ordinals g, ... vy, , B« o such that:

For every i € S*, we have p; = pi; n(i) = ny; m(i) = my; 'y; = ; for j < m.; and B = B o-

Set B := {6 < pu" | ¢ is limit and EM, (8, ®) N N = Ns}. This is a club. Let i; < iy both be in S* N E.
Then we have:

gt (@i, /Niy) = 8tb (0 (Vs Vs Vb1 - - Vil ) /N NEM, (i, @)
= gtp (P*(Wi . arY:‘n*a’YirZL*J,-la e 777112*)/]\[ N EMT(i17 (I)))
= gtp (ai, /Niy)

where all the types are computed inside N. This is because the only differences between a;, and a;, lie
entirely above 7.
We have that g;, : (N;,, Ng, ,) = (Mg, Mp) and that p xforks over My. Thus, gtp(ai, /Ns,) = gi, (p)
*-forks over Ng, ;. On the other hand, Cj, is cofinal in is, so there is j < a such that 8;, ; > 41 and,
thus, N;, <x~ Ng,, ;. Again, gi, : (Ng,, ;, Np.,) = (Mj, Mp) and p [ M; does not *-fork over Mo
by assumption. Thus, gtp(ai,/Ng,, ;) = gi,(p [ M;) does not *-fork over Npg, ,. By monotonicity (M),
gtp(ai, /Ni, ) does not *-fork over Ng, . Thus, gtp(a;, /N;,) # gtp(ai,/Ni,), a contradiction.

(2) Let x be a big-enough cardinal and create an increasing, continuous elementary chain of models of set
theory (%B; | i < pu) such that for all i < p™:
(a) Bi < (H(x), €);
(b) [1%B:l| =
(¢) By contains, as elements,® ®, EM(u*, ®), h, pt, (N; | i < pt), S8, (a; | i € S*7), and each

f € 7(®); and

(d) B; Nu* is an ordinal.

3 When we say that B¢ contains a sequence as an element, we mean that it contains the function that maps an index to its
sequence element.



W. Boney et al. / Annals of Pure and Applied Logic 168 (2017) 1383-1395 1393

We will use the following fact which was originally proven in [16, IIL.2] (or see [1, Theorem 2.17] for a
short proof).

Fact 14. Let A be a cardinal such that cf X > 0T for some regular 6 and let S C Sg‘ be stationary. Then
there is a S-club sequence (Cs | 6 € S) such that, if E C X\ is club, then there are stationarily many
6 €S such that Cs C E.

We have that o < p, so we can apply Fact 14 with A, 0, S there standing for u*, a, Sff here. Let C
be the Sg+—club sequence that the fact gives. Let (N; € K, | i < uT) = N(C) be as in the Claim. Note
that E := {i < u* | B; N T =i} is a club. By the conclusion of Fact 14, there is some iy € S#* such

that C;, C E. We have a;, = pi, (722, . .. 7722(2‘2))7 with:

712 < e < 7:721(1.2) <y < 712727,(7;2)"1‘1 < < ,y:f(iz)

Since the j3;, ;’s enumerate a cofinal sequence in iz, we can find j < o such that ’yffL i) < Bis 2541 < 1.
Recall that we have p [ M2 does not «-fork over My, by assumption. Then (H(x), €) satisfies the
following formulas with parameters exactly the objects listed in item (2c) above and ordinals below

Bis,2j+2:

+
3:177 ym(ig)—'rlv s 7yn(’i)'(“‘r € Sg 7

A“x > Biyoje1” A “yr € (z, ) are increasing ordinals”

Afagy = Pis (’7;2a s aryzfl(izy Ym(ia)+1y -+ yn(ig))”
AN, C EM(z, 3)")

This is witnessed by x = 12 and yi = ’y,’f. By elementarity, B3, 2j4+2 satisfies this formula as it contains
all the parameters. Let iy € (Biy,2j41,47) N B, o1v0 = (Biz2j41, Bia,2j+2)" witness this, along with
Tratin)+1 < < Tngin) < . Then we have:

Qjy = Piy (fina te- a’Y:Z(iz)a Y;n(iz)-l,-]a <o a’y:q,(q,z))

with Bi,.2j11 < Ym(is)+1- We want to compare gtp(as, /N;,) and gtp(ai /N, ).

e From the elementarity, we get that N;; C EM,(i;,®). We also know that i1 < f;,2j42 <
7:2(12)+1’ V;n(iz)ﬂ' Thus, as before, the types are equal.

e We know that p [ Ma;,2 does not xfork over M. Thus, gtp(ai,/Ng,, ,;,,) does not *-fork over
Ng,, »;41- Since we have Ng, .., <i= Niy 2= Np,, 5., this gives gtp(ai,/N;, ) does not *-fork over
N512,2j+1 *

e We have f3;, 2541 < i1, so there is some k < a such that f3;, 2,41 < i, & < 7. By assumption, p *-forks
over Mj. Thus g;, (p) *-forks over Ng, ,. Therefore gtp(ai, /N;,) *-forks over Ng, .., <x~ Ng, -

As before, these three statements contradict each other. O

We now prove the main theorem, Theorem 3. Recall that the assumptions of this theorem include the

main context of this section (Hypothesis 8); | has weak universal local character somewhere; and K has
an EM blueprint that every model embeds into.

4 The equality here is the key use of club guessing.
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Proof of Theorem 3. Pick a cardinal ¢ < u™ such that l has weak universal local character at o (exists
by assumption (8)).

As announced at the beginning of this section, our proof of Theorem 3 really has two steps: a forking
calculus step (implemented in Lemmas 10 and 11 and Proposition 12) and a set-theoretic step (implemented
in Lemma 13). The claim below is key. The work done in the first step will show that the claim suffices,
and the second step will prove the claim.

*

Claim. For any limit ordinal v < u* and any regular cardinal o < u*, | has universal continuity at o and
no ~v-limit alternations at «.

By Proposition 12, the claim implies that | has strong universal local character at any regular o < p+.
This suffices by Remark 7. It remains to prove the claim.

Proof of Claim. Universal continuity holds by Lemma 13. When a < o, Lemma 13 also gives that | has
no ~v-limit alternations at o. Assume now that o > o. By Remark 7, | has weak universal local character

at any limit o’ € [o,ut), so in particular in o. By Lemma 10, | has no v-limit alternations at a, as
desired.  fclaim O
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