
PageRank and The Random Surfer Model

Prasad Chebolu∗ Páll Melsted∗

Abstract

In recent years there has been considerable interest
in analyzing random graph models for the Web. We
consider two such models - the Random Surfer model,
introduced by Blum et al. [7], and the PageRank-based
selection model, proposed by Pandurangan et al. [18].
It has been observed that search engines influence the
growth of the Web. The PageRank-based selection
model tries to capture the effect that these search
engines have on the growth of the Web by adding new
links according to Pagerank. The PageRank algorithm
is used in the Google search engine [1] for ranking search
results.

We show the equivalence of the two random graph
models and carry out the analysis in the Random Surfer
model, since it is easier to work with. We analyze the
expected in-degree of vertices and show that it follows
a powerlaw. We also analyze the expected PageRank of
vertices and show that it follows the same powerlaw as
the expected degree.

We show that in both models the expected degree
and the PageRank of the first vertex, the root of the
graph, follow the same powerlaw. However, the power
undergoes a phase-transition as we vary the parameter
of the model. This peculiar behavior of the root has
not been observed in previous analysis and simulations
of the two models.

1 Introduction

The structure of large-scale real networks has been
studied extensively in recent years. A number of models
have been proposed to model the World Wide Web
graph or the Internet graph, usually as the outcome of
a random process where the graph is grown one node at
a time. Experimental studies by, Faloutsos, Faloutsos
and Faloutsos [14], Albert, Jeong and Barabasi [2]
and Broder et al. [10], have shown that the degree
distribution follows a power law with a heavy tail.
Several other properties of the Web graph have been
studied, such as the diameter, number of small bipartite
cliques and the distribution of PageRank.
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A prominent model for the web graph is the Pref-
erential Attachment model suggested by Barabasi et
al. [5]. The first rigorous treatment of the model was
given by Bollobas, Riordan, Spencer and Tusnády [8],
which showed a power law for the degree distribution.
Several extensions of the Preferential Attachment have
been proposed and analyzed, e.g. a generalized version
of Preferential Attachment by Cooper and Frieze [12],
and the copying model by Kumar et al. [15]. For
an overview of the history of such generative models
see [17].

PageRank is an important ingredient in the ranking
of search results used by Google [1]. Pandurangan et
al. [18] studied the distribution of PageRank values on
the Web and gave a generative model that grows the
graph according to PageRank of each node. In another
seemingly unrelated paper Blum et al. [7] considered a
variation on the preferential attachment model where
endpoints of new vertices are selected by taking a short
directed random walk on the graph.

In fact we show that the two models are equivalent
and proceed to analyze the expected in-degree and
PageRank of vertices. To state the results we first give
a more detailed description of the models.

1.1 Definitions and Results The Random Surfer
Web-Graph model is a sequence of directed graphs
Gt, t = 1, 2, . . .. The graph Gt has t vertices and t edges.
The process is parameterized with a probability p and
we let q = 1 − p. G1 consists of a single vertex v1 and
a directed self loop. Given Gt we create Gt+1 in the
following manner:

1. add vt+1 to the graph

2. pick u uniformly at random from v1, . . . , vt

3. with probability p add the edge (vt+1, u) to the
graph and stop

4. otherwise with probability q replace u by the unique
vertex u points to and repeat step 3

We see that Gt will be a directed tree rooted at the first
vertex, v1, which we will refer to as the root.

For a directed graph the PageRank is defined as
the stationary probability distribution of a random walk



on the graph. The random walk follows the outgoing
edges of the graph, but will restart itself every time
with probability 1−c, and start at a new vertex, chosen
uniformly at random. The probability c is called the
decaying factor and influences the convergence of the
computation of PageRank; typical values of c are about
0.85 [9].

The PageRank πv for a graph G is given by the
system of equations

(1.1) πv =
1− c

n
+ c

∑
u∈N−(v)

πu

d+(u)

and
∑

v∈G πv = 1. Here n is the number of vertices of
G, N−(v) is the set of vertices pointing to v and d+(u)
is the outdegree of u. For a more detailed discussion of
PageRank see [16] and [9].

The PageRank-based selection model described
by [18] follows the same scheme as the random surfer
model except steps 2− 4 are replaced by the rule: pick
u with probability πu and add (vt+1, u); where π is the
PageRank distribution of Gt.

Theorem 1.1. The PageRank-based selection model
gives the same distribution over graphs as the random
surfer model, provided 1− c = p.

We note that this theorem is similar to a theorem
in [13], however the context and motivations are dif-
ferent. This theorem is useful for simulation of the
PageRank-based selection model since it allows us to
sample from the model without actually computing the
PageRank of each and every vertex. The random surfer
model comes in handy since computing PageRank is a
resource-intensive task.

It should be noted that when PageRank is used in
practice, self-loops are removed and vertices with out-
degree of 0, so called dangling nodes, are given edges
to all other vertices. This would result in a different
model, as the root would have an edge to every vertex
in the graph. The random surfer model can be modified
to account for this and the connection to PageRank
still holds. However, this considerably complicates the
analysis and is outside the scope of this paper.

Theorem 1.2. The expected in-degree in Gn of a vertex
u that comes in at time tu ≥ 2 is

E[d−Gn
(u)] =

1
q

n−tu∑
i=1

Pi(tu, n)(pq)i 1
i

(
2i− 2
i− 1

)
where

Pi(a, b) =
∑

a≤t1<...<ti<b

1
t1 · · · ti

If tu = o(n) then the expected degree is asymptotically
equal to

Θ

(
(n/tu)4pq

ln3/2(n/tu)

)
.

In their paper Blum et al. [7] gave a lower bound of(
n
tu

)pq

for the expected degree of a vertex. We obtain
the correct exponent of 4pq for the expected degree of
a vertex (other than the root). They obtained Θ(( n

tu
)p)

for the virtual degree of a vertex, but they could not
relate the virtual degree to the actual degree of a vertex.
We analyze the root separately. What is special about
the root? Every random walk that reaches the root
terminates at the root unlike at a normal vertex. This
results in the root undergoing a phase transition in its
expected degree which was not observed in their paper.
This behavior of the root is summarized in the following
theorem.

Theorem 1.3. The expected in-degree of the root un-
dergoes a phase transition at p = 1

2 .
The expected degree of the root is

E[d−Gn
(v1)] =

{
Θ̃(n) for p ≤ 1

2 ,

Θ̃(n4pq) for p > 1
2 .

For p ≤ 1/2, we observe that the root has degree
Θ̃(n), where Θ̃(n) is shorthand for O(n lnk n) for some
k, while the first few vertices that come in at time O(1)
have degree Θ̃(n4pq). This shows that most vertices
have an edge to the root and the tree is almost ”star-
like” with the root at the center of the star. This is
the expected behavior, as every incoming vertex takes
a random walk of expected length at least 1, thereby
being more likely to be closer to the root. For p > 1/2,
the expected degree of the root is comparable to any
other vertex and is Θ̃(n4pq).

Theorem 1.4. The expected PageRank at time n of a
vertex u that comes in at time tu ≥ 2 is

E[πu(n)] =
p

n
+

p

n

n−tu∑
i=1

Pi(tu, n)(pq)i 1
i + 1

(
2i

i

)
If tu = o(n) then this is asymptotically equal to

p

n
Θ̃

((
n

tu

)4pq
)

A similar result was obtained for the PageRank
for a slight modification of the Preferential Attachment
model [4]. Power law results for PageRank have been
observed in large webgraphs and verified by simula-
tion [18, 6]. The approximations used in the analysis



in [18] are not tight enough to yield the correct power
for the power law. Using the same approximation and
treating the expected value as a deterministic value we
would get a power law with a power 1

4pq +1. However, to
be able to justify such a claim we would need good con-
centration for the degree of a vertex, which we presently
do not have.

Theorem 1.5. The expected PageRank of the root at
time n is asymptotically given by

E[πv1(n)] =
{

1
n Θ̃(n) if p ≤ 1

2 ,
1
n Θ̃(n4pq) if p > 1

2 .

When p < 1
2 there is a sharp difference between the

PageRank of the root and other vertices. This behavior
can be compared to [11] where it is shown that a small
set of “celebrity” sites accumulate a constant fraction
of all links created. Their motivation was to look at the
effect of search engine results on the growth of the Web.

2 Analysis of the Random Surfer model

Let Gt, t = 1, . . . , n be an evolving random surfer graph
where G = Gn is the final graph. Consider a vertex u,
different from the root, that comes in at time tu ≥ 2.
At any time t ≥ tu the probability that a new vertex,
added at time t + 1, connects to u is dependent only on
the subtree rooted at u. Furthermore if we know that
the new vertex takes a random walk of length k, then it
will connect to u if and only if it starts k levels below u
in u’s subtree.

Thus, we introduce the random vector L(t) =
[Lk(t)]n−1

k=0 where Lk(t) is the number of vertices in the
subtree of u at depth k. Here we define u to be at depth
k = 0 and L0(t) = 1 for all t ≥ tu. Now the probability
that the new vertex connects to u given that it starts at
depth k in u’s subtree is pqk and the probability that
it starts the random walk at depth k is 1

t Lk(t). Thus
summing over all levels, the probability that the new
vertex connects to u is

(2.2)
p

t
(L0(t) + qL1(t) + q2L2(t) + . . . + qn−1Ln−1(t))

In order to find the expected degree of u we need
to keep track of the size of each level of u’s subtree.

Repeating the same argument as for (2.2) we can
find the probability that level k acquires a new vertex
that comes in at time t + 1

Pr[Lk(t + 1) = Lk(t) + 1 | L(t)](2.3)

=
p

t

(
Lk−1(t) + qLk(t) + . . . + qn−kLn−1(t)

)
(2.4)

=
p

t
[A · L(t)]k(2.5)

for 1 ≤ k ≤ n−1 and t ≥ tu. Here A is the n×n matrix

(2.6) A =


0 0 0 . . . 0 0
1 q q2 . . . qn−2 qn−1

0 1 q . . . qn−3 qn−2

...
. . .

0 0 0 . . . 1 q


For aesthetic reasons we will start counting rows and
columns of A from 0 onwards. In general Ak,j = qj−k+1

if j − k + 1 ≥ 0, k ≥ 1 and 0 otherwise.

2.1 The root The root vertex is treated differently
than the general case, since it has a directed self loop.
This means that once a random walk hits the root it
will stop at the root eventually. As before we let Lk(t)
be the number of nodes at depth k. Given that a vertex
starts at depth k it will connect to the root if its random
walk is of length at least k. We see that the probability
of connecting to the root is then

pqk +pqk+1+ . . . = pqk(1+q+q2+ . . .) = pqk 1
1− q

= qk

Therefore a new vertex that comes in at time t + 1
connects to the root with probability

(2.7)
1
t
(L0(t) + qL1(t) + q2L2(t) + . . . + qn−1Ln−1(t))

For k ≥ 2 the probability that the new vertex is at
depth k is the same as in the case for general vertices,
given by (2.4). We can write the probabilities in matrix
form as in (2.5) as

(2.8) Pr[Lk(t + 1) = Lk(t) + 1 | L(t)] =
1
t
[BL(t)]k

where

(2.9) B =


0 0 0 . . . 0 0
1 q q2 . . . qn−2 qn−1

0 p pq . . . pqn−3 pqn−2

...
. . .

0 0 0 . . . p pq


Note that B differs from pA only in the second row.

3 PageRank Model

We begin by proving Theorem 1.1

Proof. Initially both models start with a single vertex
and a self loop. We show that the distributions over
Gt+1 are the same for both models if they start at the
same graph Gt. Hence the distributions are the same
by an inductive argument.



Conditional on starting at the same graph Gt,
the distributions over Gt+1 are determined by the
probability that the new vertex vt+1 selects u as its
endpoint. Therefore it is enough to show that both
models give the same distribution over vertices.

Let P be the adjacency matrix of the graph Gt and
note that in both the PageRank based selection model
and the random surfer model each vertex has an out-
degree of 1. We can write (1.1) with c = 1− p = q

π =
p

t
1 + qπP ⇐⇒ π(I − qP ) =

p

t
1

⇐⇒ π =
p

t
(I − qP )−11 =

p

t

∞∑
k=0

qkP k1

where 1 is the vector of all ones. Now [P k1]u counts
the number of paths of length k that end at the vertex
u. So when u is not the root we have [P k1]u = Lk(t)
where Lk(t) is the number of vertices at depth k in the
subtree of u. Then the PageRank of u is

(3.10) πu(t) =
p

t

∞∑
k=0

qkLk(t) =
p

t

t−1∑
k=0

qkLk(t)

which is exactly the same formula as in (2.2).
For the root v1 we have [P k1]v1 = L0(t) + L1(t) +

. . . + Lk(t), since we can take k steps or less to the root
and then loop once the root is hit. So the PageRank of
the root is

πv1(t) =
p

t

∞∑
k=0

qk
k∑

j=0

Lj(t)

=
p

t

∞∑
j=0

Lj(t)
∞∑

k=j

qk =
p

t

t−1∑
j=0

Lj(t)
qj

1− q

=
1
t

t−1∑
j=0

qjLj(t)

Which is the same formula as in (2.7). Hence the
distributions are the same.

4 Expected degree

We prove a stronger version of Theorem 1.2 which will
be used in subsequent proofs.

Theorem 4.1. For a vertex u that comes in at time
tu ≥ 2 the expected number of vertices at depth k in u’s
subtree is

(4.11) E[Lk(n)] =
n−tu∑
i=k

Pi(tu, n)piqi−k k

i

(
2i− k − 1

i− 1

)

In particular, for k = 1 this implies the first part of
Theorem 1.2.

Proof. From (2.5) we see that

E[L(t + 1)|L(t)] = L(t) +
p

t
AL(t) = (I +

p

t
A)L(t)

Taking expected values of both sides we get E[L(t +
1)] = (I + p

t A)E[L(t)]. Solving the recurrence equation
and noting that L(tu) = e0 where e0 is the n-vector
[1, 0, . . .]T we get

E[L(n)] =

(
n−1∏
t=tu

(I +
p

t
A)

)
e0

Multiplying through the right hand side and grouping
by powers of A,we get

E[L(n)] =
n−tu∑
i=0

Pi(tu, n)piAie0

where

Pi(tu, n) =
∑

tu≤t1<t2<...<ti<n

1
t1 · t2 · · · ti

corresponds to the 1
t factors in the coefficient of A. Now

the following Lemma finishes the proof

Lemma 4.1. For i ≥ 1, k ≥ 1 and k ≤ i we have

1. [Aie0]k = qi−k k
i

(
2i−k−1

i−1

)
2. [Bie0]1 = qi−1

∑i−1
j=1

j
i−1

(
2(i−1)−j−1

i−2

)
pi−j−1, for

i ≥ 2

3. [Bie0]k = qi−k
∑i−1

j=k−1
j

i−1

(
2(i−1)−j−1

i−2

)
pi+k−j−2,

for k ≥ 2

The proof of Lemma 4.1 is given in the Appendix. We
now derive the asymptotic expression for the expected
in-degree as stated in Theorem 1.2.

Proof. From Theorem 4.1 we have E[L1(n)] =
1
q

∑n−tu

i=1 Pi(tu, n) (pq)i

i

(
2(i−1)

i−1

)
. A simple upper bound

on Pi(tu, n) can be obtained by dropping the restriction
that we sum over distinct numbers, thus

Pi(tu, n) ≤
∑

t1,...,ti∈[tu,n−1]

1
i!

1
t1 · · · ti

=
1
i!

(
n−1∑

t1=tu

1
t1

)
· · ·

(
n−1∑

ti=tu

1
ti

)



=
(Hn−1 −Htu−1)i

i!
≤

(
ln n

tu
+ 1
)i

i!

=

(
ln en

tu

)i

i!

where Hk is the k-th harmonic number.
Now let µ = 4pq ln(en/tu), δ = 4

√
ln ln(en/tu)

µ and
I = [µ(1 − δ), µ(1 + δ)]. We see that most of the
contribution to the sum comes from i ∈ I. In fact we
have ∑

i/∈I

Pi(tu, n)
(pq)i

i

(
2(i− 1)
i− 1

)

≤
∑
i/∈I

(pq ln(en/tu))i22(i−1)

i!

=
1
4

∑
i/∈I

µi

i!
=

eµ

4

∑
i/∈I

e−µµi

i!

=
eµ

4
Pr[|X − µ| > δµ]

where X ∼ Poi(µ). By standard concentration results
(see [3]) we can see that this probability is at most
2e−δ2µ/4, thus the contribution is at most

eµe−4 ln ln(en/tu) =
(en/tu)4pq

ln4(en/tu)
.

For i ∈ I we can approximate 1
i

(
2(i−1)

i−1

)
with 22(i−1)

i3/2
√

π
and

get

∑
i∈I

Pi(tu, n)
(pq)i

i

(
2(i− 1)
i− 1

)
=

(1 + o(1))
4

∑
i∈I

Pi(tu, n)
(4pq)i

i3/2
√

π

=
1 + o(1)

4
√

π ln3/2(en/tu)

∑
i∈I

Pi(tu, n)(4pq)i

=
1 + o(1)

4
√

π ln3/2(en/tu)

n−tu∑
i=0

Pi(tu, n)(4pq)i

=
1 + o(1)

4
√

π ln3/2(en/tu)

n−1∏
t=tu

(1 +
4pq

t
)

= Θ

(
(n/tu)4pq

ln3/2(n/tu)

)
.

Note that we can switch from summing over I to
summing over the whole interval, since the contribution
from outside I is O(ln(n/tu)−5/2) of the final sum.

5 Root

When p = 0 the random surfer model gives a star so the
root has degree n − 1. When p = 1 the random surfer
model is equivalent to selecting endpoints uniformly at
random, the degree of the root is then polylogarithmic
in n. For values of p ∈ (0, 1) we show that the expected
degree of the root is decreasing in p.

Theorem 5.1. Let dp(n) be the in-degree of the root in
a Random-Surfer graph with parameter p. Then dp1(n)
stochastically dominates dp2(n) for all p1 < p2, i.e. we
can couple the two models s.t. inequality holds for every
instance.

Proof. We can generate an instance of a Random-Surfer
graph with a sequence of pairs (v2, t2), . . . , (vn, tn)
where vk is picked uniformly at random from [1, k − 1]
and tk is taken uniformly at random from [0, 1]. Given
p we construct the graph in the following way from the
sequence. Vertex k begins by picking vertex vk and then
takes a random walk of length l towards the root, where
l is the smallest number s.t. tk ≤ 1−(1−p)l+1. Since tk
is uniformly distributed we see that l is geometric with
parameter p.

If we use the same sequence to generate instances
G1 and G2 with parameters p1 < p2, then the lengths of
the random walks will be longer in G1. Thus we see that
vertices with the same label in both graphs will always
be closer to the root in G1 than in G2. In particular this
shows that a vertex connected to the root in G2 must
also be connected to the root in G1.

Thus dp1(n) ≥ dp2(n) for these coupled instances.

This implies that E[d−Gn
(v1)] is decreasing as a

function of p.

Theorem 5.2. For the root, v1, the expected values for
L(n) are

E[L1(n)] =
n−1∑
i=1

Piq
i−1

i−1∑
j=1

j

i− 1

(
2i− j − 3

i− 2

)
pi−j−1

and for k ≥ 2

E[Lk(n)] =
n−1∑
i=k

Piq
i−k

i−1∑
j=k−1

j

i− 1

(
2i− j − 3

i− 2

)
pi+k−j−2

where Pi = Pi(1, n)

Proof. As in the proof of Theorem 4.1 we have

E[Lk(n)] =
n−1∑
i=k

Pi(1, n)[Bie0]k

Using Lemma 4.1 and plugging in for [Bie0]k finishes
the proof.



We now prove Theorem 1.3

Proof. Note that pAx ≤ Bx for any vector x with non-
negative coordinates. This implies

E[L1(n)] =
n−1∏
t=1

(I +
1
t
B)e0

≥
n−1∏
t=1

(I +
p

t
A)e0 = Θ̃(n4pq)(5.12)

The last equality follows from Theorem 1.2.
Take p = 1

2 , then (5.12) gives E[L1(n)] ≥ Θ̃(n).
Since E[L1(n)] is decreasing in p we have
E[L1(n)] ≥ Θ̃(n) for all p ≤ 1

2 . Now L1(n) ≤ n − 1
which implies E[L1(n)] = Θ̃(n) for p ≤ 1

2 .

Now assume p > 1
2 . By Theorem 5.2 we have

E[L1(n)]

=
n−1∑
i=1

Pi(1, n)qi−1
i−1∑
j=1

j

i− 1

(
2(i− 1)− j − 1

i− 2

)
pi−j−1

≤ q−1
n−1∑
i=1

Pi(1, n)(pq)i
i−1∑
j=1

22i−j−3p−j−1

≤ 1
8pq

n−1∑
i=1

Pi(1, n)(4pq)i
i−1∑
j=1

(2p)−j

≤ 1
16p2q(2p− 1)

n−1∑
i=1

Pi(1, n)(4pq)i = Θ̃(n4pq)

This, with (5.12), shows that E[L1(n)] = Θ̃(n4pq).

6 PageRank

We now prove Theorem 1.4

Proof. Recall that by Theorem 1.1 the PageRank of a
vertex u is equal to the probability that a new vertex
connects to u at time n + 1. Therefore we get the
following for the expected value of PageRank

E[πu(n)]
= E[Pr(vn+1 picks u at time n + 1)]

=
p

n

n−tu∑
j=0

qjE[Lj(n)]


=

p

n
+

p

n

n−tu∑
j=1

qj

n−tu∑
i=j

Pi(tu, n)piqi−j j

i

(
2i− j − 1

i− 1

)
=

p

n
+

p

n

n−tu∑
j=1

n−tu∑
i=j

Pi(tu, n)(pq)i j

i

(
2i− j − 1

i− 1

)

=
p

n
+

p

n

n−tu∑
i=1

Pi(tu, n)(pq)i
i∑

j=1

j

i

(
2i− j − 1

i− 1

)

=
p

n
+

p

n

n−tu∑
i=1

Pi(tu, n)(pq)i 1
i + 1

(
2i

i

)

The asymptotic expression is obtained in a similar
manner as in the proof of Theorem 1.2.

We now prove Theorem 1.5

Proof. As in the proof of Theorem 1.4 we have

E[πv1(n)] = E[Pr(vn+1 picks the root at time n + 1)]

=
1
n

(
n−1∑
k=0

qjE[Lk(n)]

)

=
1
n

(
1 + qE[L1(n)] +

n−1∑
k=2

qkE[Lk(n)]

)
(6.13)

When p ≤ 1
2 we have by Theorem 1.3 that

E[L1(n)] = Θ̃(n). Since πv1(n) ≤ 1, (6.13) shows
that πv1(n) = 1

n Θ̃(n).

Now assume p > 1
2 and consider

n−1∑
k=2

qkE[Lk(n)]

=
n−1∑
k=2

qk
n−1∑
i=k

Piq
i−k

i−1∑
j=k−1

j

i− 1

(
2i− j − 3

i− 2

)
pi+k−2−j

=
n−1∑
i=2

Pi(pq)i
i∑

k=2

pk
i−1∑

j=k−1

j

i− 1

(
2i− j − 3

i− 2

)
p−2−j

=
n−1∑
i=2

Pi(pq)i
i−1∑
j=1

j

i− 1

(
2i− j − 3

i− 2

)
p−2−j

j+1∑
k=2

pk

≤ p2

q

n−1∑
i=2

Pi(pq)i
i−1∑
j=1

j

i− 1

(
2i− j − 3

i− 2

)
p−j

≤ p2

q

n−2∑
i=2

Pi(pq)i
i−1∑
j=1

22i−j−3p−j

=
p2

8q

n−2∑
i=2

Pi(4pq)i
i−1∑
j=1

(2p)−j

≤ p2

8q(2p− 1)

n−2∑
i=2

Pi(4pq)i = Θ̃(n4pq)

which by Theorem 1.3 is of the same magnitude as
E[L1(n)]. Thus we have that E[πv1(n)] = 1

n Θ̃(n4pq)
when p > 1

2 .



7 Conclusions and Remarks

Here we have given exact and asymptotic formulas
for the expected in-degree and expected PageRank of
vertices. We have shown that the expected in-degree
and PageRank follow the same powerlaw. We have also
established that the expected in-degree and PageRank
of the root must undergo a phase-transition at p = 1

2 .
One weakness of the analysis is that we only get the
expected values but we have not been able to establish
any concentration. A possible approach would be to use
concentration results for vector-valued martingales but
we were unable to get meaningful bounds for Lipschitz
constants. We are interested in the following open
questions

1. To obtain a powerlaw for the number of vertices
with degree ≤ d and similar powerlaw for number
of vertices with PageRank ≤ x. We conjecture that
the power will be 1 + 1

4pq for both distributions.

2. Can we repeat the analysis for the model where
a new vertex comes in with d edges? This would
result in a directed acyclic graph and not a directed
tree.

3. Can the variation of PageRank, where self-loops are
removed and dangling nodes are given edges to all
other vertices, be analyzed? In particular it would
be interesting to see whether the phase transitions
of degrees and PageRank remain the same or are
they simply an artifact of our model.

The authors would like to thank Alan Frieze for discus-
sions and suggestions.
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Towards scaling fully personalized pagerank: Al-
gorithms, lower bounds, and experiments. Internet
Math., 2(3):333-358, 2005.

[14] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On
power-law relationships of the internet topology. In
SIGCOMM ’99: Proceedings of the conference on Ap-
plications, technologies, architectures, and protocols for
computer communication, pages 251-262, New York,
NY, USA, 1999. ACM Press.

[15] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivaku-
mar, A. Tomkins, and E. Upfal. Stochastic models
for the web graph. In FOCS ’00: Proceedings of the
41st Annual Symposium on Foundations of Computer
Science, page 57, Washington, DC, USA, 2000. IEEE
Computer Society.

[16] A. Langville and C. Meyer. Deeper inside pagerank.
Internet Math., 1(3):335-380, 2003.

[17] M. Mitzenmacher. A brief history of generative models
for power law and lognormal distributions. Internet
Math., 1(2):226-251, 2004.

[18] G. Pandurangan, P. Raghavan, and E. Upfal. Using
pagerank to characterize web structure. In Computing
and Combinatorics: 8th Annual International Confer-
ence, pages 330-339, Singapore, August 15-17, 2002.



Appendix

We now prove Lemma 4.1

Proof. We prove 1. by induction. First A1e0 =
[0, 1, 0, . . .] and

[Ai+1e0]j

=
n∑

l=j−1

ql+1−j [Aie0]l =
i∑

l=j−1

ql+1−jqi−l l

i
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2i− l − 1
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)

= q(i+1)−j
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(
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i (i + 1− j)!i!
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(
2(i + 1)− j − 1

(i + 1)− 1

)
.

Here we have used the relation
(
n
k

)
=
(
n+1
k+1

)
−
(

n
k+1

)
twice to get a telescoping sum.

We prove 2. and 3. simultaneously by induction. First
[B2e0] = [0, q, p, 0 . . .] and

[Bi+1e0]1

= q · qi−1
i−1∑
j=1

j

i− 1

(
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i− 2

)
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 .

Treating the expression as a polynomial in p, we group
terms by the powers of p. The coefficient of pα, 0 ≤
α ≤ i− 1, in the first sum is

i− 1− α

i− 1

(
2(i− 1)− (i− 1− α)− 1

i− 2

)
.

The coefficient of pα in the second sum for a fixed value
of l is

i + l − 2− α
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(
2(i− 1)− (i + l − 2− α)− 1

i− 2

)
.

In the above expression, for the binomial term to be
non-zero,

2(i− 1)− (i + l − 2− α)− 1 ≥ i− 2 ⇒ l ≤ α + 1 .

The coefficient of pα from the second sum is

α+1∑
l=2
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(
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.

Summing up the coefficient from the first and second
sum, we get
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The summation in the second last step can be simplified
to the above expression using the techniques used in the
proof of 1.

The coefficient of pα is
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.

The expression for the entry [Bi+1e0]1 is given by
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Let us consider [Bi+1e0]k for k ≥ 2 .
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Treating the expression as a polynomial in p, we group
terms by the powers of p. The coefficient of pα, k−1 ≤
α ≤ i, for a fixed value of l is
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)
For the binomial term to be non-zero,
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The coefficient of pα is
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.

The summation in the second last step can be simplified
to the above expression using the techniques used in the
proof of 1.
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