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Abstract

On the multilane freeways one often observes distinct stable equilibrium rela-
tionships between auto velocity and density. Prototypical situations involve two
equilibria

v=uvi(p) >v="12(p) , 0<p<pPmax

where v1(-) and va(-) are monotone decreasing and satisfy v1(Pmax) = v2(Pmax) = 0.
The upper curve is typically stable for densities satisfying 0 < p < p; whereas the
lower curve is stable for densities satisfying p2 < p < pmax- Our interest is in the
situation where 0 < p2 < p1 < Pmax and va(p2) < v1(p1).

In this paper we present a model which incorporates both equilibrium curves
and a simple switching mechanism which allows drivers to transition from one
equilibrium curve to the other. What we observe with this model are relaxation
oscillations seen in congested traffic; i.e. periodic waves separating fast and slow
moving traffic which propagate upstream.

1 Introduction

On the multilane freeways one often observes distinct stable equilibrium relationships
between auto velocity and density. Prototypical situations involve two equilibria

v=ui(p)>v=12(p) , 0=<p< Pmax (L.1)
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where v;(+) and vy(+) are monotone decreasing and satisfy v1(pmax) = Y2(Pmax) = 0. The
upper curve is typically stable for densities satisfying 0 < p < p; whereas the lower curve
is stable for densities satisfying ps < p < pmax. Our interest is in the situation where

0 < p2 < p1 < Pmax and va(p2) < v1(p1)-
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The explanation for the two curves is quite simple. For high density congested traffic
lane changing and passing is difficult and dangerous and this yields the slower equilibrium
curve. On the other hand, when the traffic is less dense, lane changing and passing
becomes easier and this yields the faster equilibrium curve.

In this paper we present a model which incorporates both equilibrium curves and
a simple switching mechanism which allows drivers to transition from one equilibrium
curve to the other. What we observe with this model are relaxation oscillations seen
in congested traffic; i.e. periodic waves separating fast and slow moving traffic which
propagate upstream.

Our basic descriptors are the car density p (in units of cars/mile) and velocity u (in
units of miles/hour). We also track

a=u—wvi(p)

which represents the discrepancy between the actual car speed and the uncongested
maximum speed.

Our governing equations are

%+ 2 (ou) = (12)

and



—2 | p<R@

0 0 €
6—‘: u£ = (1.3)
(@=w)=a) | po
€
Here, u — R(u) is a monotone non-decreasing function satisfying
R(u)=p> , 0<u<w(pe)and R(u) = p1, vi(p1) < u. (1.4)

For experimental data and the choice of the switch curve we refer to the work of B.
Kerner [6, 7]. In his thesis, Sopasakis [1] gave an argument supporting the choice ps = p;
and R(u) = ps, 0 < u.

p

Pmax

. P=R(u)
P1 /\/

I
I
I
\
I
I
I
\

P —\/.-1
o p=vy1(u)
[N

| \

|

I

|

|

I

|

|

|

\
\

et

\

\

u
Va(po) V1(py)
Figure 2
Equations (1.2) and (1.3) imply that u satisfies
vi(p) —u . p<R(u)
ou , Ou €
o T (Wt (o)) 5 = (1.5)
ot ozx ’Uz(p) _u
. P > R(u).

For 0 < p < pmax, the system (1.2), (1.4), and (1.5) is strictly hyperbolic with distinct
wave speeds ¢; = u + pvi(p) < ¢z = u. Variants of this relaxation model with one
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equilibrium and no switch curve have been studied by Aw and Rascle [2], Greenberg
et. al [3,4], and Aw, Klar, Materne, and Rascle [5]. The principal results of those
investigations relevant to us here are that for any initial data po(-) and ug(-) satisfying

0< Uo(CE) < vl(pO(a")) and 0 < pO(x) < Pmax (16)

the system (1.2), (1.4) and (1.5) has an appropriately defined weak solution satisfying
(1.6) for all future times. Thus the model presented here has no signals propagating
faster than the car velocities and yields none of the velocity reversals seen in the Payne-
Whitham models. These two observations are the basic strength of this class of second
order model.

For simplicity we restrict our attention to spatially periodic solutions — the ring road
scenario. We shall also work with a Lagrangian reformulation of the system. When
discretized this Lagrangian system yields a follow-the-leader type model.

We let [ be the spatial period of our data po(-) > 0 and assume that

Am@%=M (L.7)

is an integer. For any real number m € [0, M| we let 2°(m) be the unique solution of

z%(m)
= d 1.8
m= [ mipe (18)
and z(m,t) be the solution of
%(m,t) — a(m, ) w(w(m, ),t) and z(m,0) = 2%(m). (1.9)

Here, p and u are solutions of (1.2), (1.4) and (1.5). The continuity equation (1.2), when
combined with (1.8) and (1.9) yields

z(m,t)
m=[ " ple. )i (1.10)
z(0,t)
and (1.10) in turn implies that
_ def _ def Oz
p(m,t) = p(z(m,t),t) and y(m,t) = a_(m’ t) (1.11)
m

satisfy



Am, 1) (m, ) = 1.
Additionally (1.9) implies that 4 and @ satisfy
0y ou

E(m, t) = %(m, t).

Finally, if we let

then (1.3) implies

_a(m,t) . 1
%, ‘ 0> am, )
ot ot = ) )
(Vo =W1)(3(m,t)) — a(m,t)  _ 1
; > Amt) < g

where

Vi(7) € vi(1/9) and Va(3) € vy(1/7).

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

In what follows we assume the functions V;(-) and V,(-) defined in (1.16) are increasing

and concave on [L “r / Pmax, 00) and satisfy

0="Va(LT) =Vi(L*) and 0< VP (3) < V{?(§) for L< ¥ < oo and p=0,1 (1.17)

and the limit relations

lim (V;(7), V(7)) = (v%,0),i and p = 1,2

y—00

(1.18)

where v3° < v{°. The parameter L has the interpretation of the length of a typical car

on the roadway.
Equations (1.13) - (1.15) also combine to give

Vl(’_)/(ma t)) — ﬂ(m’ t) ~
0 o~V (im0 2 (o t) — )

Va(3(m, 1)) — u(m,t)




The Follow-the-Leader Model

In [3] Greenberg showed that for the Lagrangian system (1.9) - (1.19) the appropri-
ate stable spatial differencing scheme was downwind. Moreover, such differencing, with
Am = 1 (recall cars are discrete), yields

dTm
Ym = Tm+1 — Tm, (121)
1
B = —, (1.22)
Ym

and

di,, _ _
a Vll(xm-i-l - xm)(um—l-l - um)
%(xm+1 — xm) — /am 1
€ y  Tm+1 T > R(ﬂm) (123)
I/2(xm+l - xm) — U, T T 1
€ P AT = R ()
This latter system implies that
Qm = Um — V1(Zmg1 — Tm) (1.24)
satisfies
Qm S 1
- ) Tm — T —
da,, € + R(@,,)
((‘/2 B %)(wm—l-l _ wm) - am) 1

z — T <
) m+1 m_R(_

€ Um)

These equations hold for 1 < m < M and z,1(t) = z; + [ where again [ is the spatial
period of our original data pg(-) and ug(+). The initial positions of the cars are constrained
to satisfy



Tm+1(0) — 2, (0) > L = 5 (1.26)
and these numbers are related to po(-) by
zm+1(0) def o
R GI S ACROREROIEEE (1.27)
Tm (0

In section 2 we analyze a first-order integration scheme for the system (1.20) - (1.22),
(1.24), and (1.25). We obtain estimates which guarantee that

L <Zpi1(t) — 2m(t) and 0 < up(t) < Vi(zme1(t) — zm(t)) (1.28)

for all £ > 0. These estimates guarantee the consistency of the model. In Section 3 we
present some simulations with the discrete model. Here we see the persistent periodic
wave trains separating congested regions of slow moving traffic from regions of less dense
faster moving traffic. The waves separating these regions are analyzed in Section 4.
In that section we revert to continuum model (1.9) and (1.11) - (1.19) because it is
analytically easier to work with.

2 A Priori Estimates

In this section we establish a-priori estimates for solutions of (1.20) - (1.22), (1.24) and
(1.25). We integrate these equations with a first-order Euler Scheme. Specifically, we
let At be our time step, t, = nAt, and for any function f,,(-) we let f denote the
approximate value of f,,(-) at ¢,. Our integration scheme is

gt =2 + At (2.1)
Tt = ety — i, (2.2)
1
o - = 2.3
Pm, (xﬁﬁ — :I?Zj’l) ) (2.3)
aptt = (ap™ = Vi(anth —2m™) (2.4)



where

apt = (1= At/e) oy, + At(Va — Vi) (ap, 0 — an) H (9, — R(ay,)) e, (2.5)

and

H(s) = (2.6)
These equations hold for 1 <m < M and

ol =2ttt + L (2.7)

Throughout, we assume that

0 < AtV{(L) <1/2 and 0< At/e<1/2.1 (2.8)

Theorem 1 Suppose (2.8) holds and that for 1 <m < M

L<z,.,—x, and 0<wu, <Vi(z;, , —2,) (2.9)

Then (2.9) holds for n replaced by n+ 1. m
Proof. The identities (2.1) - (2.6) imply that

Tt = T A (T~ ) (2:10)
and
aptt = Vi(mth) + (am, — Vi (7)) (1 — At/e)

(2.11)
+ (V2= V1) (%) H (0, — R(ay,)) At/e

1Recall, in section 1 we assumed Am = 1 in order to obtain the follow-the-leader model. If]

instead we had allowed any 0 < Am our equations (2.2) and (2.3) would have been replaced by %! =

(zpth — ) /Am and prtt = Am/ (zpt), — 2™F). Our basic integration scheme (2.1) and (2.5)

m+1 m m+1 "~ “m

would be the same but (2.8);, would be modified to ££V/(L) < 1.

8



and the inequalities

L7y 1<m<M
(2.12)
o<ar,=Vi(3%)+ar and a2 <0, 1<m<M
imply that
_n _n def _n ~n
T 2 F () = A — AtV (T,) - (2.13)

The fact that At satisfies (2.8) implies that F(-) is monotone increasing on [L, c0) and
thus (2.9) and (2.13) imply

Tt 2 F(L) =L (2.14)

as desired. On the other hand the inequalities

Uy, — Vi (Y) <0 and (V2 —V1) (5,) <0 (2.15)

and (2.11) imply that

aptt =aptt —vi () <o. (2.16)

The identity (2.11) when combined with (2.10) yields

aptt = (1—-At/e)ap, + (Vi (7o + At (an, —an)) — Vi (32))
+(At/e) (1 — H (py, — R(ay,))) V() (2.17)

+(At/e)H (pr, — R(ur,)) Va(77)

or
Tt = (1- At/e— AtVi(d7,)) Ty, + AtV{(87, )T, 1y
(2.18)
+(At/e)(1 — H(py, — R(uy,)))Vi(Tn) + (At/e)H(py, — R(ur,))Va (),
for some " > min (4™t 4") > L and (2.18) together with (2.6) and (2.8) and u? >
0, 1 <m < M, implies that ag“ > 0. This conclude the proof of Theorem 1. [



The estimates contained in Theorem 4.1 guarantee that the densities

e 1
ndf - 1<m<M (2.19)
Tmt1 — T
satisfy
0 < pr, < Prmax- (2.20)

These estimates further imply that the approximate solutions defined in (2.1) - (2.7)
converge to solutions of the follow-the-leader model (1.20) - (1.22), (1.24), and (1.25) as
At — 0%. This concludes Section 2.

3 Simulations

All computations in this section were run with the following equilibrium relations:

v1(p) = v1°(1 — p/pmax) and va(p) = v3°(1 — p/Pmax)- (3.1)

These transform to

L L
Wi = o (1-7) and va) =og: (1 %) (32)
Y Y
where L = . The specific parameter used were
Pmax
100 x 3600
72 =100 fi = ———— =68.1818... h .
v3 00 feet/sec 5280 68.1818... mp (3.3)
40 x 3600
5. = 40 f = ——— =27.2727... h A4
Vg 0 feet/sec E580 7.2727... mp (3.4)
and
L = 15 feet. (3.5)

The latter number corresponds to a maximum car density of

1 5280
Pmax = {7 cars/foot = T 352 cars/mile. (3.6)
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We used the constant switch curve introduced by Sopasakis [1]:

with v, = 20 feet. For initial data we chose 3 sets of data:

2®)(0) = 20m + .1sin <k2ng) (3.8)

for —oo <m < oo and k = 1,2, and 3. The observation that

238 (0) = 8000 feet = 1.5151. .. miles (3.9)
and
k
) 400(0) = 2 (0) (3.10)

implies we may interpret the data as initial data for a ring-road with 400 cars which is
of length 1.5151... miles. We chose constant initial velocities

u®)(0) = 5(Vi(7.) + Va(m)), 1< m <400 (3.11)
or
u®(0) = 17.5 feet /sec = 11.931818... mph, 1 < m < 400. (3.12)

These data guarantee points on both sides of the switch curve. Simulations were run
with relaxation times

€e=1,2,4, and 8. (3.13)

Below, we show the long-time spatially and temporarily periodic solutions at time
t = 2 hours when ¢ = 8 seconds. Figures 3, 4, and 5 correspond to the initial data
indexed by k = 1,2, and 3 respectively. At earlier times the solution indexed by each
particular £ had k discontinuities per period. This phenomena persisted to ¢ = 2 hours
for the solution indexed by k = 2 but the solution corresponding to the k = 3 converged,
by t = 2 hours, to a solution with one discontinuity per period.

The first two frames in each figure are self-explanatory. In the third frame of each fig-
ure we plot the curve m — (Vm = Zmi1— Tm, Um). This curve is shown in black. The blue
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curves are the equilibrium curves v — (v, Vi, (7)) and v — (7, Va(7)) and the red curve is
the image of u — (20, u). The red dot - o - is the image of (1, u;). Complete animations
of all of these simulations may be found at //www.math.cmu.edu/~plin/congestioon/.
The discontinuities in the profiles propagate at the speed

c~2276+.1 cars/minute. (3.14)

An analysis of these solutions may be found in Section 4.

speed in mph vs car label car spacing in feet vs car label velocity in mph vs car spacing in feet
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Figure 3

12



30

25

20

15

10

speed in mph vs car label

car spacing in feet vs car label

velocity in mph vs car spacing in feet

T T T 28 T T T T
30t
i 261 -
25t
24t -
i 20+
22+ -
] 15t
20 -
. 10 -
18 -
5 -
16| -
1 1 1 1 1 1 O 1
100 200 300 400 100 200 300 400 15 20 25

Figure 4

13
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Figure 5

4 Travelling Waves

The wave trains obtained in section 3 are basically discrete approximations to travelling
wave solutions to the continuum equations (1.9) - (1.19). In this section our goal is to
show that the continuum system (1.9) - (1.19) actually supports such travelling waves.
For definiteness we shall assume that the switch curve introduced in (1.4) is the one
derived by Sopasakis in [1], namely the curve

Ru)=p. , 0<u. (4.1)

With this choice of switch curve the Lagrangian equations become
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0y ou o o e 7T

0 U U .\ 0 *
0y _ou _ U _ iy 98 _ 4.2
ot om0 g~ Vi, Vo(7) — @ ) (4.2)

) f_)/ S Y= —-

€ P

Once again

Vi(7) = vi(1/7) and Va(7) = va(1/7) (4.3)

and we assume that both V] and V, are increasing and concave on [L, 00) and satisfy

0="a(LT) =VA(L") and 0 < VP () < VP (3) for L< 5 <ocoand p=0,1 (4.4)

and the limit relations

lim (v(7), v”(7)) = (v°,0), ¢ and p = 1,2 (45)
y—o0
where 0 < v$° < v$°. L is related to pyax by L = 1/pmax-

We start by describing the portion of the wave trains where both 4 and @ are increasing
in m. These solutions are functions of

E=m+ct (4.6)

and smoothness of these profiles requires that

c=V](7) (4.7)

1
where once again 7, = — (see (4.1)). Equation (4.2), implies that

*

= us + V(%) — 1) (4.8)

In what follows we let I', > L be the unique solution of

Vi(T.) = Va(L7). (4.9)
If L <7, <T,, welet
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U=V/(%)(—L) (4.10)

and note that for V3(7.) < u. < U the equation

U + Vi(7) (7 — 1) = 1V2(9) (4.11)

has a unique solution L < vy_ < 7, satisfying

Vi) > Va(y-)- (4.12)

On the other hand, if Iy, < v, we let L < 7; < 7. be the unique solution of

Va(m) = V() (4.13)

and

U = V(%) (v — m) + Va(m) (4.14)

and note that for V5(7,) < u. < U the equation (4.11) has a unique solution v € (y;,7x)
satisfying (4.12).

In what follows we assume the parameter u, in (4.8) satisfies Va(7.) < u, < U where
U is defined in (4.10) or (4.14) as appropriate.

We now note that (4.2),, when combined with (4.8), implies that the profile 4 must
satisfy

Vi(h) = ue = Vi()(F = %)

d5 c » Y > Vs
VoI ReNg=§ (4.15)
V) T Usx — Ve )\V — V)
? - s 7 < Y
We normalize the profile by insisting that
3(0) = . (4.16)
Noting that sign (V(7.) — Vi(¥)) = sign (7 — 7.), that
Vi(9) —us = Vi) =1) >0, %n<y<n (4.17)
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where 7, < 7, is the unique solution of

Vi(ys) — ue — Vll(’Y*)(’h — %) =0, (4.18)

and finally that

VI?(’V) = Ux — ‘/'1’(’7*)(’7 - ’Y*) <0 y Y- < ’7 <V« (419)

where «y_ is defined in (4.11) we see that (4.15) and (4.16) has a unique increasing solution
defined on (—o0, 00). For £ < 0 the solution is given by the quadrature formula

T (Vi(n) — Vi())dn

V! (7 _ .
) oo G Vi — ) V)~ © (4:20)
and for £ > 0 the solution is given by
, AR A
0 [ ) e vion ) = (421)

Periodic Profiles

For any 7 € (v_,7), we let I'(¥) > ~, be the unique solution of

VI(C() = us = VI(%)(T(F) = 7) = Vi(7) =t = VI(3) (7 — %) (4.22)

and note that

T(3) _ (A - V)
& (E®) - i)

We are now in a position to define the periodic wave trains. For —|&,| < £ <0, () is
given by (4.20) and |&,]| is given by

< 0. (4.23)

/ ™ (Viln) —Vi(w))dn  aes
WO [ Vi v )

where 7_ < ¥, < 7x. For 0 < & < &p(s,), 7(§) is given by (4.21) and &p(5,) is given by

, Fe) (Vi(7s) — Vi(n))dn def ,
eVi(7s) / Vi) = e —Vi(W) 5= 7)) &r(s0)- (4.25)
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We extend these solutions to all £ via

(&) = V(& + &rga) + 1€al)- (4.26)

The extended solution is a proper weak solution to (4.2). The relations (4.8) and (4.22)
imply that the Rankine-Hugoniot relations for (4.2) hold across the discontinuities

E=m+V{(7)t = éria) £ 1 (€rga) + 1)) ,n=0,1,... . (4.27)

(4.22) also implies that

Vvl(F_(_a)) — ‘/1('7&)
F(_a) —Ya
and thus across these discontinuities the Lax entropy condition is satisfied. Recalling

that the particular solutions of interest to us must be M periodic, we see that (4.24) and
(4.25) imply that for some integer k > 1,7, and u, must be such that

Vi(%a) > Vi(v:) =

> V{(T'(7a)) (4.28)

keVi (7v«)

uy + V(%) (0 — 74) — Va(n)) n) — e — V() (0 — %))
(4.29)

" (Vi(n) — Vi(vs))dn [(Fe) (Vi () — Vi(m))dn
L e ]

The condition that z(M,t) = z(1,t) + [ implies that 7, and u, must also satisfy

RO | G i — ) — Val) n) — s = Vi(3) (1 — 1))

(4.30)

™ (V(n) = Vi(y))ndn PGl (V{(v.) = Vi(n))ndn
L e ]

We conclude this section with an analysis of the equations (4.29) and (4.30). We first
note that the integer £ > 1 in these equations is equal to the number of discontinuities
of 4(-) per period. We also note that instead of using u, and 7, as our basic parameters
we may instead use y_ and 7,. With this choice

U + VI (1) (1 = %) = Va(n) = Va(y-) = Va(n) + Vi (7)) (n — =) (4.31)

and for n >~ v_ we have

uy + VI (1) (0 — %) — Va(n) = (V{ (%) = Vo(v-))(n — 7). (4.32)
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The last identity, together with

Vim) = Vi(v) = Vi (v )l(v — ) (4.33)

implies that

o [ (Vi) = Vi)
keVy (7*)/% (uy + VI(v)(m — ve) — Va(n))

RV [ (=)
NUOE V;m_»/% CEEBX (4.34)
RO [ v (=) s

= Vi) — V() {(7* ) (%_7_) (7. m]

and that

'(7) = Vi(ys))ndn
kel 7")/a u*+V1 (V) (1 — %) —

Va(n))
(4.35)
ke (1) IV ()] " (. — 1) (Ve — a)?
(V) = V3(12)) [ /7 (n —%)dn+ 2

for v_ < 4, < 74. The asymptotic formulas (4.34) implies that for any L < v_ < 7, so
that V{(v.) > V3(v-) there exists a J,(7—,7v«) € (7—, ) such that (4.29) holds. With
this choice of 7,, equation (4.30) reduces to

o[ [7 ) = Vi) =2 i
k00 [ o S eI

n /F(W"”*” (Vi(v.) = Va(n))(n — v-)dn (4.36)
Ya (Vi(n) = Vi(ye) + V() (v — m))

=1—M~y_

where [ — M~, <1 — M~_ <1l — ML. In the situation where 7, > I'. (see (4.9)) the
asymptotic formula (4.35) guarantees that the left hand side of (4.36) diverges to plus
infinity as 7_ — 7, (see (4.13)) and that it converges to zero as y_ — , and thus if
v > Iy and | — M~, > 0 we are guaranteed that (4.36) is solvable. When v, < T,
solvability is guaranteed if [ — M+, > 0 and [ — ML is in the range of the left hand side
of (4.36).
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