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Abstract

In part I, it is shown that for integrals of the type

I(u, v) :=

∫
Ω

f(x, u(x), v(x)) dx,

with Ω ⊂ RN open, bounded, and f : Ω×Rm×Rd → [0, +∞) Carathéodory satisfying a growth condition
0 ≤ f(x, u, v) ≤ C(1 + |v|p), for some p ∈ (1, +∞), a sufficient condition for lower semicontinuity along
sequences un → u in measure, vn ⇀ v in Lp, Avn → 0 in W−1,p is the Ax-quasiconvexity of f(x, u, .).
Here A is a variable coefficients operator of the form

A :=

N∑
i=1

A(i)(x)
∂

∂xi
,

with A(i) ∈ C∞(Ω;Ml×d) ∩W 1,∞, i = 1, ..N , satisfying the condition

rank

(
N∑

i=1

A(i)(x)ωi

)
= const for x ∈ Ω and ω ∈ RN \ {0},

and Ax denotes the constant coefficients operator one obtains by freezing x. Under additional regularity
conditions on f it is proved that the condition above is also necessary. A characterization of the Young
measures generated by bounded sequences {vn} in Lp satisfying the condition Avn → 0 in W−1,p is
obtained.

In part II, an integral representation for the functional

F(m, M) := inf

{
lim inf
k→+∞

∫
Ω

f(x, mk(x),∇mk(x)) dx +

∫
Ω∩S(mk)

|[mk](x)|dHN−1 :

mk ∈ SBV (Ω; RN ), |mk(x)| = 1 a.e. in Ω,

mk → m in L1(Ω; RN ), ∇mk ⇀ M in L2(Ω; RN )
}

is obtained. This problem is motivated by equilibrium issues in micromagnetics.
In part III, the effective behavior of second order strain energy densities is obtained using relaxation

and Γ convergence techniques. The Cosserat theory is recovered within a dimension reduction analysis
for 3D thin domains with varying profiles. Homogeneous and inhomogeneous 2D models with periodic
profiles are treated.
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1 Introduction

An important problem in the Calculus of Variations, motivated by issues in Mathematics, Physics, Materials
Science, is to prove existence of

min{I(u) : u ∈ Adm},
where Adm is a subset of some Banach space X and I is a functional defined by an integral.

In order to apply the Direct Method of the Calculus of Variations, which is the most commonly used
method to prove existence of minimizers, it is important to establish conditions that ensure lower semicon-
tinuity of I for a given appropriate topology. A well known result in this direction is that for a functional I
of the type

I(u, v) =
∫

Ω

f(x, u(x), v(x)) dx,

with appropriate regularity conditions on f , we have

un → u in measure, vn ⇀ v in Lp ⇒ lim inf I(un, vn) ≥ I(u, v),

if and only if f(x, u, .) is convex.
In many problems we don’t need to have lower semicontinuity for all weakly convergent sequences, but

just for some of them, and then it may happen that convexity is not necessary any more. A typical example
is when we deal with gradients, I : W 1,p(Ω; Rm) → R,

I(u) =
∫

Ω

f(x, u(x), Du(x)) dx.

Under appropriate regularity and growth conditions on f , I is weakly lower semicontinuous in W 1,p if and
only if f(x, u, .) is quasiconvex ([56], [3], [31]). As introduced by Morrey ([56]), a continuous function
f : Rm.N → R is said to be quasiconvex if and only if

f(A) ≤
∫

Q

f(A+Dϕ(x)) dx,

for every A ∈ Rm.N and every ϕ ∈W 1,∞
0 (Q; Rm), where Q := (0, 1)N , or equivalently,

f(A) ≤
∫

Q

f(A+ ω(x)) dx,

for every A ∈ RN.m and for every ω ∈ C∞(Q; Rm), Q−periodic,
∫

Q
ω(x) dx = 0, with curlω = 0. The notion

of quasiconvexity lies between convexity and convexity in directions of rank-1, i.e., a quasiconvex function
may not be convex in all directions of the space, but at least it is convex in the rank-1 directions. Thus, for
N = 1 or m = 1, quasiconvexity is the same as convexity.

Variational problems involving gradients, as well as some other differential constraints, such as higher
order derivatives, divergence free fields, Maxwell Equations, etc, can be treated in a unified way under
the notion of A-quasiconvexity, as Fonseca and Müller proved in a recent paper([40]). They studied lower
semicontinuity problems when the sequences are constrained by a first order system of PDEs of the form

Au :=
N∑

i=1

Ai ∂u

∂xi
,

under a technical condition called the constant rank condition, precisely

rank

(
N∑

i=1

A(i)ωi

)
= const,

for every ω ∈ RN \ {0}. They considered integrals of the form

I(u, v) :=
∫

Ω

f(x, u(x), v(x)) dx,
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and proved that, under appropriate regularity and growth conditions on f , one has

un → u in measure, vn ⇀ v in Lp Avn → 0 in W−1,p ⇒ lim inf I(un, vn) ≥ I(u, v),

if and only if f(x, u, .) is A-quasiconvex. A function f : Rd → R is said to be A-quasiconvex if

f(v) ≤
∫

Q

f(v + ω(x)) dx,

for all v ∈ Rd and all ω ∈ C∞(RN ; Rd), Q-periodic,
∫

Q
ω(x) dx = 0, Aω = 0. We remark that in case

A = curl, A-quasiconvexity reduces to the usual quasiconvexity.
In part I we study lower semicontinuity when the sequences are constrained by a system of PDEs with

variable coeficients, precisely, we deal with operators A of the type,

Av :=
N∑

i=1

A(i)(x)
∂v

∂xi
,

with A(i) ∈ C∞ ∩W 1,∞, and rank
(∑N

i=1A
(i)(x)ωi

)
= const, for every x ∈ Ω and every ω ∈ RN \ {0}. For

integrals of the type

I(u) :=
∫

Ω

f(x, u(x)) dx,

under appropriate regularity and growth conditions on f , we were able to prove that I is lower semicontinuity
along sequences un ⇀ u in Lp, Aun → 0 in W−1,p, if and only if f(x, .) is Ax-quasiconvex, where Ax is the
constant coefficients operators we obtain by freezing x. We also characterize the Young measures generating
by such sequences. This work is CNA Report 03-2003.

In many problems we have also to deal with surface energies and consider functionals in SBV of the type

I(u) :=
∫

Ω

f(x, u(x),∇u(x)) dx+
∫

Ω∩S(u)

g(u+, u−, νu) dHN−1.

The study of the lower semicontinuity for these integrals brings new difficulties since it may happen that
there is interaction between the volume and the surface energies. The Compactness Theorem (2.27) in SBV
due to Ambrosio ([9], [14]) identifies a class of functionals for which we can study lower semicontinuity
considering the volume and the surface integrals separately, namely, if f(x, u, v) ≥ c|v|r for some r > 1 and
g(u, v, p) ≥ c|p|, f(x, u, .) convex and g jointly convex (see [14]), plus appropriate regularity conditions, then
I is lower semicontinuous in SBV for sequences un → u in L1, supn||un||∞ < +∞. If, in addition, we have
supnHN−1(S(un) ∩ Ω) < +∞, then it is enough to assume quasiconvexity of f(x, u, .) (see [10], [14]).

When lower semicontinuity fails, the effective energy is given by the relaxation of I,

F(u) := inf{lim inf I(un) : un → u}.

Then a question arises: can we find a ’good’ representation for F , i.e., can we represent F as an integral of
some new densities? In part II we deal with a relaxation problem in SBV, where the conditions of Ambrosio’s
Compactness Theorem fail. We find an integral representation for the functional

F(m,M) := inf

{
lim inf

∫
Ω

f(x,mn(x),∇mn(x)) dx+
∫

Ω∩S(mn)

|[mn](x)| dHN−1 : mn ∈ SBV (Ω; RN ),

mn → m in L1, |mn(x)| = 1 a.e. in Ω, ∇mk ⇀M in L2
}
,

with c(|v|2 − 1) ≤ f(x, u, v) ≤ C(1 + |v|2), satisfying appropriate regularity conditions.
This problem is motivated by equilibrium issues in micromagnetics. In considering the relaxed functional

defined for pairs (m,M), instead of only m, we look for a better description of defects (situations where a
given magnetization can be attained via a diffusion of discontinuities), in the same spirit as the structured
deformations introduced by Owen and Del Piero (see [36]) to understand defects in crystals and then studied
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by Chosky and Fonseca in [27]. This work is CNA report 029-2002 and it was submitted to the Journal of
Nonlinear Differential Equations and Applications.

In part III we consider a sequence of functionals

Fε(u) :=
∫

Ωε

Wε(x,D2u(x)) dx

where β′|H|p ≤ Wε(x,H) ≤ β(1 + |H|p) for some p ∈ (1,+∞) and 0 ≤ β′ ≤ β < ∞, which represents a
second order strain energy of a 3D thin structure, possibly with variable thickness between γε and ε for a
fixed γ > 0, i.e., Ωε := {x ∈ R3 : (x1, x2) ∈ ω, 0 < x3 < εfε(x1, x2)}, with ω ⊂ R2 and γ ≤ fε(x1, x2) ≤ 1.
This is a generalization of the energies considered in [17], where to a multiple well elastic energy is added a
quadratic term of the second derivative to account for interfacial energy, to the case where the dependence in
the second order derivate is not necessarily quadratic, and as there is strong convergence in the lower order
terms we focus simply on a term depending only on the second derivatives. By considering dependence on
x and possibility of variable thickness, we allow for material heterogeneity and periodic profiles, as Braides,
Fonseca and Francfort did in [20] for plate models.

For each sequence {ε}, we prove the existence of a subsequence {εR}, such that {FεR} converges to a
limit functional

F{εR}(u, b) :=
∫

ω

W{εR}(x1, x2, D
2u,Db) dx.

Although we could not prove that this convergence is Γ-convergence, it has similar properties and the
techniques used in the proofs are similar to the framework of Γ convergence, namely sequences {uεR} of
minimizers (or almost minimizers) of FεR converge in a appropriate sense to minimizers of the 2D limit
problem F{εR}. We derive applications to homogeneous, inhomogeneous and periodic models. This is a
joint work with Elvira Zappale, it is CNA report 021-2002 and it was accepted in the Journal of Nonlinear
Analysis.
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2 Preliminaries

In this section we present some notation and results that will be useful for the next chapters.

In the sequel Ω is an open, bounded subset of RN , LN is the N -dimensional Lebesgue measure, SN−1 :=
{x ∈ RN : |x| = 1}, Q := (0, 1)N and Q(x0, r) := x0 + r(− 1

2 ,
1
2 )N . Let ν ∈ SN−1, and denote by

Qν(x0, r) := x0 + rQν , where

Qν :=
{
x ∈ RN : |x.νi| <

1
2
, |x.ν| < 1

2
, i = 1, .., N − 1

}
,

for some orthonormal basis {ν1, .., νN−1, ν} of RN . We denote by Es
t (Rm) the s-tuple of completely symmetric

t-linear forms on Rm. Given a set A the function χA is

χA :=

{
1 if x ∈ A,
0 otherwise,

A(A) denotes the set of all open subsets of A, and A∞(A) those which have Lipschitz boundary. The set of
the finite Radon measures on Rd is denoted by M(Rd).

2.1 Young measures

In this section we present some results on Young measures. For more details and proofs we refer the reader
to [61], [15], [58].

Given a bounded sequence {un} in Lp(Ω), for some p ∈ [1,+∞], it is often useful to have a characterization
of the weak limit of f(un), whenever exits, where f is a nonlinear function. The Young measure associated
to the sequence (or to a subsequence of) {un} provides such a characterization. The precise result is stated
below.

Theorem 2.1 (Fundamental Theorem on Young Measures). Let E ⊂ RN be a measurable set of finite
measure and let {zn} be a sequence of measurable functions, zn : E → Rd. Then there exists a subsequence
{znk

} and a weak? measurable map ν : E →M(Rd) such that the following hold:

i) vx ≥ 0, ||νx||M ≤ 1 for a.e. x ∈ E;

ii) One has i’) ||νx||M = 1 for a.e. x ∈ E if and only if

lim
M→+∞

sup
k
LN ({|znk

| ≥M}) = 0; (2.1)

iii) if K ⊂ Rd is a compact subset and dist(znk
,K) → 0 in measure then

suppνx ⊂ K for a.e. x ∈ E;

iv) if i’) holds then in iii) one may replace ’if ’ by ’if and only if ’;

v) if f : Ω× Rd → R is a Carathéodory integrand, bounded from below, then

lim inf
k→+∞

∫
Ω

f(x, znk
(x)) dx ≥

∫
Ω

f̄(x) dx

where

f̄(x) := 〈νx, f(x, .)〉 =
∫

Rd

f(x, y)dνx(y);
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vi) if i’) holds and if f is as in v), then

lim inf
k→+∞

∫
Ω

f(x, znk
(x)) dx =

∫
Ω

f̄(x) dx < +∞

if and only if {f(., znk
(.))} is equi-integrable. In this case

f(., znk
(.)) ⇀ f̄ in L1(Ω).

The map ν : E → M(Rd) is called the Young measure generated by the sequence {znk
}. The Young

measure ν is said to be homogeneous if there is ν0 ∈M(Rd) such that νx = ν0 for a.e. x ∈ E.

Remark 2.2. Condition (2.1) holds if for some p > 0

sup
n∈N

∫
E

|zn|p dx < +∞

Proposition 2.3. If {vn} generates a Young measure ν and if ωn → ω in measure then {vn +ωn} generates
the ’translated’ Young measure

ν̃x := Γω(x)νx

where
〈Γaµ, ϕ〉 := 〈µ, ϕ(.+ a)〉

for a ∈ Rd, ϕ ∈ C0(Rd). In particular, if ωn → 0 in measure then {vn + ωn} generates the Young measure
ν.

Proposition 2.4. If {vn} generates a Young measure ν and un → u a.e. in Ω then the sequence {(un, vn)}
generates the Young measure µ defined by

µx := δu(x) ⊗ νx, a.e. x ∈ Ω

2.2 A-quasiconvexity

Here we present some results on A-quasiconvexity, which are due to Fonseca and Müller. For more details
and proofs we refer the reader to [40].

Consider a first order linear partial differential operator of the form

Av :=
N∑

i=1

A(i) ∂v

∂xi
,

where v : RN → Rd, A(i) ∈Ml×d and

rank

(
N∑

i=1

A(i)ωi

)
= const, (2.2)

for all ω ∈ RN \{0}. The constant rank hypothesis (2.2) plays a pivot role in the construction of a continuous
projection onto the kernel of A, T : Lq(TN ; Rd) → Lq(TN ; Rd), where 1 < q < +∞ and Lq(TN ; Rd) denotes
the space of functions v : RN → Rd, Q−periodic, v ∈ Lq(Q), with the following properties

Lemma 2.5. i) A(Tv) = 0;

ii) T2 = T

iii) ||v − Tv||Lq ≤ Cq||Av||W−1,q for every v ∈ Lq(TN ; Rd) such that
∫

Q
v dx = 0;

iv) if {vn} is q-equi-integrable then {Tvn} is also q-equi-integrable.
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A Borel function f : Rd → R is said to be A-quasiconvex if

f(v) ≤
∫

Q

f(v + ω(x)) dx,

for all v ∈ Rd and all Q−periodic ω ∈ C∞(RN ; Rd) such that Aω = 0 and
∫

Q
ω(x) dx = 0. The A-

quasiconvexity lies between convexity and convexity in certain directions of the space, defined by the char-
acteristic cone

Λ := ∪ω∈RN\{0}ker

(
N∑

i=1

A(i)ωi

)
,

introduced by Murat and Tartar (see [61], [57]). Precisely,

Proposition 2.6. If f : Rd → R is upper semicontinuous and A-quasiconvex, then

f(θy + (1− θ)z) ≤ θf(y) + (1− θ)f(z)

for all θ ∈ (0, 1), y, z ∈ Rd such that y − z ∈ Λ.

If the directions in Λ are enough to generate all the space Rd then the A-quasiconvex functions are locally
Lipschitz continuous (see Theorem 2.3, pag. 29, in [31]). In the curl-free case (the usual quasiconvexity) the
characteristic cone is Λ = {a⊗b : a ∈ Rm, b ∈ RN}, m.N = d, i.e., all the rank-one directions, which are
enough to generate all Rd, thus, as it is well known, quasiconvex functions are continuous.

The notion of k−quasiconvexity, which was introduced by Meyers in [54] to treat higher order variational
problems, can be included also in the framework of A-quasiconvexity, for an appropriate operator A (see
[40], [19]). We recall that a Borel function f : Em

k (RN ) → R is said to be k−quasiconvex if

f(v) ≤
∫

Q

f(v +Dkϕ(x)) dx,

for all v ∈ Em
k (RN ) and all ϕ ∈ C∞c (Q; Rm). For such a functions the characteristic cone is given by (see for

instance [16])
Λk := ∪b∈RN\{0}{a⊗b⊗k : a ∈ Rm}.

We now prove that Λk generates the space Em
k (RN ), thus, k−quasiconvex functions are continuous, for any

k ∈ N. This is a consequence of a Theorem of Tensor Algebra we present below. We first need to introduce
some notation: let V be a real vector space of dimension m and V (k) the set of completely symmetric
k−linear forms on V . Let Sm denote the set of all permutations of {1, 2, ..,m}. Given v1, v2, ..., vm ∈ V we
define

v1 • v2 • .... • vm :=
1

|Sm|
∑

σ∈Sm

vσ−1(1)⊗vσ−1(2)⊗...⊗vσ−1(m),

i.e., the symmetrized tensor product (see Theorem 3.1, pag. 89 in [53]). Let Gk,m denote the collection of
nondecreasing sequences of positive integers of lenght k chosen from 1, ..,m, ω denote the generic element
of Gk,m and kt(ω) the number of times the integer t appears in the range of ω. We then have the following
result (Theorem 1.7, pag 191 in [53]).

Theorem 2.7. Let {e1, .., em} be a basis for V . Let e(ω) :=
∑m

t=1 kt(ω)et, ω ∈ Gk,m, and set

e•(ω) := e(ω) • ... • e(ω) ∈ V (k).

Then {e•(ω) : ω ∈ Gk,m} is a basis for V (k). Thus V (k) is spanned by elements of the form x • ... • x (k
times), x ∈ V .

Theorem 2.8. Let k ∈ N. If f : Em
k (RN ) → R is k-quasiconvex, then f is locally Lipschitz.

Moreover, if
|f(v)| ≤ α (1 + |v|p) (2.3)

then
|f(v1)− f(v2)| ≤ β

(
1 + |v1|p−1 + |v2|p−1

)
|v1 − v2|,

for every v1, v2 in Em
k (RN ).
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Proof. Applying Theorem 2.7 with V = RN and V (k) = Ek(RN ), we get that the set {ω⊗k : ω ∈ RN}
generates Ek(RN ). Thus Λk = {a⊗ω⊗k : a ∈ Rm, ω ∈ RN} generates all space Em

k (RN ). As f is convex in
each direction of Λk, by Theorem 2.3, pag. 29, in [31], f is locally Lipschitz continuous.

If, in addition, f satisfies 2.3, then by Lemma 2.2, pag. 156, in [31], f is p−Lipschitz continuous.

This result is well known for k = 1, (cf. [31], [52]), and it was recently proved in the case k = 2 in [46].

The Theorem below is a characterization of the Young measures generated by bounded sequences {vn}
in Lq, satisfying Avn = 0. This result generalizes that of Kinderleher and Pedregal about Young measures
generated by sequences of gradients bounded in Lq, that correspond to the particular case A = curl (see
[48], [49]).

Theorem 2.9. Let 1 ≤ q < +∞, and let ν = {ν}x∈Ω be a weakly measurable family of probability measures
on Rd. There exists a q-equi-integrable sequence {vn} in Lq(Ω; Rd) that generates the Young measure ν and
satisfies Avn = 0 in Ω if and only if the following three conditions hold:

i) there exists v ∈ Lq(Ω; Rd) such that Av = 0 and

v(x) = 〈νx, Id〉 a.e. x ∈ Ω

ii) ∫
Ω

〈νx, |z|q〉 dx < +∞

iii) for a.e. x ∈ Ω and all continuous functions g that satisfy |g(v)| ≤ C (1 + |v|q) for some C > 0 and all
v ∈ Rd one has

〈νx, g〉 ≥ QAg(〈νx, Id〉),

where for v ∈ Rd

QAg(v) := inf
{∫

Q

f(v + ω(x)) dx : ω ∈ Lq(TN ; Rd) ∩KerA
}
.

2.3 Pseudodifferential operators

We present some results on Pseudodifferential Operators. For more details and proofs we refer the reader to
[59], [6], [62].

We start by introducing some notation. Given a function u : RN → C, we denote by ∂j the partial
derivative with respect to xj , and by Dj := −i∂j , where i is the imaginary unit. Given two functions u and
v in L2(RN ) we denote by

(u, v) :=
∫

RN

u(x)v(x) dx.

We denote by S the space of C∞(RN ) functions that are rapidly decreasing at infinity, i.e., a function ϕ
belongs to S if xα∂βϕ are bounded in RN for all pairs α, β of multiindices. The topology on S is defined by
the norms (k ∈ Z+

0 )
||ϕ||k = sup|α+β|≤k||xα∂βϕ||∞.

We denote by S ′ the set of semilinear forms u on S (i.e. (u, αϕ+ βψ) = ᾱ(u, ϕ) + β̄(u, ψ)) such that there
exits C ∈ R and M ∈ Z+

0 verifying

|(u, ϕ)| ≤ C||ϕ||M for ϕ ∈ S.

For a function u ∈ S, the Fourier transform û (or Fu) of u, is defined by the formula

û(λ) :=
∫

RN

u(x)e−ix.λ dx.

12



The inverse Fourier transform is given by

F−1u(λ) :=
1

(2π)N

∫
RN

u(x)eix.λ dx.

Given s ∈ R we denote by Ls,p(RN ) the image of Lp(RN ) under the linear mapping

Jsu = F−1
(
(1 + |λ|2)

− s
2Fu

)
.

If u ∈ Ls,p(RN ) then there exits a unique ũ ∈ Lp(RN ) with u = Jsũ. The space Ls,p(RN ) is a Banach space
with norm

||u||Ls,p := ||ũ||Lp .

The spaces Ls,p, with p = 2, coincide with Hs(RN ) for any s ∈ R, and for p ∈ (1,+∞) and s ∈ Z they
coincide with W s,p(RN ). We have the duality relation

[Ls,p(RN )]
′

= L−s,p′(RN ),

where p′ = p
p−1 .

For more details about the spaces Ls,p we refer the reader to [4].

Let q ∈ R and b(x, λ) be a C∞ complex-valued function on RN × RN . We say that b is a symbol of
order-q, and we write b ∈ Sq, if there exists constants Cαβ such that

|∂α
x ∂

β
λb(x, λ)| ≤ Cαβ

(
1 + |λ|2

) q−|β|
2
, (2.4)

for (x, λ) ∈ RN × RN , α, β ∈ ZN
+ . We have Sq ⊂ Sl for q ≤ l, and define S∞ := ∪qS

q.
Given a symbol b ∈ Sq we say that b ∼

∑
j bj , with j ∈ Z+

0 , if bj ∈ Sq−j and

b−
∑
j<k

bj ∈ Sq−k.

We define below two operations on symbols, the compound, b#c, and the adjoint, b?.

Theorem 2.10. Let b ∈ Sq and c ∈ Sl. Then the oscillatory integrals

b?(x, λ) =
1

(2π)N

∫
b̄(x− y, λ− η)e−iy.η dy dη

b#c(x, λ) =
1

(2π)N

∫
b(x, λ− η)c(x− y, λ)e−iy.η dy dη

define symbols b? ∈ Sq and b#c ∈ Sq+l with the following asymptotic expansions

b? ∼
∑
α

1
α!
∂α

λD
α
x b̄ b#c ∼

∑
α

1
α!
∂α

λ bD
α
x c.

Remark 2.11. For any b ∈ S∞ we have
(b?)? = b.

For t ∈ R, denote by τ t the symbol τ t(λ) =
(
1 + |λ|2

) t
2
, we then have

i) (τ t)? = τ t

ii) τ t1#τ t2 = τ t1+t2

13



We associate a pseudo-differential operator B (or b(x,D)) to the symbol b(x, λ) ∈ Sq, by the formula

Bϕ(x) :=
1

(2π)N

∫
RN

b(x, λ)ϕ̂(λ)eix.λ, ϕ ∈ S(RN ).

The function Bϕ ∈ S(RN ) and the application is continuous from S to S (see Theorem 3.1. in [59]).
The adjoint symbol is associated with the adjoint operator, it is the tool to extend the domain of a

pseudodifferential operator to S
′
, and the compound symbol is associated with composition, as the theorem

below shows.

Theorem 2.12. For any b and c ∈ S∞ and ϕ and ψ ∈ S one has

i) (b?(x,D)ϕ,ψ) = (ϕ, b(x,D)ψ)

ii) (b#c(x,D)ϕ,ψ) = (b(x,D)c(x,D)ϕ,ψ)

Remark 2.13. Given b = b(x, λ) ∈ Sq and c = c(λ) ∈ Sl, the symbol correspondent to the composition
b(x,D)c(D) is the multiplication of the symbols, i.e.,

b#c(x, λ) = b(x, λ)c(λ).

However, the general case where the symbol c also depend on x, is more complicated. In that case, according
to Theorems 2.10 and 2.12, all one can say is that

b#c(x, λ) = b(x, λ)c(x, λ) + symbol of order q + l − 1

The domain of a pseudodifferential can be extended to S ′ , as it is illustrated below

Definition 2.14. Given a b ∈ S∞, we call pseudodifferential operator of symbol b, the operator b(x,D) :
S ′ → S ′ defined by

(b(x,D)u, ϕ) = (u, b?(x,D)ϕ), for u ∈ S
′
, ϕ ∈ S

If b ∈ Sq, b(x,D) is said to have order q.

In particular, we can define the action of a pseudodifferential operator on Sobolev spaces, and the
continuity result below holds.

Theorem 2.15. Let b ∈ Sq. Then for every s ∈ R there exists a constant Cs such that b(x,D)u ∈ Hs−q for
all u ∈ Hs, with

||b(x,D)u||Hs−q ≤ Cs||u||Hs .

For p 6= 2 a similar result holds if we replace the Sobolev spaces by the spaces Ls,p. In order to prove
that we need the following result, due to Coifman and Meyer ([30]).

Theorem 2.16. Let b ∈ S0 and p ∈ (1,+∞). Then b(x,D)u ∈ Lp(RN ) for all u ∈ Lp(RN ), and

||b(x,D)ϕ||Lp ≤ C||ϕ||Lp , ∀ϕ ∈ Lp(RN ),

Theorem 2.17. Let b ∈ Sq. Then for every s ∈ R there exists a constant Cs such that b(x,D)u ∈ Ls−q,p

for all u ∈ Ls,p, with
||b(x,D)u||Ls−q,p ≤ Cs||u||Ls,p .

Proof. The proof is similar to the proof of Theorem 2.15 presented in [59].
Let b ∈ Sq. We first prove that

||b?(x,D)ϕ||L−s,p ≤ C||ϕ||Lq−s,p , for ϕ ∈ S.

Note that S ⊂ Ls,p and
||ϕ||Ls,p = ||τ s(D)ϕ||Lp .

14



We have
||b?(x,D)ϕ||L−s,p =||τ−sb?(x,D)ϕ||Lp

= ||τ−s(D)b?(x,D)τ−q+s(D)τ q−s(D)ϕ||Lp

≤ C||τ q−s(D)ϕ||Lp = C||ϕ||Lq−s,p .

Let u ∈ Ls,p, we now prove that

|(b(x,D)u, ϕ)| ≤ C||u||Ls,p ||ϕ||Lm−s,p
′ , ∀ϕ ∈ S.

We have
|(b(x,D)u, ϕ)| = |(u, b?(x,D)ϕ)|

= |(u, τ s(D)τ−s(D)b?(x,D)ϕ)|
= |(τ s(D)u, τ−s(D)b?(x,D)ϕ)|
≤ ||u||Ls,p ||b?(x,D)ϕ||

L−s,p
′

≤ C||u||Ls,p ||ϕ||Lq−s,p
′ ,

thus b(x,D)u ∈ Ls−q,p and
||b(x,D)u||Ls−q,p ≤ C||u||Ls,p .

In what follows we are interested in pseudodifferential operators associated with matrix-valued symbols.
Given a matrix B(x, λ) := [bjk(x, λ)]s,t

j,k=1, we say that B(x, λ) ∈ (Sq)s×t if bjk(x, λ) ∈ Sq for j = 1, .., s,
k = 1, .., t. Given u ∈ S ′(RN ; Rt) we define Bu ∈ S ′(RN ; Rs) by

(Bu)j :=
t∑

k=1

bjk(x,D)uk, j = 1, .., s.

It is easy to check that all the results we presented above for scalar-valued symbols still hold for matrix-valued
symbols.

We now derive some estimates that will be useful in Chapter 3. Consider the operator defined in (3.1)
and denote by A(x, λ) its symbol, i.e.

A(x, λ) :=
N∑

i=1

A(i)(x)λi,

and by P (x, λ) the projection onto Ker(A(x, λ)). Define Q(x, λ) by the implicit equation

Q(x, λ)A(x, λ) := Im − P (x;λ). (2.5)

The function Q(x, λ) is positively homogeneous of degree -1 in λ and using (3.2) we get that Q(x, λ) ∈
C∞(Ω× RN \ {0};Mm×d). Define

Qη(x, λ) := η(x)Q(x, λ)χ(|λ|),

where χ : [0,+∞) → R is a C∞-function for which we can find numbers r, R, 0 < r < R < +∞, such that
χ(|λ|) = 0 for |λ| < r and χ(|λ|) = 1 for |λ| > R, and η ∈ C∞c (Ω; [0, 1]), η = 1 on Ω̃, for some open set
Ω̃ ⊂⊂ Ω . It is easy to check that

|∂α
x ∂

β
λQη(x, λ)| ≤ Cα,β

(
1 + |λ|2

)−1−|β|
2

,

for x ∈ RN and λ ∈ RN . Thus Qη(x, λ) is a symbol of order -1 and we denote by Qη the corresponding
pseudo-differential operator.
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We denote by Aη(x, λ) the symbol

Aη(x, λ) :=
N∑

i=1

η(x)A(i)(x)λi,

and by Aη the corresponding operator.
By Remark 2.13, the compound operator QηAη has order 0 and symbol

η(x)Q(x, λ)χ(|λ|)Aη(x, λ) + symbol of order -1,

or, using (2.5),
η2(x)Im − η2(x)P (x, λ)χ(|λ|) + symbol of order -1.

We denote by Pη the operator correspondent to the order 0 symbol η2(x)P (x, λ)χ(|λ|), thus

u− Pηu = QηAu+Ku,

for u ∈ Lp(Ω) with compact support in Ω̃, where K is a pseudo-differential operator of order -1. Using
Theorem 2.17, we get the estimates

||u− Pηu||Lp ≤ C||Au||W−1,p + C||u||W−1,p , (2.6)

and
||APηu||W−1,p ≤ C||u||W−1,p , (2.7)

where we have used the fact that APη is an operator of order 0, because of the relation

A(x, λ)P (x, λ) = 0.

2.4 Spaces BV, SBV, and sets of finite perimeter

We recall some basic definitions and properties of the space BV of functions of bounded variation, of the
space SBV of functions of special bounded variation, and also of sets of finite perimeter. For more details
and proofs we refer the reader to [14].

Definition 2.18. A function u ∈ L1(Ω; Rd) is said to be of bounded variation, u ∈ BV (Ω; Rd), if for all
i ∈ {1, .., d}, j ∈ 1, .., N , there exists a bounded Radon measure µij such that∫

Ω

ui(x)
∂ϕ

∂xj
(x) dx = −

∫
Ω

ϕ(x) dµij

for every ϕ ∈ C1
c (Ω). The distributional derivative Du is the matrix-valued measure with components µij.

The total variation of the gradient measure, |Du|(Ω), is given by |Du|(Ω) =
∑d

1 |Dui|(Ω), where

|Dui|(Ω) := sup
ϕ

{∫
Ω

ui divϕdx : ϕ ∈ C1
c (Ω; RN ), ||ϕ||∞ ≤ 1

}
.

The space BV is a Banach space equipped with the norm

||u||BV (Ω;Rd) := ||u||L1(Ω;Rd) + |Du|(Ω).

Definition 2.19. A set A is said to be of finite perimeter in Ω if χA ∈ BV (Ω), where χA denotes the
characteristic function of A. The perimeter of A is defined by

PerΩ(A) := |DχA|(Ω)

There is an important connexion between sets of finite perimeter and level sets of BV functions which
we state next.
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Theorem 2.20 (Co-area formula for BV functions). If u ∈ BV (Ω), then Et := {x ∈ Ω : u(x) > t} has
finite perimeter for a.e. t ∈ R, and

|Du|(Ω) =
∫ +∞

−∞
|DχEt |(Ω) dt

Let E ⊂ RN be a LN -measurable set. We define

E1 :=
{
x ∈ RN : lim

ε→0

LN (E ∩Q(x, ε))
εN

= 1
}

and

E0 :=
{
x ∈ RN : lim

ε→0

LN (E ∩Q(x, ε))
εN

= 0
}
,

the measure theoretic interior (the set of points of density 1 in E) and the measure theoretic exterior (the
set of points of density 0 in E) of E, respectively. Also, ∂∗E is the essential boundary of E, i.e.

∂∗E := RN \ (E0 ∪ E1).

We note that LN (E4E1) = 0 and LN ((RN \ E)4E0) = 0.
For sets of finite perimeter it is possible to define a normal on part of the boundary, the reduced boundary

FE.

Definition 2.21. Let E ⊂ Ω be a set of finite perimeter in Ω. We define reduced boundary FE to be the
set of points x such that

i) |DχE |(Q(x, ε)) > 0 for every ε > 0 such that Q(x, ε) ⊂ Ω,

ii) νE(x) := limε→0
DχE(Q(x,ε))
|DχE |(Q(x,ε) exits in RN ,

iii) |νE(x)| = 1.

The function νE : FE → SN−1 is called the generalized inner normal to E.

It can be shown that FE ⊂ ∂∗E and HN−1(∂∗E \ FE) = 0 (see [14]). The set FE is (N − 1)-countable
rectifiable, i.e.,

FE = ∪∞n=1Kn ∪ E,

and HN−1(E) = 0, Kn is a compact subset of a C1 hypersurface Sn for each n, and νE |Sn is normal to Sn.
Given u ∈ BV (Ω; Rd), the approximate upper and lower limit of each component ui, i ∈ {1, .., d}, are

given by

u+
i (x) := inf

{
t ∈ R : lim

ε→0+

LN ({ui > t} ∩Q(x, ε))
εN

= 0
}

u−i (x) := sup
{
t ∈ R : lim

ε→0+

LN ({ui < t} ∩Q(x, ε))
εN

= 0
}
.

The set
S(u) := ∪d

i=1

{
x ∈ Ω : u−i (x) < u+

i (x)
}

is called jump set of u, and the value ũ(x) := 1
2 (u+(x) + u−(x)) is defined for every x ∈ Ω. It is well known

that S(u) is (N − 1)-countable rectifiable. The result below is about some fine properties that BV functions
enjoy.

Theorem 2.22. If u ∈ BV (Ω; Rd), then

(i) for LN -a.e. x ∈ Ω,

lim
ε→0+

1
εN+1

{∫
Q(x0,ε)

|u(y)− u(x)−∇u(x).(y − x)|
N

N−1 dy

}N−1
N

= 0;
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(ii) for HN−1-a.e. x ∈ S(u), there exists a unit vector ν(x) ∈ SN−1, normal to S(u) at x, and there exist
vectors u−(x), u+(x) ∈ Rd such that

lim
ε→0+

1
εN

∫
{y∈Qν(x)(x,ε):(y−x).ν(x)>0}

|u(y)− u+(x)|
N

N−1 dy = 0;

lim
ε→0+

1
εN

∫
{y∈Qν(x)(x,ε):(y−x).ν(x)<0}

|u(y)− u−(x)|
N

N−1 dy = 0;

(iii) for HN−1-a.e. x0 ∈ Ω \ S(u)

lim
ε→0+

1
εN

∫
Q

|u(y)− ũ(x0)| dx = 0.

We remark that, in general, (ui)± 6= (u±)i. We denote by [u](x) the jump of u at x, defined by

[u](x) := u+(x)− u−(x).

If u ∈ BV (Ω; Rd), then the measure Du may be represented as

Du = ∇uLN + (u+ − u−)⊗ νHN−1bS(u) + C(u), (2.8)

where ∇u is the density of the absolutely continuous part of Du with respect to LN , and C(u) is the Cantor
part. The three measures in 2.8 are mutually singular.

It is possible to define the trace of a function u ∈ BV (Ω; Rd) on the reduced boundary of a set E of finite
perimeter in Ω (see Theorem 3.77, pag. 171 of [14]).

Theorem 2.23. Let u ∈ BV (Ω; Rd) and let E ⊂ Ω be a set of finite perimeter in Ω. For HN−1-almost
every x ∈ FE there exist u+,FE(x), u−,FE(x) in Rd such that

lim
ε→0

1
εN

∫
Q+

νE
(x,ε)

|u(y)− u+,FE(x)| dy = 0

and
lim
ε→0

1
εN

∫
Q−νE

(x,ε)

|u(y)− u−,FE(x)| dy = 0

Moreover DubFE = (u+,FE − u−,FE)⊗ νEHN−1bFE.

Theorem 2.24. Let u, v ∈ BV (Ω; Rd) ∩ L∞ and let E be a set of finite perimeter in Ω. Then w :=
uχE + vχΩ\E ∈ BV (Ω; Rd) and

Dw = DubE1 + (u+,FE − v−,FE)⊗ νEHN−1b(FE) +DvbE0

The next theorem is a generalization of the Besicovitch Differentiation Theorem (see Ambrosio and Dal
Maso [11], Proposition 2.2).

Theorem 2.25. If λ and µ are Radon measures in Ω, µ ≥ 0, then there exists a Borel set E ⊂ Ω such that
µ(E) = 0, and for every x ∈ suppµ \ E

dλ

dµ
(x) := lim

ε→0

λ(x+ εC)
µ(x+ εC)

exists and is finite whenever C is a bounded, convex, open set containing the origin.

The following subspace of BV was introduced and studied by De Giorgi and Ambrosio [13].

Definition 2.26. A function u ∈ BV (Ω; Rd) is said to be of special bounded variation if C(u) = 0. We
write u ∈ SBV (Ω; Rd).
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The following SBV compactness theorem is due to Ambrosio [9].

Theorem 2.27. Let ϕ : [0,+∞) → R and θ : (0,+∞) → R be nondecreasing lower semicontinuous functions
satisfying

lim
t→∞

ϕ(t)
t

= ∞, lim
t→0+

θ(t)
t

= ∞.

Let {un} be a sequence of functions in SBV (Ω; Rd) ∩ L∞(Ω; Rd) such that supn ||un||∞ <∞ and

sup
n

{∫
Ω

ϕ(|∇un|) dx+
∫

Ω∩S(un)

θ([un])HN−1

}
<∞.

Then there exists a subsequence {uni} and a function u ∈ SBV (Ω; Rd) such that

uni → u in L1, ∇uni ⇀ ∇u in L1.

The next theorem was obtained by Alberti [5].

Theorem 2.28. Let f ∈ L1(Ω; Rd×N ). There exists u ∈ SBV (Ω; Rd) and a Borel function g : Ω → Rd×N

such that

Du = fLN + gHN−1bS(u),
∫

Ω∩S(u)

|g|dHN−1 ≤ C||f ||L1(Ω;Rd×N ),

where C depends only on N .

The Lemma below is a simple corollary of the co-area formula for BV functions, and it is an improvement
to the Lemma 2.9 in [27].

Lemma 2.29. Let u ∈ BV (Ω; Rd). There exist functions un ∈ SBV , with ∇un = 0, such that un − u→ 0
in L∞ and

lim
n→+∞

|Dun|(Ω) = lim
n→+∞

∫
Ω∩S(un)

|[un](x)|dHN−1(x) = |Du|(Ω).

Proof. Without loss of generality we may assume that d = 1. We also assume u to be non-negative; the
general case follows by considering the positive and negative parts of u. Let Et := {x ∈ Ω : u(x) > t} and
define

un(x) :=
∞∑

i=1

1
n
χE(ain)(x),

where, using Theorem 2.20, ain ∈ ( i−1
n , i

n ) is such that Eain has finite perimeter and

|DχEain
|(Ω)

n
≤
∫ i

n

i−1
n

|DχEt
|(Ω) dt.

Clearly un − u→ 0 in L∞(Ω), and

|Dun|(Ω) ≤
∞∑

i=0

1
n
|DχEain

|(Ω) ≤
∫ ∞

0

|DχEt |(Ω) dt = |Du|(Ω).

This yelds
lim sup |Dun|(Ω) ≤ |Du|(Ω)

The converse inequality follows from the lower semicontinuity of the total variation.
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2.5 Global method for relaxation

We present an integral representation result for a class of functionals. The following result was established
in [24].

Theorem 2.30. Let F1 : W 1,p(Ω; Rm)×A(Ω) → [0,+∞) be a functional satisfying the following assumptions

(C1) F1(u, ·) is the restriction to A(Ω) of a Radon measure,
(C2) F1(u,A) = F1(v,A) whenever u = v LN a.e. on A ∈ A(Ω),
(C3) F1(·A) is L1(Ω; Rm)− lower semicontinuous,
(C4) there exists C > 0 such that 1

C

∫
A
|Du|pdx ≤ F1(u,A) ≤ C

∫
A
(1 + |Du|p)dx.

Then, for every u ∈W 1,p(Ω,Rm) and A ∈ A(Ω) we have

F1(u,A) =
∫

A

f1(x, u,Du)dx, where f1(x0, u0, ξ) := lim sup
ε→0+

m1(u0 + ξ(· − x0);Q(x0, ε))
εN

for all x0 ∈ ω, u0 ∈ Rm, ξ ∈ RdN , and where, for (v,A) ∈W 1,p(Ω; Rm)×A(Ω),

m1(v,A) := inf
{
F1(w,A) : w ∈W 1,p(A; Rm) with u = v in a neighborhood of ∂A

}
.

With a proof entirely analogous to that of Theorem 2.30, one can obtain a similar result valid for
functionals defined in W 2,p(Ω; Rm)× W 1,p(Ω,Rm). Let F : W 2,p(Ω,Rm)×W 1,p(Ω,Rm)×A(Ω) → [0, +∞)

be an energy functional such that

(A1) F(u, b, ·) is the restriction of a Radon measure to A(Ω),
(A2) F(·, ·A) is W 2,p×W 1,p − sequentially weakly lower semicontinuous, that is

un⇀u in W 2,p(Ω,Rm) and bn⇀b ∈W 1,p(Ω,Rm) ⇒ F(u, b, A) ≤ lim infn→+∞ F(un, bnA)
for all A ∈ A(Ω);

(A3) F(·, ·, A) is local, i.e. if u = v and b = d a.e. in A ∈ A(Ω) then F(u, b, A) = F(v, d,A);
(A4) there exists C > 0 such that

1
C

∫
A

(∣∣D2u
∣∣p + |Db|p

)
dx ≤ F(u, b, A) ≤ C

∫
A

(
1 +

∣∣D2u
∣∣p + |Db|p

)
dx

for u ∈W 2,p(Ω,Rm), b ∈W 1,p(Ω,Rm) and A ∈ A(Ω).

Theorem 2.31. Let F : W 2,p(Ω,Rm)×W 1,p(Ω,Rm)×A(Ω) → [0,+∞) be a functional satisfying the as-
sumptions (A1)− (A4). For every (u, b) ∈W 2,p(Ω,Rm)×W 1,p(Ω,Rm) and A ∈ A(Ω) we have

F(u, b, A) =
∫

A

f(x, u,Du,D2u, b,Db)dx

where

f(x0, u0, ξ,H, b0, β) := lim sup
ε→0+

m(u0 + ξ(· − x0) + 1
2 (· − x0)TH(· − x0), b0 + β(· − x0), Q(x0, ε))

εN
, (2.9)

and

m(u0, b0, A) := inf
{
F(u, b, A) : (u, b) ∈W 2,p(A,Rm)×W 1,p(A,Rm), u = u0 and b = b0

on a neighborhood of ∂A
}

for u0 ∈W 2,p(Ω,Rm), b0 ∈W 1,p(Ω,Rm) and A ∈ A(Ω).

The proof of Theorem 2.31 is hinged on several lemmata. Most of them are analogous to those related
to the proof of Theorem 2.30. We present just those which differ from their counterpart in [24]. To this
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end, and just as in [22] and [24], we start by introducing the following family of functions. For δ > 0,
u ∈W 2,p(Ω,Rm),b ∈W 1,p(Ω,Rm) and A ∈ A(Ω),

mδ(u0, b0, A) := inf
{ ∞∑

i=1

m(u0, b0, Qi) : Qi cubes , Qi ∩Qj = ∅ for j 6= i,

Qi ⊂ A, diam(Qi) < δ, LN (A\ ∪Qi) = 0
}
.

For every A ∈ A(Ω) and (u0, b0) ∈W 2,p(Ω; Rm)×W 1,p(Ω,Rm) we set

m∗(u0, b0, A) := lim
δ→0

mδ(u0, b0, A). (2.10)

Note that (2.10) is meaningful since the {mδ(u0, b0, A)} is a decreasing sequence in δ.

Lemma 2.32. If A′ ⊂⊂ A, with A′, A ∈ A(Ω), then

m(u, b, A) ≤ m(u, b, A′) + C

∫
A\A′

(
1 +

∣∣D2u
∣∣p + |Db|p

)
dx,

and
F(u, b, A) ≤ F(u, b, A′) + C

∫
A\A′

(
1 +

∣∣D2u
∣∣p + |Db|p

)
dx.

Proof. Given η > 0 choose (v, d) ∈ W 2,p(A′,Rm)×W 1,p(A′,Rm) such that v = u and d = b on a neighbor-
hood of ∂A′ and

m(u, b, A′) ≥ F(v, d,A′)− η.

Define

w :=
{
v in A′

u in ω\A′ and q :=
{
d in A′

b in ω\A′

Let ε > 0, set Ã′ε := {x ∈ A′,dist(x, ∂A′) > ε}. By (A4) we have

m(u, b, A) ≤ F(w, q,A)

≤ F(v, d,A′) + C

∫
A\Ã′ε

(
1 +

∣∣D2u
∣∣p + |Db|p

)
≤ m(u, b, A′) + η + C

∫
A\Ã′ε

(
1 +

∣∣D2u
∣∣p + |Db|p

)
dx.

Letting ε→0 and then η→0 we get the desired inequality. A similar proof can be performed for F .

Lemma 2.33. Let (u, b) ∈W 2,p(Ω,Rm)×W 1,p(Ω,Rm) and A ∈ A(Ω). Under assumptions (A1)− (A4)

m∗(u, b, A) = F(u, b, A).

Proof. The proof of Lemma 2.33 is entirely similar to the proof of Lemma 3.3 in [22].

Lemma 2.34. If F satisfies (A1)− (A4), then

lim
ε→0

F((u, b), Q(x0, ε))
εN

= lim
ε→0

m((u, b), Q(x0, ε))
εN

(2.11)

for LN a.e. x0 ∈ Ω.

Proof. The proof is entirely similar to the proof of Lemma 3.5 in [22]. See also Lemma 2.2.2 in [24].
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The proofs of the two following lemmas are proposed for the convenience of the reader, since there are
slight modifications with respect to the proofs of Lemmas 2.3.1 and 2.3.2 in [24], due to the presence of
second order derivatives.

Lemma 2.35. For a.e. x0 ∈ Ω

dF(u, b, ·)
dLN

(x0) ≤ f(x0, u(x0), Du(x0), D2u(x0), b(x0), Db(x0)) (2.12)

where f is the function defined in (2.9).

Proof. In the proof the constant C may vary from line to line.
By (2.11) and arguing as in [24] we have

dF(u, b, ·)
dLN

(x0) = lim
λ→1−

lim
ε→0+

m(u, b,Q(x0, λε))
εN

. (2.13)

In order to get (2.12) it is enough to verify that the right hand side of (2.13) is less than or equal to
f(x0, u(x0), Du(x0), D2u(x0), b(x0), Db(x0)). Fix 0 < s < 1 and let us consider vε ∈ W 2,p(Q(x0, sλε))
and dε ∈ W 1,p(Q(x0, sλε)) such that vε(x) = u(x0) + Du(x0)(x − x0) + 1

2 (x − x0)TD2u(x0)(x − x0) and
dε(x) = b(x0) +Db(x0)(x− x0) on a neighborhood of ∂Q(x0, sλε) and such that

F(vε, dε, Q(x0, sλε)) ≤ m
(
u(x0) +Du(x0)(· − x0)+

1
2
(· − x0)TD2u(x0)(· − x0), b(x0) +Db(x0)(· − x0), Q(x0, sλε)

)
+ (λε)N+1.

Outside Q(x0, sλε) we can consider the layer L of width (1−s)λ ε
2 and a smooth cut off function ϕ, 0 < ϕ < 1

in L, ϕ ≡ 1 on Q(x0, sλε), ϕ ≡ 0 on ∂Q(x0, λε), ‖Dϕ‖∞ ≤ C
(1−s)λε ,

∥∥D2ϕ
∥∥
∞ ≤ C

(1−s)2λ2ε2 . We define

wε(x) := ϕvε(x) + (1− ϕ)u(x) and oε(x) := ϕdε(x) + (1− ϕ)b(x).

This functions agree respectively with u and b on a neighborhood of ∂Q(x0, λε). In view of Lemma 2.32 we
have

m (u, b,Q(x0, λε)) ≤ F (wε, oε, Q(x0, λε))

≤ F (vε, dε, Q(x0, λsε)) + C

∫
Q(x0,λε)\Q(x0,λsε)

(
1 +

∣∣D2wε(x)
∣∣p + |Doε(x)|p

)
dx

≤ m
(
u(x0) +Du(x0)(· − x0)− 1

2 (· − x0)TD2u(x0)(· − x0), b(x0) +Db(x0)(· − x0), Q(x0, sλε)
)

+(λε)N+1 + C

∫
Q(x0,λε)\Q(x0,λsε)

(
1 +

∣∣D2u(x0)
∣∣p +

∣∣D2u(x)
∣∣p + |Db(x0)|p + |Db(x)|p

)
dx

+
C

(1− s)p(λε)p

∫
Q(x0,λε)\Q(x0,λsε)

(∣∣Du(x0)−D2u(x0)(x− x0)−Du(x)
∣∣p

+ |b(x0)−Db(x0)(x− x0)− b(x)|p) dx+
C

(1− s)2p(λε)2p

∫
Q(x0,λε)\Q(x0,λsε)

∣∣∣u(x)− u(x0)

−Du(x0)(x− x0)−
1
2
(x− x0)TD2u(x0)(x− x0)

∣∣∣pdx.
By dividing by (λε)N we have

m (u, b,Q(x0, λε))
(λε)N

≤
m
(
u(x0) +Du(x0)(· − x0)− 1

2 (· − x0)D2u(x0)(· − x0), b(x0) +Db(x0)(· − x0);Q(x0, sλε)
)

(λε)N

+λε+ C(1− sN ) +
C

(λε)N

∫
Q(x0,λε)\Q(x0,λsε)

(∣∣D2u
∣∣p + |Db|p

)
dx

+
C

(1− s)p(λε)p+N

∫
Q(x0,λε)\Q(x0,λsε)

(∣∣Du(x0)−D2u(x0)(x− x0)−Du(x)
∣∣p

+ |b(x0)−Db(x0)(x− x0)− b(x)|p) dx+
C

(1− s)2p(λε)2p+N

∫
Q(x0,λε)\Q(x0,λsε)

∣∣∣u(x)− u(x0)

−Du(x0)(x− x0)−
1
2
(x− x0)TD2u(x0)(x− x0)

∣∣∣pdx.

(2.14)
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Clearly

lim
s→1−

lim
ε→0+

[
−
∫

Q(x0,λε)

∣∣D2u
∣∣p − sN−

∫
Q(x0,sλε)

∣∣D2u
∣∣p] = lim

s→1−

[∣∣D2u(x0)
∣∣p − sN

∣∣D2u(x0)
∣∣p] = 0

and

lim
s→1−

lim
ε→0+

[
−
∫

Q(x0,λε)

|Db|p − sN−
∫

Q(x0,sλε)

|Db|p
]

= lim
s→1−

[
|Db(x0)|p − sN |Db(x0)|p

]
= 0

And the last two lines of (2.14) go to 0 as ε goes to 0 by the fine properties of Sobolev functions (see Theorem
3.4.2 page 129, [63]). Finally, we conclude that

dF(u, b, ·)
dLN

(x0) ≤ lim inf
λ→1−

lim inf
s→1−

lim
ε→0

m
(
u(x0) +Du(x0)(· − x0)− 1

2 (· − x0)D2u(x0)(· − x0), b(x0) +Db(x0)(· − x0);Q(x0, sλε)
)

(sλε)N

≤ lim sup
ε→0

m
(
u(x0) +Du(x0)(· − x0)− 1

2 (· − x0)D2u(x0)(· − x0), b(x0) +Db(x0)(· − x0);Q(x0, ε)
)

εN

= f(x0, u(x0), Du(x0), D2u(x0), b(x0), Db(x0)).

Lemma 2.36. For LN a.e. x0 ∈ Ω

dF(u, b, ·)
dLN

(x0) ≥ f(x0, u(x0), Du(x0), D2u(x0), b(x0), Db(x0)). (2.15)

Proof. Let εh→0 be such that

lim sup
ε→0+

m
(
u(x0) +Du(x0)(· − x0)− 1

2 (· − x0)TD2u(x0)(· − x0), b(x0) +Db(x0)(· − x0);Q(x0, ε)
)

(ε)N

= lim
εh→0+

m
(
u(x0) +Du(x0)(· − x0)− 1

2 (· − x0)D2u(x0)(· − x0), b(x0) +Db(x0)(· − x0);Q(x0, εh)
)

(εh)N
.

Fix 0 < s < 1 and let vεh
∈ W 2,p(Q(x0, sεh)) and dεh

∈ W 1,p(Q(x0, sεh
)) be such that vεh

= u and dεh
= b

on a neighborhood of ∂Q(x0, sεh) and

F(vεh
, dεh

, Q(x0, sεh)) ≤ m(u, b,Q(x0, sεh)) + (εh)N+1.

Extend vεh
as u and dεh

as b outside Q(x0, sεh) and consider a layer L around the cube of width (1−s)εh

2
and consider a cut off function ϕ such that 0 < ϕ < 1 in L , ϕ ≡ 1 on Q(x0, sεh) , ϕ ≡ 0 on Q(x0, εh),
‖Dϕ‖∞ ≤ C

(1−s)εh
and

∥∥D2ϕ
∥∥
∞ ≤ C

(1−2)2εh
2 . Define

wεh
(x) := ϕ(x)vεh

(x) + (1− ϕ(x))
(
u(x0) +Du(x0)(x− x0) +

1
2
(x− x0)TD2u(x0)(x− x0)

)
and

oεh
(x) := ϕ(x)dεh

(x) + (1− ϕ(x)) (b(x0) +Db(x0)(x− x0))

Since wεh
= u(x0) + Du(x0)(· − x0) + 1

2 (· − x0)TD2u(x0)(· − x0) and dεh
= b(x0) + Db(x0)(· − x0) on a
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neighborhood of ∂Q(x0, εh), arguing as in the proof of Lemma 2.35 we get

m
(
u(x0) +Du(x0)(· − x0)− 1

2 (· − x0)D2u(x0)(· − x0), b(x0) +Db(x0)(· − x0);Q(x0, εh)
)

(εh)N

≤ m(u, b,Q(x0, sεh))
εh

+ εh + C(1− sn) +
C

εN
h

∫
Q(x0,εh)\Q(x0,sεh)

(∣∣D2u
∣∣p + |Db|p

)
dx

+
C

(1− s)pεh
p+N

∫
Q(x0,εh)

∣∣Du(x)−Du(x0)−D2u(x0)(x− x0)
∣∣p dx

+
C

(1− s)pεh
p+N

∫
Q(x0,εh)

|b(x)− b(x0)−Db(x0)(x− x0)|p dx

+
C

(1− s)2pεh
N+2p

∫
Q(x0,εh)

|u(x)− u(x0)−Du(x0)(x− x0)+

− 1
2
(x− x0)TD2u(x0)(x− x0)

∣∣∣∣p dx.
Therefore

f(x0, u(x0), Du(x0), D2u(x0), b(x0), Db(x0)) ≤ lim inf
s→1−

lim
εh→0+

m(u, b,Q(x0, sεh))
(εh)N

and this concludes our proof.

Clearly Lemmas 2.35 and 2.36 now yield Theorem 2.31.
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3 A-quasiconvexity in the variable coefficients

In this chapter we generalize some of the results of [40] to the case of variable coefficients, precisely

Av :=
N∑

i=1

A(i)(x)
∂v

∂xi
, (3.1)

where A(i) ∈ C∞(Ω; Ml×d) ∩W 1,∞, and

rank

(
N∑

i=1

A(i)(x)ωi

)
= const (3.2)

for every x ∈ Ω and all ω ∈ RN \ {0}.
Given x0 ∈ Ω, denote by Ax0 the partial differential operator with constant coefficients that we obtain

by freezing x0, i.e.,

Ax0v :=
N∑

i=1

A(i)(x0)
∂v

∂xi
.

The following sufficient condition for lower semicontinuity holds.

Theorem 3.1. Let Ω ⊂ RN be an open, bounded set, 1 < q < +∞, and let f : Ω× Rm × Rd → [0,+∞) be
a Caratheódory function, with a growth condition 0 ≤ f(x, u, v) ≤ a(x, u)(1 + |v|q), for some locally bounded
function a : Ω×Rm → [0,+∞) and for all v ∈ Rd, a.e. x ∈ Ω. Suppose f(x, u, .) is Ax-quasiconvex for a.e.
x in Ω and all u ∈ Rm. Then

lim inf
n→+∞

∫
Ω

f(x, un(x), vn(x)) dx ≥
∫

Ω

f(x, u(x), v(x)) dx

whenever un → u in measure, vn ⇀ v in Lq(Ω; Rd), Avn → 0 in W−1,q(Ω; Rl).

For the necessary condition we have the following.

Theorem 3.2. Let Ω ⊂ RN be an open, bounded set, 1 < q < +∞, and let f : Ω × Rd → [0,+∞) be a
continuous function satisfying the q-Lipschitz continuity condition

|f(x, v1)− f(x, v2)| ≤ a(x)
(
1 + |v1|q−1 + |v2|q−1

)
|v1 − v2|, (3.3)

where a ∈ L∞loc(Ω). Suppose that we have lower semicontinuity of the integral

lim inf
∫

Ω

f(x, vn(x)) dx ≥
∫

Ω

f(x, v(x)) dx

for sequences vn ⇀ v in Lq(Ω; Rm), constrained by the system of PDEs in the following sense

Avn :=
N∑

i=1

A(i)(x)
∂vn

∂xi
→ 0 in W−1,q(Ω; Rl). (3.4)

Then f(x, .) is Ax-quasiconvex for all x ∈ Ω.

We could not prove the necessary condition for exact solutions of the PDE, but only under the more
restrictive condition (3.4). In the case of constant coefficients Fonseca and Müller [40] were able to prove the
necessary condition for sequences in the kernel of A. Using Fourier series representation they could construct
a projection P onto the kernell of A, using algebraic computations on the symbols, and to prove the estimate
(continuity of the inverse)

||v − Pv||Lq ≤ Cq||Av||W−1,q . (3.5)
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One difficult that arises when we deal with the variable coefficients is that to the composition of operators
does not correspond the multiplication of symbols any more, only up to a regularizing operator, thus in our
case, using also Fourier analysis, we were just able to prove the estimate

||v − Pηv||Lq ≤ Cq (||Av||W−1,q + ||v||W−1,q ) , (3.6)

where Pη is not a projection, APηv 6= 0, in general, but APηvn → 0 in W−1,q whenever vn → 0 in W−1,q.
We also emphasize that at least in the case q = 2 there exits a continuous projection onto the kernel of
A but we were unable to prove the continuity result (3.5), or at least the weaker estimate (3.6), with the
projection Pη replaced by P .

We also characterize the Young measures generated by bounded Lq sequences satisfying (3.4). In the
case of constant coefficients similar characterization is provided ([40]), for sequences in the kernel of the
operator, in this way generalizing the result of the Kinderleher and Pedregal on gradients [48] [49] (in that
case A = curl). For the reasons we explained above we were note able to replace (3.4) by sequences in the
kernel of the operator.

Theorem 3.3. Let 1 < q < +∞ and let {νx}x∈Ω be a weakly measurable family of probability measures on
Rd. Then there exists a q-equi-integrable sequence {vn} in Lq(Ω; Rd) that generates the Young measure ν
and satisfies Avn → 0 in W−1,q(Ω; Rl) if and only if

i) there exists v ∈ Lq(Ω; Rd) such that Av = 0 and v(x) = 〈νx, Id〉 a.e x ∈ Ω;

ii)
∫
Ω

∫
Rd |z|q dνx(z) dx < +∞;

iii) for a.e. x ∈ Ω and all continuous functions g that satisfy |g(v)| ≤ C(1 + |v|q) one has 〈νx, g〉 ≥
QAxg (〈νx, Id〉).

3.1 Sufficient condition

We now prove Theorem 3.1.

Proof. By extracting a subsequence (not relabeled) we may assume

L := lim inf
∫

Ω

f(x, un(x), vn(x)) dx = lim
∫

Ω

f(x, un(x), vn(x)) dx.

By extracting another subsequence (still not relabeled) we may assume that the pair {(un, vn)} generates a
Young measure {µx = δu(x) ⊗ νx}x∈Ω, where {νx}x∈Ω is the Young measure associated to vn. We have

L ≥
∫

Ω

∫
Rm×Rd

f(x, η, ξ) dµx(η, ξ) =
∫

Ω

∫
Rd

f(x, u(x), ξ) dνx(ξ).

Now we truncate the sequence vn to get q−equi-integrability. As vn is a bounded sequence in Lq we have∫
Ω

〈νx, |z|q〉 dx < +∞.

Consider the following family of truncation functions

τk(z) :=

{
z if |z| ≤ k

k z
|z| if |z| > k,

and we have
lim

k
lim
n

∫
Ω

|τk(vn)|q dx = lim
k

∫
Ω

〈νx, |τk(.)|q〉 dx =
∫

Ω

〈νx, |z|q〉 dx.

We can then find a sequence v̂k := τk(vnk
) such that

||v̂k − vnk
||Ls → 0, lim

k→+∞

∫
Ω

|v̂k|q dx =
∫

Ω

〈νx, |z|q〉 dx,
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for 1 < s < p. The sequence v̂k also generates the Young measure ν, it is q−equi-integrable and

Av̂k → 0 in W−1,s.

Now choose a point x0 ∈ Ω such that f(x0, u(x0), .) is Ax0-quasiconvex,

lim
r→0

1
rN

∫
Q(x0,r)

|〈νx, |z|q〉 − 〈νx0 , |z|
q〉| dx = 0,

lim
r→0

1
rN

∫
Q(x0,r)

|v(x)− v(x0)|q dx = 0,
(3.7)

and
lim
r→0

∫
Q

|〈νx0+rz, ϕ〉 − 〈νx0 , ϕ〉| dz = 0 (3.8)

for a countable number of ϕ in C0(Rd). Define wk,r ∈ Lq(Q; Rd) by wk,r(z) := v̂k(x0 + rz). Using (3.7) and
(3.8), we have

lim
r→0

lim
k→+∞

∫
Q

|v̂k(x0 + rz)|q dz = 〈νx0 , |z|
q〉,

N∑
i=1

A(i)(x0 + rz)
∂(v̂k(x0 + rz))

∂zi
→ 0 in W−1,s as k → +∞

lim
r→0

lim
k→+∞

∫
Q

(v̂k(x0 + rz)− v(x0))Ψ(z) dz = 0,

for every Ψ ∈ Lq′ ,

lim
r→0

lim
k→+∞

∫
Q

ζ(z)ϕ (v̂k(x0 + rz)) dz = 〈νx0 , ϕ〉
∫

Q

ζ(z) dz,

for ζ in Cc(Q) and ϕ in the countable subset of C0(Rd) for which (3.8) holds.
Then, using an appropriate diagonalization, we find a sequence ωk ∈ Lq(Q; Rd) such that

ωk ⇀ v(x0) in Lq,
N∑

i=1

A(i)(x0 + rkz)
∂ωk(z)
∂zi

→ 0 in W−1,s (3.9)

and
lim

k→+∞

∫
Q

η(z)ϕ(ωk) dz = 〈νx0 , ϕ〉
∫

Q

η(z) dz,

for η and ϕ in a countable dense subset of L1(Q) and C0(Rd), respectively, and

lim
k→+∞

∫
Q

|ωk(z)|q dz = 〈νx0 , |z|
q〉,

thus ωk generates the Young measure νx0 and it is q-equi-integrable.
Now we prove that

Ax0ωk =
N∑

i=1

A(i)(x0)
∂ωk

∂zi
→ 0 in W−1,s. (3.10)

In fact we have

Ax0ωk =
N∑

i=1

∂

∂zi

[(
A(i)(x0)−A(i)(x0 + rkz)

)
ωk(z)

]
+ rk

N∑
i=1

∂A(i)

∂xi
(x0 + rkz)ωk(z) +

N∑
i=1

A(i)(x0 + rkz)
∂ωk

∂zi
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and all the terms go to 0 in W−1,s. Indeed the first converges to zero due to the s-equi-integrability of ωk

and the continuity of the coefficients which imply(
A(i)(x0)−A(i)(x0 + rkz)

)
ωk(z) → 0 in Ls,

the second because rk → 0 and the boundedness of ωk in Ls, and the third because of (3.9).
Next we modify ωk in order to get Q-periodicity. We consider an increasing sequence of smooth cut-

off functions ϕj ∈ C∞c (Q), ϕj ↗ 1 and we do a appropriate diagonalization of ϕjωk, in order to get a
new sequence ω̃k ∈ Lq(Q), q-equi-integrable, that still generates the homogeneous Young measure νx0 , and
verifies

Ax0 ω̃k → 0 in W−1,s.

Now we just have to project {ω̃k} into the kernel of Ax0 , i.e., we apply Lemma 2.5 to get

ω̂k := T
[
ω̃k − v(x0)−

∫
Q

(ω̃k(x)− v(x0)) dx
]

+ v(x0),

Q-periodic, q-equi-integrable, ω̂k ⇀ v(x0),
∫

Q
ω̂k(y) dy = v(x0), ω̂k still generates νx0 and Ax0 ω̂k = 0. Thus∫

Rd

f(x0, u(x0), ξ)dνx0(ξ) = lim
k

∫
Q

f(x0, u(x0), ω̂k(y)) dy ≥ f(x0, u(x0), v(x0)),

from which we get

L ≥
∫

Ω

f(x, u(x), v(x)) dx.

Remark 3.4. Using a similar argument one may obtain the same result of Theorem 3.1 for systems in
divergence form with L∞ coefficients, i.e.

Av :=
N∑

i=1

∂
(
A(i)(x)v

)
∂xi

,

where rank
(∑N

i=1A
(i)(x)ωi

)
=const, for a.e. x ∈ Ω and all ω ∈ RN \ {0}. Precisely if f(x, u, .) is Ax-

quasiconvex for a.e. x ∈ Ω and all u ∈ Rm then we have lower semicontinuity for sequences un → u in
measure, vn ⇀ v in Lq, Avn → 0 in W−1,q. In the proof one uses the approximate continuity of the
coefficients at a.e. x ∈ Ω.

However, in this case we were unable to prove that the sufficient condition is also necessary.

3.2 Necessary condition

In this section we prove Theorem 3.2.

Proof. Fix x0 in Ω, c ∈ Rd, and let r > 0 be such that Q(x0, 2r) ⊂⊂ Ω. Let ω ∈ C∞(RN ; Rm), Q-periodic,
satisfying ∫

Q

ω(y) dy = 0 Ax0ω :=
N∑

i=1

A(i)(x0)
∂ω

∂yi
= 0. (3.11)

Using the uniform continuity of f on compact sets we can choose n large enough such that

|f(x, v)− f(x′, v)| < ε for x, x′ ∈ Q(x0, r), v ∈ Q(0, c+ ||ω||∞), |x− x′| < 1
n
.

Decompose
Q(x0, r) = ∪nN

j=1Q
(
xj ,

r

n

)
,
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where the equality above is up to a LN -negligible set. Given ε > 0 consider ϕ ∈ C∞c (Q(x0, r), [0, 1]) such
that LN (Q(x0, r) ∩ {ϕ 6= 1}) < εrN . Define

um(x) :=

{
ϕ(x)ω?

(
mn(x−xj)

r

)
if x ∈ Q(xj ,

r
n ),

0 otherwise,

where ω?(y) := ω(y + ( 1
2 , ..,

1
2 )). We have

Aum = Aum −Ax0um +Ax0um

=
N∑

i=1

nN∑
j=1

∂

∂xi

((
A(i)(x)−A(i)(x0)

)
ϕ(x)ω?

(
mn

x− xj

r

))
χQ(xj , r

n )

−
N∑

i=1

nN∑
j=1

ϕ(x)
∂
(
A(i)(x)−A(i)(x0)

)
∂xi

ω?

(
mn

x− xj

r

)
χQ(xj , r

n )

+
N∑

i=1

nN∑
j=1

A(i)(x0)
∂ϕ

∂xi
ω?

(
mn

x− xj

r

)
χQ(xj , r

n )

+ ϕ(x)
N∑

i=1

nN∑
j=1

A(i)(x0)
∂
(
ω?
(
mn

x−xj

r

))
∂xi

χQ(xj , r
n )

=: I1 + I2 + I3 + I4.

(3.12)

As

ω?

(
mn

x− xj

r

)
⇀ 0 in Lq(Q(xj ,

r

n
)) as m→ +∞,

we have I2, I3 → 0 in W−1,q as m→ +∞, and by 3.11 I4 = 0. Moreover

||I1||W−1,q ≤
N∑

i=1

nN∑
j=1

∣∣∣∣∣∣∣∣(A(i)(x)−A(i)(x0)
)
ω?

(
mn

x− xj

r

)
ϕ(x)

∣∣∣∣∣∣∣∣
Lq(Q(xj , r

n ))

≤ C

N∑
i=1

(∫
Q(x0,r)

|A(i)(x)−A(i)(x0)|
q
dx

) 1
q

,

(3.13)

where C is independent of m.
Now consider η ∈ C∞c (Ω; [0, 1]), η = 1 on Q(x0, r) and define

vm := Pηum.

As Pη is an operator of order 0, by Theorem 2.17, we have

||vm||Lq ≤ C||um||Lq , (3.14)

||vm||W−1,q ≤ C||um||W−1,q ,

thus, up to a subsequence,
vm ⇀ 0 in Lq.

Moreover, by (2.7),
Avm → 0 in W−1,q.

As the pseudodifferential operators are non-local, we need to localize the sequence {vm}. For that consider
ηr ∈ C∞c (Q(x0, 2r); [0, 1]), ηr = 1 in Q(x0, r), and define

ṽm := ηrvm.
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We have

ṽm ⇀ 0 in Lq, Aṽm → 0 inW−1,q,

thus, by the lower semicontinuity we have

lim inf
∫

Ω

f(x, c+ ṽm(x)) dx ≥
∫

Ω

f(x, c) dx. (3.15)

On the other hand, using (3.3), (2.6), (3.13), (3.14), and Hölder’s inequality, we get

∣∣∣∣∫
Ω

f(x, c+ ṽm(x)) dx−
∫

Ω

f(x, c+ um(x))
∣∣∣∣

≤ C

∫
Ω

|ṽm(x)− um(x)|
(
1 + |c+ ṽm|q−1 + |c+ um|q−1

)
dx

≤ C

∫
Q(x0,2r)

|ṽm(x)− um(x)|
(
1 + |ṽm|q−1 + |um|q−1

)
dx

≤ C

(∫
Q(x0,2r)

|ṽm(x)− um(x)|q dx

) 1
q

rN
q′ +

(∫
Q(x0,2r)

|ṽm|q dx

) 1
q′

+

(∫
Q(x0,2r)

|um|q dx

) 1
q′


≤ C

(∫
Ω

|vm(x)− um(x)|q dx
) 1

q

rN
q′ +

(∫
Q(x0,r)

|um|q dx

) 1
q′


≤ C (||Aum||W−1,q + ||um||W−1,q )

(
r

N
q′ + r

N
q′

(∫
Q

|ω(mz)|q
) 1

q′

dz

)

≤ Cr
N
q′

(
N∑

i=1

∫
Q(x0,r)

|A(i)(x)−A(i)(x0)|
q
dx

) 1
q

+ Cr
N
q′ ||um||W−1,q ,

(3.16)

where C is independent of m. Thus using (3.15) and (3.16) we have

lim sup
m

∫
Ω

f(x, c+ um(x)) dx+ Cr
N

q
′

(
N∑

i=1

∫
Q(x0,r)

|A(i)(x)−A(i)(x0)|
q
dx

) 1
q

≥
∫

Ω

f(x, c) dx.

or, equivalently,

lim sup
m

∫
Q(x0,r)

f(x, c+ um(x)) dx+ Cr
N

q
′

(
N∑

i=1

∫
Q(x0,r)

|A(i)(x)−A(i)(x0)|
q
dx

) 1
q

≥
∫

Q(x0,r)

f(x, c) dx.
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We now estimate the first term above, using the continuity of f and Riemann-Lebesgue Lemma,

lim sup
m

∫
Q(x0,r)

f(x, c+ um(x)) dx

≤ lim sup
m

nN∑
j=1

∫
Q(xj , r

n )

f

(
x, c+ ω?(mn

x− xj

r
)
)
dx+ 2Mεrn

≤ lim sup
m

nN∑
j=1

∫
Q(xj , r

n )

f

(
xj , c+ ω?(mn

x− xj

r
)
)
dx+ (2M + 1)εrN

≤ lim sup
m

nN∑
j=1

rN

nN

∫
Q

f(xj , c+ ω(my)) dy + (2M + 1)εrN

≤
nN∑
j=1

∫
Q(xj , r

n )

(∫
Q

f(xj , c+ ω(y)) dy
)
dx+ (2M + 1)εrN

≤
nN∑
j=1

∫
Q(xj , r

n )

(∫
Q

f(x, c+ ω(y)) dy
)
dx+ (2M + 2)εrN

≤
∫

Q(x0,r)

(∫
Q

f(x, c+ ω(y)) dy
)
dx+O(ε)rN ,

(3.17)

where M := sup{f(x, v) : x ∈ Q(x0, r), |v| ≤ c+ ||ω||∞}. Thus dividing by rN and using (3.17) we get

1
rN

∫
Q(x0,r)

(∫
Q

f(x, c+ ω(y)) dy
)
dx+O(ε)

+ C

(
N∑

i=1

1
rN

∫
Q(x0,r)

|A(i)(x)−A(i)(x0)|
q
dx

) 1
q

≥ 1
rN

∫
Q(x0,r)

f(x, c) dx.

By letting r → 0 and using the arbitrariness of ε we obtain

f(x0, c) ≤
∫

Q

f(x0, c+ ω(y)) dy,

i.e., f(x0, .) is Ax0-quasiconvex.

3.3 Characterization of Young measures

We now prove Theorem 3.3. The idea is to split the domain into small cubes, approach the variable coefficients
operator by one with constant coefficients in each cube, apply in each cube the theorem about characterization
of Young measures generated by bounded sequences in Lq that are in the kernel of an operator with constant
coefficients (Theorem 2.9), and then use an appropriate diagonalization.

Proof. We assume without loss of generality that

〈νx, Id〉 = 0.

.
Consider {ξh}+∞h=1 a dense countable subset of L1(Ω), ξ0(x) = 1, {ϕl}+∞l=1 a dense countable subset of

C0(Rd) and ϕ0(z) = |z|q. Given α ∈ N we can find γ > 0 such that∫
B

|ξh(x)| dx||ϕl||∞ <
1
α

for h, l = 1, ..., α, (3.18)
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and ∫
B

〈νx, |z|q〉 dx <
1
α

(3.19)

when LN (B) < γ. For each α ∈ N we consider a compact set Kα such that LN (Ω\Kα) < min{ 1
α2 , γ/3} and

the functions
x→ 〈νx, |z|q〉, x→ 〈νx, ϕl〉 l = 1, ..., α,

are continuous in Kα. We consider disjoint cubes Qi ⊂⊂ Ω of side 1
mα

, for an appropriate integer mα, such
that LN (Ω \ ∪Qi) < min{ 1

α2 , γ/3},

supx,x′∈Qi∩Kα
|A(j)(x)−A(j)(x′)|

q
<

1/α
NC1

j = 1, .., N, (3.20)

supx,x′∈Qi∩Kα
|〈νx, ϕl〉 − 〈νx′ , ϕl〉| <

1/α
||ξh||

h, l = 1, ..., α, (3.21)

and

supx,x′∈Qi∩Kα
|〈νx, |z|q〉 − 〈νx′ , |z|q〉| <

1/α
|Ω|

, (3.22)

where C1 := 2
∫
Ω
〈νy, |z|p〉 dy + 1. By considering less cubes and a smaller compact set K̂α, if necessary, we

may assume that for each cube Qi we have

LN (Qi ∩ K̂α) ≥ LN (Qi)
2

, (3.23)

and K̂α ⊂ ∪Qi. It is easy to check that

LN (Ω \ K̂α) < min{3/α2, γ}, LN (Ω \ ∪Qi) < min{3/α2, γ}.

In each cube Qi we pick up a point xi ∈ K̂α ∩Qi that fulfills the conditions below

〈νxi
, |z|q〉 ≤ 1

LN (K̂α ∩Qi)

∫
K̂α∩Qi

〈νy, |z|q〉 dy, 〈νxi
, Id〉 = 0,

〈νxi , g〉 ≥ QAxi
g(0), (3.24)

for every continuous g satisfying |g(v)| ≤ C(1+|v|q). Now we apply Theorem 2.9 and get a q−equi-integrable
sequence v̂i

α,n ∈ Lp(Qi; Rd) that generates the homogeneous Young measure νxi
and satisfies Axi

vi
α,n = 0.

Using an appropriate sequence of cut-off functions, ηs ∈ C∞c (Qi), ηs ↗ 1, and diagonalizing ηsv̂i
α,n, one

can construct a new sequence, vi
α,n, such that vi

α,n = 0 on a neighborhood of ∂Qi, q-equi-integrable, also
generating νxi

and
Axi

vi
α,n → 0 in W−1,q(Qi; Rl) as n→ +∞.

Define

vα,n :=

{
vi

α,n if x ∈ Qi,

0 otherwise.

We have

Aαvα,n :=
∑

i

 N∑
j=1

∂
(
A(j)(xi)vi

α,n

)
∂xj

→ 0 in W−1,q

We claim that ∫
Ω

|vα,n|q dx ≤ C1 (3.25)

for all α ∈ N and n large enough. As {vi
α,n}n

generates νxi and it is q−equi-integrable, we know that∫
Qi

|vi
α,n|

q
dx→ 〈νxi

, |z|q〉LN (Qi).
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By (3.23) and (3.24),

〈νxi
, |z|q〉LN (Qi) ≤

LN (Qi)
LN (Qi ∩ K̂α)

∫
Qi∩K̂α

〈νy, |z|q〉 dy

≤ 2
∫

Qi

〈νy, |z|q〉 dy,

and for n large enough ∫
Ω

|vα,n|q dx ≤ 2
∫

Ω

〈νy, |z|q〉 dy + 1 = C1.

We claim that ∑
i

∫
Qi\K̂α

|vi
α,n|

q
dx ≤ F (α), (3.26)

for some F satisfying the condition F (α) → 0 as α→ 0 and n large enough. Using the q−equi-integrability
of
(
vi

α,n

)
n

and (3.24) we have∫
Qi\K̂α

|vi
α,n|

q
dx→ 〈νxi , |z|

q〉LN (Qi \ K̂α)

≤ LN (Qi \ K̂α)
LN (Qi ∩ K̂α)

∫
Qi∩K̂α

〈νy, |z|q〉 dy

Setting Jα := {i : αLN (Qi \ K̂α) > LN (Qi ∩ K̂α)}, we then have∑
i∈Jα

LN (Qi ∩ K̂α) ≤
∑
i∈J

αLN (Qi \ K̂α) ≤ αLN (Ω \ K̂α) <
1
α
.

Thus ∑
i

∫
Qi\K̂α

|vi
α,n|

q
dx ≤

∑
i

LN (Qi \ K̂α)
LN (Qi ∩ K̂α)

∫
Qi∩K̂α

〈νy, |z|q〉 dy +
1
α

≤
∑
i∈Jα

∫
Qi∩K̂α

〈νy, |z|q〉 dy +
1
α

∫
Ω

〈νy, |z|q〉 dy +
1
α
,

for n large enough, from which we get (3.25).
As

Aαvα,n −Avα,n =
∑

i

 N∑
j=1

(
A(j)(xi)−A(j)(x)

) ∂vi
α,n

∂xj


=
∑

i

 N∑
j=1

∂
((
A(j)(xi)−A(j)(x)

)
vi

α,n

)
∂xj

+
N∑

j=1

∂A(j)(x)
∂xj

vi
α,n


and ∑

i

∑
j

∫
Qi∩K̂α

∣∣Aj(x)−Aj(xi)
∣∣q∣∣vi

α,n

∣∣q dx ≤ 1
α

C1

∫
Ω

|vα,n|q dx <
1
α
,

∑
i

∑
j

∫
Qi\K̂α

∣∣Aj(x)−Aj(xi)
∣∣q∣∣vi

α,n

∣∣q dx ≤ 2q||A||q∞NF (α),

we conclude that for n large enough

||Aαvα,n −Avα,n||−1,q ≤ 2||A||q∞NF (α) +
2
α
. (3.27)

We now prove that for n large enough∣∣∣∣∫
Ω

ξh(x)ϕl(vα,n) dx−
∫

Ω

ξh(x)〈νx, ϕl〉 dx
∣∣∣∣ ≤ 6

α
for h, l = 1, .., α. (3.28)
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Indeed, as n→ +∞,∫
Ω

ξh(x)ϕl(vα,n) dx→
∑

i

〈νxi
, ϕl〉

∫
Qi

ξh(x) dx+ ϕl(0)
∫

Ω\∪Qi

ξh(x) dx,

and ∣∣∣∣∣
∫

Ω

ξh(x)〈νx, ϕl〉 dx−
∑

i

〈νxi
, ϕl〉

∫
Qi

ξh(x) dx− ϕl(0)
∫

Ω\∪Qi

ξh(x) dx

∣∣∣∣∣
≤
∫

Ω\∪Qi

|ξh(x)〈νx, ϕl〉| dx+
∑

i

∫
Qi∩K̂α

|ξh(x) (〈νx, ϕl〉 − 〈νxi , ϕl〉)| dx

+
∑

i

∫
Qi\K̂α

|ξh(x)〈νxi , ϕl〉| dx+
∑

i

∫
Qi\K̂α

|ξh(x)〈νx, ϕl〉| dx

+ |ϕl(0)|
∫

Ω\∪Qi

|ξh(x)| dx,

using (3.18) and (3.21) we get (3.28). A similar argument can be carried out in order to obtain∣∣∣∣∫
Ω

|vα,n(x)|q dx−
∫

Ω

〈νx, |z|q〉 dx
∣∣∣∣ ≤ F (α) +

4
α
,

for n large enough. Then, using appropriate diagonalization, we may find a sequence wα := vα,nα
∈ Lq,

wα ⇀ 0 in Lq, Awα → 0 in W−1,q, verifying

lim
α

∫
Ω

ξh(x)ϕl(wα(x)) dx =
∫

Ω

ξh(x)〈νx, ϕl〉 dx,

for all h, l ∈ N, and

lim
α

∫
Ω

|wα(x)|q dx =
∫

Ω

〈νx, |z|q〉 dx,

thus {wk} generates the Young measure ν and it is q-equi-integrable.
For the necessary condition we may use an argument similar to the one of proof of Theorem 3.1, in order

to obtain that at a.e. x0 ∈ Ω, the homogeneous Young measure νx0 is generated by a sequence ωk ∈ Lq(Q),
Q-periodic, q-equi-integrable, ωk ⇀ v(x0) in Lq,

∫
Q
ωk(x) dx = v(x0), Ax0ωk = 0. Then

lim
k

∫
Q

g(ωk(x)) dx = 〈νx, g〉 ≥ QAx0
(v(x0)),

which proves iii); i) and ii) are trivial.

Remark 3.5. Using a similar proof one may obtain the same result of Theorem 3.3 for systems written in
divergence form with L∞ coefficients

Av :=
N∑

i=1

∂
(
A(i)(x)v

)
∂xi

and rank
(∑N

i=1A
(i)(x)ωi

)
= const, for a.e. x ∈ Ω and all ω ∈ RN . In the proof we use Lusin’s Theorem to

obtain continuity of the coefficients except on a set of small measure.
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4 Relaxation result in SBV for micromagnetics

In this chapter we consider the functional

E(m) =
∫

Ω

f(x,m(x),∇m(x)) dx+
∫

Ω∩S(m)

|[m](x)|dHN−1 + E1(m), (4.1)

where m ∈ SBV (Ω; RN ) is subject to the pointwise constraint |m(x)| = 1 a.e. in Ω, and E1 is a continuous
functional with respect to the strong topology of L2.

The motivation to address this type of energies is drawn from micromagnetics, a continuum model to
describe the behavior of a ferromagnetic body. According to this theory, the equilibrium states of a body
subjet to a given external field he correspond to absolute (or local) minimizers of the energy functional

m→ α

∫
Ω

|∇m(x)|2 +
∫

Ω

ϕ(m(x)) dx−
∫

Ω

he(x).m(x) dx+
1
2

∫
R3
|hm(x)|2 dx, (4.2)

where Ω ⊂ R3 represents a region occupied by the body and the magnetization is a function m : R3 → R3

such that
|m(x)| = msχΩ(x) for L3 a.e. x ∈ R3,

and ms > 0, the saturation magnetization, is a function of the temperature and of the specific material. The
induced magnetic field is a function h : R3 → R3 which is related to m through (distributional) Maxwell’s
equations, i.e. {

curlhm = 0 in R3,

div(m+ hm) = 0 in R3.

We note that the last two integrals in (4.2) are continuous with respect to the strong topology in L2 (see
[35],[45]), and their sum reduces to the term E1. By considering a surface term in (4.1) we allow the
possibilities of m to have discontinuities (magnetic cracks), the body be made of several magnetic materials,
or both (see [2] for some arguments concerning the penalization of formation of interfaces).

When the functional (4.1) is not lower semicontinuous, it is usual to look for its relaxation, i.e., given
a magnetization m we want to attain it by spending the least possible energy, and this corresponds to
characterizing the functional below

F (m) := inf
{

lim inf
k→+∞

E[mk] : mk ∈ SBV (Ω; RN ), |mk(x)| = 1 a.e. in Ω, mk → m in L1(Ω; RN )
}
.

We consider here a surface term that will induce interaction, i.e., for sequences {mk} with bounded energy
we may not have ∇mk ⇀ ∇m and Dsmk ⇀ Dsm, instead it may happen that part of ∇m is approached
in a more economical way using jumps. Adopting a point of view similar to Choksi and Fonseca in [27] we
consider a relaxed energy which also take in account the limits of the gradients

E(m,M) := inf
{

lim inf
k→+∞

E[mk] : mk ∈ SBV (Ω; RN ), |mk(x)| = 1 a.e. in Ω,

mk → m in L1(Ω; RN ), ∇mk ⇀M in L2(Ω; RN )
}
.

Similar relaxed energies were considered in [27], where they studied relaxed energies associated with struc-
tured deformations of continua, a concept introduced by Del Piero and Owen in [36] for taking into account
situations where the deformation of a body can be attained via a diffusion of cracks (microscopic disar-
rangements). In [36] they treat a triples (K, g,G), where K is the macroscopic crack, g is the macroscopic
deformation, G is the deformation without disarrangements, and the regions where there is presence of mi-
croscopic disarrangements are identified with {∇g 6= G}. In [27] these triplets are reduced to pairs (g,G),
and the set K is incorporated in g by identifying crack sites with jump sets of SBV functions.

Here we make the parallel of what was done in [27] to the case of micromagnetics. The minimum energy
can be attained by sequences such that there is a diffusion of discontinuities in some region (microscopic
disarrangements), which in the limit can be identified by considering pairs (m,M) and through the inequality
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∇m 6= M . Indeed, if ∇m 6= M in some open set A and if we have a sequence of magnetizations {mk} ⊂
L1(Ω;SN−1), with mk → m in L1, ∇mk ⇀ M in L2, we know by the compactness Theorem (2.27) of
Ambrosio [9] [14] that necessarily HN−1(A ∩ S(mk)) → +∞, i.e., there is a diffusion of discontinuities
through A. A pair (m,M) gives a more complete description of the minimizers, because we not only know
what is the magnetization, but also we get information about the microscopic disarrangements.

The function f : Ω × RN × RN2 → [0,+∞) is assumed to be Caratheódory and satisfies the growth
condition

(H1)
1
C
|v|2 − C ≤ f(x, y, v) ≤ C

(
1 + |v|2

)
for some C > 0. In addition, the following hold:
for every (x0, u0) ∈ Ω× RN and ε > 0 there exists δ > 0 such that

(H2) f(x0, u0, v)− f(x, u, v) ≤ ε(1 + f(x, u, v))

for all (x, u) ∈ Ω× RN with |x− x0|+ |u− u0| < δ and all v, v′ ∈ RN×N ,
for every compact K ⊂ Ω× RN exits LK > 0 such that

(H3) |f(x, u, v)− f(x, u, v′)| ≤ LK(1 + |v|+ |v′|)|v − v′|

for all (x, u) ∈ K and v, v′ ∈ RN×N .
Since mk → m in L2(Ω; RN ) (what follows immediately from the L1 convergence and the bounds) implies

E1(mk) → E(m) , we have that
E(m,M) = F(m,M) + E1(m),

where F is given by

F(m,M) := inf

{
lim inf
k→+∞

∫
Ω

f(x,mk(x),∇mk(x)) dx+
∫

Ω∩S(mk)

|[mk](x)|dHN−1 :

mk ∈ SBV (Ω; RN ), |mk(x)| = 1 a.e. in Ω

mk → m in L1(Ω; RN ), ∇mk ⇀M in L2(Ω; RN )
}

Thus, since strong convergence in m entails the convergence of the nonlocal term
∫
Ω
|hm|2 dx, the relaxation

will not involve directly Maxwell’s equations. Relaxation results in the context of micromagnetics were also
studied by Fonseca and Leoni in [39], where they consider the non-exchange model (without the first term
in (4.2), i.e. the exchange energy, see [35]) and they find the relaxation of the functional

G(m) :=
∫

RN

g(x, χΩ(x)m(x), u(x),∇u(x)) dx,

with respect to L∞-weak* convergence for m, where (χΩm,∇u) satisfies the Maxwell’s equations, i.e. u ∈
H1(RN ) is the unique solution of 4u+div(χΩm) = 0 in RN . In [39] they obtained a representation formula
involving a quasiconvexification of g which takes into account the underlying partial differential equation.

The main result of this chapter is

Theorem 4.1. The functional F has an integral representation of the form

F(m,M) =
∫

Ω

H(x,m(x),∇m(x),M(x)) dx+
∫

Ω∩S(m)

|[m](x)|HN−1.

where for x0 ∈ Ω, a 6= 0, A, B ∈ RN×N ,

H(x0, a, A,B) := inf

{∫
Q

f̄(x0, a,∇u(x)) dx+
∫

Q∩S(u)

|[u](x)| dHN−1(x) :

u ∈ SBV (Q; RN ) ∩ L∞(Q; RN ), u|∂Q = Ax,

∇u ∈ L2,

∫
Q

∇u = B

}
,
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f̄(x0, a, v) := f(x0, a, Pa(v)) and Pa is the orthogonal projection of RN onto Ta(SN−1) (the tangent space
to |a|SN−1 at the point a).

The problem of relaxing a functional under a manifold constraint was already treated by Dacorogna,
Fonseca, Malý and Trivisa in [33], where they obtained the representation result

F(u) := inf
{

lim inf
n→+∞

∫
Ω

f(∇un(x)) dx : un ⇀ u in W 1,p,

u(x) ∈M for a.e x ∈ Ω} =
∫

Ω

QT f(u(x),∇u(x)) dx,

with QT the tangential quasiconvexification defined by

QT (a, v) := inf
{∫

Q

f(v +∇ϕ(x)) dx : ϕ ∈W 1,∞
0 (Q;Ta(M)

}
,

for a ∈M, v ∈ Ta(M)d, and M is a C1 manifold. As shown in [33], an alternative formula for QT is

QT (a, v) = Qf̄(a, v),

where f̄(a, v) = f(a, Pa(v)), Pa denotes the projection into Ta(M) and Q refers to the usual quasiconvexifi-
cation ([31],[55]), i.e.

Qf̄(a, v) := inf
{∫

Q

f̄(a, v +∇ϕ(x)) dx : ϕ ∈W 1,∞
0 (Q; Rd)

}
.

Relaxation of functionals under constraints are also treated in [23].

4.1 Integral representation result

As it is usual in relaxation theory, we start by localizing F , precisely, for every open subset A ⊂ RN we
define

F [(m,M);A] := inf

{
lim inf
k→+∞

∫
A

f(x,mk(x),∇mk(x)) dx+
∫

A∩S(mk)

|[mk](x)|dHN−1 :

mk ∈ SBV (A; RN ), |mk(x)| = 1 a.e. in A,

mk → m in L1(A; RN ), ∇mk ⇀M in L2(A; RN )
}
.

We note that there is a compatibility condition linking m to M , precisely, from the condition that ∇mk(x) ∈
Tmk(x) for a.e. x ∈ Ω, which can be expressed by mk(x)T∇mk(x) = 0 a.e., passing to the limit we obtain
m(x)T

M(x) = 0 a.e. in Ω. In view of this remark, in what follows we say that (m,M) is admissible pair if
m ∈ SBV (Ω; RN ), M ∈ L2(Ω; RN2

), |m(x)| = 1 for a.e. x ∈ Ω, and m(x)T
M(x) = 0 a.e. in Ω.

The goal is now to prove that for every admissible pair, (m,M) ∈ SBV (Ω; RN )×L2(Ω; RN2
), |m(x)| = 1

a.e. in Ω, m(x)T
M(x) = 0 a.e. in Ω, F [(m,M); .] is the restriction of a Radon measure to O(Ω), the set

of all open subsets contained in Ω. Once this is established, the integral representation will follow from the
Radon-Nikodym Theorem.

The lemma below provides an alternative characterization of the density H.

Lemma 4.2. Under conditions (H2), (H3) we have

H(x0, a, A,B) = inf

{
lim inf
n→+∞

∫
Q

f̄(x0, a,∇un(y)) dy +
∫

Q∩S(un)

|[un](y)|dHN−1(y) :

un ∈ SBV (Q; RN ) ∩ L∞(Q; RN ), un → Ax in L1,

∇un ⇀ B in L2
}
,

(4.3)
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and

H(x0, a, A,B) = inf

{∫
Q

f(x0, a,∇u(x)) dx+
∫

Q∩S(u)

|[u](x)| dHN−1 :

u ∈ SBV (Q;Ta(SN−1)) ∩ L∞, u|∂Q = Ax,

∇u ∈ L2,

∫
Q

∇u(x) dx = B

} (4.4)

Proof. The proof of (4.3) is similar to the proof of Proposition 3.1 in [27].
We start by noticing that one inequality (≤) in (4.4) is trivial. For the converse inequality, we fix A, B,

N × N matrices with columns in Ta(SN−1), and we consider a test function u ∈ SBV (Q; RN ) ∩ L∞ such
that ∇u ∈ L2, u|∂Q = Ax,

∫
Q
u(x) dx = B. Set û := Pau, and notice that û ∈ SBV (Q;Ta(SN−1)) ∩ L∞,

û|∂Q = Ax, ∇û ∈ L2 and
∫

Q
∇û(x) dx = B. Moreover, using the fact that |[û](x)| ≤ |[u](x)| and the

definition of f̄ , we get

∫
Q

f(x0, a,∇û(x)) dx+
∫

Q∩S(û)

|[û](x)|HN−1(x) ≤
∫

Q

f̄(x0, a,∇u(x)) dx+
∫

Q∩S(u)

|[u](x)|HN−1(x),

which proves the other inequality.

We now prove that any admissible pair (m,M), may be attained by an admissible sequence, and we also
obtain an upper bound for the relaxed energy.

Lemma 4.3. Let A ⊂ Ω be open, and let (m,M) be an admissible pair. Then there exists a sequence
{mk} ⊂ SBV (A; RN ), |mk(x)| = 1 a.e. in A, such that

mk → m in L1(A; RN ), ∇mk →M in L2(A; RN2
).

Moreover,

F [(m,M);A] ≤ C

∫
A

(
1 + |∇m(x)|2 + |M(x)|2

)
dx+

∫
A∩S(m)

|[m](x)|HN−1(x). (4.5)

Proof. Using Theorem 2.28 we can find a function h ∈ SBV (A; RN ) such that

∇h = M −∇m, |Dh|(A) ≤ C

∫
A

|M(x)−∇m(x)| dx. (4.6)

By Lemma 2.29 there exists a sequence {hk} ⊂ SBV (A; RN ), ∇hk = 0, such that

hk − h→ 0 in L∞(A; RN ), |Dhk|(A) → |Dh|(A). (4.7)

We consider
mk := Π(m+ h− hk)

where Π(x) = x/|x| is a projection on the N − 1-dimensional unit sphere. For k large enough the sequence
mk is well defined and belongs to SBV (A; RN ), moreover it satisfies the constraint |mk(x)| = 1 a.e. in A.
It is easy to check, taking into account that ∇Π(m(x)).M(x) = M(x) for a.e. x ∈ A, that mk → m in
L1(A; RN ) and ∇mk → M in L2(A; RN ). Given δ > 0, restrict Π to a neighborhood of SN−1 of the form
Nη := {x ∈ RN : 1 − η < |x| < 1 + η}, with η small enough, so that the Lipschitz constant of Π|Nη

will be
smaller than 1 + δ. Then we have, for k large enough,

F [(m,M);A] ≤ lim inf
k→+∞

{∫
A

f(x,mk(x),∇mk(x)) dx+
∫

A∩S(mk)

|[mk](x)|dHN−1

}

≤ lim sup
k→+∞

{∫
A

f(x,mk(x),∇mk(x)) dx+ (1 + δ)
∫

A∩S(m)

|[m](x)|HN−1(x)

+(1 + δ)

(∫
A∩S(h)

|[h](x)|HN−1(x) +
∫

A∩S(hk)

|[hk](x)|HN−1(x)

)}
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and using (H1), (4.6) and (4.7), and the fact that δ is arbitrary we deduce the upper bound (4.5).

Now we prove a subadditivity property for F [(m,M); .]

Lemma 4.4. Let A,B,C be open subsets of Ω such that C ⊂⊂ B ⊂⊂ A. Then

F [(m,M);A] ≤ F [(m,M);B] + F [(m,M);A \ C].

Proof. Fix ε > 0. Let {m1,k} ⊂ SBV (A \ C; RN ), {m2,k} ⊂ SBV (B; RN ) be sequences such that

F [(m,M);A \ C] + ε ≥ lim

{∫
A\C

f(x,m1,k(x),∇m1,k(x)) dx

+
∫

A\C∩S(m1,k)

|[m1,k](x)|dHN−1(x)

}
,

|m1,k(x)| = 1 a.e. in A \ C, m1,k → m in L1(A \ C; RN ), ∇m1,k ⇀M in L2(A \ C; RN2
), and

F [(m,M);B] + ε ≥ lim{
∫

B

f(x,m2,k(x),∇m2,k(x)) dx

+
∫

B∩S(m2,k)

|[m2,k](x)|dHN−1(x)},

|m2,k(x)| = 1 a.e. in B, m2,k → m in L1(B; RN ), ∇m2,k ⇀M in L2(B; RN2
).

Up to a subsequence, we can find bounded Radon measures, ν, µ1 and µ2 such that(
|∇m1,k|2 + |∇m2,k|2

)
LNb(B \ C̄) ?

⇀ ν

|[m1,k]|HN−1b
(
S(m1,k) ∩ (B \ C̄)

) ?
⇀ µ1

|[m2,k]|HN−1b
(
S(m2,k) ∩ (B \ C̄)

) ?
⇀ µ2 (4.8)

Let Sδ := {x ∈ B : dist(x, ∂C) < δ} and choose δ0 such that ν(∂Sδ0) = µ1(∂Sδ0) = µ2(∂Sδ0) = 0 and∫
∂Sδ0∩S(m)

|[m](x)|dHN−1 = 0. Let S := Sδ0 and set Si := {x ∈ B : dist(x, S) < 1
i }. We consider a family

of cut-off functions ϕi ∈ C∞(A; [0, 1]), ϕi(x) = 1 on A \ Si, ϕi = 0 in Si+1, ||∇ϕi||∞ ≤ Ci2. Let

mi,k := ϕim1,k + (1− ϕi)m2,k.

Clearly mi,k → m in L1(A; RN ), ∇mi,k ⇀ M in L2(A; RN2
) as k → +∞, and now we need to modify this

sequence in order to have its range on SN−1. We will do that in two steps: first we modify the sequence
{mi,k} into a new one {m̄i,k} of the form

m̄i,k(x) :=

{
mi,k(x) if |mi,k(x)| > ηik,

m(x) otherwise,

for suitable ηik in order to have |m̄i,k(x)| ≥ η > 0, and afterwords we project {m̄i,k} onto the unit sphere
by considering m̃i,k := Π(m̄i,k).

We consider the Lipschitz function

f(x) :=


1 if |x| > 1,
|x| if 1

2 < |x| ≤ 1,
1
2 if |x| ≤ 1

2 .
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The composite function wi,k := f(mi,k) belongs to SBV (see [14], [12]). Set Eη
ik := {x ∈ Si \ Si+1 :

|mik(x)| > η}. By Theorem 2.20 Eη
ik has finite perimeter for a.e. η and all (i, k) and∫ 1

1
2

P (Eη
ik;Si \ Si+1) dη = |Dwi,k|(Si \ Si+1) ≤

∫
Si\Si+1

|∇mi,k| dx+ |Dswi,k|(Si \ Si+1)

≤
∫

Si\Si+1
|∇mi,k| dx+

∫
(Si\Si+1)∩S(m1,k)

|[m1,k](x)| dHN−1

+
∫
(Si\Si+1)∩S(m2,k)

|[m2,k](x)| dHN−1.

(4.9)

For every (i, k) we can find numbers ηik ∈
(

1
2 , 1
)

such that Eηik

ik has finite perimeter and

P (Eηik

ik ;Si \ Si+1) ≤ 2
∫ 1

1
2

P (Eη
ik;Si \ Si+1) dη.

In view of (4.8) and (4.9), it follows that

lim
i→+∞

lim
k→+∞

P (Eηik

ik ;Si \ Si+1) = 0. (4.10)

We have

F [(m,M);A] ≤ lim inf
i→+∞

lim inf
k→+∞

{∫
A

f(x, m̃i,k(x),∇m̃i,k(x)) dx+
∫

A∩S(m̃i,k)

|[m̃i,k](x)|dHN−1(x)

}

≤ lim
k→+∞

{∫
A\C

f(x,m1,k(x),∇m1,k(x)) dx+
∫
(A\C)∩S(m1,k)

|[m1,k](x)|dHN−1(x)

}

+ lim
k→+∞

{∫
B

f(x,m2,k(x),∇m2,k(x)) dx+
∫

B∩S(m2,k)

|[m2,k](x)|dHN−1(x)

}

+ lim sup
i→+∞

lim sup
k→+∞

{
C

∫
Si\Si+1

(1 + |∇m̃ik(x)|2) dx+
∫
(Si\Si+1)∩S(m̃ik)

|[m̃ik](x)|dHN−1(x)

}
≤ F [(m,M);A \ C] + F [(m,M);B] + 2ε

+ lim sup
i→+∞

lim sup
k→+∞

{
C

∫
Si\Si+1

(1 + |∇m̄ik(x)|2) dx+ C

∫
(Si\Si+1)∩S(m̄ik)

|[m̃ik](x)|dHN−1(x)

}
≤ F [(m,M);A \ C] + F [(m,M);B] + 2ε

+ lim sup
i→+∞

lim sup
k→+∞

{
C

∫
Si\Si+1

(1 + |∇m1,k(x)|2 + |∇m2,k(x)|2) dx

+C
∫

Si\Si+1
|∇ϕi(x)|2|m1,k(x)−m2,k(x)|2 dx+ C

∫
Si\Si+1

|∇m(x)|2 dx

+C
∫
(Si\Si+1)∩S(m1,k)

|[m1,k](x)|dHN−1(x) + C

∫
(Si\Si+1)∩S(m2,k)

|[m2,k](x)|dHN−1(x)

+C
∫
(Si\Si+1)∩S(m)

|[m](x)|dHN−1(x) + CP (Eηik

ik , A)

}
.

By (4.8) and (4.10) we obtain

F [(m,M);A] ≤ F [(m,M);A \ C̄] + F [(m,M);B] + 2ε,

and since ε is an arbitrary positive number, we deduce the subadditivity.
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Next we prove that F [(m,M); .] is the trace on the open subsets of Ω of a bounded Radon measure. The
argument is exactly similar to that used in Proposition 2.22 in [27] and we include it here for the convenience
of the reader.

Proposition 4.5. There exists a bounded Radon measure µ such that

F [(m,M);A] = µ(A)

for every open set A ⊂ Ω. Moreover µ << LNbΩ + |Dsm|.

Proof. We can find a sequence {mk} such that

F [(m,M); Ω] = lim
k→+∞

{∫
Ω

f(x,mk(x),∇mk(x)) dx+
∫

Ω∩S(mk)

|[mk](x)|dHN−1

}
and

f(x,mk(x),∇mk(x))LNbΩ + |[mk](x)|HN−1b(Ω ∩ S(mk)) ?
⇀ µ,

where µ ∈M(RN ). We note that we extended the integrands above to all RN by zero.
Let V ⊂⊂ Ω be an open set, fix ε > 0, and let W be open, with W ⊂⊂ V , and µ(V \W ) < ε. We have

µ(V ) ≤ µ(W ) + ε = µ(RN )− µ(RN \W ) + ε

≤ F [(m,M); Ω]−F [(m,M); Ω \ W̄ ] + ε

≤ F [(m,M);V ] + ε.

As ε is arbitrary we conclude that µ(V ) ≤ F [(m,M);V ]. If we only have V open, V ⊂ Ω, then consider
V ′ ⊂⊂ V , apply the inequality just proved to V ′, i.e.

µ(V ′) ≤ F [(m,M);V ′] ≤ F [(m,M);V ],

and then take the supremum on the left hand-side over all such V ′s.
Now we prove the reverse inequality. Given an open set V , there is a compact K ⊂⊂ V such that(

C(1 + |M |2)LN + C|Dm|
)

(V \ K) < ε. Let W be an open set verifying K ⊂⊂ W ⊂⊂ V . By 4.5 and
Lemma 4.4,

F [(m,M);V ] ≤ F [(m,M);W ] + F [(m,M);V \K] ≤ µ(W̄ ) + ε ≤ µ(V ) + ε,

and letting ε→ 0 we get F [(m,M);V ] ≤ µ(V ).

Next we characterize the densities

dF [(m,M); .]
dLN

,
dF [(m,M); .]

d (|[m]|HN−1bS(m))

Proof. STEP 1: Lower bound
We consider a sequence {mk} ⊂ SBV (Ω; RN ) such that mk → m in L1, ∇mk ⇀M in L2 and

sup
k

{∫
Ω

f(x,mk(x),∇mk(x)) +
∫

Ω∩S(mk)

|[mk](x)|HN−1(x)

}
< +∞.

Up to the extraction of a subsequence (not relabeled), we assume further that

µk := f(x,mk(x),∇mk(x))LNbΩ + |[mk](x)|HN−1bS(mk) ?
⇀ µ,

where µ is a bounded Radon measure. We now decompose the measure µ relatively to LNbΩ and |[m](x)|HN−1bS(m),
denoting the respective densities by µa and µs. We start by establishing a lower bound for µa.

Fix x0 ∈ Ω such that

lim
r→0

µ(Q(x0, r))
rN
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exists and is finite,

lim
r→0

1
rN+1

∫
Q(x0,r)

|m(x)−m(x0)−∇m(x0)(x− x0)| dx = 0,

and
lim
r→0

1
rN

∫
Q(x0,r)

|M(x)−M(x0)|2 dx = 0.

The set of points that do not satisfy all these conditions has Lebesgue measure zero.
We choose a sequence rn → 0 such that µ(∂Q(x0, rn)) = 0 for all n, and we have

µa(x0) =
dµ

dLN
(x0) = lim

n→+∞

µ(Q(x0, rn))
rnN

= lim
n→+∞

1
rnN

lim
k→+∞

µk(Q(x0, rn))

= lim
n→+∞

lim
k→+∞

1
rN
n

{∫
Q(x0,rn)

f(x,mk(x),∇mk(x)) dx+
∫

Q(x0,rn)∩S(mk)

|[mk](x)|dHN−1

}

= lim
n→+∞

lim
k→+∞

1
rN
n

{∫
Q(x0,rn)

f̄(x,mk(x),∇mk(x)) dx+
∫

Q(x0,rn)∩S(mk)

|[mk](x)|dHN−1

}

= lim
n→+∞

lim
k→+∞

{∫
Q

f̄ (x0 + rny,mk(x0 + rny),∇mk(x0 + rny)) dy

+
1
rn

∫
Q∩S(mk)−x0

rn

|[mk](x0 + rny)|dHN−1

}
< +∞.

Set

ωk,n(y) :=
mk(x0 + rny)−m(x0)

rn
.

It can be easily checked that lim supn→+∞ lim supk→+∞ ||∇ωk,n||L2 ≤ C, limn→+∞ limk→+∞
∫

Q
|ωk,n(y) −

∇m(x0)y| dy = 0 and limn→+∞ limk→+∞
∫

Q
(ωk,n −M(x0))ϕ(y) dy = 0 for every ϕ ∈ L2. Using a diagonal-

izing procedure and the separability of L2, we can find a sequence ωk ∈ SBV (Q; RN )∩L∞(Q; RN ), verifying
the conditions

ωk → ∇m(x0)y in L1, ∇ωk ⇀M(x0) in L2,

and
dµ

dLN
(x0) ≥ lim

k→+∞

{∫
Q

f̄(x0 + rky,m(x0) + rkωk(y),∇ωk(y)) dy

+
∫

Q∩S(ωk)

|[ωk](y)|dHN−1

}
.

Now we prove the existence of another sequence ω̄k ∈ SBV (Q; RN ) ∩ L∞(Q; RN ), ∇ω̄k ∈ L2(Q; RN2
),

verifying the conditions

ω̄k → ∇m(x0)y in L1, ∇ω̄k ⇀M(x0) in L2

and

dµ

dLN
(x0) ≥ lim inf

k→+∞

{∫
Q

f̄(x0 + rky,m(x0) + rkωk(y),∇ωk(y)) dy +
∫

Q∩S(ωk)

|[ωk](y)|dHN−1

}

≥ lim inf
k→+∞

{∫
Q

f̄(x0,m(x0),∇ω̄k(y)) dy +
∫

Q∩S(ω̄k)

|[ω̄k](y)|dHN−1

}
.

(4.11)

To this end, we consider the family of Lipschitz continuous functions ϕi : RN → RN ,

ϕi(x) :=


x if |x| ≤ 1

2i+1

−x+ 1
2i

x
|x| if 1

2i+1 < |x| ≤ 1
2i

0 otherwise
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We note ϕi has Lipschitz constant 1 and we define

ω̂i,k := ∇m(x0)y + ϕi(ωk(y)−∇m(x0)y).

Using the chain rule (see [14], [12]) we find

∇ω̂i,k = ∇m(x0) +∇τϕi(ωk(y)−∇m(x0)y).(∇ωk(y)−∇m(x0))

and
|Dsω̂i,k|(Q) ≤ |Dsωk|(Q), (4.12)

where ∇τϕi denotes ∇(ϕi|A(y)), with A(y) := ω̃k(y) − ∇m(x0)y +
{
(∇ωk(y)−∇m(x0))v : v ∈ RN

}
(see

[14] pag. 193, Thm. 3.101).
We have ∫

Q

f̄(x0 + rky,m(x0) + rkω̂i,k(y),∇ω̂i,k(y)) dy

≤
∫

Q∩{y∈Q:|ωk(y)−∇m(x0)y|≤ 1
2i+1 }

f̄(x0 + rky,m(x0) + rkωk(y),∇ωk(y)) dy

+ C

∫
Q∩{y∈Q: 1

2i+1 <|ωk(y)−∇m(x0)y|≤ 1
2i }

(
1 + |∇ω̂i,k|2

)
dy

+ C

∫
Q∩{y∈Q:|ωk(y)−∇m(x0)y|> 1

2i }

(
1 + |∇m(x0)|2

)
dy.

(4.13)

We show that the last two terms tend to 0 if we choose (i, k) going to infinity in a suitable way. Let jk be
the greatest even number verifying the inequality

2j ≤ 1√
||ωk −∇m(x0)y||L1(Q)

.

For every i ≤ jk

|{y ∈ Q : |ωk(y)−∇m(x0)y| >
1
2i
}| ≤ 2i

∫
Q

|ωk −∇m(x0)y| dy

≤
√
||ωk −∇m(x0)y||L1(Q) → 0

as k → +∞. From the bound
jk∑

i=
jk
2

∫
Q∩{y∈Q: 1

2i+1≤|ωk(y)−∇m(x0)y|< 1
2i }

C
(
1 + |∇ω̂i,k|2

)
dy

≤ C

∫
Q

(
1 + |∇ωk(y)−∇m(x0)|2

)
dy ≤ C,

we get the existence of an index ik ∈
[

jk

2 , jk
]

such that∫
Q∩{y∈Q: 1

2ik+1≤|ωk(y)−∇m(x0)y|< 1
2ik

}
C
(
1 + |∇ω̂ik,k|2

)
dy ≤ 2C

jk + 2
. (4.14)

We define ω̄k := ω̂ik,k, and it is easy to check that

ω̄k → ∇m(x0)y in L∞, ∇ω̄k ⇀M(x0) in L2,

and, by (4.13) and (4.14),

lim inf
k→+∞

∫
Q

f̄(x0 + rky,m(x0) + rkω̄k(y),∇ω̄k(y)) dy

≤ lim inf
k→+∞

∫
Q

f̄(x0 + rky,m(x0) + rkωk(y),∇ωk(y)) dy.
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Now using hypothesis (H2), (H3), and by (4.12), we deduce the inequality (4.11), which, in turn, yields

µa(x0) ≥ H(x0,m(x0),∇m(x0),M(x0)) for LNa.e. x in Ω. (4.15)

Next we obtain a lower bound for the density µs. Fix x0 ∈ S(m) such that

lim
r→0

µ(Q(x0, r))∫
Q(x0,r)∩S(m)

|[m](x)|dHN−1

exists and is finite. The complementer to this set of points in S(m) has zero |[m]|HN−1bS(m)-measure. We
have

µs(x0) =
dµ

d(|[m](x)|HN−1bS(m))
= lim

rn→0

µ(Q(x0, rn))∫
Q(x0,rn)∩S(m)

|[m](x)|dHN−1

= lim
rn→0

lim
k→+∞

µk(Q(x0, rn))∫
Q(x0,rn)∩S(m)

|[m](x)|dHN−1

= lim
rn→0

lim
k→+∞

{∫
Q(x0,rn)

f(x,mk(x),∇mk(x)) dx∫
Q(x0,rn)∩S(m)

|[m](x)|dHN−1
+

∫
Q(x0,rn)∩S(mk)

|[mk](x)|dHN−1∫
Q(x0,rn)∩S(m)

|[m](x)|dHN−1

}

≥ lim inf
rn→0

lim inf
k→+∞

∫
Q(x0,rn)∩S(mk)

|[mk](x)|dHN−1∫
Q(x0,rn)∩S(m)

|[m](x)|dHN−1

≥ lim inf
rn→0

∫
Q(x0,rn)

|∇m−M | dx+
∫

Q(x0,rn)∩S(m)
|[m](x)|dHN−1∫

Q(x0,rn)∩S(m)
|[m](x)|dHN−1

≥ 1,

where we have used the fact that [mk]HN−1bS(mk) ?
⇀ (∇m −M)LNbΩ + [m]HN−1bS(mk) and the lower

semicontinuity of the total variation with respect to weak* convergence. This, together with (4.15), entails

lim inf
k→+∞

∫
Ω

f(x,mk(x),∇mk(x)) +
∫

Ω∩S(mk)

|[mk](x)|HN−1(x)

≥ µ(Ω) ≥
∫

Ω

H(x,m(x),∇m(x),M(x)) dx+
∫

Ω∩S(m)

|[m](x)|dHN−1(x).

STEP 2: Upper bound
Fix (m,M). As the function (x, v) → f(x,m(x), v) is Carathéodory, using Scorza-Dragoni Theorem, we

can find sets Kj such that |Ω \Kj | < 1
j and (x, v) → f(x,m(x), v) is continuous on Kj × RN2

. We denote
by K∗

j the set of Lebesgue points of χKj
and we define ω := ∪(Kj ∩K∗

j ). Fix x0 ∈ ω a Lebesgue point for
m, ∇m and M .

Let a := m(x0), A := ∇m(x0), B := M(x0). Given δ > 0 we can find u ∈ SBV (Q; RN ) ∩ L∞, ∇u ∈ L2,
u|∂Q = Ax,

∫
Q
∇u(x) dx = B, such that∫

Q

f(x0, a,∇u(x)) dx+
∫

Q∩S(u)

|[u](x)|HN−1 ≤ H(x0, a, A,B) + δ. (4.16)

We write
u(x) = Ax+ Φ(x),

where Φ|∂Q = 0,
∫

Q
∇Φ(x) dx = B −A and Φ is extended to all RN by periodicity. We define

mε,n := Π
(
m(x) +

ε

n
Φε,n(x) + hε − hε,n

)
, x ∈ Q(x0, ε)

where Φε,n(x) := Φ
(

n(x−x0)
ε

)
, hε ∈ SBV (Q(x0, ε); RN ) is such that (see Theorem 2.28)

∇hε = M(x)−∇m(x) +∇m(x0)−M(x0),
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and
|Dhε|(Q(x0, ε)) ≤ C

∫
Q(x0,ε)

|M(x)−M(x0)−∇m(x) +∇m(x0)| dx, (4.17)

and hε,n ∈ SBV (Q(x0, ε)) are such that (see Theorem 2.29)

∇hε,n = 0, hε,n − hε → 0 in L∞, |Dhε,n|(Q(x0, ε)) → |Dhε|(Q(x0, ε)). (4.18)

We note that for fixed ε and n large enoughmε,n is well defined, mε,n ∈ SBV (Q(x0, ε); RN ), |mε,n(x)| = 1
a.e., mε,n → m in L∞, ∇mε,n ⇀M in L2 and {∇mε,n} is 2-equi-integrable. We then have

F [(m,M);Q(x0, ε)] ≤ lim inf
n→+∞

{∫
Q(x0,ε)

f(x,mε,n(x),∇mε,n(x)) dx

+
∫

Q(x0,ε)∩S(mε,n)

|[mε,n](x)|HN−1(x)

}
.

We start by treating the volume part, and we prove that

lim sup
ε→0

lim sup
n→+∞

1
εN

∫
Q(x0,ε)

f(x,mε,n(x),∇mε,n(x)) dx

≤ lim sup
ε→0

lim sup
n→+∞

1
εN

∫
Q(x0,ε)

f(x,m(x),∇mε,n(x)) dx.
(4.19)

For fixed ε and using the 2-equi-integrability of {∇mε,n}, for each δ′ > 0 we can find γ > 0 such that∫
Q(x0,ε)∩A

C(1 + |∇mε,n(x)|2) dx < δ′εN

whenever |A| < γ, where C comes from (H1). Since f is Carathéodory, find a compact set Kε, with
|Q(x0, ε) \Kε| < γ, such that f |Kε × RN × RN2

is continuous, and define

Eε,n := {x ∈ Q(x0, ε) : |∇mε,n(x)| < L},

where L is large enough to guarantee that |Q(x0, ε) \ Ec
ε,n| < γ. For x ∈ Q(x0, ε) ∩Kε ∩ Eε,n we have

|f(x,mε,n(x),∇mε,n(x))− f(x,m(x),∇mε,n(x))| < δ′,

for n large enough because of the uniform continuity of f on compact subsets of Kε × RN × RN2
and the

L∞ convergence of mε,n to m.
We then have∫

Q(x0,ε)

f(x,mε,n(x),∇mε,n(x)) dx

=
∫

Q(x0,ε)∩Kε

f(x,mε,n(x),∇mε,n(x)) dx+
∫

Q(x0,ε)\Kε

f(x,mε,n(x),∇mε,n(x)) dx

≤
∫

Q(x0,ε)∩Kε

f(x,mε,n(x),∇mε,n(x)) dx+ δ′εN

=
∫

Q(x0,ε)∩Kε∩Eε,n

f(x,mε,n(x),∇mε,n(x)) dx+
∫

Q(x0,ε)∩Kε∩Ec
ε,n

f(x,mε,n(x),∇mε,n(x)) dx+ δ′εN

≤
∫

Q(x0,ε)∩Kε∩Eε,n

f(x,m(x),∇mε,n(x)) dx+ 3δ′εN

≤
∫

Q(x0,ε)

f(x,m(x),∇mε,n(x)) dx+ 3δ′εN .
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Dividing through by εN , we obtain

lim sup
ε→0

lim sup
n→+∞

1
εN

∫
Q(x0,ε)

f(x,mε,n(x),∇mε,n(x)) dx

≤ lim sup
ε→0

lim sup
n→+∞

1
εN

∫
Q(x0,ε)

f(x,m(x),∇mε,n(x)) dx+ 3δ′,

and letting δ′ → 0, we deduce (4.19). Now we prove that

lim sup
ε→0

lim sup
n→+∞

1
εN

∫
Q(x0,ε)

f(x,m(x),∇mε,n(x)) dx

≤ lim sup
ε→0

lim sup
n→+∞

1
εN

∫
Q(x0,ε)

f
(
x,m(x),∇Π

(
m(x) +

ε

n
Φε,n(x) + hε(x)− hε,n(x)

)
(
∇Φ

(
n(x− x0)

ε

)
+∇m(x0)

))
dx.

This follows from (H3), which allow us to assert that the error in passing from the left integral to the right
integral, for ε fixed and n large enough, is given by

C

εN

∫
Q(x0,ε)

(
1 +

∣∣∣∣M(x) +∇Φ
(
n(x− x0)

ε

)
+∇m(x0)−M(x0)

∣∣∣∣
+
∣∣∣∣∇Φ

(
n(x− x0)

ε

)
+∇m(x0)

∣∣∣∣) |M(x)−M(x0)| dx.
(4.20)

Using the fact that x0 is a 2-Lebesgue point for M , Hölder’s Inequality and the Riemman Lebesgue Lemma,
we obtain that lim supε→0 lim supn→+∞(4.20)= 0.

Using again (H3) and the L∞ convergence of m(x) + ε
nΦε,n(x) + hε − hε,n to m(x), we deduce that

lim sup
ε→0

lim sup
n→+∞

1
εN

∫
Q(x0,ε)

f
(
x,m(x),∇Π

(
m(x) +

ε

n
Φε,n(x) + hε(x)− hε,n(x)

)
(
∇Φ

(
n(x− x0)

ε

)
+∇m(x0)

))
dx

≤ lim sup
ε→0

lim sup
n→+∞

1
εN

∫
Q(x0,ε)

f

(
x,m(x),∇Π(m(x))

(
∇Φ

(
n(x− x0)

ε

)
+∇m(x0)

))
dx.

Now using (H3) and the fact that x0 is a Lebesgue point for ∇m, Hölder’s Inequality and Riemman
Lebesgue Lemma, we deduce that

lim sup
ε→0

lim sup
n→+∞

1
εN

∫
Q(x0,ε)

f

(
x,m(x),∇Π(m(x))

(
∇Φ

(
n(x− x0)

ε

)
+∇m(x0)

))
dx

≤ lim sup
ε→0

lim sup
n→+∞

1
εN

∫
Q(x0,ε)

f

(
x,m(x),∇Π(m(x0))

(
∇Φ

(
n(x− x0)

ε

)
+∇m(x0)

))
dx.

We next prove that

lim sup
ε→0

lim sup
n→+∞

1
εN

∫
Q(x0,ε)

f

(
x,m(x),∇Π(m(x0))

(
∇Φ

(
n(x− x0)

ε

)
+∇m(x0)

))
dx

≤ lim sup
ε→0

lim sup
n→+∞

1
εN

∫
Q(x0,ε)

f

(
x0,m(x0),∇Π(m(x0))

(
∇Φ

(
n(x− x0)

ε

)
+∇m(x0)

))
dx.

(4.21)

Let j0 be such that x0 ∈ Kj0 ∩K∗
j0

. We define the set

Eε,n :=
{
x ∈ Q(x0, ε) :

∣∣∣∣∇Π(m(x0))
(
∇Φ

(
n(x− x0)

ε

)
+∇m(x0)

)∣∣∣∣ < L

}
,
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where L > 0 will be defined latter. We have

|Q(x0, ε) \ Eε,n| ≤
∫

Q(x0,ε)

∣∣∣∇Π(m(x0))(∇Φ
(

n(x−x0)
ε

)
+∇m(x0))

∣∣∣
L

dx

≤ C ′

L
εN

∫
Q

|∇Φ(ny) +∇m(x0)| dy ≤
C ′εN

L
.

As

1
εN

∫
Q(x0,ε)\Eε,n

C

(
1 +

∣∣∣∣∇Π(m(x0))
(
∇Φ

(
n(x− x0)

ε

)
+∇m(x0)

)∣∣∣∣2
)
dx

=
∫

Q\Eε,n−x0
ε

C(1 + |∇Π(m(x0)(∇Φ(ny) +∇m(x0))|2) dy,

and since of |Q \ Eε,n−x0
ε | < C′

L , we can take L large enough and use the 2-equi-integrability to get the
estimate (independent of ε)

1
εN

∫
Q(x0,ε)\Eε,n

C

(
1 +

∣∣∣∣∇Π(m(x0))
(
∇Φ(

n(x− x0)
ε

) +∇m(x0)
)∣∣∣∣2
)
dx < δ′.

Also, using the fact that x0 is a Lebesgue point for χKj0
we have |Q(x0,ε)\Kj0

εN | → 0, and an argument similar
to the one above yields

1
εN

∫
Q(x0,ε)\Kj0

C

(
1 +

∣∣∣∣∇Π(m(x0))
(
∇Φ

(
n(x− x0)

ε

)
+∇m(x0)

)∣∣∣∣2
)
dx < δ′.

We can use the uniform continuity of f |Kj0 ×B(0, L) to ensure that for ε small enough we have

|f(x,m(x), v)− f(x0,m(x0), v)| < δ′ for |v| ≤ L.

We deduce that

1
εN

∫
Q(x0,ε)

f

(
x,m(x),∇Π(m(x0))

(
∇Φ

(
n(x− x0)

ε

)
+∇m(x0)

))
≤ 1
εN

∫
Q(x0,ε)∩Kj0

f

(
x,m(x),∇Π(m(x0))

(
∇Φ

(
n(x− x0)

ε

)
+∇m(x0)

))
+

1
εN

∫
Q(x0,ε)\Kj0

f

(
x,m(x),∇Π(m(x0))

(
∇Φ

(
n(x− x0)

ε

)
+∇m(x0)

))
≤ 1
εN

∫
Q(x0,ε)∩Kj0∩Eε,n

f

(
x,m(x),∇Π(m(x0))

(
∇Φ

(
n(x− x0)

ε

)
+∇m(x0)

))
+ 2δ′

≤ 1
εN

∫
Q(x0,ε)∩Kj0∩Eε,n

f

(
x0,m(x0),∇Π(m(x0))

(
∇Φ

(
n(x− x0)

ε

)
+∇m(x0)

))
+ 3δ′

≤ 1
εN

∫
Q(x0,ε)

f

(
x0,m(x0),∇(m(x0))

(
∇Φ

(
n(x− x0)

ε

)
+∇m(x0)

))
+ 3δ′,

Taking limits in both sides, and in view of the fact that δ′ is arbitrary positive number, we reach the
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inequality (4.21). Changing variables and using the Riemann-Lebesgue Lemma

lim sup
ε→0

lim sup
n→+∞

1
εN

∫
Q(x0,ε)

f

(
x0,m(x0),∇Π(m(x0))

(
∇Φ

(
n(x− x0)

ε

)
+∇m(x0)

))
= lim sup

n→+∞

∫
Q

f (x0,m(x0),∇Π(m(x0))(∇Φ(ny) +∇m(x0)) dy

=
∫

Q

f(x0,m(x0),∇Π(m(x0))(∇Φ(y) +∇m(x0))) dy

=
∫

Q

f(x0,m(x0),∇Π(m(x0))∇u(y)) dy =
∫

Q

f̄(x0,m(x0),∇u(y)) dy.

We now estimate the surface integral. Given δ′ > 0, choose η > 0 small enough so that the Lipschitz
constant of Π|Nη , where Nη := {x ∈ RN : 1− η < |x| < 1 + η}, is smaller than 1 + δ′, we have

lim sup
ε→0

lim sup
n→+∞

1
εN

∫
Q(x0,ε)∩S(mε,n)

|[mε,n](x)|dHN−1

≤ lim sup
ε→0

lim sup
n→+∞

1 + δ′

εN

[∫
Q(x0,ε)∩S(m)

|[m](x)|dHN−1

+
ε

n

∫
Q(x0,ε)∩S(Φ(

n(.−x0)
ε ))

∣∣∣∣[Φ]
(
n(x− x0)

ε

)∣∣∣∣ dHN−1

+|Dhε|(Q(x0, ε)) + |Dhε,n|(Q(x0, ε))] .

(4.22)

Using the fact that limε→0
1

εN

∫
Q(x0,ε)∩S(m)

|[m](x)|dHN−1 = 0 a.e., a change of variables and the periodicity
of Φ for the second term, (4.17), (4.18), and the arbitrariness of δ′, yield the estimate

lim sup
ε→0

lim sup
n→+∞

1
εN

∫
Q(x0,ε)∩S(mε,n)

|[mε,n](x)|HN−1 ≤
∫

Q∩S(u)

|[u](x)|HN−1(x). (4.23)

Putting together the estimates for the volume and the surface integral, we conclude that

lim
ε→0

F [(m,M);Q(x0, ε)]
εN

≤ lim inf
ε→0

1
εN

lim inf
n→+∞

{∫
Q(x0,ε)

f(x,mε,n(x),∇mε,n) dx

+
∫

Q(x0,ε)∩S(mε,n)

|[mε,n](x)|dHN−1(x)

}

≤ lim sup
ε→0

lim sup
n→+∞

1
εN

∫
Q(x0,ε)

f(x,mε,n(x),∇mε,n) dx

+ lim sup
εN

lim sup
n→+∞

1
εN

∫
Q(x0,ε)∩S(mε,n)

|[mε,n](x)|dHN(seeTheorem2.29)−1(x)

≤
∫

Q

f̄(x0,m(x0),∇u(y)) dy +
∫

Q∩S(u)

|[u](y)|dHN−1(y)

≤ H(x0,m(x0),∇m(x0),M(x0)) + δ,

and letting δ → 0 we obtain the upper bound for dF [(m,M);.]
dLN .

The upper bound for the singular part of the measure F [(m,M); .] follows immediately from the bound
(4.5).
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5 Second Order Analysis for Thin Structures

A commonly used approach to the thin film theory consists of dimensional reduction through asymptotic
analysis from 3D models to 2D ones. Often in the applications it is essential to determine exactly the
relation between the thin film theory and the 3D theory. To this end, this subject has recently been the
target of intensive study, both in the linear and in the non linear settings, and one can trace back some
of the arguments to [1], where fully nonlinear beam models were obtained. Results deriving plate models
from thin structures through 3D − 2D dimensional reduction are due to Fox, Raoult and Simo in [41], a
detailed analysis in a Γ- convergence setting can be found in [50] and [51], and for what concerns optimal
design in [38]. The overall picture was completed in [20], in what concerns energy densities depending on
the gradient of the displacement, and taking in account both material heterogeneity and rapidly varying
profiles. Actually those techniques apply as well to nD− (n− d)D reduction, for any n ≥ d > 0. Techniques
for recognizing of bending effect in thin films have been recently developed in [43], [44] and [42].

The situation is different in the case where the energy contains also interfacial terms, i.e. terms which
depend on the second order derivatives. This case has been considered in [17], where to a classical elastic
energy depending on the gradient is added a quadratic term of the second derivative. Also in [60], Shu
considered dimensional reduction depending on several length scales, and taking into account a quadratic
term for the interfacial energy.

In this chapter we study 3D-2D dimensional reduction for models with non convex energies involving
second order derivatives. Thus, we generalize the model of Bhattacharya and James ([17]) refered above,
and as for the lower order terms there is strong convergence we just focus on a energy depending only on
the second derivative. We follow very closely the paper of Braides, Fonseca and Francfort [20], where with
a volume energy depending only on the gradient material heterogeneity and varying profiles are treated.
Using Γ- convergence techniques, we first give a general result for 2D models for energy densities which
allow material heterogeneity and varying profiles. Next, we specialize the study considering transversally
inhomogeneous thin domains and deriving the homogeneous model from those. Finally, we also consider a
model in which microstructure and profile oscillate on a scale which is comparable to the thickness of the
domain. We are able to provide an integral representation result for the limiting energy, under quite general
assumptions on the initial density.

The limiting energy is determined by two vector fields u and b defined on a plane sheet, where u is
associated to the deformation of the middle surface and b is the Cosserat vector associated with transverse
shear and normal compression, and which keeps memory of the rotation of the original normal vector to
the section ω in the 3D. Since the limit model is not convex and takes into account both on u and on b, it
requires a more general notion of convexity, A- quasiconvexity, for a suitable operator A.

The setting is as follows. Let ε be a positive real number, the letter p, as subscript, will run from 1 to
2, thus the coordinates of a point in R3 will be denoted by (xp, x3), and Dp and D2

p stand, respectively,
for the gradient and the Hessian tensor with respect to the planar variables xp := (x1, x2). We denote a
general element of Es

2(Rm) by H = (Hi)jk, where for i ∈ {1, . . . , s} (Hi)jk is a symmetric M m×m matrix,
i.e. Hi

jk = Hi
kj , for every i, j, k. Given H ∈ E3

2(R3) we consider a triple (h, ξ, c) ∈ E3
2(R2)×M 3×2×R3

defined by 
hi

jk := Hi
jk i = 1, 2, 3, 1 ≤ j, k ≤ 2,

ξik := Hi
k3 1 ≤ i ≤ 3, 1 ≤ k ≤ 2,

ci := Hi
33 i = 1, 2, 3.

(5.1)

Let us consider a thin domain Ω(ε) in R3,

Ω(ε) := {(x1, x2, x3) : (x1, x2) ∈ ω and |x3| < εfε(x1, x2)}

where ω is a bounded Lipschitz domain in R2 and fε(x1, x2) determines the ε-dependent profile x3 =
±fε(x1, x2). We assume that the domain is filled with a material energy density W (ε)(x1, x2, x3, ·). Equi-
librium correspond to the transformation fields u(ε) which minimize

w 7→
∫

Ω(ε)

W (ε)(x1, x2, x3, D
2w)dx

among all the kinematically admissible fields w.
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As it is usual, one tries to reformulate the problem on a fixed domain through the re-scaling 1
ε in the

transverse direction x3. Set

Ω := ω×(−1, 1)
Ωε := { (x1, x2, x3) : (x1, x2, εx3) ∈ Ω(ε)} ,
uε(x1, x2, x3) := u(ε)(x1, x2, εx3),
Wε(x1, x2, x3, ·) := W (ε)(x1, x2, εx3, ·).

Clearly uε minimizes

v 7→
∫

Ωε

Wε

(
x1, x2, x3, Dp

2v

∣∣∣∣ 1
ε
Dp(v,3)

∣∣∣∣ 1
ε2
v,3,3

)
dx

among all the kinematically admissible fields v on Ωε, where (h|ξ|c) stands for a triple in E3
2(R2)×M 3×2×R3

according to the notations in (5.1).
Under suitable coercivity conditions on Wε (or W (ε)), it can be verified (cf. Proposition 5.5) that for

a sequence {uε} with bounded energy and prescribed boundary values, there exist a subsequence {εk},
u ∈ W 2,p(ω; R3) and b ∈ W 1,p(ω; R3) such that (uεk

− u)χΩεk
→ 0, (Duεk

−Du)χΩεk
→ 0, and ( 1

εk
uεk ,3 −

b)χΩεk
→ 0 in Lp(R3), where χΩεk

denotes the characteristic function of Ωεk
. Therefore we are led to

investigate, using the Γ- convergence approach, the asymptotic behavior of the family of functionals

Jε(v, ω) :=
∫

Ωε

Wε

(
x1, x2, x3, Dp

2v

∣∣∣∣ 1
ε
Dp(v,3)

∣∣∣∣ 1
ε2
v,3,3

)
dx

under the above type of convergence.
Define

Aε := {(xp, x3) : xp ∈ A, |x3| ≤ fε(xp)},

and
∂tAε := {(xp, x3) : |x3| < fε(xp), xp ∈ ∂A}.

Set, for any v ∈W 1,p(Ω; R3),

Jε(v,A) :=
{ ∫

Aε
Wε

(
xp, x3;D2

pv,
1
εDpv,3,

1
ε2 v,3,3

)
dxpdx3 if v ∈W 2,p(Aε,R3),

+∞ otherwise,

and for any u ∈W 1,p(Ω,R3), b ∈ Lp(Ω,R3), and any decreasing sequence {ε} converging to 0,

J{ε}(u, b, A) := inf
{

lim inf
ε→0

Jε(vε;A) : vε ∈W 2,p(Aε,R3), (vε − u)χAε
→ 0 in Lp(Ω,R3),

(Dvε −Du)χAε
→ 0 in Lp(Ω,R3),

and
(

1
ε
vε,3 − b

)
χAε

→ 0 in Lp(Ω,R3)
}
.

(5.2)

In the sequel we state the main results of this chapter.

Theorem 5.1. For any decreasing sequence {ε} converging to 0, there exists a subsequence {εR} such that
for every u ∈W 2,p(ω,R3) and b ∈W 1,p(ω,R3), and for every open subset A of ω, one can determine {wεR}
in W 2,p(AεR) such that 

(wεR − u)χAεR
→ 0 in Lp(Ω,R3),

(DwεR −Du)χAεR
→ 0 in Lp(Ω,R3),(

1
εR
wεR,3 − b

)
χAεR

→ 0 in Lp(Ω; R3),
J{εR}(u, b, A) = lim

εR→0
JεR(wεR , A).

(5.3)

Furthermore, there exists a Carathéodory function W{εR} : R2×E3
2(R2)×M 3×2 → R such that

J{εR}(u, b, A) = 2
∫

A

W{εR}(xp, D
2u,Db)dxp. (5.4)
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In particular, if the energy densitiesWε(x,H) do not depend on ε and if they coincide with a Carathéodory
function of the type W (x3,H), then Theorem 5.2 below describes the asymptotic behavior of the whole
sequence Jε(v, ω). To this end, define for every h ∈ E3

2(R2) and d ∈M3×2,

W (h, d) := inf
λ>0

inf
φ

{1
2

∫
Q′×(−1,1)

W (x3, h+D2
pφ, d+ λDpφ,3, λ

2φ,3,3)dxpdx3 : (5.5)

φ ∈W 2,p(Q′×(−1, 1); R3), φ = 0 on ∂Q′×(−1, 1)}.

Theorem 5.2. For almost any xp ∈ ω, for all h ∈ E3
2(R2) and d ∈ M3×2, W{εR}(xp, h, d) = W (h, d).

Consequently, for every u ∈W 2,p(ω,R3), b ∈W 1,p(ω,R3) and any A open subset of ω,

J{ε}(u, b, A) = 2
∫

A

W (D2
pu,Dpb)dxp,

where the functional J{ε}(u, b, A) is defined in (5.2).

Finally, in the periodic case, i.e. when Wε(xp, x3) = W
(xp

ε , x3,H
)

and fε(xp) = f
(xp

ε

)
, the limiting

energy density is obtained in Theorem 5.3.

Theorem 5.3. If u ∈W 2,p(ω,R3), b ∈W 1,p(ω,R3), and if A is an open subset of ω, then

J{ε}(u, b, A) =
∫

A

Whom(D2u,Db)dxp. (5.6)

where, for any (h, d) ∈ E3
2(R2)×M3×2,

Whom(h, d) := lim inf
t↗∞

V (t) (5.7)

and, for every t > 0,

V (t) :=
1
t2

inf
φ

{∫
(tQ′)f

W (xp, x3, h+D2
pφ, d+Dpφ,3, φ,3,3)dxpdx3 :

φ ∈W 2,p((tQ′)f ,R3), φ(xp, x3) = 0 if xp ∈ ∂(tQ′), |x3| < f(xp)
}
,

(5.8)

and where, for A ⊂ R2, Af := {(xp, x3) : xp ∈ A, |x3| < f(xp)} .

5.1 Integral representation result

Let {ε} be any decreasing sequence of real numbers converging to 0. Assume that {Wε(x,H)}ε is a sequence
of nonnegative Carathéodory functions on Ω×E3

2(R3) such that

β′|H|p ≤Wε(x;H) ≤ β(1 + |H|p) (5.9)

for some 0 < β′ ≤ β <∞, 1 < p <∞. In what follows we write Wε(h|ξ|c) to designate Wε(H).
For each ε let fε(xp) be a continuous function on ω such that, for some γ > 0 independent of ε,

0 < γ ≤ fε(xp) ≤ 1, for all xp ∈ ω. (5.10)

It can be easily verified that for any u ∈ W 2,p(ω; R3), b ∈ W 1,p(ω; R3), the energy J{ε}(u, b;A), defined
in (5.2) is finite. Indeed, by using in the definition as test sequence vε := u+ εx3bε, with bε ∈ C∞(ω,R3) ∩
W 1,p(ω,R3) in order to guarantee uε ∈W 2,p(Ω; R3), and with bε → b ∈W 1,p(ω,R3) as ε→ 0, by the growth
condition (5.9) we get

J{ε}(u, b, A) ≤ Cβ

∫
A

(1 + |D2u|p + |Db|p)dxp. (5.11)

Remark 5.4. J{ε}(u, b, ·) is an increasing set function on the open subsets of ω.
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The proof of result below follows the steps of the analogous result in [20].

Proposition 5.5. Let p > 1, u0 ∈ W 2,p(ω,R3) and b0 ∈ W 1,p(ω,R3). Assume that {vε} is a sequence in
W 2,p(Ωε,R3) such that

vε ≡ u0(xp) + εx3b0(xp) on ∂tωε (5.12)

and

sup
ε

∫
Ωε

Wε

(
xp, x3, D

2
pv,

1
ε
Dpv,3,

1
ε2
v,3,3

)
dxpdx3 <∞.

Then there exist u ∈W 2,p(ω,R3) with trace u0 on ∂ω, b ∈W 1,p(ω,R3) with trace b0 on ∂ω, and a subsequence
{εk} of {ε} such that

(vεk
− u)χΩεk

→ 0, (Dvεk
−Du)χΩεk

→ 0 and
(

1
εk
vεk,3 − b

)
χΩεk

→ 0 in Lp(Ω,R3). (5.13)

Proof. In view of (5.9) and (5.10), one has∫
ω×(−γ,γ)

(
|D2

pvε|p +
1
εp
|Dpvε,3|p +

1
ε2p

|vε,3,3|p
)
dxpdx3

≤
∫

ωε

(
|D2

pvε|p +
1
εp
|Dpvε,3|p +

1
ε2p

|vε,3,3|p
)
dxpdx3 <∞,

(5.14)

so that Poincaré Inequality and Rellich Theorem guarantee that there exists a function u in W 2,p(ω×
(−γ, γ); R3), and a subsequence {εk} of {ε} such that{

vεk
⇀u in W 2,p(ω×(−γ, γ); R3),

vεk
(xp,±γ) → u(xp,±γ) in W 1,p(ω,R3). (5.15)

Note that, in order to have (5.15), fε must be such that the trace of vε is meaningful on ∂tωε. Moreover, (5.14)
implies that u,3,3 = 0. Hence u,3 = A(xp) and so u = A(xp)x3 +B(xp), and Dpu = DpA(xp)x3 +DpB(xp).
In addition (Dpu),3 = 0, A(xp) = C. Thus

u = Cx3 +B(xp) and u = u0 on ∂ω× (−γ; γ) , that is C = 0,

and we deduce that u− u0 ∈W 2,p
0 (ω,R3).

Moreover, observe that∫
ωεk

|Dvεk
−Dpu|pdxpdx3 =

∫
ω×(−γ,γ)

|Dvεk
−Dpu|pdxpdx3

+
∫

ω

∫ fεk
(xp)

γ

|Dvεk
−Dpu|pdxpdx3 +

∫
ω

∫ −γ

−fεk
(xp)

|Dvεk
−Dpu|pdxpdx3

=
∫

ω×(−γ,γ)

|Dvεk
−Dpu|pdxpdx3+

+
∫

ω

∫ fεk
(xp)

γ

∣∣∣∣∫ x3

γ

Dvεk,3(xp, s)ds+Dvεk
(xp, γ)−Dpu(xp)

∣∣∣∣p dxpdx3

+
∫

ω

∫ −γ

−fεk
(xp)

∣∣∣∣∫ x3

−γ

Dvεk,3(xp, s)ds+Dvεk
(xp,−γ)−Dpu(xp)

∣∣∣∣p dxpdx3

≤
∫

ω×(−γ,γ)

|Dvεk
−Dpu|pdxpdx3+

+C
{∫

ω

|Dvεk
(xp,±γ)−Du(xp)|p dxp +

∫
ωεk

|Dvεk,3|pdxpdx3

}
,

(5.16)

so that (5.14) and (5.15) imply that (Dvεk
−Du)χΩεk

→ 0 in Lp(Ω; R3). Arguing as in (5.16), it can be
shown that ‖vεk,3‖Lp(ωε) → 0, and using this argument, and analogously to (5.16), one can easily see that∫

ωεk
|vεk

− u|pdxpdx3 → 0, thus the first and the second convergences in (5.13) follow. In what concerns the
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last convergence in (5.13), (5.14) and (5.12) entail that the sequences
{
Dp

1
εvε,3

}
and

{
1
εvε,3,3

}
are bounded

in Lp(ωε,R3) and 1
εvε,3|∂tωε = b0(xp). Thus, applying again Poincaré Inequality and Rellich’s Theorem, we

get the existence of a function b ∈W 1,p(ω×(−γ, γ),R3) and of a subsequence of {εk}, still denoted by {εk},
such that 

1
εk
vεk,3⇀b in W 1,p(ω×(−γ, γ),R3),

1
εk
vεk,3(xp,±γ) → b(xp,±γ) in Lp(ω,R3),

and, in addition, as b,3 = 0, b− b0 ∈W 1,p(ω,R3). Thus, as in (5.16), we obtain∫
ωεk

∣∣∣∣ 1
εk
vεk,3 − b

∣∣∣∣p dxpdx3 ≤
∫

ω×(−γ,γ)

∣∣∣∣ 1
εk
vεk,3 − b

∣∣∣∣p dxpdx3

+C
{∫

ω

∣∣∣∣ 1
εk
vεk,3(xp,±γ)− b(xp)

∣∣∣∣p dxp +
∫

ωεk

∣∣∣∣ 1
εk
vεk,3

∣∣∣∣p dxpdx3

}
which, together with (5.14) and (5.15), yields the last relation in (5.13) and this concludes the proof.

Next introduce a countable collection C of open subsets of ω such that for all δ > 0 and A ∈ A(ω) there
exists a finite union CA of disjoint elements of C such that{

CA ⊂ A,
L2(A) ≤ L2(CA) + δ.

Denote by R the countable collection of all finite unions of elements of C, i.e. R :=
{
∪k

i=1Ci : k ∈ N, Ci ∈ C}.
Since W 1,p and Lp are separable metric spaces, by using a diagonal argument, and in the spirit of Γ-

convergence (see [18] Proposition 7.9), we can assert that there exists a subsequence {εR} ⊂ {ε}, εR → 0,
such that, upon setting

J{εR}(u, b, A) := inf
vεR

{
lim inf
εR→0

JεR(vεR , A) : vεR in W 2,p(AεR ,R3), (vεR − u)χAεR
→ 0

(DvεR −Du)χAεR
→ 0 and

(
1
εR

vεR,3 − b

)
χAεR

→ 0 in Lp(Ω,R3)
}
,

(5.17)

for every C ∈ R and for every u ∈W 1,p(Ω,R3) and b ∈ Lp(Ω,R3) there exists a sequence {vC
εR} in W 2,p(CεR)

such that 
(vεR − u)χCεR

→ 0 in Lp(Ω,R3),
(DvεR −Du)χCεR

→ 0 in Lp(Ω,R3),(
1

εR
vεR,3 − b

)
χCεR

→ 0 in Lp(Ω; R3),
J{εR}(u, b, C) = lim

εR→0
JεR(vεR , C).

(5.18)

Next we seek to extend (5.18) to every A open subset of ω.

Proof of Theorem 5.1. The proof relies on the techniques of the Γ- convergence, and the structure follows
step by step the proof of Theorem 2.5 in [20]. First it is observed that the test sequences can be chosen with
prescribed boundary values. Then (5.3) is asserted, in the sense that J{εR}(u, b, A) can be achieved. Finally,
we prove that J{εR} admits the integral representation (5.4), as it satisfies all the assumptions of Theorem
2.31.

Step 1. The next result shows that the approximating sequences {vε} may take the boundary value
u + εx3b on the lateral boundary Aε. Actually, with no loss of generality, it can assumed the function b
regular, since b can be approximated by smooth functions in C∞c (ω).

Lemma 5.6. Let A be an open subset of ω. Let u ∈ W 2,p(Ω,R3) and let b ∈ W 1,p(Ω,R3). If {ε} ⊂ {εR}
and {vε} ∈W 2,p(Aε,R3) are such that

(vε − u)χAε
→ 0 in Lp(Ω,R3),

(Dvε −Du)χAε
→ 0 in Lp(Ω,R3),(

1
εvε,3 − b

)
χAε

→ 0 in Lp(Ω; R3),
J{εR}(u, b, A) = lim

ε→0
Jε(vε, A),

(5.19)
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then there exists a sequence {wε} ⊂W 1,p(Aε,R3) which satisfies (5.19) and is such that

wε = u+ εx3b in {(xp, x3) : xp ∈ A\Kε and |x3| < fε(xp)}

for some compact set Kε ⊂ A.

Proof. Set

C := sup
ε

∫
Aε

(
1 + |D2

pvε|p +
1
εp
|Dpvε,3|p +

1
ε2p

|vε,3,3|p
)
dxpdx3.

From (5.9) it results C <∞. Define

K(ε) :=

∣∣∣∣∣∣
 1

‖vε − u− εx3b‖
1
4
Lp(Aε) + ‖Dpvε −D(u+ εx3b)‖

1
4
Lp(Aε)‖

1
εvε,3 − b‖

1
4
Lp(Aε)

∣∣∣∣∣∣ (5.20)

where |[a]| denotes the integer part of a, and M(ε) := |[
√
K(ε)]|. In order to apply the De Giorgi’s slicing

argument, define

A(ε) :=
{
xp ∈ A : dist(xp, ∂A) <

M(ε)
K(ε)

}

Note that, in view of (5.20), K(ε) ↗ ∞ while L2(A(ε)) ↘ 0 as ε ↗ 0. Subdivide A(ε) into M(ε) disjoint
open subsets

Aε
i :=

{
xp ∈ A : dist(xp, ∂A) ∈

[
i

K(ε)
,
i+ 1
K(ε)

)}
, i = 0, . . . ,M(ε)− 1.

Then, there exists i(ε) ∈ {0, . . . ,M(ε)− 1} such that

∫
(Aε

i )ε

(
1 + |D2

pvε|p +
1
εp
|Dpvε,3|p +

1
ε2p

|vε,3,3|p
)
dxpdx3 ≤

C

M(ε),
(5.21)

where (Aε
i )ε :=

{
(xp, x3) : xp ∈ Aε

i , |x3| < fε(xp)
}
. Let φ(ε) ∈ C∞0 (A) be such that


0 ≤ φ(ε) ≤ 1, ‖Dpφ(ε)‖L∞ ≤ 2K(ε), ‖D2

pφ(ε)‖L∞ ≤ 2K2(ε),

φ(ε) =

{
1, if dist(xp, ∂A) > i(ε)+1

K(ε) ,

0, if dist(xp, ∂A) ≤ i(ε)
K(ε),

(5.22)

and set

wε := φ(ε)vε + (1− φ(ε))(u+ εx3b). (5.23)

It results wε ∈ W 2,p(Aε,R3) and wε = u + εx3b in {(xp, x3) : xp ∈ A\Kε and |x3| < fε(xp)}, where Kε is

defined as
{
xp ∈ A : dist(xp, ∂A) ≥ i(ε)

K(ε)

}
. Moreover, from (5.19)

(wε − u)χAε → 0, (Dwε −Du)χAε → 0 and
(

1
ε
wε,3 − b

)
χAε

→ 0 in Lp(Ω,R3). (5.24)
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From the bound from above (5.9) and (5.22), (5.23) we have

J{εR}(u, b, A)

≥ lim sup
ε→0

∫
Aε∩[{xp:dist(xp,∂A)>

i(ε)+1
K(ε) }×(−1,1)]

Wε

(
xp, x3, D

2
pvε,

1
ε
Dpvε,3,

1
ε2
vε,3,3

)
dxpdx3

≥ lim sup
ε→0

{∫
Aε

Wε

(
xp, x3, D

2
pwε,

1
ε
Dpwε,3,

1
ε2
wε,3,3

)
dxpdx3

−C
∫

Aε∩[{xp:dist(xp,∂A)<
i(ε)

K(ε)}×(−1,1)]

(
1 + |D2

pu+ εx3D
2
pb|p + |Dpb|p

)
dxpdx3

−β
∫

(Aε
i(ε))ε

(
1 + |D2

pvε|p +
1
εp
|Dpvε,3|p +

1
ε2p

|vε,3,3|p
)
dxpdx3

−C|K(ε)|2p

∫
(Aε

i(ε))ε

|vε − u− εx3b|pdxpdx3−

−C|K(ε)|p
∫

(Aε
i(ε))ε

(
|Dpvε −Dp(u+ εx3b)|p +

∣∣∣∣1εvε,3 − b

∣∣∣∣p) dxpdx3

≥ lim sup
ε→0

Jε(wε, A)− C lim inf
ε→0

L2(A(ε))− Cβ lim inf
ε→0

1
M(ε)

−C ′ lim inf
ε→0

‖vε − u− εx3b‖
p
2
Lp(A(ε)) − C ′ lim inf

ε→0
‖Dpvε −Dp(u+ εx3b)‖

3p
4

Lp(A(ε))

−C ′ lim inf
ε→0

‖1
ε
vε,3 − b‖

3p
4

Lp(A(ε)) = lim sup
ε→0

Jε(wε, A),

(5.25)

where (5.20) and (5.21) have been used to obtain the last inequality. Further, from (5.3) and (5.24) we have

J{εR}(u, b, A) ≤ lim inf
ε→0

Jε(wε, A)

which, together with (5.25), completes the proof.

Step 2. Let A be an open subset of ω, u ∈W 2,p(ω,R3) and b ∈W 1,p(ω,R3). We prove that there exists
a sequence {vCδ(εR)

εR
} converging in the sense of (5.18) for which J{εR}(u, b, A) is attained.

Fix δ > 0 and choose a subset Cδ of A in R such that{
Cδ ⊂ A,∫

A\Cδ

(
1 +

∣∣D2
pu
∣∣p + |Dpb|p

)
dx ≤ δ

2β .

Consider a sequence {vCδ

εR} in W 2,p(Cδ) satisfying

lim
εR→0+

JεR(vCδ

εR , C
δ) = J{εR}(u, b, C

δ).

Without loss of generality we may assume that b is a smooth function, thus by Lemma 5.6 we can suppose
that vCδ

εR = u + εRx3b nearby ∂Cδ, and extend vCδ

εR as u + εRx3b outside Cδ, so that the extension (not
relabelled) vCδ

εR ∈W 2,p(AεR) and it is still admissible. Since J{εR}(u, b, C
δ) ≤ J{εR}(u, b, A), for every δ > 0

we have
lim sup
δ→0+

lim sup
εR→0+

JεR(vCδ

εR , A)

≤ lim sup
δ→0+

lim
εR→0+

{
JεR(vCδ

εR , C
δ) + C

∫
AεR−Cδ

(
1 +

∣∣D2
pu
∣∣p + |Dpb|p

)
dx

}
= lim sup

δ→0+
J{εR}(u, b, C

δ) ≤ J{εR}(u, b, A) ≤ lim inf
δ→0+

lim inf
εR→0+

JεR(vCδ

εR , A).

a diagonalization result (cf. Lemma 7.1 [20]) concludes the proof, since there exists a decreasing sequence
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{δ(εR)} ↘ 0 such that 

(vCδ(εR)

εR
− u)χARε

→ 0 in Lp(Ω,R3),

(DvCδ(εR)

εR
−Du)χARε

→ 0 in Lp(Ω,R3),(
1

εR
v

Cδ(εR)

εR,3
− b
)
χARε

→ 0 in Lp(Ω; R3),

J{εR}(u, b, A) = lim
εR→0

JεR(vCδ(εR)

εR
, A).

(5.26)

Step 3. We prove that J{εR}(u, b, ·) is a measure. To this end, first we can observe that from the proof
of Step 2, for u ∈ W 2,p(ω,R3) and b ∈ W 1,p(ω,R3), J{εR}(u, b, ·) is inner regular. Thus, let δ > 0, and find
Cδ ∈ R such that {

C
δ ⊂ A,

J{εR}(u, b, A) ≤ J{εR}(u, b, C
δ) + δ.

(5.27)

Since from (5.2) and (5.26), it results

J{εR}(u, b, A) ≥ J{εR}(u, b, A\C
δ
) + J{εR}(u, b, C

δ),

from (5.27) we obtain
J{εR}(u, b, A\C

δ
) ≤ δ. (5.28)

Next we prove that J{εR} is subadditive. Indeed let A,B,C be open subsets in ω such that C ⊂⊂ B ⊂ A.
We have to show that

J{εR}(u, b, A) ≤ J{εR}(u, b,B) + J{εR}(u, b, A\C). (5.29)

To this end, consider an open set D ⊂⊂ A\C. We can find two sequences {vB
εR}, {v

A\C
εR

} such that (5.26) is
verified on B and A\C respectively, and, in view of Lemma 5.6,

vB
εR = u+ εRx3b on ∂tBεR and vA\C

εR
= u+ εRx3b on ∂t(A\C)εR .

Next define the sequence of Radon measures

λεR :=
{

1 + |D2
pv

D
εR |

p + |D2
pv

B
εR |

p +
(

1
εR

)p

|Dpv
D
εR,3|

p

+
(

1
εR

)p

|Dpv
B
εR,3|

p +
(

1
εR

)2p (
|vB

εR,3,3|
p + |vD

εR,3,3|
p
)}

χ((A−C)\D)εR
L3

where ((A\C)\D)εR = {(xp, x3), xp ∈ (A\C)\D, |x3| < fεR(xp)}. From (5.9) {λεR} is a bounded sequence
of finite Radon measures on R3, hence there exists a subsequence {ε} of {εR} and a finite nonnegative Radon
measure λ such that

λε⇀
∗λ weakly*- in the sense of measures.

Define λ̂(X) := λ(X×[−1, 1]) for any Borel subset X of ω, and, for 0 < η < 1, set

Sη := {x ∈ (A− C)\D : dist(xp, ∂(A\C)) = η},

The sets Sη are pairwise disjoint for every η and there is η ∈ (0, 1) such that

λ̂(Sη0) = 0.

Let Lζ be a layer around Sη0 , i.e.,

Lζ := {xp ∈ (A\C)\D : dist(xp, Sη0) ≤ ζ}.

Consider a smooth cut off function φ ∈ C∞c (R2) such that
‖φ‖L∞ ≤ 1, ‖Dpφ‖L∞ ≤ C

dist(D,A\C)
, ‖D2

pφ‖L∞ ≤ C

dist2(D,A\C)

φ=

{
1 if xp ∈ D,
0 if xp 6∈ A\C.

(5.30)
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Setting
vεR := φv

A\C
εR

+ (1− φ)vB
εR ,

we have vεR ∈W 2,p(AεR ,R3) and

(vεR − u)χAεR
→ 0, (DvεR −Du)χAεR

→ 0 and
(

1
εR

vεR,3 − b

)
χAεR

in Lp(Ω,R3).

Hence, from (5.3) and (5.30) it results

J{εR}(u, b, A) ≤ lim inf
εR→0

JεR(vεR , A) ≤ J{εR}(u, b,B) + J{εR}(u, b, A\C)

+β lim sup
εR→0

λεR(Lζ×(−1, 1))

+β
C

distp(D, ∂(A\C))
lim sup
εR→0

∫
((A\C)\D)εR

(
|Dpv

B
εR −Dpv

A\C
εR

|p +
1
εR

p |vB
εR,3 − v

A\C
εR,3

|p
)
dxpdx3

+β
C

dist2p(D, ∂(A\C))
lim sup
εR→0

∫
((A\C)\D)εR

|vBδ

εR − v
A\C
εR

|pdxpdx3.

The last two terms reduce to zero since

|vB
εR − v

A\C
εR

|χ
((A\C)\D)

R
ε
≤ |vBδ

εR − u|χBεR
+ |vDδ

εR − u|χA\CεR
,

|Dpv
B
εR −Dpv

A\C
εR

|χ((A\C)\D)εR
≤ |Dpv

B
εR −Dpu|χBδ

εR
+ |Dpv

A\C
εR

−Dpu|χ(A\C)εR

and
1
εR
|vB

εR,3 − v
A\C
εR,3

|χ((A\C)\D)εR
≤
∣∣∣∣ 1
εR

vB
εR,3 − b

∣∣∣∣χBεR
+
∣∣∣∣ 1
εR

v
A\C
εR,3

− b

∣∣∣∣χ(A\C)εR
.

As
lim sup

ζ→0
lim sup
εR→0

λεR(Lζ × (−1, 1)) ≤ lim sup
ζ→0

λ̂(L̄ζ) ≤ λ̂(Sη0) = 0

we can let first εR → 0 and then ζ → 0 to get

J{εR}(u, b, A) ≤ J{εR}(u, b,B) + J{εR}(u, b, A\C),

which proves (5.29).
The definition (5.3) of J{εR}(u, b, ω) implies the existence of a subsequence {ε} of {εR} and of an asso-

ciated subsequence {vε} in W 2,p(ωε,R3) such that
(vε − u)χωε → 0 in Lp(Ω,R3),
(Dvε −Du)χωε → 0 in Lp(Ω,R3),(

1
εvε,3 − b

)
χωε → 0 in Lp(Ω; R3),

J{ε}(u, b, ω) = limε→0 JεR(vε, ω).

(5.31)

Up to the choice of a subsequence, still denoted by {ε}, there exists a Radon measure µ such that

Wε

(
xp, x3, D

2
pvε,

1
ε
Dpvε,3,

1
ε2
vε,3,3

)
χωεL3 ∗

⇀ µ (5.32)

Let X ⊂ R2 and define µ̂(X) := µ(X×[−1, 1]). Then (5.31) and (5.32) imply that

J{εR}(u, b, ω) ≥ µ̂(R2), (5.33)

while, for each open subset A ⊂ ω we have

J{εR}(u, b, A) ≤ lim inf
ε→0

Jε(vε, A)= lim inf
ε→0

∫
Aε

Wε

(
xp, x3, D

2
pvε,

1
ε
Dpvε,3,

1
ε2
vε,3,3

)
dxpdx3

≤ µ(A×[−1, 1]) = µ̂(A).
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Thus, in view of (5.28), (5.29), (5.33), (5.32), Lemma 7.3 in [20] permits to conclude that J{εR}(u, b, ·) is the
trace on the open subsets of ω of a finite nonnegative Radon measure. Moreover, the bound from above in
(5.9) guarantees that it is absolutely continuous with respect to the L2|ω.

Step 4. In order to apply Theorem 2.31 it can be easily verified that the functional J{εR} maps any
triple (u, b, A), u ∈W 2,p(ω,R3), b ∈W 1,p(ω,R3), and A any open subset of ω, into R, and

(i) J{εR}(u, b, A) = J{εR}(v, d,A) whenever u = v and b = d a.e. on A,

(ii) J{εR}(u, b, ·) is a finite nonnegative Radon measure,

(iii) C ′β′
∫

A
(|D2

pu|p + |Dpb|p)dxp ≤ J{εR}(u, b, A) ≤ Cβ
∫

A
(1 + |D2

pu|p + |Dpb|p)dxp,

(iv) J{εR}(u, b, A) is W 2,p(A)×W 1,p(A) weakly lower semicontinuous.

Property (iii) follows from (5.11) and the lower weak semicontinuity of the norm in the Sobolev spaces,
while (iv) is a consequence of (5.9) and it can be easily verified through a diagonal argument. Indeed, let
{(un, bn)} ∈ W 2,p(ω; R3)× W 1,p(ω; R3) converging weakly to (u, b) ∈ W 2,p(ω; R3)×W 1,p(ω; R3). For any
n ∈ N consider {wn

εR} ⊂ W 2,p(AεR) such that (5.3) holds for JεR(n)(un, bn, A). It can be constructed a
diagonal sequence {wn

εR(n)} such that

(wn
εR(n) − u)χAεR(n)

→ 0 in Lp(Ω; R3),
(Dwn

εR(n) −Du)χAεR(n)
→ 0 in Lp(Ω; R3),(

1
εR(n)

wn
εR(n),3 − b

)
χAεR(n)

→ 0 in Lp(Ω; R3),

and

lim inf
n

JεR(n)(un, bn, A) = lim
n

∫
AεR(n)

W (D2
pw

n
εR(n),

1
εR(n)

Dpw
n
εR(n),3,

1

εR(n)2
wn

εR(n),3,3)dx.

lim
n

∫
AεR(n)

W (D2
pw

n
εR(n),

1
εR(n)

Dpw
n
εR(n),3,

1

εR(n)2
wn

εR(n),3,3)dx ≥ J{εR(n)}(u, b, A)

and since
J{εR(n)}(u, b, A) ≥ J{εR}(u, b, A)

the lower semicontinuity is asserted.
A direct application of Theorem 2.31 entails the existence of a function W{εR} in Theorem 5.1 which still

satisfies the growth condition (5.9). Moreover, since J{εR} (u+ c+Bx, b+ d,A) = J{εR}(u, b, A) for every
c, d ∈ R3, B ∈M3×2, the function W{εR} depends just on x, on the second derivatives of u and on the first
gradient of b. In order to see that the WεR is Carathéodory is enough to use an argument similar to the one
in Theorem 20.1 and Lemma 20.2 in [34].

Remark 5.7. For the sake of completeness, we also observe that, under the additional assumption (5.12),
there is convergence (in the sense of (5.13)) of the minimizers (or almost minimizers) {(uεR , 1

εR
∂

∂x3
uεR)} to

a pair (u, b) at which the functional J{εR}((·, ·),Ω) achieves the minimum. Indeed, we can observe that the
sequence {(uεR , 1

εR
∂

∂x3
uεR)} is bounded, so up to a subsequence (not relabelled) it converges to (u, b) in the

sense 5.13. Thus
J{εR}((u, b),Ω) ≤ lim inf

εR→0
JεR(uεR ,ΩεR) ≤ lim

εR→0
JεR(vεR ,ΩεR)

where {(vεR , 1
εR vεR,3)} is any subsequence converging to a couple (v, r) ∈W 2,p(ω,R3)×W 1,p(ω,R3) and for

which the previous limit coincides with J{εR}((v, r),Ω).

In the sequel we will establish some convexity properties of the energy density W{εR}(xp, ·, ·). Let
Q′ := (0, 1)2 be the unit cube in R2, and let T2 be the 2- dimensional torus.

Given a function v = (h, ξ) : T2→E3
2(R2)×M 3×2, consider the operator A given by

Av := (A1h,A2ξ) (5.34)
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where

A1h =

(
∂hi

j1

∂x2
−
∂hi

j2

∂x1

)
, i = 1, 2, 3, j = 1, 2,

and

A2ξ =
(
∂ξi

1

∂x2
− ∂ξi

2

∂x1

)
, i = 1, 2, 3.

It is easy to verify (see [40] for details) that{
h ∈ C∞(T2;E3

2(R2)) : A1h = 0,
∫

T2

hdx = 0
}

=
{
D2

pu : u ∈ C∞(T2,R3)
}
.

In fact, for every i = 1, 2, 3, if A1h
i = 0 then hi

jk = ∂wi
j

∂xk
for some functions wi

j ∈ C∞(Qp,R6) with average
zero. Note that wi

j is periodic since hi is periodic and
∫

T2
hidx = 0. Then, by the symmetry of hi

jk with

respect to i and j, it results curlwi = 0 and we conclude that hi
jk = ∂2ui

∂xk∂xj
for some ui ∈ C∞(T2; R). The

operator is a constant rank operator. Indeed, for every w ∈ S1 we have

kerA1(w) =
{
X ∈ E3

2 : wiX
l
jk − wjX

l
ik = 0, i, j = 1, 2, k = 1, 2, l = 1, 2, 3

}
=
{
b⊗ w ⊗ w, b ∈ R3

}
,

so dim KerA1(w) = 3. Also{
ξ ∈ C∞(T2,M 3×2) : A2ξ = 0,

∫
T2

ξdx = 0
}

=
{
Dpϕ : ϕ ∈ C∞(T2,R3)

}
,

and it is easy to see that A2 is a constant rank operator. In fact for every w ∈ S1 it results

KerA2(w) =
{
V ∈ M 3×2 : A2(w)V l = 0, l = 1, 2, 3

}
=
{
wiV

l
j − wjV

l
i = 0, l = 1, 2, 3, i, j = 1, 2

}
=
{
a⊗ w, a ∈ R3

}
and dim KerA2(w) = 3. It follows immediately that A is a constant rank operator, and for every w ∈ S1,

KerA(w) =
{
(X,V ) ∈ E3

2×M 3×2 : (X,V ) = (b⊗w⊗2, a⊗w), b ∈ R3, a ∈ R3
}
, (5.35)

where w⊗2 stands for w⊗w. For every v ∈ E3
2(R2)×M3×2, with v = (h, ξ), we have

QAf(v) = inf
{∫

Q′
f(v + w(x))dx : w ∈ C∞per(R2;E3

2×M3×2) ∩KerA ,
∫

Q′
wdx = 0,

}
,

or, equivalently,

QAf((h, ξ)) = inf
{∫

Q′
f((h+D2

pu, ξ +Dpϕ))dx : ϕ ∈ C∞0 (Q′; R3), u ∈ C∞0 (Q′,R3)
}
. (5.36)

Remark 5.8. SinceW{εR}(xp, ·, ·) is the integrand of a weakly lower semicontinuous functional onW 1,p(ω,R3)
× Lp(ω,R3), namely J{εR}(u, b, A) in (5.18),(see (iv) in the proof of Theorem 5.1 above), and since the as-
sumptions of Theorem 3.6 in [40] are fulfilled, the energy density W{εR}(xp, ·, ·) is A-quasiconvex, where A
is the operator introduced by (5.34).

We end this section by observing that the notion of A- quasiconvexity determined by the operator in
(5.34) entails fine continuity properties. In particular, the following result holds.

Proposition 5.9. Let W : E3
2(R2)×M3×2 → R be an A-quasiconvex function, where A is the differential

operator introduced in (5.34), then W is locally Lipschitz continuous.

Proof. The proof is entirely similar to that of Theorem 2.8, and it relies on the observation that, in view of
(5.35), in the cone Λ = ∪w∈S1kerA(w) there are enough directions to generate E3

2(R2)×M 3×2.
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5.2 Homogeneous and inhomogeneous thin films

We start with the inhomogeneous setting. The homogeneous case will be obtained as a corollary. We
denote by Q′ the unit cube

(
− 1

2 ,
1
2

)2 in R2. Assume that the energy density Wε(x1, x2, x3,H) does not
depend neither on ε nor on the planar variables, i.e. Wε(x1, x2, x3,H) ≡ W (x3,H), where W (x3,H) is a
Carathéodory function defined on (−1, 1)×E3

2(R3) such that

β′|H|p ≤W (x3,H) ≤ β(1 + |H|p), 0 < β′ ≤ β <∞, for a.e. x3 ∈ (−1, 1). (5.37)

We consider a fixed profile, i.e. fε(xp) ≡ 1, for every xp ∈ ω.
Theorem 5.1 states that for any sequence {ε} ↘ 0 there exists a subsequence {εR} ↘ 0 such that

J{εR}(u, b, A) defined in (5.17) is given by

J{εR}(u, b, A) := 2
∫

A

W{εR}(xp, D
2
pu,Dpb)dxp. (5.38)

Thus it remains to identify the energy density W{εR}.

Proof of Theorem 5.2. Consider any sequence {ε} ↘ 0 and let {εR} be as (5.17) and (5.18). Fix h ∈ E3
2(R2)

and d ∈M3×2 and let x0 be a Lebesgue point for W{εR}(·, h, d). Then

W{εR}(x0, h, d) = lim
q→∞

q2
∫

Q′(x0, 1
q )
W{εR}(xp, h, d)dxp, (5.39)

where Q′
(
x0,

1
q

)
is a cube in R2 centered at x0 with side length 1

q , with q large enough to ensure Q′
(
x0,

1
q

)
⊂

ω. By virtue of (5.38), (5.39) reduces to

W{εR}(x0, h, d) = lim
q→∞

q2

2
J{εR}

(
1
2
xThx, dx,Q′

(
x0,

1
q

))
. (5.40)

For q large enough, let {vq
εR
} ⊂W 2,p

(
Q′
(
x0,

1
q

)
×(−1, 1),R3

)
be such that

vq
εR
→ 0 in W 1,p

(
Q′
(
x0,

1
q

)
×(−1, 1),R3

)
,

1
εR

vq
εR,3

→ 0 in Lp

(
Q′
(
x0,

1
q

)
×(−1, 1),R3

)
,

J{εR}

(
1
2
xThx, dx,Q′

(
x0,

1
q

))
=

lim
εR→0

∫
Q′(x0, 1

q )×(−1,1)

W

(
x3, h+D2

pv
q
εR
, d+

1
εR

Dpv
q
εR,3

,
1

(εR)2
vq

εR,3,3

)
dxpdx3.

(5.41)

The existence of this subsequence {vq
εR
} is ensured by Theorem 5.1. Further, Lemma 5.6 guarantees that

vq
εR

can be chosen equal to 0 in a neighborhood of ∂Q′
(
x0,

1
q

)
×(−1, 1). Define

vq,εR(xp, x3) := q2vq
εR

(
x0 +

xp

q
, x3

)
, xp ∈ Q′.

In view of (5.41), (5.40) can be written as

W{εR}(x0, h, d)

=
1
2

lim
q→∞

lim
εR→0

∫
Q′×(−1,1)

W

(
x3, h+D2

pvq,εR , d+
1
qεR

Dpvq,εR,3,
1

(qεR)2
vq,εR,3,3

)
dxpdx3.

(5.42)

Since vq,εR = 0 on ∂Q′×(−1, 1), (5.42) becomes

W{εR}(x0, h, d) ≥W (h, d). (5.43)
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It remains to prove the opposite inequality to (5.43). Since W verifies (5.37), a simple density argument
guarantees that for every η > 0 we can find λ > 0 and φ ∈W 2,∞(Q′×(−1, 1),R3), with φ = 0 on ∂Q′×(−1, 1),
such that

W (h, d) + η ≥ 1
2

∫
Q′×(−1,1)

W (x3, h+D2
pφ, d+ λDpφ,3, λ

2φ,3,3)dxpdx3. (5.44)

Set
vεR(xp, x3) :=

1
2
xt

phxp + εRx3dxp + (λεR)2φ
( xp

λεR
, x3

)
,

where it has been assumed that φ is laterally extended by Q′-periodicity. Then

vεR →
1
2
xt

phxp in W 1,p(Ω,R3),
1
εR

vεR,3 → dxp in Lp(Ω,R3).

For each open subset A of ω it results that

J{εR}

(
1
2
xt

phxp, dxp, A

)
≤lim inf

εR→0

∫
A×(−1,1)

W

(
x3, D

2
pvεR ,

1
εR

DpvεR,3,
1

εR
2 vεR,3,3

)
dxpdx3

= lim inf
εR→0

∫
A×(−1,1)

W
(
x3, h+D2

pφ
( xp

λεR
, x3

)
, d+ λDpφ,3

( xp

λεR
, x3

)
λ2φ,3,3

( xp

λεR
, x3

))
dxpdx3.

(5.45)

Observe that the function
∫ 1

−1

W
(
x3, h+D2

pφ(·, x3), d+ λDpφ,3(·, x3), λ2φ,3,3(·, x3)
)
dx3 belongs to L∞(R2)

and it is periodic, thus it converges weakly * to its average, and by virtue of (5.44), (5.45) becomes,

J{εR}

(
1
2
xt

phxp, dxp, A

)
≤L2(A)

∫ 1

−1

∫
Q′
W
(
x3, h+D2

pφ, d+ λDpφ,3, λ
2φ,3,3

)
dxpdx3

≤ 2L2(A)W (h, d) + 2ηL2(A).

Thus letting η tend to 0,

J{εR}

(
1
2
xt

phxp, dxp, A

)
≤ 2L2(A)W (h, d),

which, in the light of Theorem 5.1, also reads as∫
A

W{εR}(x0, h, d)dxp ≤ 2L2(A)W (h, d).

Choosing x0 ∈ ω a Lebesgue point for W{εR}(·, h, d) and A to be a small ball centered at x0 with vanishing
radius, it follows that

W{εR}(x0, h, d) ≤W (h, d).

We recall that in all the argument above the function W{εR}(x0, h, d) does not depend on the choice of
the subsequence

{
εR
}
, so one does not need to extract a subsequence from {ε}, and that concludes the

proof.

Remark 5.10. Remark 5.8 and Proposition 5.9 entail that the function defined by (5.5) is A quasiconvex
and locally Lipschitz continuous.

Finally, we obtain a representation result in the homogeneous case, i.e. when W does not depend on x3.
We set W (h, d) := infc∈R3 W (h, d, c), with h ∈ E3

2(R2) and d ∈ M3×2, and we recall that QAW (h, d) is the
A -quasiconvexification of W (·, ·) introduced in (5.36).

Remark 5.11. If W does not depend on x3, then

W (h, d) = QAW (h, d) for every h ∈ E3
2(R2), d ∈M3×2.
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As a consequence, it is possible to extend the results proved in the gradient case in [50] and [51] and recover
for second order derivatives, in the quadratic case, the result proved in [17].

Indeed, by (5.5) and (5.36)

W (h, d) ≥ inf
φ

inf
λ>0

{1
2

∫ 1

−1

∫
Q′
W (h+D2

pφ, d+ λDpφ,3)dxpdx3 : φ ∈W 2,p(Q′×(−1, 1),R3),

φ = 0 on ∂Q′×(−1, 1)
}

=
1
2

∫ 1

−1

QAW (h, d)dx3 = QAW (h, d),

thus W (h, d) ≥ QAW (h, d). It remains to prove the opposite inequality. From (5.37) and the measurability
selection criterion (cf. Theorem 1.2 p. 236 [37]), one can find functions φη, ψη, ξη in W 2,∞

0 (Q′,R3) such that

QAW (h, d) + η ≥
∫

Q′
W (h+D2

pφ
η, d+Dpψ

η, ξη)dxp.

Extend φη, ψη, ξη Q′-periodically to R2 and set

φη
n(xp, x3) :=

1
n2
φη(nxp) +

1
n3
ψη(nxp)x3 +

1
n4
xt

3ξ
η(nxp)x3.

Thus φη
n ∈W 2,p(Q′×(−1, 1),R3) with φη

n = 0 on ∂Q′×(−1, 1), and so

W (h, d) ≤ 1
2

lim inf
n→+∞

∫
Q′×(−1,1)

W (h+D2
pφ

η
n, d+ n2Dpφ

η
n,3, n

4φη
n,3,3)dxpdx3

=
1
2

lim inf
n→+∞

∫
Q′×(−1,1)

W

(
h+D2

pφ
η(nxp) +

1
n
D2

pψ
η(nxp) · x3 +

1
2n2

xt
3ξ

η(nxp)x3,

d+Dpψ
η(nxp) +

1
n2
ξη(nxp)x3, ξ

η(nxp)
)
dxpdx3

≤ 1
2

lim inf
n→+∞

∫
Q′×(−1,1)

W
(
h+D2

pφ
η(nxp), d+Dpψ

η(nxp), ξη(nxp)
)
dxpdx3,

where the uniform continuity of W has been used to derive the last inequality. Next observe that W (h +
D2

pφ
η(·), d+Dpψ

η(·), ξη(·)) is a periodic function in L∞(R2), thus it weakly-* converges to its average and
we obtain

W (h, d) ≤
∫

Q′
W (h+D2

pφ
η, d+Dpψ

η, ξη)dxpdx3 ≤ QAW (h, d) + η,

and, to conclude, it suffices to let η converge to 0.

5.3 Periodic case

In this section we suppose that W (xp, x3,H) is a Carathéodory function from Q′×(−1, 1)×E3
2(R3) into R

satisfying
β′|H|p ≤W (xp, x3,H) ≤ β(1 + |H|p) (5.46)

with 1 < p <∞, β′, β > 0. W is extended by Q′ periodicity to R2×(−1, 1)×E3
2(R3), thus we set

Wε(xp, x3,H) := W
(xp

ε
, x3,H

)
.

Let f be a continuous function from Q′ into [0, 1], extended Q′- periodically to R2 , with 0 < γ ≤ min f and
we set

fε(xp) := f
(xp

ε

)
.

Remark 5.12. One can easily verify that the function Whom defined by (5.7), satisfies the following relation

Whom(h, d) = inf
t>0

V (t),

where V (·) introduced in (5.8) Further, in the definition (5.8) Dirichlet boundary conditions on the test
functions can be replaced by periodic boundary conditions.
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Proof of Theorem 5.3. Let {ε} be a sequence ↘ 0. Theorem 5.1 guarantees the existence of a subsequence
{εR} of {ε} and of a Carathéodory function W{εR} such that

J{εR}(u, b, A) =
∫

A

W{εR}(D
2u,Db)dxp.

In order to show the independence of W{εR} from xp, we fix (h, d) ∈ E3
2(R2)×M3×2 and consider x0, y0

Lebesgue points in ω for W{εR}(·, h, d), so that

W{εR}(x0, h, d) = lim
δ→0

1
δ2

∫
Q′(x0,δ)

W{εR}(xp, h, d)dxp= lim
δ→0

1
δ2
J{εR}

(
1
2
xt

phxp, dxp, Q
′(x0, δ)

)
,

W{εR}(y0, h, d) = lim
δ→0

1
δ2

∫
Q′(y0,δ)

W{εR}(xp, h, d)dxp= lim
δ→0

1
δ2
J{εR}

(
1
2
xt

phxp, dxp, Q
′(y0, δ)

)
.

(5.47)

According to Lemma 5.6, there exists a sequence {γδ
εR} such that γδ

εR = 0 on {(xp, x3) : |x3| < f
( xp

εR

)
, xp ∈

∂Q′(x0, δ)}, 
γδ

εRχQ′(x0,δ)εR
→ 0 in Lp(Ω,R3),

Dγδ
εRχQ′(x0,δ)εR

→ 0 in Lp(Ω,R3),
1

εR
γδ

εR,3χQ′(x0,δ)εR
→ 0 in Lp(Ω,R3),

and

J{εR}

(
1
2
xt

phxp, dxp, Q
′(x0, δ)

)
= lim

εR→0
JεR

(
1
2
xt

phxp + εRx3d · xp + γδ
εR , Q

′(x0, δ)
)
. (5.48)

where, as usual Q′(x0, δ)εR :=
{
(xp, x3) : xp ∈ Q′(x0, δ), |x3| < f

( xp

εR

)}
. Next we can define the vector

τεR ∈ εRZn as

(τεR)i := εR
∣∣∣∣[ (y0 − x0)i

εR

]∣∣∣∣ , for i = 1, . . . , N.

Clearly τεR → y0 − x0 as εR → 0. Consider

φδ
εR(xp, x3) := γδ

εR(xp − τεR , x3)

where γδ
εR has been extended by 0 to [R2 −Q′(x0, δ)]εR , and where

[R2 −Q′(x0, δ)]εR =
{

(xp, x3) : xp ∈ [R2 −Q′(x0, δ)], |x3| ≤ f
( xp

εR

)}
.

Let r > 1 and take εR small enough to guarantee

Q′(y0 − τeR , δ) ⊂ Q′(x0, rδ). (5.49)

Since 
φδ

εRχQ′(y0,δ)εR
→ 0 in Lp(Ω,R3),

Dφδ
εRχQ′(y0,δ)εR

→ 0 in Lp(Ω,R3)
1

εR
φδ

εR,3χQ′(y0,δ)εR
→ 0 in Lp(Ω,R3),

we have

J{εR}

(
1
2
xt

phxp, dxp, Q
′(y0, δ)

)
≤

lim inf
εR→0

∫
Q′(y0,δ)εR

W

(
xp

εR
, x3, h+D2

pφ
δ
εR , d+

1
εR

Dpφ
δ
εR,3,

1

εR
2φ

δ
εR,3,3

)
dxpdx3

≤ lim inf
εR→0

∫
Q′(y0−τεR ,δ)εR

W

(
xp + τεR

εR
, x3, h+D2

pφ
δ
εR(xp + τεR , x3), d+

1
εR

Dpφ
δ
εR,3(xp + τεR , x3),

1

εR
2φ

δ
εR,3,3(xp + τεR , x3)

)
dxpdx3

≤ lim inf
εR→0

∫
Q′(x0,rδ)εR

W

(
xp

εR
, h+D2

pγ
δ
εR(xp, x3), d+

1
εR

Dpγ
δ
εR,3(xp, x3),

1

εR
2 γ

δ
εR,3,3

)
dxpdx3

≤ J{εR}

(
1
2
xt

phxp, d · xp, Q
′(x0, δ)

)
+ 2β(1 + |h|p + |d|p)L2(Q′(x0, rδ)−Q′(x0, δ)),
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where it has been used (5.49) and (5.48) and the periodicity of W (·, x3). Letting r → 1 we obtain

J{εR}

(
1
2
xt

phxp, d · xp, Q
′(y0, δ)

)
≤ J{εR}

(
1
2
xt

phxp, d · xp, Q
′(x0, δ)

)
,

and the reverse inequality can be shown in a similar way. Hence, in view of (5.47), we have

W{εR}(y0, h, d) = W{εR}(x0, h, d) =: W{εR}(h, d).

It remains to identify W{εR}(h, d). Without loss of generality, we assume that 0 ∈ ω and Q′ ⊂ ω, by virtue
of Lemma 5.6, there exists a sequence {ψεR}, such that ψεR = 0 on {(xp, x3) : |x3| < f

( xp

εR

)
, xp ∈ ∂Q′},

ψεRχQ′
εR
→ 0 in Lp(Ω,R3),

DψεRχQ′
εR
→ 0 in Lp(Ω,R3),

1
εR
ψεR,3χQ′

εR
→ 0 in Lp(Ω,R3),

and

W{εR}(h, d) = JεR

(
1
2
xt

phxp, d · xp, Q
′
)

= lim
εR→0

JεR

(
1
2
xt

phxp + εRx3d · xp + ψεR , Q
′
)
.

Define
φεR(xp, x3) :=

1

εR
2ψεR(εRxp, x3).

Then φεR ∈ W 2,p([(0, 1
εR

)2]f ,R3) and it agrees with 0 as soon as xp ∈ ∂
(
0, 1

εR

)2, thus it is admissible as
test function for V

(
1

εR

)
, and we have

Whom(h, d) ≤

lim sup
εR→0

V

(
1
εR

)
≤lim sup

εR→0

εR
2
∫

[
(0, 1

εR )2
]f
W
(
xp, x3, h+D2

pφεR , d+DpφεR,3, φεR,3,3

)
dxpdx3

= lim sup
εR→0

∫
Q′

εR

W

(
xp

εR
, x3, h+D2

pψεR , d+
1
εR

DψεR ,
1

εR
2ψεR,3,3

)
dxpdx3= W{εR}(h, d).

(5.50)

Conversely, one can consider λn ↗ ∞ such that V (λn) → lim inft↗∞ V (t). For each n, take φn ∈
W 2,p({(0, λn)2×(−1, 1) : |x3| < f(xp)},R3) with φn = 0 if xp ∈ ∂(0, λn)2 and such that

V (λn) +
1
λ3

n

≥ 1
λn

2

∫
[(0,λn)2]f

W (xp, x3, h+D2
pφn, d+Dpφn,3, φn,3,3)dxpdx3. (5.51)

Set ψn
εR := εR

2
φn

( xp

εR
, x3

)
, where φn has been laterally extended by zero to ((|[λn +1]|)2)f , and then to the

whole of R2 by (|[λn + 1]|)2 -periodicity. Then, since ψn
εR → 0 as εR → 0,

J{εR}

(
1
2
xt

phxp, dxp, Q
′
)
≤ lim inf

εR→0
JεR

(
1
2
xt

phxp + εRx3d · xp + ψn
εR , Q

′
)

= lim inf
εR→0

∫
Q′

εR

W

(
xp

εR
, x3, h+D2

pψ
n
εR , d+

1
εR

Dpψ
n
εR,3,

1

εR
2ψ

n
εR,3,3

)
dxpdx3

= lim inf
εR→0

∫
Q′

∫ f( xp

εR )

−f( xp

εR )
W
( xp

εR
, x3, h+D2

pφn

( xp

εR
, x3

)
, d+Dpφn,3

( xp

εR
, x3

)
, φn,3,3

( xp

εR
, x3

))
dxpdx3

=
1

(|[λn]|+ 1)2

∫
(0,λn)2

[∫ f(xp)

−f(xp)

W (xp, x3, h+D2
pφn(xp, x3), d+Dpφn,3(xp, x3), φn,3,3(xp, x3))dx3

]
dxp

+
1

(|[λn]|+ 1)2

∫
[(0,|[λn]|+1)\(0,λn)2]f

W (xp, x3, h, d, 0)dxpdx3 ≤
λ2

n

(|[λn]|+ 1)2

(
V (λn) +

1
λ3

n

)
+ o

(
1
λn

)
,

where it has been used (5.51) as well as the (|[λn]|+ 1)2 periodicity of∫ f(·)

f(·)
W (·, x3, h+D2

pφn(·, x3), d+Dpφn,3(·, x3), φn,3,3(·, x3))dx3.
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So, letting n tend to ∞,

J{εR}

(
1
2
xt

phxp, d · xp, Q
′
)
≤ lim inf

t→∞
V (t),

i.e.
W{εR}(h, d) ≤ lim inf

t→∞
V (t). (5.52)

From (5.50) and (5.52), we get

lim inf
t↗∞

V (t) ≤ lim sup
εR→0

V

(
1
εR

)
≤W{εR}(h, d) ≤ lim inf

t↗∞
V (t),

which proves the desired result.
The independence of the adopted arguments on the subsequence {εR} concludes the proof.
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