next up previous contents
Next: Structured motions Up: Structured Motions Previous: Classical motions

Simple motions

Let a subset $\kappa ^{(4)}$of $\mathcal{A}\times (0,T)$ and $\chi :(%
\mathcal{A}\times (0,T))\backslash \kappa ^{(4)}\rightarrow \mathcal{E}$ be given. We call the pair $(\kappa ^{(4)},\chi )$ a simple motion of the piecewise fit region $\mathcal{A}$ during the time interval (0,T) if the pair $(\kappa ^{(4)},\mathsf{t}_\chi )$, with $\mathsf{t}_\chi $ the trajectory mapping defined in (6.6), is a ``space-time '' simple deformation, i.e., if $(\kappa ^{(4)},\mathsf{t}_\chi )\in $Sid $(%
\mathcal{A}\times (0,T))$.

Example (``blinking motion''): Let $m\in \left\{ 1,2,3,\cdots
\right\} $, $e\in \mathcal{V}$, $t\in (0,1)$, and let $\lfloor (mt)$ denote the greatest integer$\ $less than or equal to mt. We define

 
$\displaystyle \chi _m(x,t)$ : $\displaystyle =x+\frac{\lfloor (mt)}me \ {\rm for }\ (x,t)\in (\mathcal{A%
}\times (0,1))\backslash \kappa _m^{(4)}$  
$\displaystyle \kappa _m^{(4)}$ : $\displaystyle =\left\{ (x,\frac km)\,\mid \,x\in \mathcal{A},\,\,k\in
\left\{ 1,2,\cdots ,m-1\right\} \right\} .$ (8)

In this simple motion, the points of the region $\mathcal{A}$ do not move during the time interval $(0,\frac 1m)$, but they suddenly all move at time $%
\frac 1m$ to gain a displacement $\frac 1me$. The points again remain static during the interval $(\frac 1m,\frac 2m)$ and suddenly displace at time $%
\frac 2m$, again by amount $\frac 1me$, and so on. Thus, if one happened to blink at each of the times $\frac 1m,\frac 2m,\cdots ,\frac{m-1}m,$ one would not observe any motion. Nevertheless, at the end of the time interval <tex2htmlcommentmark> (0,1), the region would have displaced by an amount $\frac{m-1}me.$ Note that we have

\begin{displaymath}\nabla ^{(4)}\mathsf{t}_{\chi _m}(x,t)=\left[
\begin{array}{cc}
I & 0 \\
0 & 1
\end{array}\right] =:I^{(4)}
\end{displaymath}

for all $(x,t)\in (\mathcal{A}\times (0,1))\backslash \kappa _m^{(4)}$; this relation reflects the fact that in this example movement only occurs at a finite set of times and distances between points in the body never change.

We write Sim $(\mathcal{A}\times (0,T))$ for the collection of simple motions $(\kappa ^{(4)},\chi )$ of $\mathcal{A}$ during (0,T).


next up previous contents
Next: Structured motions Up: Structured Motions Previous: Classical motions
Nancy J Watson
1999-09-30