K-QUASICONVEXITY REDUCES TO QUASICONVEXITY

F. CAGNETTI

Abstract. The relation between quasiconvexity and k-quasiconvexity, k > 2, is
investigated. It is shown that every smooth strictly k-quasiconvex integrand with
p-growth at infinity, p > 1, is the restriction to k-th order symmetric tensors of
a quasiconvex function with the same growth. When the smoothness condition is
dropped, it is possible to prove an approximation result. As a consequence, lower
semicontinuity results for k-th order variational problems are deduced as corollaries
of well-known first order theorems. This generalizes a previous work by Dal Maso,
Fonseca, Leoni and Morini, in which the case k = 2 was treated.
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1. INTRODUCTION

We consider higher order variational problems, in which the energy functional has the expression
u»—>/f(z,u,Vu,...,Vku)dx, (1.1)
Q

where Q@ C RY is open and bounded, N,k > 2 are integer, and f is a scalar function satisfying
suitable growth conditions. Although our treatment can be extended to the vectorial case, to
keep the formulation as simple as possible we will treat the case of scalar functions u : 2 — R.
Functionals of this type appear in the study of elastic materials of grade k (see [23]), in the
theory of second order structured deformations (see [21]), in the Blake-Zisserman model for image
segmentation in computer vision (see [5]), in gradient theories of phase transitions within elasticity
regimes (see [7], [15], [20]), and in the description of equilibria of micromagnetic materials (see
[9], [6], [20], [22]). In order to study lower semicontinuity of functionals of this type, Meyers
introduced in [18] the notion of k-quasiconvexity (see also [3] and [13]), extending the definition
of quasiconvexity given by Morrey in [19].
k times
—

Let B, cRY x ... xRN = RN" be the set of k-th order tensors of RV that are symmetric with
respect to all permutations of indices. In particular, Fs coincides with the set of the symmetric
N x N matrices. A function f € L} (E}) is said to be k-quasiconvez if

loc
/Q [F(A+V56) — F(A)] dz >0

for every A € Ej and every ¢ € C*(Q), where @ = (0,1)" is the open unit cube in RY and
Ck(Q) is the set of functions of class C* with compact support in Q. We recall that a function

FelL (RN k) is said to be 1-quasiconvex (or simply quasiconvex) if

/ [F(A+ V) — F(A)]dz >0
Q

for every A € RN" and every ¢ € CHQ;RN o ). In [18], the author proved that k-quasiconvexity
is a necessary and sufficient condition for sequential lower semicontinuity of (1.1) with respect
to weak convergence in the Sobolev space W*P(Q), under appropriate p-growth and continuity
conditions on the integrand f. This result has been later extended to the case where f is a
Carathéodory integrand by Fusco (see [13]) and by Guidorzi and Poggiolini (see [14]), for p = 1
and p > 1 respectively.
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The aim of this paper is to investigate the relation between k-quasiconvexity and quasiconvexity.
When k& = 2 this problem has been studied by Dal Maso, Fonseca, Leoni and Morini. In [8],
they prove that every strictly 2-quasiconvex function (see condition (a) below) of class C'!, whose
gradient is locally Lipschitz continuous, is the restriction to symmetric matrices of a 1-quasiconvex
function. We extend here this result to the case k > 2.

Theorem 1.1. Letk € N, k > 2. Let f € CY(Ey), and let 1 < p < oo, u >0, L >0, v > 0.
Assume that

(a) (strict k-quasiconvezity)
| a5~ f)] doz v [ 2+ AP +1962) 7 [90do
Q Q

for every A € Ey and every ¢ € C*(Q);
(b) (Lipschitz condition for gradients)

IVf(A+B) = V(A < L(p*+[AP +|B) > |B] (1.2)
for every A, B € E},.

Then there exists a 1—quasiconvex function F : RN" R such that
F(A) = f(A) VAeE, (1.3)
|F(A)| < cr(1+ |APP) VAeRN, (1.4)
for a suitable constant cy depending on f.

Notice that the above conditions (a) and (b) together imply L > v (see Proposition 2.8). When
p > 2, we also give an explicit expression for the function F' (see formula (3.9)). The proof of
Theorem 1.1 (see Section 3) is obtained by iterating k& — 1 times a refined version of [8, Theorem
1] (see Lemma 3.1 for the case 1 < p < 2 and Lemma 3.2 for the case p > 2).

It is not clear whether Theorem 1.1 still holds true by weakening condition (1.2). However, if we
substitute (1.2) with the milder (see Proposition 2.9) condition (1.5), we obtain an approximation
result for the function f. More precisely, we show that a strictly k-quasiconvex function with
p-growth at infinity can be obtained as pointwise limit of a sequence of 1-quasiconvex functions
with the same growth (see [8, Theorem 2] for the case k = 2).

Theorem 1.2. LetkeN, k>2. Letl1<p<oo, u>0,v>0, M >0, andlet f: Ex, — R be a
measurable function such that
(a) (strict k-quasiconvezity)

p—2

/ [F(A+V*) — f(A)] de > v / (122 + AP + [9%62) T [V o de
Q Q

for every A € Ey and every ¢ € C*(Q);
(b) (p-growth condition)

[f(A)] < M(1+]AP) (1.5)
for every A € E.

Then there exists an increasing sequence { F;}ien of 1—quasiconvex functions F : RN R, such
that

lim_Fy(4) = f(4) VA€ Ey, (1.6)
IFi(A)] < M;(1+|A]P) VAeRN" VieN, (1.7)

where {M;}ien s a sequence of positive constants depending only on i and on the constants
D, i, v, M, but not on the specific function f.
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To show this, we use the property that every k-quasiconvex function with p-growth is locally
Lipschitz. We give here a proof of this fact (see Proposition 2.7), that was already known in
the cases k = 1 (see [17]) and k = 2 (see [14]). Thanks to Theorem 1.2, the study of lower
semicontinuity of (1.1) reduces to a first order problem. Thus, when f is a k-quasiconvex normal
integrand (see assumption (a) below) we can prove the following result (see [8, Theorem 3] for the
case k = 2). Here we use the notation

El = RN, E[k—l] =R x El X ... X Ekfl,

and
SBH™(Q) := {u e WF21(Q) : VFlu € SBV(Q; Ej,_1)}.
Theorem 1.3. Let k € N,k > 2. Let Q C RN be a bounded open set and let
f:Qx E[k—l] X B — [0, +OO)
be a measurable function such that:
(a) f(z,-,-) is lower semicontinuous on Ey,_y) X Ey for LN -a.e. x€Q;
(b) f(z,v,-) is k-quasiconvexr on Ey for LN -a.e. x € Q and every v € Epj_y);
(c) there exist a locally bounded function a : 2 x Ej,_1) — [0,+00) and a constant p > 1 such
that
0< fz,v,A) < alz,v)(1 +|A])
for LN -a.e. x € Q and every (v,A) € Ej_1) X Ej.
Then
f(z,u,Vu, ..., VFu)de < ljminf/ flz,u;, Vu,, ..., Vkuj) dx
Q Q

Jj—+oo

for every w € SBH™® (Q) and any sequence {u;} € SBH®)(Q) converging to u in W*=11(Q) and
such that

sup (117450 + [ O(IV* ]l dHY 1) < oo,
J S(VEk—1u;)

where 6 : [0,+00) — [0,+00) is a concave, nondecreasing function such that

o(t
lim Q = +o00,
t—0t+ ¢
V¥u is the density of the absolutely continuous part of D (Vk_lu) with respect to the N -dimensional

Lebesgue measure, and [V*~1u;] denotes the jump of V¥~1u; on the jump set S(VF~1u;).

This extends to the k-th order setting a lower semicontinuity property of 1-quasiconvex functions
in SBV(Q;R%) due to Ambrosio (see [2]) and later generalized by Kristensen (see [16]), and a
lower semicontinuity theorem for 2-quasiconvex integrands in SBH (2; R?) proven by Dal Maso,
Fonseca, Leoni and Morini (see [8]). As a corollary, we recover [14, Theorem 7.1].

Corollary 1.4. Let Q, f, k and p be as in Theorem 1.3. Then

f(z,u,Vu, ..., V*u)de < liminf flz,u;, Vu,, ..., Vkuj)dx
Q

j=oo o
for every u € W*P(Q) and any sequence {u;} C W*P(Q) weakly converging to u in WP ().

We remark that in [14] Guidorzi and Poggiolini require the function f to be locally Lipschitz
continuous with respect to the last variable. As already mentioned, we do not need this hypothesis,
since we prove here that this is a direct consequence of k-quasiconvexity and p-growth.

Finally, we mention that it remains still an open problem to prove the analogue of Theorem 1.3
for the case p = 1, even when k = 2, unless very special functions f are considered (see [11]). This
will probably require new and original ideas. Indeed, we think that for p = 1 the fundamental
Korn-type inequalities (see Lemma 2.13 and Lemma 2.14) used in the proofs of Theorem 1.1 and
Theorem 1.2 fail, although we do not have any explicit counterexample.

The plan of the paper is as follows. In Section 2 we give the setting of the problem. Section
3 contains the proof of Theorem 1.1, while Theorem 1.2 and Theorem 1.3 are proved in Section
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4. Finally, some auxiliary results that are extensively used in the paper can be found in the
Appendix.

2. SETTING

Throughout the paper N and k are fixed integer numbers, with N, k > 2. For this reason, we will
often omit to indicate the explicit dependence on N and k. Also, Q C RY is an open bounded
set, and @ = (0,1)"V denotes the open unit cube of RY. Since N and k are fixed,

Definition 2.1. Let A € RN". We say that A is a k-th order tensor in RY.

The components of a tensor A € RY * will be denoted with the symbols
Ail g i1,...,ig =1,...,N.

Moreover, the scalar product of two tensors 4, B € R " s given by

Accordingly, the norm of a k-th order tensor A € R " s

[

N

|A] = Z |Ai1..,ik|2

D1yt =1

Let now s € {1,...,k — 1} be fixed. For any ¢ € CS(Q;RNFS), we can regard the s-th order
gradient V*¢ of ¢ as a k-th order tensor in RY, by setting

0°Ciy i
V)i 1= 1,y i =1...,N.
(VEQin..in Oxg,_ ., .. .0z, “ U

Notice also that V*( is symmetric with respect to every permutation of the last s indices. To take
account of this property, we introduce some additional notation.

Definition 2.2. Let 4 € RV be a k-th order tensor in RN, and let j,r € {1,...,k}. The
(j,7)-transpose of A is the element AT’ of RMN" such that (assuming, for instance, j < r)
(AT )ittt = Advigiy1ivigpt oo igings.nin iyt =1,..., N
We then set
E,ivkis = {AERNk cA=AT foreveryr,j=k—s+1,...,k}.

In particular, we will make the identification E,?ﬂﬂfl = RN". In this way, for every ¢ € C* (Q; RNFS)
we have

s

vice BN
To include the case s = k, we define
B} :={Ac RN . A= AT for every r,j =1,...,k}.
Very often we will simply write Ej, instead of .. Hence, we have that
VF¢ € By,
for every ¢ € C*(Q), using the notation
ok

Ve = — i1, yig=1...,N.
( ¢) Lotk axil SN axzk " U

We are now going to define the symmetric part of an element of EY S
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Definition 2.3. The symmetrization operator Ssy1 : E,ivkﬂ — E,évkikl is defined by

k Tk—s Tk—s
k—s A+A k75+1+...+Ak k—s
Sep1 A= > AT = AR
—f—

1
s—l——lr S S+ 1 for every A € I},

We will say that Ss11 A4 is the symmetric part of A.

The subscript s+ 1 denotes the fact that the tensor Ssy1 A is symmetric in the last s+ 1 entries.

Definition 2.4. Accordingly, we define the antisymmetric part of a tensor A € E,iv "7 as the
tensor Ag11A € E,éVH given by

SAf(AT::sSH +...+AT:75)
st1A:=A—8;11A= .
Ast1 o1 s+1

We will use the notation

Nk=
Asi1E,

s

={Asy1A: A€ E,ivkis} C E,ﬁvkis.

Next proposition generalizes the well-known fact that symmetric and antisymmetric matrices
define orthogonal spaces. For the convenience of the reader, the proof is in the Appendix.

Proposition 2.5. There holds

s

A-B=0 for every A € E‘,i\’k;s*1 and for every B € As+1E,in7 :
We give now the definition of (higher order) quasiconvexity.

Definition 2.6. Let j € {1,...,k}. A function f € L} (E,vakfj) is said to be j-quasiconvex if

KﬁﬂA+W@—fMﬂM20

for every A € E,ikaj and for every ¢ € CI(Q;RN"™).

It is very well-known that every convex function is locally Lipschitz. This property still holds true
for j-quasiconvex functions with p-growth. We give here a proof of this fact, that is in general
explicitly stated only for the case j = 2 (see [14]).

Proposition 2.7. Let j € {2,...,k}, and let f € Llloc(EéVkij) be j-quasiconvexr. Assume, in
addition, that
j

F(A) < MA+[A]P)  for cvery Ac EY (2.1)
for some M >0 and 1 < p < co. Then, there exists a constant L = L(N, M, k,j,p) > 0 such that

|f(A+B) — f(A)| < L1+ AP~ +|BPY) B for every A, B € BN

Proof. Let us set
J times

J J

—_— - - -
X::{b®w®...®w:b€RNk ,wGSN_l}CE,in , m:m(N,k,j)::dimE,]cvk .

Here, for every b € RV and w € SV the symbol b @ w ® ... ® w denotes the element of RN
such that

(b®w®®w)“lk = bi1~~~ik—jwik—j+1"'wik’ i1,...,0k=1...,N.

)

It can be proven that the orthogonal complement of X in E¥ s zero, so that

span X = E,ikaj.
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Let now {wi,...,wn}t C X be a (not necessarily orthonormal) basis for E,ikaj, with |w;| =1 for
i=1,...,m, and let ¢q,..., ¢, € R be such that B = 2111 ciwi. We have
m m—1
If(A+B) — f(A)] = ‘f(A + ZCM) - f(A)‘ < ‘f(A+ Zciwi) - f(A +3 ciwi)
i=1 i=1

[ fA+ awn) — f(A)].

+ ’f(AJr Z ciwi) ff(AJr iciwi) +
i=1 i=1

It will be enough to prove that there exists C' = C'(N, M, k, 7, p) such that for every I =1,...,m

‘f(clwl +A+ lzl Ciwi) - f(A + lzl Ciwi)

where we set ¢p := 0 and wp := 0. Then, the conclusion will follow by deﬁmng L:=mC.
Thanks to [12, Proposition 3.4 and Example 3.10 (d)], for every R € EN " and every w € X
the function

<c(i+]ar + BB, (22)

t— f(tw+R)

is convex in R . Hence, defining G(t) := f(t qu+A+ ZZ 0 clwl) and using (2.1), for every ¢t > 1
we have

= G(1) - G() <

-1 -1
‘f(clwl +A+ Z Ciwi) - f(A + ; Ciwi)

f tclwz—i—A—i—ZZ Oclwl) — (A—I—ZZ Oclwl)
B t
(2+

(2 + 2P 1P| |P + (2P 4 1)‘A + Z Ciwi
1=0

/

A
~| &

tow; + A+ ZCZM

‘A + Z CiWw;
)

(2+ 227 @Bl + 20712+ DAP + 22720+ mE | BP),

)

IN

~|E +|%

where we set
m

1B = (D)™

=0

N[

Let us now choose
1
(JAP~ +[IB]P~Y)

t= > 1.
1B
Noticing that
_ - - |A| 1BI”
B = (AP + (IBIPHBI, <lAp=HBlL, - = < IBIP,
and using the fact that || - || and | - | are equivalent norms, we obtain (2.2). O

Next proposition shows that conditions (a) and (b) of Theorem 1.1 necessarily imply L > v.

Proposition 2.8. Let f € CY(Ey) satisfy conditions (a) and (b) of Theorem 1.1 for some con-
stants >0, L,v >0 and 1 <p <oco. Then L > v.

Proof. Let A € Ey, ¢ € C¥(Q), and let x € Q. By the Mean Value Theorem,
F(A+V () = f(A) = [V(A+tV*(x)) = VI(A)] - VFé(z) + Vf(A) - VEe(x),
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for some t € [0, 1]. Integrating last equality, since ¢ € C*(Q), we get

/Q [F(A+ VR6(2)) — F(A)] dz = /Q (VF(A + £ VFe() — VI(A)] - Vho(x) da.

Hence, using property (b)
[ [ TR — ] do <L [ (2 4 AP + £ [T56@)) T tVFo(a) Pda
Q Q

p=2

<L / (12 4+ JA]? + [V*o(@)P) T [VFé() P,
Q

p—2

since the function ¢t — (p? +|A[|* + 2 |V*¢|?) * t|V*@|? is increasing. Comparing last relation
and condition (a) we conclude that L > v. ]

We prove now that condition (1.2) is stronger than (1.5).

Proposition 2.9. Let j € {2,...,k}, let L >0, p>0,1<p < oo, and let f € Cl(E,]ckaj) be
such that

VF(A+B) = V(A < L (s + AP +|B]*) = |B| (2.3)
for every A, B € E,ikaj. Then, there exists a positive constant c¢, depending on f, such that
[F(A)] < ep(1+|AP) vaeEY .

Proof. Let C € EN"7\ {0} be fixed. Then, by the Mean Value Theorem for every A € EN"7 we
have

f(A) = F(O)+[VFA(C+H(A-C)) = VI(O) - (A= C) + VF(C) - (A= 0),
for some t € [0,1]. Thanks to (2.3)

[FA)] < IO+ L (1 +|C2+ 2[4 = C12) 7 A= CP2 + |VF(C)[|A-C]|

p—2

SIFO|+L (12 +|CP +]4 = CP) * [A=CP+|VF(O)lA-Cl, (2.4)

p2
since the function ¢ — (p? +|C|? +t?|A—CJ?) * t|A — C|? is increasing. Concerning the last
term, using Young’s inequality we have

VSO LA=CP VOl 2!

VFIC)IA-C| < + AP +|CPP), 2.5
VO | o , o p(||||) (25)
where p" = -E7. Since the function r — (w? +1C)2 +7) T s increasing in R, using inequality
|A — C? < 2|47 +2|C)?,
we have
p=2 p=2
(4 + 1O + 14— CF)'T |4 - O <2 (42 + 31C12 + 214P) T (4] +|CP)

< 2max{1,|CI2} (42 +3|C12 + 2]A2) = (1 +|A4])

<2K"2" max{1,|C|2} (1+|A])%,
where

% min{u? + 3|C|%,2} ifl<p<2,
a max{p? + 3|C|%,2} ifp > 2.
Thus, since
(L+14F)* <G (1+14P),
for some positive constant C}, depending only on p, we have

p—

L2+ |CP+|A-C?) 7 |A-C]P <2LC, K% max{1,|C]?} (1 +|A]P).  (2.6)
Combining (2.4), (2.5) and (2.6) the conclusion follows. d



8 F. CAGNETTI

We now state some important results concerning periodic functions.

Definition 2.10. A function w : RY — RN""" is said to be Q-periodic if w(z + ¢;) = w(x) for
a.e. v € RN and every i = 1,..., N, where {e1,...,ex} is the canonical basis of RV.

Let d,r € N. We will denote with C22, (RY; R?) the space of Q-periodic functions of C*°(RY; R?).

per
Moreover, we will use the notation C%(Q;R?) for the space of functions of class C” from Q to R?
with compact support in Q. Next lemma will be extensively used in the paper.

Lemma 2.11 (Helmholtz Decomposition). For every ¢ € ngr(Q;RNkfs) there exist two func-
tions ¢ € ngT(Q;RNkfsil) and P € Cpe, (Q; RN"™"Y such, that

iy ipg_s — (v¢)i1»»»ik—s + T/Jil_,,i,PS, for i1,...,ip_s=1,..., N,

with
N
OViy iy ivivir i
Z Vi iyt =t =0 for every b € {1,...,k — s}. (2.7)
g1 Qxib

Proof. By applying the usual Helmholtz Decomposition Lemma (see [8, Lemma 1]) to each com-
ponent ¢;, .4, _. of the function ¢, the lemma follows. O

Before stating next lemma, we need the following definition.
Definition 2.12. The s-divergence is the operator s-div : C*(Q; RNk) — C(Q;RN""") defined by
0°Eiviy...ix

1 awik75+1 .. .8:cz-k

N

(s-div&)sy..ip_. = Z

e N

i1yeines =1,..., N,

for every & € C%(Q; RN k). The definition is analogous when ¢ is a Sobolev function.
We are now ready to state a fundamental Korn-type estimate.

Lemma 2.13. For every p > 1 there exists a constant v = v(N,p, s) > 1 such that
[1veurde < [ JAaveupds
Q Q

for every Q-periodic function 1 : RN — RN of class C™ satisfying condition (2.7).

Proof. Notice that, for every r =k —s+1,...,k, we have

i ° [(sz)TTkJ} = i 0 { PPiy i iy }
= 0x;, iizein £ Ox;,. |0,y ... 0xy 04y Oz, ... 0%,
- o l S aw] i
0oy - 0xy 0y, Oxi, ... 0%y, = dx;, :
Thus,
(s+1) [s-div (AS+1V5¢)]Z_1”%75
- > T e (e e
b trmin=1 TTiE—st1 o .0z, i1z,
N 5s S
B Sz‘m+;,¢k_1 iy, - O, Vi
= Z al'iks+?. 0z, [&ciki . k 8zik] =5 A0, iy

Th—st15m-r0k=1
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where with A® we denoted the s-th power of the Laplace operator. Hence,

s s+1 : s
A Q/Jil...ik,s = s [S—dlv (As.l,_lv 'l/])]

TR TR
The conclusion follows applying [1, Theorem 10.5 and following remark]. ([
We will also need the following generalization of Lemma 2.13.

Lemma 2.14. For every p > 1 there exists a constant 7 = 7(N,p,s) > 1 such that
p=2 p=2
[ (s 10w) T iweepds <7 [ (00 AT uR) T A vouPds
Q Q
for every constant i > 0 and every Q-periodic function ¢ : RN — RN of class C*° satisfying
condition (2.7).
Proof. The proof simply follows by adapting the proof of [8, Lemma 11] and using Lemma 2.13. O
We conclude this section giving some definitions of higher order BV spaces. We set
BH®(Q) : = {u e WF11(Q) : Du is a finite Radon measure }
={uec WFt1(Q): V*lu e BV(Q Ep 1)},
where DFu stands for the k-th order distributional gradient of u, and
SBH®(Q): = {ue BH®(Q): V* "1y € SBV(Q; Er_1)}
={ue Wk tL(Q): VF 1y e SBV(Q; Ex_1)} ¢ BH®(Q).
3. PROOF OF THEOREM 1.1

To prove Theorem 1.1 we will first show that, for every j = 2, ..., k, every strictly j-quasiconvex
function of class C'! can be extended to a strictly (j — 1)-quasiconvex function, provided we require
the gradient to be Lipschitz continuous. In the case 1 < p < 2, that we present below, we actually
have to consider a “perturbed” strict j-quasiconvexity.

Lemma 3.1. Let j € {2,...,k}, 1 <p<2,u>0, and let M) V) and e be positive constants.
Let fU) ¢ C* (E,]cvkﬂ) satisfy the following conditions:
(a) (strict j-quasiconvexity up to a perturbation)

/ {f(j)(A +Vig) — f(j)(A)} dz > —ch@(A)
Q
o [ (AP ) T (el
for every A € E,ivkij and every ¢ € CJ (Q;RNK‘?]V), where h() Eékaj — [0, 400);
(b) (Lipschitz condition for gradients)
VFO A+ B) = VO ()] < MO (2 + AP +|B]?) * |B]

k=i
for every A,B € EYN" .

Then there exists a function FU) € Cl(Egk7j+l), and a positive constant L) = LU) (p, u, M) p3) 5),
such that

(a’) (strict (j — 1)-quasiconvexity up to a perturbation)

, . . (9) _ p=2
[ [P - PO de 2 T [ (i AR 4 [9) T 9 e
Q Q

- E(/L2 + IA]-A|2) ]

for every A € Egk7j+l and every o € CI~H(Q;RN"7™);

—2
2

|A; AP — e hU)(S;A)
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(b’) (Lipschitz condition for gradients)
IVFO(A+ B) — VFOD(4)| < LY (42 + A2 +|B]) " |B|

for every A, B € E£k7j+l,'
(¢) (FYU) extends f9))

F(j)(A) - f(j)(A) VA e Elikaj-

Proof. Let 3 > 0 be a constant to be chosen at the end of the proof and define F() : E{c\[kfj+1 — R
as

FU(A) == fU)(S;4) + 5 [(M2 + |-AjA|2) " - MP} = f9(8;4) + Blg(A;A) — p],
where g is given by relation (5.2) with X = EN""""
Relation (c) is clearly satisfied. Let us show that condition (a’) holds true for a good choice of

B. Let ¢ € Cgr(Q;RNk7j+l). By Lemma 2.11 we can write
©=Vo+1h,

where ¢ € C5e,(Q; RN"7"") satisfies condition (2.7) with s = j — 1, and ¢ € C’g‘;r(Q;RNkfj). By
differentiating j — 1 times the previous relation we get

VTl =Vig+ Vi,
with VI, Vi~ly € O3 (Q ENTT), and V¢ € C22.(Q; BN ). We have

/ [FU)(A +Vitly) — FU) (A)} dz
Q
= / [fU)(sjA + VI + 8 VI ) — fUN(S; A+ V)| da
Q
+/ [f<j>(5jA+ Vig) — f<j>(sjA)] dx
Q

+8 /Q (A A + A V1) — (A A))de
=15+ 1+ Is.

Notice that Vf(j)(SjA) € E,ikaj. Then, thanks to Proposition 2.5 and using the fact that ¢ is
Q-periodic

/ VI0(S;A) - 8Vl do = / VFU(S;A) - VIl dr = 0.
Q Q
Hence

I = / /(S A+ 76+ 8V ) = [O(S; 4+ Vo) - VfD(S;4) - V7 0] de.
Q

Applying Lemma 5.6 with ¢ = v()) /2 there exists a positive constant ¢; = ¢, (v, p, M) > 0
such that

(4) ) p2
hz-5 / (n2 + 18,412 + [W76) * [V gf da
Q

701/ (u2+|Sjvj*1¢|2)7|sjvjflw|2dx
Q

L) p2

> (21542 4 [V6R) T Ve de
2 Jo

p—2
7701/ (u2+|AjVj711/1|2) ’ |AjV3711/1|2dx,
Q
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where 7 = 7(N,p,j — 1) is given by Lemma 2.14. The perturbed strict j-quasiconvexity of f)
gives

B [ (2415 an VigP) T VI du - h)(5,4),
so that
henst [ (2 ispar + VigR) T [VigP do — ch)(S;4)
TCI/Q (u2 + |AjVj711/)|2)%4|Ajvj711/)|2dﬂf-
We apply now Lemma 5.3 to the first integral of the last expression with 2 = p? + |S;A[%,

x = V¢, and y = VI~14). Recalling that V/¢ + V71 = Vi~ 1y we get

p—2
2

(4) ) ) )
Bl T [ (641847 + [V 6) T[99 do - eh(5,4)
Q

) . B2
-5 [ (s 19 ) T s

—Tcl/Q(u2+|Ajvj—1w|2)2|Ajvj—1¢|2dx. (3.1)

Using the fact that 1 < p < 2 and Lemma 2.14

@) , =
-5 (18R 9 ) T e
L) , B2
> = [ (i 19 R) T P de
Q
) 2 i—1 112 = i—1 12
> /Q (17 4 1A P ) 7 LA P (3.2)

Hence, collecting (3.1) and (3.2)

p—2
2

() ) ) )
Bl T [ (641847 + [V 6) 7[99 do - eh)(5,4)
Q

(@) ) b2 )
-7 (01 + V—) / (M2 + |Ajvj_11b|2) |Ajvj_1’t/1|2 dz
Q

p—2

j) ) ) )
> U5 [ (AP [ R) T VI da — chO)(S;4)
Q

(49) ) p22 )
-7 (01 + V—) / (M2 + |Ajvj_11b|2) |Ajvj_1’t/1|2 dx,
2 /) Jqg

where we used once again the fact that 1 < p < 2. Since Vg(A4;A) € be,inle and 1) is
Q-periodic,

/ Vg(A;A) - A VI~ de = / Vg(A;A) - VI"pdr =0,
Q Q
so that

Is = ﬂ/Q [9(A; A+ AV 1) — g(AjA) — V g(A;A) - A; V7] da.
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Let 0 < § < 1 to be chosen at the end of the proof. Thanks to Lemma 5.1

13zgep/Q(u2+|AjA|2+|Ajvj—1¢|2) S A VI ) de

p—2

zﬁepf—zp/Q(;ﬁ+|Ajvj—1¢|2)T|Ajvj—1¢|2dx

— 30,6 (12 + |4;A12) T 1A AP,

where in the second inequality we used Lemma 5.3 with X = E,iv o

y = A;Vi~19. Choosing 8 = ) > 0 and § = 6U) € (0,1) such that

, Bb=p, x = A;A and

L () o
BDG,(80) " > 7 (c1 + ”7) : 896,61 < e,

we obtain

p—2

() ) .
Il +12 +I3 Z VT/ (,U/Q + |A|2 + |v]7190|2) 2 |vj*1(p|2 dr
Q

— ehO)(S;4) — & (1 + |4;A12) T 1A AP,

so that (a’) holds. To check condition (b’), we observe that the function g satisfies the hypotheses
NF—it1

of Lemma 5.5. Then, for every A, B € Ej]

IVg(A+B) = Vg(A)] < G, (u* + AP +[B[*) = |B],

where Cj, is a positive constant depending only on p. Using last relation, (b), and the fact that
B9 depends on vU), 7 and ¢1, we conclude that (b’) holds for some positive constant LU) =
LO(p, u, MD v, j).

O

We pass now to the case p > 2.

Lemma 3.2. Letj € {2,....k},p>2, u>0, MU >0, v >0, and let 0, and ©, be given by
Lemma 5.1. Let fU) ¢ C* (E,ivkﬂ) satisfy the following conditions:

(a) (strict j-quasiconvezity)

p—

/ [f(j)(A + vqu) _ f(j)(A)} dx > u(j)/ (M2 + |A|2 + |vj¢|2)72 |vj¢|2dx
Q Q

for every A € E,évkij and every ¢ € CJ (Q;RNkij);
(b) (Lipschitz condition for gradients)

VFO(A+B) = VO (A)] < MO (4 + |4 +(B]) T |B

NF=I
for every A, B € Ej; .

Then there exists a function FU) € Cl(Egk7j+l), and a positive constant L) = LU (p, u, M) p3) | 5),
such that

(a’) (strict (j — 1)-quasiconvexity)

. . . .0 . =2
/ [FO(A+VI7lg) = FO(4)| dw > v 22 / (k2 + A2 + 197 102) 7 [V g de
Q 40, Jo

for every A € Egk7j+l and every o € CI~H(Q;RN"7™);
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(b’) (Lipschitz condition for gradients)

IVFO(A+B) = VFO(A) < LY (u? +|AP + |B]*) * |B]
k—j+1
for every A B E‘Eév ™
(¢) (FYU) extends f9))
F(j)(A) - f(j)(A) VA e E,ikaj.

Proof. Let X € (0, I/(j)/@p] and > 0 be two constants to be determined at the end of the proof.
We define FU) : E,ivkﬂH — R as

P
2

FO(A) 1= FOS;4) = A1 +IS;A12) "+ A(12 + 1S, AP + 5214,42)

Let g and gs be defined by (5.2) and (5.3) respectively, with X = EN' and Y = A,ENTT
Setting for every B € E,iVH
1(B) = f9(B) - 29(B),

we have

FO(A) = f7(S;A) + Aga(S;A, AjA).

Condition (c) is clear from the definition of (). In order to check (a’), let ¢ € Coer(@; IRNFHl).
By repeating the argument of the previous proof, we can write

ViTty =Vigp+ Vitly,
with V=1, VIl € Cpe(Qs BY ), and Vig € Cpe(Qi BY' ), where d € CR (Qi RN )

per
satisfies condition (2.7) with s = j — 1. Hence,

/ [F@(A +ViTlp) — FU) (A)} dz
Q
=/ [fij)(SjAJrSjVj_lw)— §j)(3jA+3jVj_1<P—SjVj_lw)} dx
Q
D (SA+Vig) — f7(S;4)] d
JFQ,\(J7L o) — [y (S;A) | da

+A/ [98(S;A+ S8,V o, AjA+ AV o) — gp(S; A, AjA)] da
Q

=1L+ 1+ I

Concerning the second integral, since by periodicity
/QVg(SjA) Vipdr =0,
using condition (a) and Lemma 5.1 we have
b= [ 164+ V70) ~ FSA]de A [ [5(5,4+ 979) — (8, 4)] do

= /Q [f(S;A+ V7)) — f(S;A)] da — )\/Q [9(S;A+VI¢) — g(S;A) + Vg(S;A) - VI¢| dx

p—

> (v - 20,) / (12 + IS AP + [VI6P) T [Vig]da > . (33)
Q

Let us pass to the first integral. Noticing that Vfij) (S;A) € E,ikaj, thanks to Proposition 2.5
and using the fact that v is Q-periodic,

/Vfij)(SjA)-SjVj‘lwdxz/ VI(S;A) - VI da = 0.
Q Q
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Hence,
L=- /Q 1084+ 8,9 o = 597 1) — 1S4+ 8,9 1)
—VFI(S;A) - 8V | da,
As observed in the previous proof the function g satisfies conditiorl/(Ev.GLand so by Lemma 5.5
condition (b) still holds for the function fy for a suitable constant M = M (p, M9, \) in place of

M), Thus, applying Lemma 5.6 with ¢ = A\, /2, there exists a positive constant o = o(p, M), \)
such that

0 , 22 ,
Il Z TP/Q (,LL2 + |SJA|2 + |Sjvj_1<,0|2) |Sjvj_1gﬁ|2 d:L'
p—2
- a—(/ﬁ - |3jA|2) ’ / |S; VI~ 12 do — a/ |S; VI P da.
Q Q
Thanks to Lemma 2.13 and using (3.3) we get
0 , = ,
Btz =58 [ (14 |S,AP 4 15,977 ) T 1S,V g da (3.4)
Q

—or (V2= D (i i5aR) T L e —oa i =) [ 149
Since ¢ is Q-periodic,
0= /Q Vgs(S;A, AjA) -Vl pdr
:/Q [V gs(S;A, AA) - S,V g + ¥, ga(S; A, A;A) - A,V L) da,
so that
Iy = A/Q [95(Sj A+ 8V o, LjA + AV ) — g5(S5 A, AjA)
— Vo gs(SjA, AjA) - SV T o =V, ga(SjA, AjA) - AV T ] da. (3.5)
We are now going to split I3 into two terms. We will use the first term to compensate the sum

I + I, and the remaining one to get the strict (j — 1)-quasiconvexity. Relation (5.5) of Lemma
5.2 gives

A0y

I3
3>
2 7 2

p—2
2 (141847 + 18,7 16R) T ISV g da
Q

+A9’”6 (u +1S; A|) /|A VIl da +A9P6 /IA VIT P da. (3.6)

If we choose = 39 > 0 so large that

My (B9)?

2 >o0v(N,2,5—1) and

using relations (3.4) and (3.6), we have

I
I1+12+I3Z§3-
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Let us estimate the last term. Without any loss of generality we can assume 3) > 1. Then,
recalling (3.5) and using inequality (5.4) of Lemma 5.2

/ [FU)(A + Vitlg) — ) (A)} de =1+ I+ 15
Q

A - | | o
P o (,U/2 + |SJA|2 + |Sjvj 1(,0|2 + (ﬁ(]))2|AJA|2 + (B(j))2|A]vj 1(,0|2)

Y

2
(18,977 1 4+ (89?4, V9 ) da

A0 p32
2 [ (1 1AP + [9R) T VI da
Q

Y

2
— (j)e_P 2 2 j—1,12 En j—1, 12
=v 1+ A+ [V g V7™ 0| da,
40, Q
where we chose
(@)
20,

One can show that F() satisfies condition (b’) as it was done in the proof of Lemma 3.1. g

We can now pass to the proof of Theorem 1.1.

Proof of Theorem 1.1.
Step 1. Case 1 < p < 2. To simplify the notation, for every B € RMN" we set
p_2 4
P(B) = (42 +1B1) 7 |B2, G(B) = [(ﬁ +1B12)" - up} .

Let € > 0 be fixed. We start the proof by applying Lemma 3.1 with j =k, v®*) = v, h(¥) = 0 and
FE(A) = f(A), for every A € Ej,.
Then, we apply again k — 2 times Lemma 3.1 with j =k — 1,k — 2,...,2 respectively, with

0 =2
v =
and .
f(])( ) (JJFl)(A), for every A € EN J,
while the functions h() : EN" ™" — [0, +00) will be chosen as
WD) = PUAA, IO =Pt D PAS - Sad) k22
r=j+2

In this way after the last step, corresponding to j = 2, we obtain a function F( : RN "R given
by

FA(A) = f(SkSk-1...8) + 82Dg )+ Zﬁ DG(AS 1 ... SA). (3.7)
r=3
Here, for every j = 2,...,k, the constant 8U) is given by the proof of Lemma 3.1 with the
correspondent index j. F(? has the following properties:

(a’) (strict 1-quasiconvexity up to a perturbation)

/ [FO (A4 V)~ FO(A)] do > —eP(4s) — h®)($,4)
Q

p—2
14 2
b [ (4147 4 1V6R) T Vgl
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for every A € R¥" and every ¢ € CL(Q; RN );
(b’) (Lipschitz condition for the gradient)

IVF®(A+ B)— VF®(A)| < L (12 +|A]> + |B]?) = |B],

for every A, B € RNk, with L = L(p, u, M, v);
(¢) (F® extends f)
FP(A) = f(A) VA € Eg.

Now, let us define
F(A) := inf {/ F@(A+Vo(x))dr: ¢ € CZZT(Q;RNkI)}
Q

for every A € RN". Property (a’) implies that for every A € RN
FA(A) - eP(A2A) — ehP(S,A) < F(A) < FA(A). (3.8)

Since for every A € E},
P(A24) = h?(S,A) =0,

from property (c) and relation (3.8) equality (1.3) follows. Let us check (1.4). Thanks to Propo-
sition 2.9, from condition (b’) we infer that there exists a positive constant ¢, depending on the
function F(® and in turn on f, such that

FOA) <ec(+]4P)  vAeRY,
Recalling the definitions of the functions P and h(?), last relation and (3.8) give (1.4).

Step 2. Case p > 2. Repeating the strategy used for the case 1 < p < 2, we first apply Lemma
3.2 with j = k, v®) = v and

fF(A) = f(A), for every A € Ej.
Then, we apply again k — 2 times Lemma 3.2 with j =k — 1,k — 2,...,2 respectively, with

g \ kit
L) — o, (O ’
40,

and v
FD(A) = FUTD(4), for every A € BN
Finally, when j = 2 we obtain a function F(®) : RN "R given by
k
FO(A) = f(Sk...S24) + LD(SA, Ay A) + > LU(S8,8 1. . SA4, A4S0 1...54), (3.9)
r=3

where we set

P

(T) 5 Z/(T) g
£, B) = =2~ (k2 +14P) " + = (w2 + 4P + (87)% BP?) =2,k
(4.8) = g (1 +14P) "+ (w2 4147+ (BOPIBE) ", r=2 ok,
and for every j = 2,...,k, the constant ) is given by the proof of Lemma 3.2 with the corre-
spondent index j. The function F® just defined is such that

(a’) (strict 1-quasiconvexity)

0,\" =
/ [F@) (A+Vy) - F® (A)} de > 2 (22 / (;ﬂ AR + |w|2) V|? da
Q 4~ 619 Q

for every A € RN and every ¢ € C! (Q;RNFI);
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(b’) (Lipschitz condition for the gradient)

p=2
IVE®(A+ B) = VFP(A)| < L (u* +|AP + |B*) ™ |B],
for every A, B € RNk, with L = L(p, u, M, v);
(c) (F® extends f)
FP(A) = f(A) VA€ E.
We claim that the proof is concluded by setting F := F(?). Indeed, condition (c) gives (1.3), while
(1.4) follows by applying Proposition 2.9 to F(*). O

4. PROOF OF THEOREM 1.2

To prove the theorem, we first need two preliminary lemmas.

Lemma 4.1. Let j € {2,...,k}, 1 <p <2, >0, v9 >0, and let {Mi(j)}z'eN be a sequence

of positive constants. Let {fi(j)}ieN be a sequence of functions fi(j) : Eékaj — R satisfying the
following conditions:

(a) (strict j-quasiconvezity up to a perturbation)
[ 19w w0 - 19 )] do = 10 )
Q
#0024 147+ 1V0P) T (Vo
Q

for every A € E,ikaj, for every ¢ € Cg(Q;RNk*j), and for every i € N, where {hgj)}ieN
s a sequence of functions hz(-]) : E,ivkﬂ — [0, 400);
(b) (p-growth condition)

J

1FA) < MY +14P) vAeEN, VieN

Then there exists an increasing sequence {Fi(j)}ieN of functions Fi(j) : Egk7j+l — R, and two
sequences {LZ('J)}iGN and {/\EJ)}iGN of positive numbers, depending on I/(j),Mi(]),j,p, 1, such that

(&%) (strict (j — 1)-quasiconvezity up to a perturbation)

p—2

(49) j—1 (4) () 2 2 j—1 12\ 2 =1 12
[FO s i) EO )] dez T [ (0 AP 49 R) T e de

1 1 i i
=5 SAP = AP AAP - 1(8;4)
i
for every A € Egk7j+l, for every ¢ € Cg_l(Q;RNFHI), and for every i € N;
(b)) (p-growth condition)

j+1

EDA) < P14+ 14P) vAeEN ", Vien,
(c) (Fi(j) extends fi(j))
FO(4) = £9(A) VAe BN, VieN

Proof. First we observe that, thanks to Proposition 2.7, there exists a positive constant L =
L(Mi(J ), j,p) (we do not stress here the dependence on N and k), such that

FP(A+ B) = f2(A)] < L(1+ AP~ + [BIP~Y) |B| (4.1)
for every A, B € E,]ckaj. Let 8 > 0 be a constant to be chosen at the end of the proof. For every
NF—it+1
AeE; , we define
FD(A) := fU)(S;A) + BlA; AP (4.2)

2
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Condition (c) is clearly satisfied. In order to show (a’), let us consider a function ¢ € Ce,(Q; RNFIH ).
We can write ‘ ‘ ‘

VTl = Vg + VI,
with V=1, VIly € Ope(Qs BY ), and V9o € R (Q: BY ), where th € C2 (@i RN )

per
satisfies condition (2.7) with s = j — 1. Hence,

/ {Fi(j)(A—l— Vj*l(p) o FZ_(J')(A)} dr
Q
= / 1984+ 96+ 8V 1) - [O(S;A+ VW o)| do
Q
+/ {fi(j)(SjA + Vj¢) - fi(j)(SjA)} dx
Q

+ﬂ/ [}AjAnLA]—Vj*lw}p— |.A]A|p:| dx
Q
= Il +12+13

By (4.1) and Young’s inequality, for every § > 0 there exists a constant C' = C(Mi(j),j,p, ) such
that

I > —L/ (14 [SA+ VIpP~t 4|8,V 1P~ |8, VI~ Ly | da
Q

> —6—0|S; AP — 5/ |V7¢|P dx — C’/ |S; VI~ | da.
Q Q
Using Lemma 2.13
L > —5—6|S; AP — 5/ |V p|P da — 07/ |A; VI~ p|P da. (4.3)
Q Q
Thanks to Lemma 5.4, for every 0 < e <1

I > =6(1 +ep?) —6(1 +¢)|S; AP — Cv/ |A; VI P da
Q

—85e /Q (;LQ +[S;A|? + |Vj¢|2) = V7| da.
Then, applying Lemma 5.3 with i =0, x = A;A4, and y = A; VI~ 1y,
L 2 =0(1+ep?) = 8(1 +)[S; Al — Crye¥| A AP
_ CVEPT” /Q (|AjA|2 n |Ajvj—1w|2)¥|Ajvj_1w|2 dx
—85e"F /Q (k2 +18;4 + |Vj<zﬁl2)p%zlvj¢l2 dz.
Thus, there exists a sequence of positive numbers {)\Ej )}z‘eN, such that for every i € N

L) =
Il Z T/Q (/L2 + |S]A|2 + |Vj¢|2) |VJ¢|2 dxr

0 [ (AR + I P) T AT P ds
Q

1 1 j
=5 =3I AP AP |4 AP

Here, for every fixed ¢ € N, )\Ej) = )\Ej)(u(j),Mi(j),j,p, u). By condition (a)

p—2

2o [ (12 +18AR + [VI0P) T [Viods — (5,4,
Q
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so that

v 2 2 J 2 = G2
L+1 > - p+ IS AT+ [V ¢ V7 ¢|” dx
Q

A0 [ (AR + I P) T A ds
Q
1 1

— = = 215;A = A4, AP - R (S;4), (4.4)
i
We focus now on the first term of last expression. Applying Lemma 5.3 with g = pu? + |A|?,
x = V¢, and y = VI~14), and recalling that Vi¢ 4+ VI~ = Vi~ we get
(4) ) 22
S [ (IS AP+ [V6R) T V6 da
Q

p—2

L) ‘ 2
A GRE R\ IR

Y

2

v 2 2 i—1, |2 . 1,2
[ (AR V) TV da
Q

Y

V) p52

=S [ (AP ) Ty de,
Q

2
where in the first line we used the fact that 1 < p < 2. By Lemma 2.14 last inequality becomes
(9

v

p—2
>/, (1 + 18,42 + [V792) 7 |96 do

%) _ p2
2 | (AP 1) T

vV 2 2 G—1,0,2 = G—1,/,|2
=T (AR AR T LA e
v 2 2 j—1 2 B G—1 |2
2 (AR ) e e
vV 2 J—1,,12 B G—1,,12
=, (AP LA v ) T LA (4.5)

again exploiting that 1 < p < 2. Collecting (4.4) and (4.5) we have
V) 2 2 12\ T il 2
I+ 1 > 1 /(M + |A]F + |V <,0|) VI ™ p|® da
Q

L) | bz
- (Agﬂu%)/Q(MjAFﬂAjw1¢|2) A VI~ )2 da

1 1 , 4
=7 = FISAP AV IAAP — 1 (8 4). (4.6)
Concerning I3, using the periodicity of ¢ and thanks to Lemma 5.1 with g =0

13:6/ A A+ 497 [ = |4 AP = p A AP A4 AV | de
Q
Zﬁep/ (|AjA|2+|Ajvj—1w|2) 2 |_AjVj_1w|2dx. (47)
Q

Choosing 5 = BZ-(j ) > 0 such that

876, > X7 + =,
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from (4.6) and (4.7) we obtain

() , 2
L+ I+ I3 > VT/ (’u2 + |A|2 + |v]—1(‘0|2) 2 |v]—1(‘0|2 dr
Q

1 1 j j
= 7= ISP = AP AAP — 1 (84),

so that (a’) holds. From (4.2) condition (b’) follows. O
The second lemma addresses the case p > 2.

Lemma 4.2. Let j € {2,....k}, p > 2, u > 0, vU) > 0, and let {Mi(j)}ieN be a sequence
of positive constants. Let moreover 0, and O, be given by Lemma 5.1, and let {fi(j)}ieN be a
sequence of functions fi(J) : EéVH — R satisfying the following conditions:

a) (strict j-quasiconvexity up to a perturbation
L . . bati
| 19w w0 - 19 )] do = 10 )
Q
0 [ (AR ) 7 (ol

for every A € E,ikaj, for every ¢ € Cg(Q;RNk*j), and for every i € N, where {hgj)}ieN
s a sequence of functions hz(-J) : E,éVH — [0, 400);
(b) (p-growth condition)

J

) < MP 1+ AP) YAeEN, VieNn

Then there exists an increasing sequence {Fi(j)}ieN of functions Fi(j) : Efcvkij+1 — R, and a
sequence {LZ('J)}iGN of positive numbers, depending on l/(j),Mi(]),j,p, w, such that

(&%) (strict (j — 1)-quasiconvezity up to a perturbation)
. ) . ; 1 1
| [FP @+ vt - O] do > - (5,4) - § - 115,40
Q
0 =
G) 21412 j—1, (2 j—1, 12
w0 | (AR ) T s

for every A € E,ivkﬂ*l, for every ¢ € Cg‘*l(Q;RNFHl), and for every i € N;
(b”) (p-growth condition)

FO(A < L +1AP) VA€ EYT", VieN
(c) (Fi(j) extends fi(j))
FO(4) = 19 (4) VAeEN, VieN

Proof. Let a € (0,0 /0,] and 3 > 0 to be determined at the end of the proof. We define

Fi(j)(A) — fi(j)(SjA) . Oz(,uQ + |SjA|2) 2 I Oé(,UQ + |SjA|2 + 62|‘AjA|2) (4.8)

Condition (c) is clearly satisfied. Let now ¢ € Cpe,(Q; RN’%HI). As usual, we can write
Vitlp = Vig+ VI Ly,

Nk—i+1

with V=1, Vi~ly € Cpe (@ BY ™), and Vg € Cge,(Q B ), where € Cpe, (@ RN ™)
satisfies condition (2.7) with s = j — 1. Setting

(f)a(B) = £7(B) = a(u +|BP)

Wl
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for every B € E,ékaj, we have

/Q [FO(4+v1g) - FO ()] d
= /Q (FD)a(S5A+ V6 + 8,997 ) = (F7)a(S; A+ VI9)| da
DY (SiA 1+ 9ig) — (£ (S A)] de
# [ U4+ 50) — (s, 4] d

+ Oé/ [gg(SjA +SjVj*1g0, .A]A+ Ajvj71<p> — gg(SjA,Aj/U] dJS
Q

= Il + 12 + 133
with gg defined by (5.3), with X = E,ékaj and Y = AjE,ékaj“. By repeating the chain of

inequalities (3.3), one can show ( fi(j ))a is j-quasiconvex. In addition, applying Lemma 5.5 and
Proposition 2.9 to the function

[MiS]

B a(pu?+|BR)",

we have that (fz-(j))CY satisfies condition (b), for some positive constant ]\Z(j) = Z\Z(j) (a, Mi(j)) in

place of Mi(j ), Thus, by applying Proposition 2.7, we can still conclude that relation (4.1) holds
true for the function (f-(J))a, for a suitable constant L = L(N, Mi(]), k,j,p,a). By repeating the

K3
same argument of the previous proof, we get that for every § > 0 there exists a positive constant

c= c(Mi(j),j,p, a, i, ) such that
I > =6 — §|S; AP — 5/ |VIg[P do — c*y/ |A; VI~ p|P dx
Q Q
>3- 5ISAP =5 [ (1 4+ 1SAP + [VI6P) T V6P de
Q

— 07/ |A; VI[P da.
Q
Hence, we can find a sequence of positive numbers {)\Z(-j )}ieN such that for every i € N

Bz (v -a6,) [ (4 +15,48 +1002) 7 [Wi0R s
Q

i ; 1 1
A A VI P dr — < — < |S AP
7 0 J i i J

Here )\Ej) = )\Ej) (Mi(j) , Jy 0y o, ) for every fixed i € N, . Adapting to the present situation inequality
(3.3) we get

I :/ [(fi(j))a(SjA + Vi) — (fi(j))a(SjA)} dz > —hz(-j)(SjA)
Q

+(V<J‘>faep)/ (12 + IS AP + [9762) T [Vig|2da,
Q
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Moreover, assuming without any loss of generality that g > 1,

p—2

0 ; 2 .
Bz S [ (AP 9 ) T O
Q

af i = P

R GRI T RCA R D I A

al,BP
4

6,32 p3? , ,
+ M(;ﬁﬂsjAﬁ) / |A; VI~ | do + / |A; VI~ )P da
4 Q Q

0 _ p=2 0. 3P .
> 2% p/ (;ﬁ+|A|2+|VJ*1w|2) ’ IVJ*HpI?d:HM/ AV P de.
2 Jo 4 Jq
Let us now choose W
NG B Ak
(6% o 2®pa

and 3 = ﬁi(j) > 0 such that
ald) ep(ﬁz'(j))p

> \W
4 P )

1
we obtain

[ [P v - O] o =1+ 1+ 1
Q

5 0 . R
>y [ (1 AR+ [9) T o
10, Jq

i 1 1
—n7(8;4) ~ 7~ 71SAlR
so that (a’) holds. Finally, condition (b’) follows by (4.8).

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2.

Step 1. Case 1 < p < 2.
We start by applying Lemma 4.1 with j = k, v*) = v and
fRA) = ), nPA)=0  forevery A€ Ey, i€N.
Then, we apply again k — 2 times Theorem 4.1 with j =k — 1,k — 2,...,2 respectively, with

and, for every A € E,ikaj and i € N,
17A) = FIT ().
Accordingly, the functions hl(.j ) will be chosen as
rF1(4) = % + %|SkA|p + AP 4P,
and, for j =k —2,...,2,

. k
, k— 1 j
th) (A) _ Tj + Z E |STST,1 .. .Sj+1A|p + /\EJ+1)|Aj+1A|p
r=j+1

k
+ 3 A4S S AP,

r=j+2
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where the sequences {)\Z(-j )}ieN are given by Lemma 4.1. In this way after the last step, corre-

sponding to j = 2, we obtain a sequence {Fi@)}ieN of functions Fi(2) RN SR given by
k
FO(A) = f(Sk - 824) + 67| A2AP + 3 871 AS 1 24P,
r=3

Here for r = 2,...,k, the sequence {ﬂi(T)}ieN is that one given in the proof of Lemma 4.1. The
functions Fi@) just defined have the following properties:

(a’) (strict 1-quasiconvexity up to a perturbation)

1
T

1
/ [FP 4+ V) = P (4)] do > -hP ($24) - < — <[ S, A1
Q

p—2
14 2
g [ (AR ) T e AP oA

1 1
> —hP(S2d) - 7 = <1 AP~ AP | A AP

for every A € RN"| for every ¢ € C;(Q;RNIC*I), and for every i € N;
(b’) (growth condition)

IFPA) < LP(1+4P) VAeRY VieN,
with Ll@) = LEQ)(V, M, p, i) for every fixed i € N;
(c) (FZ-(Q) extends f)
F2(A) = f(A) VA€ EVieN.

Now, for every A € RN" and i € N, we set
Fi(A) = inf {/ FP(A+ V() dz : ¢ € C;ZT(Q;RN"I)} .
Q

From property (a’) it follows that for every A € RY " and for every i € N

1 1
FP(A) = h?(824) = - — <8241 = XA < Fi(4) < F(A). (4.9)

1

Noticing that for every A € Fy

@ k-2 1
lim A (SpA) = i - Sr...SAP| =0,
im h;7(S2A4) = lim [ +Z.7Z:3| %

i——+00 1——+00 Z

from property (c) and (4.9) we have (1.6). Finally, (1.7) follows from (b’) and (4.9).

Step 2. Case p > 2.

We first apply Lemma 4.2 with j = k, v*) = v and
fPA) = ra), nPA)=0  forevery A€ Ey, i €N.

At this point, we apply again k — 2 times Lemma 4.2 with j = k— 1,k —2, ..., 2 respectively, with

0 k—j+1
L) — o, (O ’
40,
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Nk—J .
and, for every A € E}; and 7 € N,

k—j

i

k
1
+ = > 1SS1. . S Al

r=j+1

A = FT ), ) =

Finally, when j = 2, we obtain a sequence {FZ-(2)}1'GN of functions FZ-(2) RN SR given by

k
FO(A) = f(Sh.. . S$2A) + 3 LV(S,8r1... 824, A;Si-1 ... 52 A)

r=3
+LP(8,A, A A), (4.10)
where we set
(r) z (r) P
(r) (2 2\2 V(2 2 (My21312) ° _
£{(A,B) = 2@p( +14P%) +2@p(u AR+ @BE), r=2 k.

The functions Fi(2) just defined have the following properties:

(a’) (strict 1-quasiconvexity up to a perturbation)

1 1
[ [FP@+90) - FOW)] o 2 1P (84) - 1 - Fis2AP
Q

v (b : 2 2 2\ T 2
e (@) [ (2 r1ar1ver) T wapas
1 1
> 1 (S:4) - = — <[S AP
(3 (3

for every A € RNk, for every ¢ € C’Cl(Q;RNkfl), and for every i € N;
(b’) (growth condition)

IFP(A)) < LP 1 +14P) VAeRY VieN;
(c) (FZ-(Q) extends f)

FP(A) = f(A) VA€ E,VieN.

2

For every i € N, we define now F; as the quasiconvexification of the function Fi(2):

Fi(A) = { [ EE A+ Vet o e ACE)
for every A € RN *. From property (a’) and by the definition of F;, we have
FPA) =12 ($:4) -~ 18AP < B () < P (), vAERY. (41
Noticing that
dim_ h(SA) =0 forall Ac RV
from property (c) and (4.11) we have (1.6). Finally, (1.7) follows from (b’) and (4.11). O

4.1. Proof of Theorem 1.3. To conclude the section, we give the proof of Theorem 1.3.

Proof of Theorem 1.3. Tt is enough to adapt the proof of [8, Theorem 3] and to use Theorem
1.3. [l



K-QUASICONVEXITY REDUCES TO QUASICONVEXITY 25

5. APPENDIX

This section contains some auxiliary results used in the rest of the paper. First, we give the
proof of Proposition 2.5.

Proof of Proposition 2.5. Since A € Egkikl and B € AS+1E,in75, we can write A = Sg11A and
B = A;,1C, for some C € E,iVH. As a first step, let us prove that for every r,l € {k—s+1,...,k}
with r # [ we have

AT = AT = AT (5.1)

To fix the ideas, let us assume r < [. By definition of transpose operators

AT ol g,

Q1000 T i100... 0 1192 0k —s—19rlk—s41- - br—1%k—slrt1...0k CiliZ---ik—s—lilik—s+l el -1l — stk

for every i1,42,...,i = 1,...,N. In the last expression, since A € ENk " and rl>k—s, we
can exchange the indices in r- th and [-th position in the first factor, obtaining

Tr® L
Azlzg 01112 KT Ai1i2»»»ik—s—1irik—s+1---ir—lilirJrl»»»il—lik—sil+1---ikCili2---ik—s—1ilik—s+1---il—lik—sil+1---ik'
Summing last relation with respect to i1, ..., %, and renumerating the indices

1112, 711 i2...0k

. — k—s k—
AT o Z AL o
Tl

1,N
Z 1182, 0 —s—10r ik —s4 1. Gr—180 841 9 —10k— 5141 .- 01112 k—s—10 0k —s+1---8—1%k—sT+41--
1 eenybl
1,N
k—s k—s
Z All ik 1112 s 10Tk s 11Tk —slrg1...0 Z Allw ik lezz i :A'CTT .
ik 01..0ylk

In the same way one can prove the second equality in (5.1).
Let us now prove the proposition. We have

(s+1)24 B =(s+1)2(Sys14 - As41C)
= (A+AT::SS+1 +...+AT:*S) ) [SC* CT::53+1 +'H+CT:—S)]

k k
—sA-C — Z ATE  oTF e A.CT°
r=k—s+1 r=k—s+1
k k k
Z AT o~ Z Z AT 0T
r=k—s+1 l=k—s+1 r#l
r=k—s+1

Since the sum of the first two terms is zero, using relation (5.1) we get

k k
(s+1)24-B=(s—1) Z ACTT - NN AT
r=k—s+1 l=k—s+1 r#l
r=k—s+1
(s—1) Z A-CT —(s—1) Z A-CT =0
r=k—s+1 r=k—s+1

In the remaining part of the section we state some lemmas that are proved in [8].

Lemma 5.1. Let X be a Hilbert space, and let g : X — R be given by

o(@) = (4 +12) " (5.2
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For every p > 1, there exist two constants 8, > 0 and ©, > 0 such that for every pn > 0 the
function g defined in (5.2) satisfies the following inequalities
Op (12 + |2* + [y*) " [yl* < g(o + ) — g(x) — Vg(x) -y
< O, + |2 + [y =yl
for every x,y € X.

Lemma 5.2. Let X,Y be Hilbert spaces and letp > 1,14 >0,3>0. Let gg : X XY — R be given
by
g(@.) = (2 + ol + Byl?) " (5:3)
Then
98(x + &y +n) — gs(x,y) — Vags(a, y)ffvygﬁ(x y)-n (5.4)

> 0, (42 + laf? + ¢ + BPIyP + ) T (I + 22 1oP)

for every x, £ € X, y, n €Y, where 0, is the first constant in Lemma 5.1. Therefore, if p > 2,
we have

gs(z+&y+n) —gs(x,y) — Vags(z,y) - € — Vygs(z,y) - n (5.5)

2 08 L O
>0, (2 4 a2 162) Tl B (2 1) T o+ B g
foreveryx, £ € X, y,neyY.

Lemma 5.3. Let X be a Hilbert space and let 1 < p < 2. Then for every i > 0 and every
0<d <1 we have

p=2 p=2 p=2
(82 +1a+yP) " e+ oy <2(p2 + |z|2)T|z|2 +2(52 + |y|2)T|y|2,
55 (5 + P) ™ 1ol® < (7 + JoP + lyP) o+ 6 + 1) 7 Jof
for every x,y € X.
Lemma 5.4. Let 1 < p < 2. Then
b < 8T (1% +a® + %) T b2+5ap+5,u
foreverya>0,6>0, u >0, and 0 <e < 1.
Lemma 5.5. Let X be a Hilbert space, and let f € CH(X)NC?(X \{0}). Assume that there exist
p>1,C >0, and p > 0 such that
V@) < O +1a2) (56)
for every x € X \ {0}. Then

pT72
VF@+y) - V@) < KO (12 + |22+ [yl?) Iyl (5.7)
for every x,y € X, where K, > 1 is a constant depending only on p.

Lemma 5.6. Let X be a Hilbert space and let f € C*(X). Assume that there exist p > 1 and
w >0 such that

p—2
2
V1 +y) = Vi) < (12 + 12+ 1) T Iyl
for every x,y € X. If 1 < p < 2, then for every € > 0 there exists a constant ¢c; = c¢1(e,p) > 0,
depending only on € and p, such that

l[fz+y+2z) = flz+y) - Vf(z)- 2|

p—2 p—2

2 2
<e(i+ e +1y?) T Iyl 4 (p?+ 1) TP
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for every x,y,z € X.
If p > 2, then for every € > 0 there exists a constant ca = ca(e,p) > 0, depending only on € and
p, such that

l[f(zx+y+2z) = flz+y)—Vf(z)- 2|

p—2 p—2

<e(p?+ (2l +[y2) T Iyl +e2 (k4 J2f2) T2+ calzl?

for every x,y,z € X.
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