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Abstract. We examine the situation when the investor wants to outperform a certain benchmark
by actively trading in this asset, typically a stock index. We consider an investor who wants to
minimize the expected shortfall in the case he fails to achieve this goal. Using recently devel-
oped techniques of Föllmer and Leukert, we can relate this optimal investment problem to option
hedging. This allows us to obtain analytical characterizations of the optimal strategy in special
cases.

1 Introduction

This paper studies a dynamic portfolio selection problem, assuming continuous time model with
a risky asset and a money market. We study the case when the investor wants to outperform a
certain benchmark (we call it index) by trading in this asset. The trading is continuous and the
performance of the investor is measured by the shortfall risk. He wants to minimize this risk while
trying to outperform the index. There are several techniques which could be applied in solving the
problem, in particular, constraint optimization, convex duality methods or methods of stochastic
optimal control. An alternative approach is to use the technique of Neyman Pearson lemma as
suggested by Föllmer and Leukert (1999, 2000).

There are several papers which solve the problem of finding optimal strategy which maximizes
the probability of beating the index. Heath (1993) solved the problem when the underlying process
is a Brownian motion with a drift. Karatzas (1997) extended this result to a random drift and
Browne (1999) pointed out the link between certain digital options and strategies which maximized
the probability of beating the index. Föllmer and Leukert (1999, 2000) generalized these meth-
ods to the case of quantile hedging, and further introduced efficient hedging with the criterion of
minimizing shortfall risk. Using the method of Neyman Pearson lemma, they provided existence
results in the general semimartingale model. The optimal strategies can be characterized by the
Radon-Nikodym derivative in the complete market case. They also provided explicit solutions for
the Black-Scholes model with insufficient initial capital. Basak, Shapiro and Teplá (2002) in their
work provide an independent approach, which also features an investor targeting outperformance
of a benchmark with some permitted shortfall.

In this paper we extend the use of the techniques developed by Föllmer and Leukert (2000) to
study strategies which try to beat the market. The no arbitrage argument precludes any existence
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of a trading strategy which would outperform the market with probability 1. The best we can hope
for is to find an optimal strategy which would beat the benchmark in the sense that it minimizes
the expected shortfall from reaching this goal. This result can have an impact on the choice of
trading strategies of many hedge and mutual funds which use a stock index as a benchmark of
their performance. The paper is structured in the following way. After model independent problem
formulation, we solve for optimal strategies in both Brownian and Poisson model.

2 Problem Formulation

Suppose that the investor can trade in the index St and in the money market with constant interest
rate r. His wealth Xt evolves according to the self-financing strategy

dXt = qtdSt + r(Xt − qtSt)dt, (1)

where qt is number of shares held at time t. We do not impose any constraints on qt except that
the wealth Xt stays nonnegative for all t, i.e.,

Xt ≥ 0, ∀t ∈ [0, T ]. (2)

Let us consider the situation when the investor wants to outperform the index itself by selecting
the trading strategy qt. Thus he wants to compare the resulting wealth XT with respect to the
index level ST at time T . To measure the risk involved in such a strategy, we introduce the loss
function f . For computational simplicity we can assume that f is of the form

f(x) =
xp

p
. (3)

We will study the case p > 1 for risk averse investors. The objective of the trader is to beat the
market by a factor of α at a fixed time horizon T , while minimizing the expected shortfall

Ef [((1 + α)ST −XT )+], (4)

when he fails to meet this target. This problem is non-trivial when the initial capital X0 is less
than the super-hedging price (1 + α)S0. Otherwise, the target can always be met.

In summary, we can describe the problem as: for any fixed constant 0 < X0 < (1 + α)S0, we
need to solve

min
X∈X (X0)

Ef [((1 + α)ST −XT )+] (Main Problem)

where X (X0) = {Xt ≥ 0 : Xt = X0 +
∫ t

0

qudSu +
∫ t

0

r(Xu − quSu)du , 0 ≤ t ≤ T },

and α > 0 is a constant, f(x) =
xp

p
, p > 1.

One can relate this situation to option hedging. The value (1 + α)ST can be viewed as an
option payoff. The objective of the trader is to deliver this payoff, but he is short of the initial
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capital to do so with probability 1. Föllmer and Leukert were able to characterize the optimal
solution for the option hedging problem in general. Suppose that HT is a payoff at time T (a
nonnegative FT - measurable random variable). The objective of the trader is to replicate this
payoff by creating a self-financing trading account Xt having dynamics (1). In a complete market,
there would exist a hedging strategy qt providing perfect option replication XT = HT , given that
the trader starts with initial capital equal to discounted expected payoff under the risk-neutral
measure X0 = e−rT ẼHT . However, if the initial capital X0 is smaller than e−rT ẼHT , there is
positive probability that XT < HT , i.e., the trader would fail to deliver the option payoff in all
possible scenarios. However, one can try to minimize the resulting expected loss by minimizing

Ef [(HT −XT )+] (5)

for some loss function f .

Since it is impossible to perfectly replicate the contingent claim being short of the initial capital,
one can selectively lower the payoff of this claim in such a way that it is possible to hedge it perfectly.
For this procedure, called modification of the payoff, let us introduce the following set

R = {φ : Ω → [0, 1] | φ is FT −measurable}. (6)

The modified payoff is φHT . The following theorem identifies the optimal modification of the
payoff which minimizes the shortfall risk for convex loss function l(x) in complete market case, i.e.
there is a unique risk-neutral measure P̃.

Theorem 2.1 (Föllmer and Leukert, 2000) The solution φ̂ to the above optimization problem
is given by

φ̂ = 1− I(cZ)
HT

∧ 1, (7)

where Z = deP
dP , I(x) =

[
df(x)

dx

]−1

, and the constant c is determined by the initial condition

e−rT Ẽ
[
φ̂HT

]
= X0. (8)

We can now apply this result to our case using the payoff HT = (1 + α)ST and a loss function
of the form (3).

Remark 2.2 (Controlling the downside risk) The investor might wish to guarantee that he
would end up with at least a fraction 0 ≤ α < 1 of the benchmark αST at time T . It is easy to see
by no arbitrage argument that in this case his wealth must satisfy Xt ≥ αSt at all times 0 ≤ t ≤ T .
If we introduce the residual wealth X̃t = Xt − αSt, we can transform the problem of controlling
the downside risk to the original problem by the following simple observation

min
Xt≥αSt

Ef [((1 + α)ST −XT )+] = min
X̃t≥0

Ef [((1 + α− α)ST − X̃T )+], (9)

as long as α > 0. Therefore the investor can use his residual wealth to try to deliver (1+α−α)ST

at time T . His remaining wealth αSt should be fully invested in the benchmark, leading to wealth
of αST at time T . Without loss of generality, we will consider only the case in the (Main Problem).
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3 Minimizing Shortfall Risk in a Brownian Model

Suppose that the index evolves according to the stochastic differential equation

dSt = St(µdt + σdWt) (10)

under the real physical measure, where µ is the drift and σ is the volatility of the underlying asset.
The stock dynamics under the risk neutral measure is given by

dSt = St(rdt + σdW̃t). (11)

We assume that µ > r. The risk-neutral measure and the original market measure are related by
the Radon-Nikodym derivative

Z =
dP̃
dP

= e−
µ−r

σ WT− 1
2 ( µ−r

σ )
2
T = const ST

−µ−r

σ2 . (12)

The process W̃t given by W̃t = Wt + µ−r
σ t is a Brownian motion under P̃.

In this section we provide solutions to the problem of risk minimization control of the beating
the market strategies.

Proposition 3.1 For 0 < X0 < (1 + α)S0, the optimal control to (Main Problem) is to replicate
an option with the payoff

X̂T = (1 + α)
[
ST − Laq+1ST

−aq
]
I[ST >L], (13)

where a = µ−r
σ2 and q = 1

p−1 . The constant L is determined by the initial condition

X0 = (1 + α)

[
S0Φ

(
ln(

S0
L )+(r+

1
2σ2)T

σ
√

T

)
− S−aq

0 Laq+1eγT Φ
(

ln(
S0
L )+(r+

1
2σ2)T

σ
√

T
+ (aq + 1)σ

√
T

)]
,

(14)
where Φ(·) is the standard normal cumulative distribution function and γ = σ2(aq + 1)2 − (aq +
1)(r + 1

2σ2). The optimal wealth process is

X̂(t, St) = (1 + α)

[
StΦ

(
ln(

St

L )+(r+
1
2σ2)τ

σ
√

τ

)
− S−aq

t Laq+1eγτΦ
(

ln(
St

L )+(r+
1
2σ2)τ

σ
√

τ
+ (aq + 1)σ

√
τ

)]
,

(15)
and the optimal strategy is to invest q̂t shares in the index St where

qt = X̂s(t, St). (16)

Proof. We can apply Theorem 2.1 to identify the optimal modified payoff for the claim (1+α)ST .
The modification is given by

φ̂ = 1− I(cZ)
(1 + α)ST

∧ 1,

where c is determined by
Ẽ

[
φ̂(1 + α)ST

]
= S0e

rT ,
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with

Z =
dP̃
dP

and I(x) =
[
df(x)
dx

]−1

.

In our case

f(x) =
xp

p
,

df(x)
dx

= xp−1 , I(x) = xq,

where q = 1
p−1 > 0. Hence the optimal solution is the strategy that replicates a contract with the

payoff:
φ̂(1 + α)ST = (1 + α)ST − [(cZ)q ∧ (1 + α)ST ] .

Now,

Z =
dP̃
dP

= const ST
−a,

where a = µ−r
σ2 > 0 and

(cZ)q = ψS−aq
T

for some constant ψ > 0. Since g1(x) = ψx−aq is a convex and decreasing function, there is at
most one point of intersection with function g2(x) = (1+α)x. Let’s call L the point of intersection.
Then (1 + α)L = ψL−aq, from which we get ψ = (1 + α)Laq+1. Therefore the payoff of this claim
can be written as:

φ̂(1 + α)ST =
{

0, if ST ≤ L
(1 + α)

[
ST − Laq+1ST

−aq
]
, if ST > L.

The constant L is given by:

e−rT Ẽ
[
(1 + α)

[
ST − Laq+1ST

−aq
]
1{ST >L}

]
= S0.

The final wealth of the optimal strategy is equal to the modified payoff X̂T = φ̂(1+α)ST , and the
wealth process can be computed using standard risk-neutral pricing method

X̂(t, St) = e−rτ Ẽ
[
(1 + α)

[
ST − Laq+1ST

−aq
]
1{ST >L}

∣∣Ft

]

= (1 + α)

[
StΦ

(
ln(

St

L )+(r+
1
2σ2)τ

σ
√

τ

)
− S−aq

t Laq+1eγτΦ
(

ln(
St

L )+(r+
1
2σ2)τ

σ
√

τ
+ (aq + 1)σ

√
τ

)]
,

where τ = T − t and γ = σ2(aq + 1)2 − (aq + 1)(r + 1
2σ2). The optimal strategy is the usual

delta-hedge. ¦

Remark 3.2 The optimal investor would bankrupt the fund in the extreme case when ST <
L. The more averse investor, the lower is the level L. He would under-perform the market
for ST < L(1 + 1

α )
1

aq+1 , but he would outperform the market otherwise. This trader would be
increasingly successful as the market goes up, but he would lose some money when the market
declines (ST < L(1 + 1

α )
1

aq+1 ), and it is even possible that he would bankrupt the fund when the
market goes down significantly (ST < L). Notice that the optimal solution never exceeds the level
(1 + α)ST , so that P(XT > (1 + α)ST ) = 0. See Figure 1 for illustration. As mentioned earlier
in remark 2.2, it is possible to reformulate the problem in such a way that the trader would never
bankrupt the fund, having always at least α fraction of the market.
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Figure 1: Payoffs of ST (bottom straight line), (1 + α)ST (top straight line) and a typical optimal
payoff profile (thick black line) as a function of the stock price ST . The optimal payoff profile is 0
for ST < L, it is below ST up to the point L(1 + 1

α )
1

aq+1 , otherwise it exceeds the index ST .

4 Minimizing Shortfall Risk in a Poisson Model

Suppose that the stock evolves according to the stochastic differential equation

dSt = St−[µdt− (1− δ)(dNt − λdt)] (17)

under the real physical measure P, where µ is the drift, Nt is the Poisson process with constant
intensity λ, and 0 < δ < 1 is the faction of the price after a jump. The solution to (17) is given by

St = S0e
µt+λ(1−δ)tδNt = S0e

Nt ln δ+µt+λ(1−δ)t. (18)

The stock dynamics under the risk neutral measure is given by

dSt = St−[rdt− (1− δ)(dNt − λ∗dt)], (19)

where λ∗ = µ−r
1−δ + λ

∆= λ(1 + ν) is the intensity of the Poisson process under P̃. We assume that
µ > r. Consequently, ν > 0 and λ∗ > λ. The risk neutral measure and the original market measure
are related by the Radon-Nikodym derivative process

Zt = E
[

deP
dP

∣∣∣Ft

]
= eNt ln

λ∗
λ −(λ∗−λ)t = eNt ln(1+ν)−λνt. (20)

The solution to the (Main Problem) in the Poisson model is given as follows.

Proposition 4.1 For 0 < x < (1 + α)S0, there exists an integer N ≥ 0, and a constant 0 < c <
(1 + α)S0 such that the initial condition is satisfied:

x = (1 + α)S0

N∑

k=0

xδ
k(T )− ceβT

N∑

k=0

x
(1+ν)q

k (T ), (21)

where ν = µ−r
λ(1−δ) , q = 1

p−1 , β = −r+qλ+((1+ν)q−1−q)λ∗, xη
k(t) = e−ηλ∗t (ηλ∗t)k

k! . Let τ = T−t,
the wealth process of the optimal strategy is

X̂t =

{
0, if Nt > N ;
(1 + α)St

∑N−Nt

k=0 xδ
k(τ)− cK(t)S−b

t eβτ
∑N−Nt

k=0 x
(1+ν)q

k (τ), if Nt ≤ N ,
(22)
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where b = − q ln(1+ν)
ln δ > 0, and K(t) = Sb

0e
q(µb+λ(1−δ)b−λν)t > 0. In particular, at final time T , the

optimal wealth is equal to the modified payoff

X̂T = φ̂(1 + α)ST =

{
0, if NT > N ;
(1 + α)ST − cK(T )S−b

T , if NT ≤ N.
(23)

The optimal strategy is to invest in q̂t shares of stocks where

q̂t =
X̂(t, δSt−)− X̂(t, St−)

δSt− − St−
=

X̂(t,Nt− + 1)− X̂(t,Nt−)
(δ − 1)S0eNt− ln δ+µt+λ(1−δ)t

. (24)

Remark 4.2 Since there is one-to-one correspondence between the values of Nt and St, the optimal
wealth process can be written as X̂t = X̂(t,Nt) = X̂(t, St). Note Nt ≤ N is equivalent to St ≤
S0e

N ln δ+µt+λ(1−δ)t.

Proof. As computed in proposition 3.1, the optimal final wealth should equal to the modified
payoff

X̂T = φ̂(1 + α)ST

= (1 + α)ST − I(c̃ZT ) ∧ (1 + α)ST

= (1 + α)ST − cZq
T ∧ (1 + α)ST

=

{
0, cZq

T ≥ (1 + α)ST

(1 + α)ST − cZq
T , cZq

T < (1 + α)ST

Recall
ST = S0e

NT ln δ+µT+λ(1−δ)T , ZT = eNT ln(1+ν)−λνT . (25)

Obviously, Zq
T is an increasing function of NT and ST is a decreasing function of NT . If c ≥ (1+α)S0

(or equivalently, cZq
0 ≥ (1 + α)S0), then cZq

T ≥ (1 + α)ST always holds and X̂T ≡ 0. Since x > 0,
this not the case we are studying. We also have x < (1 + α)S0. Therefore, X̂T ≤ (1 + α)ST and
c > 0. For any 0 < c < (1 + α)S0, suppose cZq

T < (1 + α)ST for NT ≤ N and cZq
T ≥ (1 + α)ST

for NT > N . The optimal wealth process is computed as the conditional expectation of the final
wealth

X̂t = e−rτE[X̂T |Ft]

=

{
0, if Nt > N ;
e−rτE[((1 + α)ST − cZq

T )1{NT≤N}|Ft], if Nt ≤ N .

=





0, if Nt > N ;
e−rτ (1 + α)StE[eNτ ln δ+µτ+λ(1−δ)τ1{Nτ≤N−Nt}]
−e−rτ cZq

t E[eNτ q ln(1+ν)−qλντ1{Nτ≤N−Nt}], if Nt ≤ N .

=

{
0, if Nt > N ;
(1 + α)St

∑N−Nt

k=0 xδ
k(τ)− cZq

t eβτ
∑N−Nt

k=0 x
(1+ν)q

k (τ), if Nt ≤ N .

Since Zq
t = K(t)S−b

t where b = − q ln(1+ν)
ln δ > 0, and K(t) = Sb

0e
q(µb+λ(1−δ)b−λν)t > 0, we get

formula (22). In particular, we can find an integer N ≥ 0, and a constant 0 < c < (1 + α)S0 such
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that the initial condition is satisfied:

x = (1 + α)S0

N∑

k=0

xδ
k(T )− ceβT

N∑

k=0

x
(1+ν)q

k (T ).

The optimal strategy for the jump is easily computed using Ito’s formula

q̂t =
X̂(t, δSt−)− X̂(t, St−)

δSt− − St−
.

¦

Remark 4.3 The conclusion is similar to the Brownian case. The optimal investor would bankrupt
the fund in the extreme case when ST < S0e

N ln δ+µt+λ(1−δ)t. He would under-perform the market

for ST < ( cK(T )
α )

1
b+1 , but he would outperform the market otherwise.

5 Conclusion

We have determined the optimal strategy of a trader who wants to outperform the market and
we have related this problem to option hedging. Beating the market could be viewed as an act
of hedging the option with insufficient initial capital for a perfect hedge. However, the trader can
choose a set of scenarios when he outperforms the market, but at the cost of under-performance
in some other set of scenarios. The paper identifies the optimal choice for the shortfall measure
associated with power loss function. The risk averse investor’s optimal choice is to outperform
the market consistently when the stock is going up, but he might under perform the market when
the market goes down. In the extreme case of market crash he can even bankrupt the fund. It
is straightforward to modify this problem in such a way that the bankruptcy never occurs – the
value of the fund being always greater than a certain fraction of the market.

References
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