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Abstract. In this article we study arithmetic Asian options when the underlying stock is driven by special
semimartingale processes. We show that the inherently path dependent problem of pricing Asian options
can be transformed into a problem without path dependency in the payoff function. We also show that the
price satisfies a simpler integro-differential equation in the case the stock price is driven by a process with
independent increments, Lévy process being a special case.
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1 Introduction

Asian options are securities with payoff which depends on the average of the underlying stock price S over a
certain time interval. If we denote by A the averaging factor of the option, we can write the general Asian
option payoff as

T +
(1.1) (g(/o Std)\(t)—KlsT—IQ)) .

When K7 = 0, we have fixed strike option; when Ky = 0, we have floating strike option. The constant £ = £1
determines whether the option is call or put. The averaging factor A has finite variation and is typically taken
to be

At) =%
for the case of continuously sampled Asian options, or
At) =5 |F]

for the case of discretely sampled Asian options. Other averaging is also possible (exponential, etc.), but less
frequently used in practice. Notice that European type options are just a special case of Asian option for the
following choice of parameters: A(t) = 1;7y(t) and K = 0.
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There has been a growing concern in the literature on the lognormality assumption of the underlying
stock price, and a number of alternative approaches have been suggested. One of the most studied situations
is the case when the stock is driven by a particular Lévy process. Carr, Geman, Madan and Yor (2000)
have recently suggested the so-called CGMY model for the stock price, which shows a good match with
empirical data. Another alternative approach, namely the general hyperbolic model, is discussed in Eberlein
and Prause (1998).

The problem of pricing Asian options is already complicated when the underlying stock is a geometric
Brownian motion. Most of the literature we know studies only this type of model. A number of approxima-
tions that produce closed form expressions have appeared, most recently in Thompson (1999), who provides
tight analytical bounds for the Asian option price. Geman and Yor (1993) computed the Laplace transform of
the Asian option price, but numerical inversion remains problematic for low volatility and/or short maturity
cases.

Rogers and Shi (1995) have formulated a one-dimensional PDE that can model both floating and fixed
strike continuous average Asian options. However this one-dimensional PDE is difficult to solve numerically
since the diffusion term is very small for values of interest on the finite difference grid. Andreasen (1998) has
extended this approach for pricing discretely sampled Asian option.

Monte Carlo methods seem to work well, but sampling the entire path of the underlying asset greatly
reduces competitiveness of this approach, even with the help of variation reduction techniques (Fu, Madan,
Wang (1998/99)).

In the recent paper of Vecer (2001), it was shown that one can reformulate the problem of pricing
Asian options in a way which removes the inherent path dependency of the contract. This paper applies
the techniques developed in Shreve and Vecef (2000) for pricing options on a traded account. In the case
when the underlying stock is a geometric Brownian motion, one can obtain a simple one-dimensional partial
differential equation for the price which is easy to solve numerically. A similar formulation of the pricing
partial differential equation appears in the independent work of Hoogland and Neumann (2001).

We show in this article that the approach of removing the path dependency in the formulation of the
Asian option pricing problem can be generalized to the case when the underlying asset is driven by a special
semimartingale process. We also show that the price satisfies an integro-differential equation in the case the
stock price is driven by a process with independent increments, Lévy processes being a special case.

2 Pricing Formula for Asian Options

Let H be a special semimartingale on the stochastic basis (Q,F,F = (F;)ier,,P) that satisfies the usual
conditions, with values in R and Hy = 0. Suppose the stock price has the following dynamics:

(2.1) dS, = S,_dH,,

We will from now on assume P to be a risk-neutral measure and the interest rate to be a constant r. In
particular, we assume that e~ "%S, is a martingale under PT.
Following the notation in Jacod and Shiryaev (1987), H has the canonical decomposition:

(2.2) H; =rt+ Hf +/0 /_‘X’ x (u(ds,dz) — v(ds, dx)),

where Hf is the continuous martingale part, p(dt, dz) is the random measure associated with the jumps of H
and v(dt, dz) is the compensator. According to 11.2.9 and I1.2.29 in Jacod and Shiryaev (1987), we can always
choose a good version of v, i.e., v({t},R) < 1, v(R,,{0}) = 0 and f(f J75 (22 Alz|)v(dt, dz) is a process
with locally integrable variation. To ensure that S is a positive process, we make the following assumption:

THere we will not discuss in detail how to choose this equivalent martingale measure for pricing purpose. Interested readers
are referred to Follmer and Schweizer (1991) and Miyahara (2001) for the Foéllmer-Schweizer minimal measure, or equivalently,
minimal entropy martingale measure; Elliott, Hunter, Kopp and Madan (1995) for the equivalent martingale measure resulting
from multiplicative decomposition; Gerber and Shiu (1994) for Esscher transform. A nice presentation of these methods for
geometric Lévy processes can be found in Chan (1999).



Assumption 2.1 u([0,t],(—o0,—1]) =0 for all t > 0.

The Doléans-Dade formula gives

(2.3) S = So(H) = Soexp (Hy — 3(H):) [[ (14 AH,)e 2.
0<s<t
We will define a new measure Q by

dQ
dP

St
. Soert ’

(2.4)

X,

and a process Z; = 5 where X; is the self-financing portfolio

(25) dXt = qt,dSt + T(Xt, — qt,S't,)dt,

where the predictable process ¢; represents the shares invested in stock. An equivalent formulation with

discounted value about the portfolio is

(26) d(e_T'tXt) = qt,d(e_TtSt).

In order to reformulate the pricing problem and remove the path dependency, we can use the following

procedure of replicating the Asian Forward payoff. Without loss of generality, we assume & = 1.

Proposition 2.2 (Replication of the Asian Forward Contract) Suppose that we have a self-financing

portfolio X as in (2.6) where Sy is a semimartingale. If we set the shares invested in the stock to be

T
(2.7) q = ef’dT/ e"*d\(s)
t

where \(t) is a deterministic function with finite variation, and start with the initial wealth
(2.8) Xo = qoSo — e " Ky,

then we will have

T
(2.9) Xr = / SdA(t) — Ks.
0
PROOF. For notational purpose, let B; = e~"%S;. By the definition of quadratic variation and (2.6),

T T
(2.10) e T Xy — Xo = / qi—dBy = qrBr — qoSo — / B;_dg; — [q, B]r.
0 0

Since g; is of finite variation,

T T T T
/ By_dg; + [q, B]; = / By_dg; + Z Ag,AB, = / Bidg; = / e "' S dgy.
0 0 0 0

O<u<t

Given the formula (2.7) for ¢; (note that gr = 0), and the formula (2.8) for Xy, (2.10) simplifies to

T
Xr = eT’TXo—eTTqOSo—/ "I9S, dg,
0

T
/ SydA(t) — K.
0



Remark 2.3 Proposition 2.2 works for general semimargales S;. The proof uses neither the martingale
measure assumption nor the specific forms (2.1) and (2.2). It also works for general deterministic function
A(t) with finite variation.
Theorem 2.4 (Pricing Formula) Let VA(0, Sy, K1, Ks), the price of the Asian option with the payoff (1.1)
when & =1, be defined as

T +
(2.11) V20, S0, K1, Ko) 2 EF |e77 (/ Sid\(t) — K1 St — K2>

0

Then we have the following relationship

(2.12) VA0, S0, K1, k) = So - E¥[(Zr — K1)

where Q is defined by (2.4), X is the self-financing portfolio (2.5) with the initial condition Xo and trading
strategy q; defined in (2.8) and (2.7), and Z; = )Sf—:

PROOF. An easy consequence of proposition 2.2 is

_ . .
V)\(O, So,Kl,Kg) = eirT .EF </ Std/\(t) — K St — KQ)
0

— ' T.EP [ Xp — KlsT)ﬂ

r n SQ@TT:|

= €_TT . EQ (XT — KlsT)
St

= So-E9(Zr — K1)
<o

Remark 2.5 Theorem 2.4 works under the assumption that e="tS; is a strictly positive martingale under P.

The proof does not require the specific forms (2.1) and (2.2). It also works for general deterministic function
A(t) with finite variation.

3 Integro-Differential Equation

For our next analysis, we need the following result:

Lemma 3.1 Z; = )Sf—t‘ is a local martingale under Q.

PROOF. Recall that P is a risk-neutral measure. (2.6) and the fact that ¢; is deterministic ensure that e~ X
is a martingale. For 0 < u <t

Soe™™ SiZ,
i) - (817

= ;u EjlP> [eirtXt | fu]
e

= SiueiruXu = Zu




Remark 3.2 Lemma 3.1 holds in the same generality as Theorem 2.4.

If H is a PII (process with independent increments) with decomposition (2.2), then we can find a deter-
ministic function ¢, a deterministic measure-valued function K; and a deterministic increasing function A
such that

< > ( )_CtdAt(w%
Further if H is a Lévy process, then we can take A; = ¢, ¢ to be a constant, and K (z) (the Lévy measure)
to be independent of ¢, to integrate |x|? A |z|, and to satisfy K ({0}) = 0.

Theorem 3.3 (Integro-differential equation for Asian options) Suppose that H is PII with canonical
decomposition (2.2). The value of the Asian option is a function of t and Z;, denoted by v(t, Z;), such that
VN0, 8y, K1, K2) = Sov(0, Zy). Assume vy, v, and v., exist and are continuous. Then the following integro-
differential equation holds:

(3.1) /Ot

vs(s, Zs_)ds + %vzz(s, Zs )qs— — Zs_)?d(H®),

—0o0

+f o (57 e - 20)5) 5. 2) (s 2 e~ i)} u(dsvdac)] =0

for0<t<T.

PrOOF. Apply Ito’s formula to get

T T T
% = ;%] +/ »Sf%dXt — / St;: dSt — / S%L d<Xc’ Sc>t
0 0 0
T
+ [ Fpasr 3 (% -3 - s-AX+ 3As)
0 0<t<T

T
= )S%J + / 7337 (qt_St_dHt + ’I"(Xt_ — qt_St_)dt)
0

T < T T <
,/ St— f/ qt,d<HC>t +/ S:: d<HC>t
0 0 0 )

Note that

ASy = S5 AH;, AXy = q- S AH;,

X X, X 1 . X, AH,
e <Qt— f,) (1 B 1+AHt) = (qt— - Sf) (1+Aih> :

We can write

O e
- (qt, — iéz:) (dHt —rdt —d{H®); — AH; + 1?5&)
_ <Qt7 gftt—) (dHC Ve + /OO w(dt,dz) — v(dt,dr)) — /OO ffr M(dt7d$))
- —c



or

oo oo

iz, = (g — 70 ) (dH; — d(H®), + / 2 (uldt, dz) — v(dt, dz)) — /

— 00 — 00

e u(dt,dm)) :

Observe that Z; is a Markovian process under Q. Theorem 2.4 and the Markovian property give us the value
process

o(t, Zy) = BQ[(Zr — K1)t R,

which is a martingale by definition.
Note d(Z¢); = (q1— — Z—)?d(H®); and thus

d"U(t,Zt) = ’Ut(t,Zt_)dt+Uz(t,Zt_)dZ+ %"Uzz(t,Zt_)d<Zc>t
+U(t, Zt) — U(t, Zt_) — Uz(t, Zt_)AZt
= Ut (t, Zt_)dt + (2 (t7 Zt_)dZ + %’UZZ (t, Zt—)(Qt— — Zt_)2d<Hc>t

o (62 + (@ — 2 ) 122 ) — vt 20 ) — -t 20 Nar — 2o )12
= Local Martingale + v (¢, Z;_ )dt + %vzz(t7 Zs Nqs— — Zs_)2d(H®),

+/0;{11 (6.2 + (@ - 2)%)
ot Zeo) — 0a(t Zo)(qo— — Zt,)l%z}u(dt, dz).

The fact that a predictable local martingale with finite variation starting at zero is zero concludes the proof.
o

Corollary 3.4 In the case when H is a Lévy process, the integro-differential equation simplifies to
(3.2)  wilt,2) + £v.a(t, 2) (q— — 2)?
—|—/ {v (t,z + (qi— — Z)H%) —v(t, z) — v, (t, 2)(qe— — z)ﬁ} K(dz) =0

for0<t<T and z € R.

ProoOF. The canonical decomposition of H is

t t [e’e)
Ht:rtJr/ ﬁdVVSJr/ / x (u(ds,dx) — K(dz)dt)
0 0 J—o0
where Wy is a standard Brownian Motion. Applying theorem 3.3, we get
(3.3) vi(t, Zi—) + Sv.2(t, Zo- ) (qe— — Zi-)?

+ /OO Lo (62 + (e — Zi) 25 ) — 0lt.Z00) — vt Ze)are — Zom )55 | K (da) =0

— 00

Since the support for Z;_ is R, we get the above equation. o

4 Applications to Different Lévy Models

1. Geometric Brownian Motion with Poisson Jump



Let us start with a model similar to the one suggested in Andreasen (1998). Suppose that the stock price
process evolves as

dSy = S;—dH, = S, (rdt + odW, + (e?* — 1)dM,) ,

where W; is a standard Brownian motion, and M, is a compensated Poisson process, i.e., My = N; — At. Let
¢ be a Gaussian process with independent increments, and be independent of both W; and Ny, such that
E[¢:] = p and Var[¢;] = v2. Assume that v > 0,0 > 0,y are constants. In this case,

2
<H>t=0'2t, K(x): \/%’Y.exp{_(m(f”t#},

and v(t, z) satisfies (3.4). If v = 0, then the jump size reduces to a constant e* —1, i.e., K(x) = Ad({e! —1})
and (3.4) simplifies to:

(4.1) vi(t, 2) + Gaa(t, 2) (g — 2)?
+ o (b2 lae —2)1) —o(t2) - (@ - 2)v=(t,2)] £51 =0,

for 0 <t <T. In the geometric Brownian model, dS; = S;_dH; = S;_ (rdt + cdW}), ¢ = 0, and we simply
have

(42) Ut(ta Z) + %(Qt - Z)zvzz(t7 Z) = 07
as shown in Vecef (2001).

M)

2. Pure Jump Processes Models: CGMY and General Hyperbolic

In our model (2.1),
(4.3) dS; = S;_dHy,

the stock price is a stochastic exponential of H. Another usual approach in the literature is to let the stock
price to be a geometric exponential of the underlying:

(4.4) S, = SpePr.
Applying Ito’s lemma and rewriting (2.3):
~ 1 =~ ~
(4.5) s, = R <dHt + Zd(HC) + AR 1 AHt> :
1 C
(4.6) Se = Soexp{ Hy— 5 (H): + > (n(1+ AH,) — AH,)
0<s<t

We can easily find the relationship between H and H:

~ 1, . AR ~
(4.7) H, = Ht+§<HC>t+ Z (e —I—AHS),
0<s<t
~ 1, .
(4.8) Hy = Hy—5(H )+ > (n(1+ AH,) - AH,).
0<s<t

Therefore the two ways of modelling are equivalent with Assumption 2.1. If we are given the compensator
f(dt, dx) for the model (4.4), then the IDE in corollary (3.4) becomes

(4.9) Tt 2) + §0.2(t, 2) (- — 2)° +

/ T (e e - 92) — 9 7) - Bt - 92t ) Rl =0,

— 00




because AH, = ARt 1.

We mention here two geometric exponential models with pure jump processes. One is CGMY in Carr,

Geman, Madan, Yor (2000) with Lévy measure:

_Clb ~
E C%, fOI'.T<O;

CGMY — — ~
C%, for 7 > 0.

The other is the General Hyperbolic Model in Eberlein and Prause (1998) with Lévy measure:

exp —y/2y+a?|b|

e —albl ) :
k o (o me e AT ) A0
EP —

b 00 exp —W\M ) .

Tl <fo w2y<J2A<5m>+fo<am)>dy) ; it A <0;

where Jy and Y) are the Bessel functions of the first and second kind respectively. In both models the value
of the Asian option satisfy:

eh

(4.10) Bu(t, 2) + /Oo {a (t, 2+ (g — 2) e’”egl) —0(t,2) — Ba(t, 2) (g1 — 2) S } R (d7) =0,

—0o0

for0<t<T.

5

Conclusion

We have shown in this paper that we can remove the path dependency in the payoff function of all kinds of
Asian options regardless of the dynamics of the underlying asset. This reformulation of the problem gives us
an integro-differential equation for the price of the option when the stock is driven by an exponential Lévy
process. This equation simplifies even more if we assume a particular stock price model, such as Geometric
Brownian Motion with Poisson Jump model, the Carr, Geman, Madan, Yor model, or a general hyperbolic
model. In the case of Black-Sholes model, we obtain a one-dimensional PDE which is simple and robust to
implement.
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