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Introduction

Option pricing and hedging in a complete market are well-studied with nice

results using martingale theories. However, there remain many open questions

in incomplete markets. In particular, when the underlying processes involve

jumps, there could be infinitely many martingale measures which give an interval

of no-arbitrage prices instead of a unique one. Consequently, there is often no

martingale representation theorem to produce a perfect hedge. The question of

picking a particular price and executing a hedging strategy according to some

reasonable criteria becomes a non-trivial issue and an interesting question.

One conservative choice and a natural extension of the Black-Scholes theory, as

studied in Karoui and Quenez (1995) and Kramkov (1996), is to eliminate any

risk for selling the option at expiration by super-replicating the option payoff.

However, this often turns out to be too expensive to be practical. For example,

as shown in Eberlein and Jacod (1997) and Bellamy and Jeanblanc (2000), in a

wide range of pure-jump models and in the case of jump diffusion models, the

super-hedging prices for European options are equal to the trivial upper bound

of the no-arbitrage interval. Take the most common example of a call option.

The super-hedging strategy is to buy and hold, and therefore the price of the

call is equal to the initial stock price.

Föllmer and Leukert (2000) proposed an interesting partial-hedging strategy

for European type options to reduce the initial capital charged while bearing

some residual risk, as financial institutions usually function. Their optimality

criterion for measuring a hedging strategy is to minimize the shortfall risk at

expiration. More formally, assume at time T the option payoff is a nonneg-

ative random variable H. The final wealth XT is produced by an admissible

self-financing strategy trading between a money market account and a stock

v
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starting with initial capital X0 ≡ x. Then the optimal strategy is the one which

minimizes the expected shortfall under the physical measure at expiration:

min
X

EP
[
l
(
(H −XT )+

) ]
,

where the loss function l(x) is increasing and convex. Notice that, unlike vari-

ance minimization, there is no penalty in case the hedging portfolio overshoots

the option payoff. The existence of the optimal trading strategy when the stock

price follows a semimartingale process is proved in Föllmer and Leukert (2000)

using the Neyman-Pearson lemma. In a complete market, explicit solutions in

terms of the Radon-Nikodym derivative between the risk-neutral measure and

the physical measure were given. As an example, they showed how to compute

the hedging strategy in the Black-Scholes model with insufficient initial capi-

tal. In the more interesting case of incomplete markets, they took the convex

duality approach and provided an example of a geometric Brownian motion

model where the volatility jumps from one constant to another according to

some distribution at a deterministic time.

We are interested in doing some explicit computations in a simple incomplete

market model. Our stock price follows a jump diffusion process:

dSt = St−[µtdt+ σtdWt − (1 − αt)(dNt − λtdt) ],

where Wt is a standard Brownian motion, and Nt is a Poisson process with

intensity process λt. Assume µt > 0, σt > 0, 0 < αt < 1, λt > 0 to be predictable

processes. Note that the stock price is an Itô process driven by the Brownian

motion until a jump occurs in the Poisson process. When that happens, the

price jumps to a fraction of itself. We study the particular case where the loss

function is linear: l(x) = x. Adopting the convex duality approach as in Föllmer

and Leukert (2000), we define a random function

U(x, ω) = H(ω) − (H(ω) − x)+ = H(ω) ∧ x.

The shortfall minimization problem can then be transformed into the utility

maximization problem:

u(x) = max
X

EP [U(XT ) ].

First we extend the duality results in Kramkov and Schachermayer (1999) to

utility functions which are state dependent and not necessarily strictly concave,
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as our model requires, and in the generality of a semimartingale setting.1 Then

we specialize the results to the problem of minimizing shortfall. The by-product

of the duality result is an alternative way of proving the existence of optimal

solutions. In addition, it gives the structure of the optimal primal solution in

terms of the dual solution.2 We compute the optimal strategy, check the dual-

ity relationship and derive the HJB equation from the dynamic programming

principle in three complete market cases.

We next focus on the more interesting jump process case where we explicitly

characterize the primal and dual sets in terms of the characteristics. We provide

upper bounds for the value function u(x) using duality results. Each upper

bound produced in this way corresponds to a dual element. In particular, in

the case of constant parameters, we provide two solutions in closed form that

correspond to the Radon-Nikodym derivatives

ZT = e−θWT − 1
2 θ

2T , where θ =
µ

σ
,

and

ZT =

(
λ∗

λ

)NT

e−(λ∗−λ)T , where λ∗ =
µ+ (1 − α)λ

1 − α
,

with which we are familiar from the complete cases. For lower bounds, we

pick a particular strategy which we call the ‘bold strategy’ and compute the

corresponding value function in closed form. Numerical results are shown for

the cases of bonds and call options.

This research provides for the first time a method of checking the quality of a

hedging strategy according to the principle of minimizing shortfall in an incom-

plete market model. Although in order to get closed-form solutions, we provide

numerical examples in the case of constant parameters, the theory for choosing

upper and lower bounds works for general semimartingale models. Better upper

1There have been a few articles on extending duality theory so it could be applied to the

shortfall minimization problem, although we are not aware of any results that cover the linear

case in the semimartingale setting we study here. Cvitanic (1998) worked out the duality

results of the linear case l(x) = x under a multidimensional Brownian motion model with

portfolio constraints. Föllmer and Leukert (2000) and Leukert (1999) proved duality results

for state dependent utility function resulting from strictly convex loss function l(x). Bouchard,

Touzi and Zeghal (2002) extended duality results to a finite deterministic utility function

defined on the real line that is not necessarily smooth, but in their shortfall minimizing case

the loss function l(x) cannot be linear near infinity.
2It is well-known in the complete market case that the primal optimal terminal portfolio

value is a constant times the marginal utility of the Radon-Nikodym derivative.
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bounds can be chosen by picking the dual element using a more sophisticated

technique, and better lower bounds can be chosen by varying investment strate-

gies. The results can be easily extended to more general convex loss function

l(x).



Chapter 1

Duality Theory for Shortfall

Risk Minimization

1.1 Setup

Suppose the discounted asset price process is a real-valued semimartingale S =

(St)0≤t≤T on the stochastic basis (Ω,F ,F = (Ft)0≤t≤T ,P) that satisfies the

usual conditions. Assume F0 is trivial. Let M denotes the set of equivalent

local martingale measures.

Assumption 1.1. M 6= ∅.

Remark 1.2. This assumption is closely related to a version of the no-arbitrage

condition for continuous-time semimartingale models; see Delbaen and Schacher-

mayer (1994).

Assumption 1.3. The utility function U(x, ω) : ([0,∞) × Ω) → [0,∞) satis-

fies: U(·, ω) is a continuous, increasing and concave function for any fixed ω

and U(0, ω) = 0. The right-hand derivative also satisfies 1 Ur(0, ω) > 0 and

Ur(∞, ω) = limx→∞ Ur(x, ω) = 0 for all ω ∈ Ω.

Since we are mainly interested in extending the duality theory to solve the

particular problem of shortfall risk minimization, the following assumption is

reasonable to make instead of posing restrictions on asymptotic elasticity of the

utility function as in some other references.2 It simplifies the task of existence

proofs because we can invoke the dominated convergence theorem.

1Its existence is guaranteed by the concavity of U .
2They are mentioned in the footnote on page vii.

1



2CHAPTER 1. DUALITY THEORY FOR SHORTFALL RISK MINIMIZATION

Assumption 1.4. The utility function is dominated by an integrable random

variable measurable with respect to FT , i.e., there exists an FT -measurable ran-

dom variable H such that EP[H] < ∞ and U(x, ω) ≤ H(ω) for all ω ∈ Ω and

x ≥ 0.

As usual, we use stochastic integrals to represent the wealth process from invest-

ment strategies and impose non-bankruptcy condition for admissibility. There

will be no endowments and consumptions. The process ξs represents the number

of shares invested in the underlying asset, and is assumed to be integrable with

respect to S. The set of admissible self-financing portfolios starting at initial

capital x is defined as:

(1.1) X (x) =

{
X

∣∣∣∣ Xt = x+

∫ t

0

ξsdSs ≥ 0 P − a.s., for 0 ≤ t ≤ T

}
.

The primal problem is to maximize the expected utility at final time T :

(Primal) u(x) = sup
X∈X (x)

EP [U(XT ) ] , for x ≥ 0.

The stochastic conjugate function of U(x, ω) is

(1.2) V (y, ω) = sup
x≥0

[U(x, ω) − xy ] , for y ≥ 0.

Remark 1.5. V (·, ω) is a continuous, decreasing and convex function for any

fixed ω. Note that V (0) = U(∞) = limx→∞ U(x), and V (y) ≥ U(0) = 0.

As in Kramkov and Schachermayer (1999), define the dual space to be

Y(y) = {Y ≥ 0 | Y0 = y and XY is(1.3)

a P-supermartingale for any X ∈ X (1) } .

Then the dual problem is to minimize the expected value of the conjugate func-

tion:

(Dual) v(y) = inf
Y ∈Y(y)

EP [V (YT ) ]

There are a few natural questions that arise at this point:

1. Are the primal and dual value functions u(x) and v(y) conjugates?

2. Do optimal solutions to the primal and dual problems exist? (Since we do

not have strict concavity in the utility function, it will be too optimistic to ex-

pect uniqueness.) How are they related to each other? What are sufficient and

necessary conditions for optimality?
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1.2 Bipolar theorem

To give positives answers to both above questions, we need a bipolar theorem

proved in Kramkov and Schachermayer (1999). Let us first fix some defini-

tions. L0(Ω,F ,P) denotes the set of random variables and L∞(Ω,F ,P) includes

bounded ones only. Let

C(x) =
{
g ∈ L0(Ω,F ,P) | 0 ≤ g ≤ XT for some X ∈ X (x)

}

denote the set of contingent claims super-replicable by some admissible self-

financing strategies with initial capital x. Let

D(y) =
{
h ∈ L0(Ω,F ,P) | 0 ≤ h ≤ YT for some Y ∈ Y(y)

}
.

Then the primal and dual value functions can be written as:

u(x) = sup
g∈C(x)

EP [U(g) ] and v(y) = inf
h∈D(y)

EP [V (h) ] .

Notice the scaling property C(x) = x C(1) and D(y) = yD(1). We will define

C := C(1) and D := D(1). The novel choice of sets X and Y by Kramkov and

Schachermayer (1999) gives the perfect bipolar relation between the solid sets

C and D. Recall a set C ∈ L0(Ω,F ,P) is solid if 0 ≤ f ≤ g and g ∈ C implies

f ∈ C.

Proposition 1.6 (Proposition 3.1 in Kramkov & Schachermayer (1999)).

Suppose Assumption 1.1 hold. The sets C and D have the following properties:

(i) C and D are subsets of L0
+(Ω,F ,P) which are convex, solid and closed in the

topology of convergence in measure.

(ii)

g ∈ C iff E[gh] ≤ 1, for all h ∈ D and

h ∈ D iff E[gh] ≤ 1, for all g ∈ C.

(iii) The constant function 1 is in C.

Remark 1.7. Notice Assumption 1.1 used in the bipolar theorem assumes the

existence of some equivalent local martingale measures, and therefore is only

dependent on the exclusion of certain arbitrage opportunities in the model. It

has nothing to do with utility functions.

The following lemma is quite powerful, yet surprisingly not very hard to prove.

For interested readers, a proof is given in the appendix of Delbaen and Schacher-

mayer (1994).
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Lemma 1.8. Let (fn)n≥1 be a sequence of non-negative random variables. Then

there is a sequence gn ∈ conv(fn, fn+1, . . . ), n ≥ 13, which converges almost

surely to a random variable g with values in [0,∞].

1.3 Duality theorems

Now we are ready to prove the first major theorem.

Theorem 1.9. Suppose Assumptions 1.1, 1.3 and 1.4 hold. Then

(i) For x > 0 and y > 0, the optimal solution ĝ(x) to (Primal) exists, and the

optimal solution ĥ(y) to (Dual) exists. The set of optimal solutions is convex.

(ii) u(x) < ∞, v(y) < ∞ for all x > 0 and y > 0. The value functions u and v

are conjugates:

v(y) = sup
x>0

[u(x) − xy] for any y > 0, and(3.4)

u(x) = inf
y>0

[v(y) + xy] for any x > 0.(3.5)

u is concave,continuous and increasing; v is convex, continuous and decreasing.

The right-hand derivatives exist and satisfy

ur(∞) = lim
x→∞

ur(x) = 0, vr(∞) = lim
y→∞

vr(y) = 0

Remark 1.10. Since the proof is fairly long, we will divide it into a few steps

and throw some tricky lemmas into the Appendix.

Proposition 1.11. Suppose Assumptions 1.1, 1.3 and 1.4 hold. Then for x > 0

and y > 0, both the optimal solution ĝ(x) to (Primal) and the optimal solution

ĥ(y) to (Dual) exist. Furthermore, u(x) ≤ EP[H] <∞ is concave and increasing

on [0,∞), and therefore is a continuous function on (0,∞). The right-hand

derivative ur exists and satisfies

ur(∞) = lim
x→∞

ur(x) = 0.

Proof. Let (fn)n≥1 be a sequence in C(x) such that the expectation of the

utility function increases to the value function u(x):

(3.6) EP [U(fn) ] ↗ u(x) as n→ ∞.

3This is the notation for finite convex combination.
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By Lemma 1.8, there exists a sequence

gn ∈ conv(fn, fn+1, . . . ), and gn → ĝ a.s.

By Theorem 1.6, we know C(x) is closed and convex, and therefore gn, ĝ ∈ C(x).

Let gn =
∑
m am fm. By the concavity of U ,

EP [U(gn) ] ≥
∑

m

amE
P [U(fm) ] ≥ EP [U(fn) ] .

By Assumption 1.4 and the Dominated Convergence Theorem,

EP [U(gn) ] → EP [U(ĝ) ] .

Comparing to equation (3.6), we get

EP [U(ĝ) ] ≥ u(x).

By definition, u(x) = supg∈C(x) E
P [U(g) ]. We conclude that ĝ is optimal. The

existence proof in the case of (Dual) is similar using Fatou’s lemma and the fact

V ≥ 0 by Remark 1.5.

By the definition in (Primal) for u(x) and Assumption 1.4, we know u(x) ≤
EP[H] < ∞. Notice that for any optimal ĝ1 ∈ C(x1) and ĝ2 ∈ C(x2), we have
ĝ1+ĝ2

2 ∈ C(x1+x2

2 ). By the concavity of U ,

u
(
x1+x2

2

)
≥ EP

[
U
(
ĝ1+ĝ2

2

) ]

≥ 1
2

(
EP [U (ĝ1) ] + EP [U (ĝ2) ]

)

= u(x1)+u(x2)
2

Therefore u(x) is concave on [0,∞). It is a trivial consequence that u(x) is

continuous on (0,∞). Suppose 0 < x1 < x2. We know that x1 C(1) = C(x1),

x2 C(1) = C(x2) and C(1) is solid. Therefore, C(x1) ⊆ C(x2). By definition,

u(x1) ≤ u(x2). It remains to show that ur(∞) = 0. Suppose not, i.e., there

exists some ε > 0 such that ur(x) > ε for some large constant X and any x ≥ X.

Then the following would be true

u(x) = u(X) +

∫ x

X

ur(z) dz > u(X) + ε(x−X).

This is a contradiction to Assumption 1.4, u(x) ≤ EP[H] < ∞. We conclude

ur(∞) = 0. �
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Proposition 1.12. Suppose Assumptions 1.1, 1.3 and 1.4 hold. Then

v(y) = sup
x>0

[u(x) − xy] for any y > 0, and

u(x) = inf
y>0

[v(y) + xy] for any x > 0.

Also, v(y) <∞ is convex, continuous and decreasing for all y > 0.

Proof. We follow the proof of Lemma 3.6 in Kramkov and Schachermayer

(1999) very closely, filling in some details, and extending the results to state-

dependent utility function U(·, ω). For n > 0, define

Bn = { g ∈ L∞(Ω,F ,P) : 0 ≤ g ≤ n }.

Lemma A.1 gives the following equality for fixed n: 4

(3.7) sup
g∈Bn

inf
h∈D(y)

EP [U (g) − gh ] = inf
h∈D(y)

sup
g∈Bn

EP [U (g) − gh ] .

Remark A.2, Lemma A.3 and A.5 give that

(3.8) lim
n→∞

sup
g∈Bn

inf
h∈D(y)

EP [U (g) − gh ] = sup
x>0

sup
g∈C(x)

EP [U (g) − xy ] .

Then by the definition of u(x), equation (3.8) and equation (3.7), we have

sup
x>0

[u(x) − xy] = sup
x>0

sup
g∈C(x)

EP [U (g) − xy ]

= lim
n→∞

sup
g∈Bn

inf
h∈D(y)

EP [U (g) − gh ]

= lim
n→∞

inf
h∈D(y)

sup
g∈Bn

EP [U (g) − gh ] .

Now define

V n(y, ω) = sup
0<x≤n

[U(x, ω) − xy ] and vn(y) = inf
h∈D(y)

EP [V n(h) ] .

Then we have

inf
h∈D(y)

sup
g∈Bn

EP [U (g) − gh ] = inf
h∈D(y)

EP [V n(h) ] = vn(y).

To finish the first part of the proof, it is sufficient to show that

v(y) = lim
n→∞

vn(y).

4The sets Bn are σ(L∞, L1)-compact. By (i)and (iii) of Proposition 1.6, D(y) is a closed

convex subset of L1(Ω,F , P). The proof in Kramkov and Schachermayer (1999) uses the

Minmax Theorem (Theorem 45.8 in Strasser (1985)) to get the desired equality.



1.3. DUALITY THEOREMS 7

Evidently, vn is an increasing sequence and vn ≤ v, for n ≥ 1, so limn→∞ vn(y) ≤
v(y). Let fn be a sequence in D(y) such that

(3.9) lim
n→∞

EP [V n(fn) ] ↗ lim
n→∞

vn(y).

Lemma 1.8 implies the existence of hn ∈ conv(fn, fn+1, . . . ) such that hn →
ĥ a.s. By Proposition 1.6, we know D(y) is closed and convex, and therefore

ĥ ∈ D(y). Let hn =
∑
m fm. Since V n(y) ↗ V (y) are convex, we have

EP [V n(hn) ] ≤
∑

m

amE
P [V n(fm) ](3.10)

≤
∑

m

amE
P [V m(fm) ] ≤ sup

m≥n
EP [V m(fm) ] .

Applying (3.9) and (3.10), and Fatou’s lemma, we have

lim
n→∞

EP [V n(fn) ] = sup
m≥n

EP [V m(fm) ] ≥ lim inf
n→∞

EP [V n(hn) ]

≥ EP
[
lim inf
n→∞

V n(hn)
]

= EP
[
V (ĥ)

]
≥ v(y).

So we have the desired inequality limn→∞ vn(y) ≥ v(y) and therefore

v(y) = sup
x>0

[u(x) − xy] for any y > 0.

By Proposition 1.11, we know that u(x) is an increasing and concave function

such that ur(∞) = 0. In the case ur(0+) > 0, Theorem B.6 gives

u(x) = inf
y>0

[v(y) + xy] for any x > 0,

as well as v(y) <∞ is convex, continuous and decreasing for all y > 0. Suppose

ur(0+) = 0. Since u(x) is concave and increasing, u(x) ≡ u(0+) is a constant

function on (0,∞). We have just proved that v(y) = supx>0[u(x)−xy], therefore

v(y) ≡ u(0+) is also a constant function for all y > 0. Then infy>0[v(y)+xy] =

v(0+) = u(0+) = u(x), and all the above results hold. �

Proof of theorem 1.9. We still need to prove vr(∞) = 0. Since v is convex,

the right-hand derivative vr(y) exists and is increasing. We’ve proved that v

is decreasing; therefore vr(y) ≤ 0. Suppose there exists some ε > 0 such that

vr(y) < −ε for some large constant Y and any y ≥ Y , then the following should

be true

v(y) = v(Y ) +

∫ y

Y

vr(z) dz < v(Y ) − ε(y − Y ).

This is a contradiction to the fact v(y) ≥ 0. We conclude vr(∞) = 0. �



8CHAPTER 1. DUALITY THEORY FOR SHORTFALL RISK MINIMIZATION

The next theorem gives a sufficient and necessary condition for optimality. Note

that we define ∂U(0) = [U r(0),∞) and ∂V (0) = [V r(0),∞).

Theorem 1.13. Suppose Assumptions 1.1, 1.3 and 1.4 hold. Suppose x > 0

and y > 0 such that y ∈ ∂u(x). Let ĝ ∈ C(x) and ĥ ∈ D(y). Then the following

two statements are equivalent.

(i) ĝ is an optimal solution to (Primal) and ĥ is an optimal solution to (Dual).

(ii) EP [ ĝ ĥ ] = xy and ĥ ∈ ∂U(ĝ)−P a.s., or equivalently, ĝ ∈ −∂V (ĥ)−P a.s.

Proof.“(i) ⇒ (ii)”: From Theorem B.6, when y ∈ ∂u(x),

v(y) = sup
z>0

[u(z) − zy] = u(x) − xy.

(i) implies,

EP [V (ĥ) ] = EP [U(ĝ) ] − xy.

Since ĝ ∈ C(x) and ĥ ∈ D(y), we have EP [ ĝ ĥ ] ≤ xy. Therefore,

(3.11) EP [V (ĥ) ] ≤ EP [U(ĝ) ] − EP [ ĝĥ ].

By definition V (y) = supx>0 [U(x) − xy]. Therefore

V (y) ≥ U(x) − xy for any x > 0, y > 0.

Consequently,

(3.12) V (ĥ) ≥ U(ĝ) − ĝĥ P a.s.

Equations (3.11) and (3.12) gives the equality:

V (ĥ) = U(ĝ) − ĝĥ P a.s.

By Assumption 1.3 and Theorem B.6, the above equation is equivalent to ĥ ∈
∂U(ĝ) − P a.s., or equivalently, ĝ ∈ −∂V (ĥ) − P a.s. Taking expectation of the

above equation, we get EP [ ĝ ĥ ] = xy.

“(ii) ⇒ (i)”: Since ĥ ∈ ∂U(ĝ) − P a.s. , we have

U(ĝ) = V (ĥ) + ĝĥ P a.s.

Taking expectation, and using the definition of v(y), (ii), Theorem 1.9 and

Theorem B.6 , we get

EP [U(ĝ) ] = EP [V (ĥ) ] + EP [ ĝ ĥ ] ≥ v(y) + xy = u(x).

Therefore, ĝ is an optimal solution to (Primal). Similarly we can prove that ĥ

is an optimal solution to (Dual). �



1.4. MINIMIZING SHORTFALL RISK IN A SEMIMARTINGALE MODEL9

1.4 Minimizing shortfall risk in a semimartin-

gale model

We will follow the set up in Section 1.1. Consider a contingent claim given by

a nonnegative, FT -measurable random payoff H. We would like to hedge this

option optimally by solving the problem of minimizing shortfall risk 5

(4.13) min
X∈X (x)

EP [ (H −XT )+ ].

where X (x) is the set of admissible self-financing portfolios defined in (1.1).

Recall Assumption 1.1 that the set of equivalent local martingale measures M
is not empty. We make the following assumptions to ensure that the value

functions will turn out to be finite.

Assumption 1.14. The super-hedging price x̄ for this claim is finite, i.e.,

x̄
∆
= sup

Q∈M
EQ[H] <∞.

Assumption 1.15. EP[H] <∞.

Kramkov (1996) and Föllmer and Kabanov (1998) showed that there exist both

a wealth and a consumption process to super-hedge the claim with initial capital

x̄:

Wt = ess sup
Q∈M

EQ [H | Ft ] = Xt − Ct, W0 = x̄, WT = H,

where X ∈ X (x̄) and Ct is a nonnegative, increasing optional process with

C0 = 0.

To fit into the utility maximization framework, we define the state-dependent

utility function

U(x, ω) = H(ω) − (H(ω) − x)
+

= H(ω) ∧ x.

By definition in (1.2), the stochastic conjugate function is

V (y, ω) = (1 − y)+H(ω).

Our primal problem in the case of minimizing shortfall risk can be written as

u(x) = sup
X∈X (x)

EP [H ∧XT ](Primal-Shortfall)

= sup
g∈C(x)

EP [H ∧ g ] .

5Föllmer and Leukert (2000) and Leukert (1999) studied the duality problem of minimizing

shortfall risk for a strictly convex loss function l(x): minX∈X (x) EP [ l((H − XT )+) ].
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The dual problem is

v(y) = inf
Y ∈Y(y)

EP
[
(1 − Y )+H

]
(Dual-Shortfall)

= inf
h∈D(y)

EP
[
(1 − h)+H

]
.

Remark 1.16. By Assumption 1.14 and the discussion of super-hedging, we

can easily see that

x̄ = min{x : u(x) ≡ EP[H] is a constant function on [x,∞) }.

Notice that U(x, ω) ≤ H(ω). With Assumption 1.15, U satisfies both Assump-

tion 1.3 and 1.4. Therefore, all the duality results (Theorem 1.9 and 1.13)

developed in section 1.3 apply in this case. We will restate them in a stronger

sense with the following assumption. Recall that we define ∂u(0) = [ur(0),∞)

and ∂v(0) = [vr(0),∞).

Assumption 1.17. The discounted asset price process S is locally bounded.

Theorem 1.18. Suppose Assumptions 1.1, 1.14, 1.15 and 1.17 hold. Then

(i) For x ≥ 0 and y ≥ 0, the optimal solution ĝ(x) to (Primal-Shortfall) exists,

and the optimal solution ĥ(y) to (Dual-Shortfall) exists.

(ii) u(x) < ∞, v(y) < ∞ for all x ≥ 0 and y ≥ 0. The value functions u and v

are conjugates:

v(y) = max
x≥0

[u(x) − xy] for any y ≥ 0, and

u(x) = min
y≥0

[v(y) + xy] for any x ≥ 0.

u(x) is concave,continuous and increasing for x ∈ [0,∞); v(y) is convex, con-

tinuous and decreasing for y ∈ [0,∞). In particular,

u(x) ≡ EP[H] = v(0) is a constant function on [x̄,∞);

v(y) ≡ 0 = u(0) is a constant function on [ur(0),∞);

The right-hand derivatives satisfy

vr(0+) = lim
y↘0

vr(y) = −x̄ and vr(∞) = lim
y→∞

vr(y) = 0

(iii) v(y) = u(x) − xy if and only if y ∈ ∂u(x), or equivalently, x ∈ −∂v(y).

Proof. (i) and (ii): Recall the results from Theorem 1.9 and Theorem B.6.

We need to take care of the cases at 0.
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When x = 0, X ≡ 0 for allX ∈ X (0). The optimal solution to (Primal-Shortfall)

is X̂T = 0, and u(x) = 0. Corollary 1.2 in Delbaen and Schachermayer (1994)

says, under Assumption 1.17, Assumption 1.1 is equivalent to the condition that

S satisfies No Free Lunch with Vanishing Risk (NFLVR). Corollary 3.7 in the

same paper implies that, for any x > 0 and for all X ∈ X (x), x → 0 implies

XT → 0 in probability. In particular, the optimal solution X̂ ∈ X (x) such

that u(x) = EP[H ∧ X̂T ] satisfies X̂T → 0 in probability. By Assumption 1.15

and the Dominated Convergence Theorem, u(x) → 0 = u(0) as x → 0, and

therefore, u(x) is right continuous at x = 0.

When y = 0, Y ≡ 0 for all Y ∈ Y(0) because they are nonnegative super-

martingales. Therefore, the optimal solution to (Dual-Shortfall) is ŶT = 0, and

v(0) = EP[H]. For any fixed y > 0 and for all Y ∈ Y(y), since Y are nonnega-

tive supermartingales, y → 0 implies YT → 0 in probability. In particular, the

optimal solution Ŷ ∈ Y(y) such that v(y) = EP[(1 − ŶT )+H] satisfies ŶT → 0

in probability. By Assumption 1.15 and the Dominated Convergence Theorem,

v(y) → EP[H] = v(0) as y → 0, and therefore, v(y) is right continuous at y = 0.

Remark 1.16 tells us that u(x) ≡ EP[H] for x ≥ x̄, and since u(x) is continuous

and increasing on [0,∞), the sup in (3.4) is obtained and therefore can be written

as max. Since v(y) is continuous and decreasing on [0,∞), and vr(∞) = 0, the

inf in (3.5) is obtained and can be written as min.

Lemma B.4 and Theorem B.6 shows that vr(0+) = −x̄.
(iii) This is true by Remark B.7. �

Theorem 1.19. Suppose Assumptions 1.1, 1.14, 1.15 and 1.17 hold. Suppose

y ∈ ∂u(x) where x ≥ 0 and y ≥ 0.

(i) If ĝ ∈ C(x) is an optimal solution to (Primal-Shortfall), then there is an

optimal solution to (Dual-Shortfall) ĥ ∈ D(y) such that

(4.14) ĥ = 1{0≤ĝ<H} + δ11{ĝ=H}, and EP[ĝĥ] = xy,

where 0 ≤ δ1 ≤ 1 is an FT -measurable random variable.

(ii) If ĥ ∈ D(y) is an optimal solution to (Dual-Shortfall), then there is an

optimal solution to (Primal-Shortfall) ĝ ∈ C(x) such that

(4.15) ĝ = H1{0≤ĥ<1} + δ21{ĥ=1}, and EP[ĝĥ] = xy,

where 0 ≤ δ2 ≤ H is an FT -measurable random variable.

Remark 1.20. There exist optimal solutions that do not have overshoots, i.e.,

ĝ ≤ H and ĥ ≤ 1.



12CHAPTER 1. DUALITY THEORY FOR SHORTFALL RISK MINIMIZATION

Remark 1.21. Rewrite equation (4.14) as

(4.16) ĝ = φ̃H = (1{0≤ĥ<1} + γ1{ĥ=1})H,

where 0 ≤ γ ≤ 1 is an FT -measurable random variable. This gives the structure

of the optimal test φ̃ whose existence is derived in Proposition 3.1 and Theorem

3.2 of Föllmer and Leukert (2000) in the case when the loss function l(x) = x.

In the notation of our paper, they proved that there exists an FT -measurable

random variable φ̃ ∈ [0, 1] that solves the problem

(4.17) min
φ∈[0,1]

EP[(1 − φ)H] s.t. sup
Q∈M

EQ[φH] ≤ x,

and φ̃H is the optimal solution to the (Primal-Shortfall). This result also gener-

alizes Proposition 4.1 in Föllmer and Leukert (2000) from the complete market

to the incomplete market case where they give the same form of equation (4.16),

only in the complete market.

Proof. (i): Theorem 1.13 and the following equation

∂U(ĝ) = ∂(ĝ ∧H) =





0, if ĝ > H;

1, if 0 < ĝ < H;

[0, 1], if ĝ = H;

[1,∞), if ĝ = 0;

gives that h̃ ∈ D(y) is an optimal solution to (Dual-Shortfall) if and only if

h̃ = h̃1{ĝ=0} + 1{0<ĝ<H} + δ11{ĝ=H}, and EP[ĝh̃] = xy,

where 0 ≤ δ1 ≤ 1 is a random variable and h̃ ≥ 1 on the set ĝ = 0. Obviously,

ĥ = h̃ ∧ 1 is also an optimal solution to (Dual-Shortfall) since D(y) is solid.

(ii) This is similarly proved with the following equation

−∂V (ĥ) = −∂(1 − ĥ)+H =





0, if ĥ > 1;

H, if 0 < ĥ < 1;

[0, H], if ĥ = 1

[H,∞), if ĥ = 0.

�
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1.5 Discrete case

We will write a necessary and sufficient condition for optimality in a finite

dimensional case where we replace the condition of expectation with maximality.

Define the set of maximal elements to be

C∗(x) = { g ∈ C(x) : f ≥ g, f ∈ C(x) ⇒ f = g }.

The model is set up as follows. There are two times t = 0 and t = 1. The prob-

ability space is Ω = {ω1, ω2, ...ωn} with probability distribution (p1, p2, ..., pn).

There are m risky securities S1, S2, ..., Sm and a derivative security H. The

interest rate is zero. Assume the model to be arbitrage free. Define

sij = Si1(ωj) − Si0 for i = 1, 2, ...,m and j = 1, 2, ..., n.

Let

(h1, h2, ..., hn) = (H(ω1), H(ω2), ..., H(ωn)).

Suppose we invest (θ1, θ2, ..., θm) shares in the stocks. A self-financing strategy

X is X0 = x and X1(ωj) = x+
∑m
i=1 θisij for j = 1, 2, ..., n. Define X1(x) to be

the set of the wealths of admissible strategies at time 1:

X1(x) = {X1 : X ∈ X (x) }.

The primal sets are

X1(x) = C∗(x)

=





(
x+

m∑

i=1

θisij

)

j=1,...,n

: (θj)j=1,...,n ∈ Rn and x+

m∑

i=1

θisij ≥ 0 ∀j



 .

Define

Y1(y) = {Y1 : Y ∈ Y(y) }.
The dual sets are

Y1(y) =



 (y1, y2, ..., yn) ∈ Rn+ :

n∑

j=1

pjxjyj ≤ xy ∀(x1, x2, ..., xn) ∈ X1(x)



 ;

D∗(y) =



 (y1, y2, ..., yn) ∈ Rn+ :

n∑

j=1

pjyj = y,

n∑

j=1

pjyjsij = 0 ∀i



 .

The primal problem is

u(x) = sup
(x1,x2,...,xn)∈X1(x)

n∑

j=1

pj (hj ∧ xj) .
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The dual problem is

v(y) = inf
(y1,y2,...,yn)∈Y1(y)

n∑

j=1

pjhj(1 − yj)
+

= inf
(y1,y2,...,yn)∈D∗(y)

n∑

j=1

pjhj(1 − yj)
+.

Theorem 1.22. Suppose y ∈ ∂u(x) where x ≥ 0 and y ≥ 0. Then for

V (y, ωj) = hj(1−y)+ and an optimal solution to the dual problem Ŷ = (ŷ1, ŷ2, ...ŷn),

C∗(x) ∩ −∂V (Ŷ ) is the set of optimal solutions to the primal problem.

Proof. In our finite dimensional discrete model

(x1, x2, ..., xn) ∈ C∗(x) ⇔
n∑

j=1

pjxjyj = xy ∀(y1, y2, ..., yn) ∈ D∗.

Applying Theorem 1.13, we get the desired result. �

Here we give a very simple incomplete market example in a discrete time setting

with finite state space to illustrate the duality theory we have just developed

for the case of minimizing shortfall risk.

Example 1.23 (Trinomial Tree). There are two times t = 0 and t = 1.

The probability space is Ω = {ω1, ω2, ω3} with probability distribution P(ω1) =

P(ω2) = P(ω3) = 1
3 . The stock price follow the process

S0 = 1, S1(ω1) = 1
2 , S1(ω2) = 1, S1(ω) = 3

2 .

The interest rate is assumed to be zero. The model is obviously arbitrage-free.

If we purchase ξ shares of stock at time t = 0 with initial capital X0 = x, then

at time t = 1 we have

X1(ω1) = x− 1
2ξ, X1(ω2) = x, X1(ω3) = x+ 1

2ξ.

For this self-financing strategy to be admissible, we must have

X1(ω) ≥ 0 ∀ω ∈ Ω ⇔ −2x ≤ ξ ≤ 2x.

If we let (x1, x2, x3) = (X1(ω1), X1(ω2), X1(ω3)), we can write the primal sets

as

X1(x) =
{

(x1, x2, x3) ∈ R+
3 : x1 + x3 = 2x, x2 = x

}
;

C(x) =
{

(x1, x2, x3) ∈ R+
3 : x1 + x3 ≤ 2x, x2 ≤ x

}
.
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It is easy to compute that the dual sets are

Y1(y) =
{

(y1, y2, y3) ∈ R+
3 : 2

3y1 + 1
3y2 ≤ y, 1

3y2 + 2
3y3 ≤ y

}

= D(y),

where (y1, y2, y3) = (Y1(ω1), Y1(ω2), Y1(ω3)). We can check that the bipolar

relationship in Proposition 1.6 is satisfied

• Let (y1, y2, y3) ∈ R+
3 be given.

Then (y1, y2, y3) ∈ D(1) ⇔ 1
3

∑3
i=1 xiyi ≤ 1, ∀ (x1, x2, x3) ∈ C(1).

• Let (x1, x2, x3) ∈ R+
3 be given.

Then (x1, x2, x3) ∈ C(1) ⇔ 1
3

∑3
i=1 xiyi ≤ 1, ∀ (y1, y2, y3) ∈ D(1).

Suppose the option payoff is

H(ω1) = 1
4 , H(ω2) = 0, H(ω3) = 3

4 .

Then the state-dependent utility function is

U(x, ω1) = x ∧ 1
4 , U(x, ω2) = 0, U(x, ω3) = x ∧ 3

4 ,

and the stochastic conjugate function is

V (y, ω1) = 1
4 (1 − y)+, V (y, ω2) = 0, V (y, ω3) = 3

4 (1 − y)+.

The primal problem can be stated as

u(x) = sup
g∈C(x)

EP [U(g)]

= sup
|ξ|≤2x

1
3

[(
(x− 1

2ξ) ∧ 1
4

)
+
(
(x+ 1

2ξ) ∧ 3
4

)]

= sup
0≤x1≤2x

1
3

[(
x1 ∧ 1

4

)
+
(
(2x− x1) ∧ 3

4

)]
, for x ≥ 0.

The optimal solution ĝ ∈ C(x) is

ĝ(ω1) = x− 1
2ξ, ĝ(ω2) ∈ [0, x], ĝ(ω3) = x+ 1

2ξ,

where ξ ∈
[
(−2x) ∨ (2x− 1

2 ), (2x) ∧ (−2x+ 3
2 )
]
. Obviously, the solution is not

unique on the set H > 0 except for x = 0 and x = 1
2 . The primal value function

is

u(x) = 2
3 (x ∧ 1

2 ), for x ≥ 0.

Obviously, u(x) is concave, continuous, increasing, piecewise linear, and equal

to a constant on [ 12 ,∞) where x̄ = 1
2 is the super-hedging price. Similarly, we
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can compute the optimal strategy ĥ ∈ D(y) and the value function v(y) for the

dual problem

v(y) = inf
h∈D(y)

EP [V (h)]

=
(

1
3 − 1

2y
)
1{0≤y≤ 2

3}, for y ≥ 0.

Obviously, v(y) is convex, continuous, decreasing, piecewise linear, and equal to

a constant on [ 23 ,∞) where ur(0) = 2
3 . Note that vr(0) = − 1

2 = −x̄.

• y ∈ [0, 2
3 ]: ĥ(ω1) = 3

2y, ĥ(ω2) = 0, ĥ(ω3) = 3
2y;

• y ∈ ( 2
3 ,∞): ĥ(ω1) ∈ [1, 1

2 (3y − η)], ĥ(ω2) = η, ĥ(ω3) ∈ [1, 1
2 (3y − η)],

where η ∈ [0, 3y − 2].

The optimal solution is not unique on the set H > 0 unless we take ĥ ∧ 1.

When x ∈ [0, x̄) = [0, 1
2 ), then y = ∂u(x) = 2

3 and when x ∈ (x̄,∞), then

y = ∂u(x) = 0. Therefore, the relevant interval for dual optimal solution is

y ∈ [0, 2
3 ] and 1

y
ĥ obviously defines a martingale measure that is absolutely

continuous with respect to the original measure P. It is not difficult to check

that

v(y) = max
x≥0

[u(x) − xy], u(x) = max
y≥0

[v(y) + xy],

and for y ∈ ∂u(x), we have

ĥ ∈ ∂U(ĝ), ĝ ∈ −∂V (ĥ).

In particular, we can always find a pair of optimal solutions that have the form

(4.15) and (4.14). Also, EP[ĝ(x)ĥ(y)] = xy is always true. When x = 1
2 , the

maximal set is

C∗( 1
2 ) =

{
(x1, x2, x3) ∈ R+

3 : x1 + x3 = 1, x2 = 1
2

}
.

For y ∈ ∂u( 1
2 ) = [0, 2

3 ], ĥ(y) = ( 3
2y, 0,

3
2y). Therefore, when y = 2

3 ,

∂V (ĥ(y), ω1) = [− 1
4 , 0], ∂V (ĥ(y), ω2) = [− 1

2 ,∞), ∂V (ĥ(y), ω3) = [− 3
4 , 0],

and when y ∈ [0, 2
3 ),

∂V (ĥ(y), ω1) = − 1
4 , ∂V (ĥ(y), ω2) = [− 1

2 ,∞), ∂V (ĥ(y), ω3) = − 3
4 .

Obviously,

ĝ( 1
2 ) = ( 1

4 ,
1
2 ,

3
4 ) = C∗( 1

2 ) ∩ −∂V (ĥ(y)), ∀ y ∈ ∂u( 1
2 ).

�
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Next we give an example of an infinite dimensional tree where the dual optimal

solution does not define a martingale measure. More discussion in a continuous

time model is given later in Section 3.3.

Example 1.24 (Infinite Dimensional Tree). There are two times t = 0 and

t = 1. The probability space is Ω = {ω0, ω1, ...} with probability distribution

P(ω0) = 1 − ε, P(ωn) = ε
2n for n ≥ 1. The stock price follow the process

S0 = 1, S1(ω0) = 2, S1(ωn) = 1
n
, for n ≥ 1.

The interest rate is assumed to be zero. The model is obviously arbitrage-free. If

we purchase ξ shares of stock at time t = 0 with initial capital X0 = x, then at

time t = 1 we have X1(ω) = x+ ξ(S1(ω) − S0) ∀ω ∈ Ω. For this self-financing

strategy to be admissible, we must have

X1(ω) ≥ 0 ∀ω ∈ Ω ⇔ −x ≤ ξ ≤ x.

We can write the primal set as

X1(x) = {x+ ξ(S1 − S0) : ξ ∈ [−x, x] } , for x ≥ 0.

It is easy to compute that the dual set is

Y1(y) =
{
Y ≥ 0 : EP[Y ] ≤ y, 2EP[Y ] − y ≤ EP[S1Y ] ≤ y

}
, for y ≥ 0.

Suppose the option payoff is

H(ω0) = 4, H(ωn) = 0, for n ≥ 1.

Then the super-hedging price is x̄ = 2. The state-dependent utility function is

U(x, ω0) = x ∧ 4, U(x, ωn) = 0, for n ≥ 1,

and the stochastic conjugate function is

V (y, ω0) = 4(1 − y)+, V (y, ωn) = 0, for n ≥ 1.

The primal problem can be stated as

u(x) = sup
X1∈X1(x)

EP [U(X1)]

= sup
|ξ|≤x

(1 − ε) [(x+ ξ) ∧ 4] ,
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When x ∈ [0, 2], the optimal strategy is unique, ξ = x, and the optimal solution

to the primal problem is X̂1(ω) = xS1(ω) ∀ω ∈ Ω. When x ∈ (2,∞), the optimal

strategy is not unique anymore ξ ∈ [4 − x, x]. The primal value function is

u(x) = 2x(1 − ε) ∧ 4(1 − ε), for x ≥ 0.

Obviously, u(x) is concave, continuous, increasing, piecewise linear, and equal

to a constant on [x̄,∞) = [2,∞). Similarly, we can compute the optimal strategy

Ŷ ∈ Y1(y) and the value function v(y) for the dual problem

v(y) = inf
Y ∈Y1(y)

EP [V (Y )]

= inf
Y ∈Y1(y)

4(1 − ε)(1 − Y (ω0))
+, for y ≥ 0.

Obviously, y = 2(1 − ε) ∈ ∂u(x) for any x ≥ 0. It is easy to check that

Ŷ (ω0) = 1, Ŷ (ωn) = 0, for n ≥ 1,

is the unique optimal solution to the dual problem in the set Y1(2(1− ε)). How-

ever,

EP
[
Ŷ
y

]
= 1

2 < 1,

and Ŷ
y

does not define a martingale measure. In general, the dual value function

is

v(y) = [ 4(1 − ε) − 2x ] ∨ 0, for y ≥ 0.

It is convex, continuous, decreasing, piecewise linear, and equal to a constant

on [2(1 − ε),∞) where ur(0) = 2(1 − ε). Note that vr(0) = −2 = −x̄. It is not

difficult to check that

v(y) = max
x≥0

[u(x) − xy], u(x) = max
y≥0

[v(y) + xy],

and for y ∈ ∂u(x), we have

Ŷ ∈ ∂U(X̂T ), X̂T ∈ −∂V (Ŷ ),

such that EP[X̂T (x)Ŷ (y)] = xy. The maximal set is the same as the admissible

set

C∗(x) = X1(x).

When x ∈ (0, 2), and for the scenario ω = ω0, we have X̂T (x) = 2x. However,

X1(x) = [0, 2x] and −∂V (Ŷ ) = [0, 4]. Therefore, XT (x) ∈ C∗(x) ∪ (−∂V (Ŷ )) is

not sufficient for XT (x) to be an optimal solution to the primal problem. �



Chapter 2

Complete Market Models

In a complete market, we have a unique martingale measure, i.e., M = {Q∗}.
Let the Radon-Nikodym derivative be

Z =
dQ∗

dP
.

Lemma 4.3 in Kramkov and Schachermayer (1999) proved that Z dominates all

elements in the set Y(1) as well as D ∆
= D(1) defined in Section 1.2. Therefore

the optimal solution to (Dual-Shortfall), ĥ ∈ D(y), is unique and can be written

as

ĥ = yZ.

In light of Remark 1.21, there is an optimal solution to (Primal-Shortfall), ĝ ∈
C(x), that can be written as

(0.1) ĝ =

(
1{Z< 1

y
} + γ1{Z=

1
y
}

)
H =

(
1
{ dP
dQ∗>y}

+ γ1
{ dP
dQ∗ =y}

)
H,

where y ∈ ∂u(x).

Remark 2.1. Notice that when we fix the initial capital x for hedging the option

H, it is hard to compute the derivatives of the primal value function to get the

dual variable that satisfies y ∈ ∂u(x). However, in the case of a complete

market, it is intuitively clear what the dual variable y represents. Recall (4.17)

of Chapter 1. When the local martingale measure set is a singleton, it is more

cost effective to reduce the shortfall risk when dP
dQ∗ is large. So y is the cut-off

level of the favorable scenario set where we should perfectly hedge the option

payoff. This result of course holds for the incomplete market as well, although

in which case it is more difficult to find the optimal dual solution which might

not define a local martingale measure as shown in Example 1.24 of Chapter 1.

19
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For the rest of this chapter, we will present three complete market models where

optimal solutions can be explicitly computed. We will check both the duality

and the HJB conditions in each of these cases.

2.1 Poisson jump model

Suppose the dynamics of the discounted1 asset price process under P are

dSt = St− [µdt− (1 − α)(dNt − λdt) ]

= St− [ cdt− (1 − α)dNt ] ,

where Nt is a standard Poisson process with intensity λ, and c = µ+ (1 − α)λ.

Assume the constants satisfy µ > 0, 0 < α < 1, λ > 0. The Doléans-Dade

formula gives the solution to the above stochastic differential equation

St = S0e
ctαNt .

Note that the price goes up exponentially with parameter c when there is no

Poisson jump. In the case when a jump occurs, the price jumps down to a

fraction of itself αS.

2.1.1 Optimal Strategy

The intensity for the Poisson process under the risk-neutral measure Q∗ is λ∗ =
c

1−α > λ and the price process can be written as

dSt = St− [−(1 − α)(dNt − λ∗dt) ] .

The Radon-Nikodym derivatives are

ZT
∆
=
dQ∗

dP
=

(
λ∗

λ

)NT

e−(λ∗−λ)T ,
1

ZT
=

dP

dQ∗ =

(
λ

λ∗

)NT

e−(λ−λ∗)T .

Suppose the option payoff is a function of the underlying H = H(ST ), and

define Hk to be the payoff when there are k jumps in the underlying

(1.2) Hk = H(S0e
cTαk), for k = 0, 1, 2, ...

1For simplicity of notation, we start with discounted prices to get rid of the interest rate.
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Define

xk(T ) = Q∗(NT = k)

= Q∗(ST = S0e
cTαk)

= Q∗
(
ZT =

(
λ∗

λ

)k
e−(λ∗−λ)T

)

= e−λ
∗T (λ∗T )k

k! , for k = 0, 1, 2, ...

Proposition 2.2. Suppose the initial capital x satisfies 0 < x < EQ∗

[H]. There

exists a nonnegative integer n and a γ ∈ [0, 1) such that

x =
n−1∑

k=0

xk(T )Hk + γ xn(T )Hn.

The wealth of the optimal strategy at time 0 ≤ t ≤ T is

X̂t = EQ∗

[ X̂T ∧H | Ft ] = EQ∗

[ ĝ | Ft ]

=





0, if Nt > n;

γ x0(τ)Hn, if Nt = n;
∑n−1−Nt

k=0 xk(τ)HNt+k + γ xn−Nt
(τ)Hn, if Nt < n;

where τ = T − t is the time to maturity. In particular, when τ = 0,

X̂T =





0, if NT > n;

γ Hn, if NT = n;

HNT
, if NT < n.

The optimal strategy is to invest ∆̂t shares in the underlying, where

∆̂t =
X̂(t, αSt−) − X̂(t, St−)

αSt− − St−

=





0, if Nt− > n;
γ x0(τ)Hn

(1−α)St−
, if Nt− = n;

1
(1−α)St−

{∑n−2−Nt

k=0 xk(τ)(HNt−+k −HNt−+k+1)

+xn−1−Nt−
(τ)(Hn−1 − γHn) + γ xn−Nt−

(τ)Hn

}
, if Nt− < n.

Recall St− = S0e
ctαNt− .

Remark 2.3. For the wealth process to remain nonnegative, we have the fol-

lowing admissibility constraint on the trading strategy

∆t ≤
Xt−

(1 − α)St−
.
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When there have already been n downward jumps in the price process by time

t, the value process of the optimal strategy is X̂t = γx0(τ)Hn = e−λ
∗τγHn, and

the optimal strategy is to use the maximal admissible strategy so that the wealth

approaches γHn at maturity as an exponential function if there would be no more

jumps; otherwise, the wealth hits zero. When there have been i < n downward

jumps in the price process by time t, the wealth approaches Hi for a perfect

replication if no more jumps occur in the future. If one more jump occurs, we

come to the case of aiming for Hi−1. We can name this as ‘dynamic aiming

for the corner strategy’. This strategy also satisfies the dynamic programming

principle developed in Theorem 6.4 of Kirch (2002) when we set a = −b, l(x) = x

and F (x) = 1.

Proof. In general, we know the optimal solution to (Primal-Shortfall) is

ĝ =

(
1{Z< 1

y
} + γ1{Z=

1
y
}

)
H.

By the Arbitrage Pricing Theory, the wealth process is a martingale under the

risk-neutral measure

Xt = EQ∗

[ ĝ | Ft ]

such that the budget constraint is satisfied,

x = X0 = EQ∗

[ĝ].

Obviously we can find 0 ≤ n <∞ and 0 ≤ γ < 1 such that

x =
n−1∑

k=0

xk(T )Hk + γ xn(T )Hn,

because of the assumption 0 < x < EQ∗

[H]. The formula for X̂t can be com-

puted using conditional expectation. If Nt < n, we have

X̂t = EQ∗

[ ĝ | Ft ]
= EQ∗

[HNT
1{NT<n} + γHn1{NT =n} | Ft ]

= EQ∗

[HNt+NT −Nt
1{NT −Nt<n−Nt} + γHn1{NT −Nt=n−Nt} | Ft ]

=

n−1−Nt∑

k=0

xk(τ)HNt+k + γxn−Nt
(τ)Hn.

It is simpler to compute the case when Nt ≥ n. By the Markovian structure of

the process X̂(t, St), the martingale property of the value function X̂t and the
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Itô-Doeblin formula, we can compute the optimal strategy ∆̂t from the SDE

dX̂(t, St) = (X̂(t, αSt−) − X̂(t, St−))(dNt − λ∗dt),

and the self-financing condition

dX̂(t, St) = ∆̂tdSt = −∆̂tSt−(1 − α)(dNt − λ∗dt).

�

Corollary 2.4. In the simplest case when the option payoff is a constant, which

we assume without loss of generality is H ≡ 1, suppose the initial capital x

satisfies 0 < x < 1. There is a nonnegative integer n and a γ ∈ [0, 1) such that

x =

n−1∑

k=0

xk(T ) + γ xn(T ).

The wealth of the optimal strategy at time 0 ≤ t ≤ T is

X̂t =





0, if Nt > n;

γ x0(τ), if Nt = n;
∑n−1−Nt

k=0 xk(τ) + γ xn−Nt
(τ), if Nt < n;

where τ = T − t is the time to maturity. The optimal strategy is to invest ∆̂t

shares in the underlying, where

∆̂t =





0, if Nt− > n;
γ x0(τ)

(−α)St−
, if Nt− = n;

(1−γ) xn−1−Nt−
(τ)+γ xn−Nt−

(τ)

(−α)St−
, if Nt− < n.

We can also write the wealth in the integral form

X̂t =





0, if Nt > n;

γ x0(τ), if Nt = n;

1 − λ∗
∫ T
t
xn−1−Nt

(T − u)du+ γ xn−Nt
(τ), if Nt < n.

and

X̂t =





0, if Nt > n;

γ x0(τ), if Nt = n;

1 − λ∗
∫ T
t
xn−Nt

(T − u)du− (1 − γ)xn−Nt
(τ), if Nt < n.
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Proof.The optimal wealth process and strategy are obtained by a direct ap-

plication of Proposition 2.2. To get the integral forms, we need the equalities

λ∗
∫ s

t

xk(T − u)du =
k∑

i=0

xi(T − u)|st ,

λ∗
∫ T

t

xk(T − u)du = 1 −
k∑

i=0

xi(τ),

dxk(T − u) = λ∗[xk(T − u) − xk−1(T − u)],

λ∗
∫ T

t

xk−1(T − u)du = xk(T − t) + λ∗
∫ T

t

xk(T − u)du.

�

2.1.2 HJB Approach

Another standard approach to solve the optimal control problem is to check the

HJB equation. Rewrite the self-financing strategy as

dXt = ∆tdSt = ∆tSt−(cdt− (1 − α)dNt) = πt(cdt− (1 − α)dNt),

where πt = ∆tSt− is the monetary amount invested in the underlying. As

defined in (1.2), let the option payoff be a function of the value process XT

through its dependence on the number of Poisson jumps. Our optimal control

problem can be written as

max
πt≤

Xt−

1−α

E [XT ∧H] s.t. dXt = πt(cdt− (1 − α)dNt).

Define the value process as

u(t, X̃t) = max
πt≤

Xt−

1−α

E [XT ∧H|Ft],

where X̃ ∈ X (x) is the optimal solution. Suppose ut(t, x) and ux(t, x) exist.

Using the usual verification lemma argument, we derive the HJB equation:

max
πt≤ x

1−α
(ut(t, x) + cπtux(t, x) + λ[u(t, x− (1 − α)πt) − u(t, x)]) = 0,

with the boundary condition u(T, x) = x ∧H. Define

û(t, X̂t) = E [X̂T ∧H | Ft],

where X̂t is the wealth process defined in Proposition 2.2, associated with the

strategy π̂t. We will check their optimality in the following lemma.
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Lemma 2.5. The value function û(t, x) satisfies

ût(t, x) + cπ̂tûx(t, x) + λ[û(t, x− (1 − α)π̂t) − û(t, x)] = 0,

with û(T, x) = x ∧H.

Proof. Suppose X̂t ∈
[∑i−1

k=0 xk(τ)Hk,
∑i
k=0 xk(τ)Hk

)
, or equivalently,

X̂t =

n−i−1∑

k=0

xk(τ)Hi+k + γ xn−i(τ)Hn, 0 ≤ γ < 1, i ≥ 1.

We can write

γ =
X̂t −

∑n−i−1
k=0 xk(τ)Hi+k

xn−i(τ)Hn

.

We know the optimal strategy is

π̂(t, X̂t) = ∆̂tSt−

=
1

(1 − α)

{
n−i−2∑

k=0

xk(τ)(Hi+k −Hi+k+1)

+xn−i−1(τ)(Hn−1 − γHn) + γ xn−i(τ)Hn}

=
1

(1 − α)

{
n−i−2∑

k=0

xk(τ)(Hi+k −Hi+k+1) + X̂t −
n−i−1∑

k=0

xk(τ)Hi+k

+xn−i−1(τ)

(
Hn−1 −

X̂t −
∑n−i−1
k=0 xk(τ)Hi+k

xn−i(τ)

)}
.

Therefore,

π̂(t, x) =
1

(1 − α)

{
n−i−2∑

k=0

xk(τ)(Hi+k −Hi+k+1) + x−
n−i−1∑

k=0

xk(τ)Hi+k

+xn−i−1(τ)

(
Hn−1 −

x−∑n−i−1
k=0 xk(τ)Hi+k

xn−i(τ)

)}
.

Define

yk(T ) = P(NT = k) = e−λT (λT )k

k! , for k = 0, 1, 2... .
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Then the value function û(t, x) can be computed

û(t, X̂t) = E[ X̂T ∧H | Ft ]
= E[Hi+NT −Nt

1{NT −Nt<n−i} + γHn1{NT −Nt=n−i} | Ft ]

=

n−i−1∑

k=0

yk(τ)Hi+k + γyn−i(τ)Hn

=

n−i−1∑

k=0

yk(τ)Hi+k +
X̂t −

∑n−i−1
k=0 xk(τ)Hi+k

xn−i(τ)
yn−i(τ).

Therefore,

û(t, x) =

n−i−1∑

k=0

yk(τ)Hi+k +
x−∑n−i−1

k=0 xk(τ)Hi+k

xn−i(τ)
yn−i(τ),

ûx(t, x) =
yn−i(τ)

xn−i(τ)
,

û(t, x− (1 − α)π̂) =

n−i−2∑

k=0

yk(τ)Hi+1+k +
x−∑n−i−1

k=0 xk(τ)Hi+k

xn−i(τ)
yn−i−1(τ).

To find ût(t, x), we need

dxk(τ)

dt
= λ∗(xk(τ)−xk−1(τ)),

dyk(τ)

dt
= λ(yk(τ)−yk−1(τ)), for k = 0, 1, 2...,

where we define x−1(τ) = 0, and y−1(τ) = 0. Then

ût(t, x) =
n−i−1∑

k=0

λ(yk(τ) − yk−1(τ))Hi+k

+

{
−
n−i−1∑

k=0

λ∗(xk(τ) − xk−1(τ))Hi+k

}
yn−i(τ)

xn−i(τ)

+

{
x−

n−i−1∑

k=0

xk(τ)Hi+k

}

· λ(yn−i(τ) − yn−i−1(τ))xn−i(τ) − λ∗(xn−i(τ) − xn−i−1(τ))yn−i(τ)

xn−i(τ)2

It is routine to check the value function û(t, x) and strategy π̂(t, x) satisfy the

HJB equality

ût(t, x) + cπ̂tûx(t, x) + λ[û(t, x− (1 − α)π̂t) − û(t, x)] = 0.

The case

X̂t = γtx0(τ)Hn, 0 ≤ γt < 1

can be similarly checked. �
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2.1.3 Duality

Recall in the proof of Lemma 2.5, we have computed the value function to the

(Primal-Shortfall) in the case x ∈
[∑n−1

k=0 xk(τ)Hk,
∑n
k=0 xk(τ)Hk

)
:

u(x) = û(0, x) =

n−1∑

k=0

yk(T )Hk + γyn(T )Hn, where γ =
x−∑n−1

k=0 xk(T )Hk

xn(T )Hn

,

u′(x) = ûx(0, x) =
yn(T )

xn(T )
.

At the beginning of Chapter 2, we have shown the optimal value function to the

(Dual-Shortfall) is

v(y) = E[(1 − yZT )+H].

We would like to check the duality results we have derived in Section 1.4.

Lemma 2.6. The optimal value functions computed in the previous two sub-

sections satisfy the duality equality

v(y) = u(x) − xy, when y = u′(x).

Proof. Note that when y = u′(x) = yn(T )
xn(T ) as computed in Lemma 2.5,

v(y) = E[(1 − yZT )+H]

= E

[(
1 − yn(T )

xn(T )

(
λ∗

λ

)NT

e−(λ∗−λ)T

)+

H

]

= E

[(
1 −

(
λ∗

λ

)NT −n)+

H

]

=

n−1∑

k=0

(
1 −

(
λ∗

λ

)k−n)
e−λT (λT )k

k! Hk

=
n−1∑

k=0

yk(T )Hk − yn(T )
xn(T )

n−1∑

k=0

xk(T )Hk

= u(x) − xu′(x)

= u(x) − xy.

�
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2.2 Geometric Brownian motion model

Suppose the dynamics of the discounted2 asset price process under P follows the

Black-Scholes model

dSt = St[µdt+ σdWt ], St = S0e
σWt+(µ− 1

2σ
2)t

whereWt is a standard Brownian motion. Assume the constant drift and volatil-

ity satisfy µ > 0, σ > 0.

2.2.1 Optimal Strategy

Under the risk-neutral measure Q∗, W ∗
t = Wt+ θt is a Brownian motion, where

θ = µ
σ
. The price process can be written as

dSt = StσdW
∗
t , St = S0e

σW∗
t − 1

2σ
2t.

The Radon-Nikodym derivatives are

ZT
∆
=
dQ∗

dP
= e−θWT − 1

2 θ
2T = e−θW

∗
T +

1
2 θ

2T ,

1

ZT
=
dPT
dP ∗

T

= eθWT +
1
2 θ

2T = eθW
∗
T − 1

2 θ
2T .

Proposition 2.7. Suppose the initial capital 0 < x < EQ∗

[H]. There exists a

y such that

x = EQ∗

[1{ZT<
1
y
}H],

and the wealth of the optimal strategy at time 0 ≤ t ≤ T is

X̂t = EQ∗

[ 1{ZT<
1
y
}H | Ft ].

Suppose the payoff is a function of the underlying price process H = H(ST ).

Then the usual delta hedge is optimal

∆̂t = ∂
∂s
X̂(t, St).

Proof. The distribution of the Radon-Nikodym derivative is diffuse. There-

fore the optimal solution to (Primal-Shortfall) is ĝ = 1{ZT<
1
y
}H. Nothing else

is new in this proposition. �

Föllmer and Leukert (2000) computed the optimal strategy for a call option

under this model. We will give an example of a bond.

2For simplicity of notation, we start with discounted prices to get rid of the interest rate.
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Corollary 2.8. In the simplest case when the option payoff is a constant, which

we assume without loss of generality is H ≡ 1, suppose the initial capital x

satisfies 0 < x < 1. Let y be the solution to

x = 1 −N(d+(0, y)),

where N(·) is the c.d.f. of a standard normal distribution and

d+(t, y) =
ln y + 1

2θ
2(T − t)

θ
√
T − t

.

The wealth of the optimal strategy at time 0 ≤ t ≤ T is

X̂t = 1 −N(d+(t, yZt)) = 1 −N

(
ln y + 1

2θ
2T − θ

σ

(
lnSt − lnS0 + 1

2σ
2t
)

θ
√
T − t

)
.

The optimal strategy is

π̂t = ∆̂tSt =
1

σ
√

2π(T − t)
e−

d+(t,yZt)
2

2 .

Proof. The existence of y follows easily from the fact 0 < x < 1.

X̂t = EQ∗

[ 1{ZT<
1
y
} | Ft ] = EQ∗

[ 1{ZT−t<
1
yZt

} | Ft ] = 1 −N(d+(t, yZt)).

Noticing that

Zt = e−
θ
σ

(lnSt−lnS0)− 1
2
θσt+ 1

2
θ2t,

we get the two expressions for X̂t. The delta hedge is derived by simple differ-

entiation. �

2.2.2 HJB Approach

Another standard approach to solve the optimal control problem is to check the

HJB equation. Rewrite the self-financing strategy as

dXt = ∆tdSt = ∆tSt(µdt+ σdWt) = πt(µdt+ σdWt),

where πt = ∆tSt is the monetary amount invested in the underlying. In the

simplest case when the payoff function is a constant H ≡ 1, our optimal control

problem can be written as

max
πt

E[XT ∧ 1] s.t. dXt = πt(µdt+ σdWt), Xt ≥ 0, 0 ≤ t ≤ 1.
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Define the value process as

u(t, X̃t) = max
πt

E[XT ∧ 1|Ft],

where X̃ ∈ X (x) is the optimal solution. Suppose ut(t, x) and ux(t, x) exist.

Using the usual verification lemma argument, we derive the HJB equation:

max
admissibleπt

(ut(t, x) + µπtux(t, x) + 1
2σ

2π2
t uxx(t, x)) = 0,

with the boundary condition u(T, x) = x ∧ 1. Define

û(t, X̂t) = E [X̂T ∧ 1|Ft],

where X̂t is the wealth process defined in Corollary 2.8 associated with the

strategy π̂t. We will check their optimality in the following lemma.

Lemma 2.9. The value function û(t, x) satisfies

ût(t, x) + µπ̂tûx(t, x) + 1
2σ

2π̂2
t ûxx(t, x) = 0,

with the boundary condition û(T, x) = x ∧ 1.

Proof. The value function û(t, x) can be computed as follows:

û(t, X̂t) = EP[X̂T ∧ 1|Ft]

= 1 −N
(
d+(t, yZt) − θ

√
T − t

)

= 1 −N
(
N−1(1 − X̂t) − θ

√
T − t

)
.

Therefore,

û(t, x) = 1 −N
(
N−1(1 − x) − θ

√
T − t

)

ût(t, x) = −N ′
(
N−1(1 − x) − θ

√
T − t

) θ

2
√
T − t

ûx(t, x) =
N ′ (N−1(1 − x) − θ

√
T − t

)

N ′(N−1(1 − x))

= eθ
√
T−tN−1(1−x)− 1

2 θ
2(T−t)

ûxx(t, x) = ûx(t, x)
θ
√
T − t

N ′(N−1(1 − x))
(−1)

= −θ
√
T − t

N ′ (N−1(1 − x) − θ
√
T − t

)

(N ′(N−1(1 − x)))
2 .
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Recall

π̂(t, x) =
1

σ
√

2π(T − t)
e−

(N−1(1−x))2

2 =
1

σ
√
T − t

N ′(N−1(1 − x)),

then

µπ̂ûx(t, x) =
θ√
T − t

N ′
(
N−1(1 − x) − θ

√
T − t

)
.

It is routine to check the value function û and strategy π̂t satisfy the HJB

equality

ût(t, x) + µπ̂ûx(t, x) + 1
2σ

2π̂2ûxx(t, x) = 0.

�

2.2.3 Duality

Recall in the proof of Lemma 2.9, we have computed the value function to the

(Primal-Shortfall)

u(x) = û(0, x) = 1 −N
(
N−1(1 − x) − θ

√
T
)

u′(x) = ûx(0, x) =
N ′
(
N−1(1 − x) − θ

√
T
)

N ′(N−1(1 − x))
= eθ

√
T N−1(1−x)− 1

2 θ
2T .

At the beginning of Chapter 2, we have explained the optimal value function to

the (Dual-Shortfall), when H ≡ 1, is

v(y) = E[(1 − yZT )+].

We would like to check the duality results we have derived in Section 1.4.

Lemma 2.10. The optimal value functions in the case of H ≡ 1 satisfy the

duality equality

v(y) = u(x) − xy, when y = u′(x).

Proof. Note that when y = u′(x) = eθ
√
T N−1(1−x)− 1

2 θ
2T ,

v(y) = E[(1 − yZT )+]

= E

[(
1 − eθ

√
T N−1(1−x)− 1

2 θ
2T e−θWT − 1

2 θ
2T

)+
]

= 1 −N
(
N−1(1 − x) − θ

√
T
)
− xeθ

√
T N−1(1−x)− 1

2 θ
2T

= u(x) − xu′(x) = u(x) − xy.

�
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2.3 Geometric Brownian motion with Poisson

jump model

Suppose the dynamics of the discounted3 asset price processes under P are

dS1
t = S1

t−[µ1dt+ σ1dWt − (1 − α1)(dNt − λdt)],

dS2
t = S2

t−[µ2dt+ σ2dWt − (1 − α2)(dNt − λdt)],

where Nt is a standard Poisson process with intensity λ, and Wt a standard

Brownian motion. Assume the constants satisfy µi > 0, σi > 0, 0 < αi < 1, λ >

0 for i = 1, 2. The Doléans-Dade formula gives the solutions to the above

stochastic differential equations

S1
t = S1

0e
σ1Wt+(µ1− 1

2σ
2
1+(1−α1)λ)tαNt

1 ,

S2
t = S2

0e
σ2Wt+(µ2− 1

2σ
2
2+(1−α2)λ)tαNt

2 .

Note that the prices follow geometric Brownian motions when there is no Poisson

jump. In the case when a jump occurs, the prices jumps down to a fraction of

themselves αiS
i for i = 1, 2.

Kirch et al. (2002) and Nakano (2004) computed the shortfall risk minimizing

strategy when the loss function is l(x) = xp

p
where p ∈ (1,∞). We present, in

this section, the results for l(x) = x.

2.3.1 Optimal Strategy

Assumption 2.11. Suppose (ψ, ν) are given as the solutions to the following

equations




µ1 + σ1ψt − (1 − α1)λν = 0

µ2 + σ2ψt − (1 − α2)λν = 0
⇒




ψ = −µ1(1−α2)−µ2(1−α1)

(1−α2)σ1−(1−α1)σ2

ν = − µ1σ2−µ2σ1

λ((1−α2)σ1−(1−α1)σ2)
.

We assume ψ < 0 and ν > 0 for computational reasons.4

Under the risk-neutral measure Q∗, W ∗
t = Wt − ψt is a standard Brownian

motion, and Nt−λ∗t is a compensated Poisson process, where λ∗ = (1+ν)λ > λ.

3For simplicity of notation, we start with discounted prices to get rid of the interest rate.
4These conditions can be relaxed and the corresponding optimal solutions can be computed.
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The price processes can be written as

dS1
t = S1

t−[σ1dW
∗
t − (1 − α1)(dNt − λ∗dt)], S1

t = S1
0e
σ1W

∗
t −(

1
2σ

2
1−(1−α1)λ

∗)tαNt

1 ;

dS2
t = S2

t−[σ2dW
∗
t − (1 − α2)(dNt − λ∗dt)], S2

t = S2
0e
σ2W

∗
t −(

1
2σ

2
2−(1−α2)λ

∗)tαNt

2 .

The Radon-Nikodym derivatives are

ZT
∆
=
dQ∗

dP
=

(
λ∗

λ

)NT

e−(λ∗−λ)T eψWT −1
2ψ

2T = (1 + ν)
NT e−λνT eψWT −1

2ψ
2T ,

=

(
λ∗

λ

)NT

e−(λ∗−λ)T eψW
∗
T +

1
2ψ

2T = (1 + ν)
NT e−λνT eψW

∗
T +

1
2ψ

2T ,

1

ZT
=

dP

dQ∗ =

(
λ

λ∗

)NT

e−(λ−λ∗)T e−ψWT +
1
2ψ

2T =

(
1

1 + ν

)NT

eλνT e−ψWT +
1
2ψ

2T

=

(
λ

λ∗

)NT

e−(λ−λ∗)T e−ψW
∗
T − 1

2ψ
2T =

(
1

1 + ν

)NT

eλνT e−ψW
∗
T − 1

2ψ
2T .

The Radon-Nikodym derivative process satisfies the SDE

dZt = Zt−[ψdWt + ν(dNt − λdt)].

Proposition 2.12. Suppose the initial capital x satisfies 0 < x < EQ∗

[H].

Then there exists a y such that

x = EQ∗

[1{ZT<
1
y
}H],

and the wealth of the optimal strategy at time 0 ≤ t ≤ T is

X̂t = EQ∗

[ 1{ZT<
1
y
}H | Ft ].

Suppose the option payoff is a function of the underlying price process H =

H(S1
T , S

2
T ). Then the optimal strategy (∆̂1

t , ∆̂
2
t ) is defined by





∆̂1
tσ1S

1
t− + ∆̂2

tσ2S
2
t− = X̂s1(t, S

1
t−, S

2
t−)σ1S

1
t− + X̂s2(t, S

1
t−, S

2
t−)σ2S

2
t−,

∆̂1
t (1 − α1)S

1
t− + ∆̂2

t (1 − α2)S
2
t− = X̂(t, S1

t−, S
2
t−) − X̂(t, α1S

1
t−, α2S

2
t−),

where X̂s1(t, S
1
t−, S

2
t−) and X̂s1(t, S

1
t−, S

2
t−) denote the partial derivatives, and

dX̂(t, S1
t , S

2
t ) = ∆̂1

tdS
1
t + ∆̂2

tdS
2
t .

The solution of the optimal strategy can be written as




∆̂1
t =

(1−α2)(X̂s1
(t,S1

t−,S
2
t−)σ1S

1
t−+X̂

s2
(t,S1

t−,S
2
t−)σ2S

2
t−)

S1
t−((1−α2)σ1−(1−α1)σ2)

+
σ2(X̂(t,α1S

1
t−,α2S

2
t−)−X̂(t,S1

t−,S
2
t−))

S1
t−((1−α2)σ1−(1−α1)σ2)

,

∆̂2
t =

(1−α1)(X̂s1
(t,S1

t−,S
2
t−)σ1S

1
t−+X̂

s2
(t,S1

t−,S
2
t−)σ2S

2
t−)

S2
t−((1−α1)σ2−(1−α2)σ1)

+
σ1(X̂(t,α1S

1
t−,α2S

2
t−)−X̂(t,S1

t−,S
2
t−))

S2
t−((1−α1)σ2−(1−α2)σ1)

.
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Proof. The distribution of the Radon-Nikodym derivative is diffuse (ψ 6= 0 by

Assumption 2.11). Therefore the optimal solution to (Primal-Shortfall) is ĝ =

1{ZT<
1
y
}H. By theorem 1.19, we know there is a y ∈ ∂u(x) such that EP[ĝĥ] =

xy where ĥ is the optimal solution to (Dual-Shortfall). By the discussion at the

beginning of Chapter 2, we know ĥ = yZT . Therefore there exists a y such that

x = EP[ĝZT ] = EQ∗

[ĝ] = EQ∗

[1{ZT<
1
y
}H].

Since



S1
t = S1

0e
σ1W

∗
t −(

1
2σ

2
1−(1−α1)λ

∗)tαNt

1

S2
t = S2

0e
σ2W

∗
t −(

1
2σ

2
2−(1−α2)λ

∗)tαNt

2

⇒




W ∗
t =

lnα2

(
lnS1

t −lnS1
0+(

1
2σ

2
1−(1−α1)λ

∗)t
)
−lnα1

(
lnS2

t −lnS2
0+(

1
2σ

2
2−(1−α2)λ

∗)t
)

σ1 lnα2−σ2 lnα1

Nt =
σ2

(
lnS1

t −lnS1
0+(

1
2σ

2
1−(1−α1)λ

∗)t
)
−σ1

(
lnS2

t −lnS2
0+(

1
2σ

2
2−(1−α2)λ

∗)t
)

σ2 lnα1−σ1 lnα2
,

Zt = (1 + ν)
Nt e−λνteψW

∗
t +

1
2ψ

2t = eψW
∗
t +ln(1+ν)Nt+(

1
2ψ

2−λν)t,

we can see that Zt is a function of (t, S1
t , S

2
t ). By the assumptionH = H(S1

T , S
2
T ),

we know the process X̂ possess the Markovian property and can be written as

a function of (t, S1
t , S

2
t ). Since we have a complete market, the optimal value

function can be replicated by trading in the stocks,

dX̂(t, S1
t , S

2
t ) = ∆̂1

tdS
1
t + ∆̂2

tdS
2
t

= (∆̂1
tσ1S

1
t− + ∆̂2

tσ2S
2
t−)dW ∗

t

− (∆̂1
t (1 − α1)S

1
t− + ∆̂2

t (1 − α2)S
2
t−)d(Nt − λ∗t).

On the other side, Itô-Doeblin formula and the martingale property of X̂t give

dX̂(t, S1
t , S

2
t ) = X̂t(t, S

1
t−, S

2
t−)dt+ X̂s1(t, S

1
t−, S

2
t−)dS1

t + X̂s2(t, S
1
t−, S

2
t−)dS2

t

+ 1
2X̂s1s1(t, S

1
t−, S

2
t−)d〈S1c〉t + X̂s1s2(t, S

1
t−, S

2
t−)d〈S1c, S2c〉t

+ 1
2X̂s2s2(t, S

1
t−, S

2
t−)d〈S2c〉t

+
(
X̂(t, α1S

1
t , α2S

2
t ) − X̂(t, S1

t−, S
2
t−)
)
dNt

− X̂s1(t, S
1
t−, S

2
t−)∆S1

t − X̂s2(t, S
1
t−, S

2
t−)∆S2

t

=
(
X̂s1(t, S

1
t−, S

2
t−)σ1S

1
t− + X̂s2(t, S

1
t−, S

2
t−)σ2S

2
t−

)
dW ∗

t

+
(
X̂(t, α1S

1
t−, α2S

2
t−) − X̂(t, S1

t−, S
2
t−)
)

(dNt − λ∗dt).

Therefore, the optimal strategy (∆̂1
t , ∆̂

2
t ) satisfy the given equations. �
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Remark 2.13. If

1 − α1

σ1
≡ X̂(t, S1

t−, S
2
t−) − X̂(t, α1S

1
t−, α2S

2
t−)

X̂s1(t, S
1
t−, S

2
t−)σ1S1

t− + X̂s2(t, S
1
t−, S

2
t−)σ2S2

t−
,

then 



∆̂1
t =

X̂
s1

(t,S1
t−,S

2
t−)σ1S

1
t−+X̂

s2
(t,S1

t−,S
2
t−)σ2S

2
t−

σ1S
1
t−

;

∆̂2
t ≡ 0.

In this case, the first stock has the same ratio of quadratic variation between

jumps and the continuous variation part as the option does, and is the only

instrument necessary for hedging. However, the price movement of the second

stock still affects the hedging ratio.

Define

xk(T ) = P ∗(NT = k)

= P ∗
(
ZT =

(
λ∗

λ

)k
e−(λ∗−λ)T eψW

∗
T +

1
2ψ

2T

)

= e−λ
∗T (λ∗T )k

k! , for n = 0, 1, 2, ...

Corollary 2.14. In the simplest case when the option payoff is a constant,

which we may assume without loss of generality is H ≡ 1, suppose the initial

capital x satisfies 0 < x < 1. Let y be the solution to

x =

∞∑

k=0

xk(T )[1 −N(dk(y, T ))],

where τ = T − t is the time to maturity, N(·) is the c.d.f. of a standard normal

distribution, and

dk(y, τ) =
ln y + k ln(1 + ν) + ( 1

2ψ
2 − λν)τ

−ψ√τ .

The wealth of the optimal strategy at time 0 ≤ t ≤ T is

X̂t =

∞∑

k=0

xk(τ)[1 −N(dk(yZt, τ))].

The optimal strategy (∆̂1
t , ∆̂

2
t ) can be explicitly computed from the formulae in

Proposition 2.12 with the equations

X̂s1(t, S
1
t−, S

2
t−)σ1S

1
t− + X̂s2(t, S

1
t−, S

2
t−)σ2S

2
t− =

∞∑

k=0

xk(τ)N
′(dk(yZt−, τ))

1√
τ

;
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X̂(t, α1S
1
t−, α2S

2
t−) − X̂t(t, S

1
t−, S

2
t−)

= −
∞∑

k=0

xk(τ)N(dk+1(yZt−, τ)) +
∞∑

k=0

xk(τ)N(dk(yZt−, τ))

=
∞∑

k=1

(
1 − k

λ∗T

)
xk(τ)N(dk(yZt−, τ)) + x0(τ)N(d0(yZt−, τ)).

Proof. The existence of y follows easily from the fact 0 < x < 1. The value

function of the optimal strategy is the expected value of (discounted) payoff in

a complete market,

X̂(t, S1
t , S

2
t ) = EQ∗

[ 1{ZT<
1
y
} | Ft ]

= EQ∗

[ 1{Zτ<
1
yZt

} | Ft ]

=
∞∑

k=0

xk(τ)[1 −N(dk(yZt, τ))].

Therefore,

X̂s1(t, S
1
t−, S

2
t−)

=

∞∑

k=0

xk(τ) [−N ′(dk(yZt−, τ))]
1

−ψ√τZt−

· Zt−
(
ψ

lnα2

σ1 lnα2 − σ2 lnα1

1

S1
t−

− ln(1 + ν)
σ2

σ1 lnα2 − σ2 lnα1

1

S1
t−

)

=
1

S1
t−

(
ψ lnα2 − σ2 ln(1 + ν)

σ1 lnα2 − σ2 lnα1

) ∞∑

k=0

xk(τ)N
′(dk(yZt−, τ))

1

ψ
√
τ
,

X̂s2(t, S
1
t−, S

2
t−)

=

∞∑

k=0

xk(τ) [−N ′(dk(yZt−, τ))]
1

−ψ√τZt−

Zt−

(
ψ

− lnα1

σ1 lnα2 − σ2 lnα1

1

S2
t−

− ln(1 + ν)
−σ1

σ1 lnα2 − σ2 lnα1

1

S2
t−

)

=
1

S2
t−

(−ψ lnα1 + σ1 ln(1 + ν)

σ1 lnα2 − σ2 lnα1

) ∞∑

k=0

xk(τ)N
′(dk(yZt−, τ))

1

ψ
√
τ
.

We get

X̂s1(t, S
1
t−, S

2
t−)σ1S

1
t− + X̂s2(t, S

1
t−, S

2
t−)σ2S

2
t− =

∞∑

k=0

xk(τ)N
′(dk(yZt−, τ))

1√
τ
.



2.3. GEOMETRIC BROWNIAN MOTION WITH POISSON JUMP MODEL37

Since

Z(t, α1S
1
t−, α2S

2
t−) = Z(t, S1

t−, S
2
t−)(1 + ν),

X̂(t,α1S
1
t−, α2S

2
t−) − X̂t(t, S

1
t−, S

2
t−)

=

∞∑

k=0

xk(τ)[1 −N(dk(yZt−(1 + ν), τ))] −
∞∑

k=0

xk(τ)[1 −N(dk(yZt−, τ))]

= −
∞∑

k=0

xk(τ)N(dk(Zt−(1 + ν), τ)) +

∞∑

k=0

xk(τ)N(dk(yZt−, τ))

= −
∞∑

k=0

xk(τ)N(dk+1(yZt−, τ)) +

∞∑

k=0

xk(τ)N(dk(yZt−, τ))

= −
∞∑

k=1

k

λ∗T
xk(τ)N(dk(yZt−, τ)) +

∞∑

k=0

xk(τ)N(dk(yZt−, τ))

=

∞∑

k=1

(
1 − k

λ∗T

)
xk(τ)N(dk(yZt−, τ)) + x0(τ)N(d0(yZt−, τ))

�

2.3.2 HJB Approach

Another standard approach to solve the optimal control problem is to check the

HJB eqaution. Rewrite the self-financing strategy as

dXt = ∆̂1
tdS

1
t + ∆̂2

tdS
2
t

= ∆̂1
tS

1
t−[µ1dt+ σ1dWt − (1 − α1)dMt]

+ ∆̂2
tS

2
t−[µ2dt+ σ2dWt − (1 − α2)dMt]

= π1
t [µ1dt+ σ1dWt − (1 − α1)dMt] + π2

t [µ2dt+ σ2dWt − (1 − α2)dMt],

where dMt = dNt − λdt is the compensated Poisson process under P and πit =

∆̂i
tSt, i = 1, 2 are the monetary amounts invested in each underlying. In the

simplest case when the payoff function is a constant H ≡ 1, our optimal control

problem can be written as

max
π1

t ,π
2
t

E[XT ∧ 1],

where dXt = π1
t [µ1dt+σ1dWt − (1 − α1)dMt] + π2

t [µ2dt+ σ2dWt − (1 − α2)dMt],

Xt ≥ 0, for all 0 ≤ t ≤ T.

Define the value process

u(t, X̃t) = max
π1

t ,π
2
t

E[XT ∧ 1|Ft],
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where X̃t ∈ X (x) is the optimal solution. Notice that X̃t possesses the Marko-

vian property. Suppose ut(t, x) and ux(t, x) exist. Using the usual verification

lemma argument, we derive the HJB equation:

max
admissibleπ1

t ,π
2
t

ut(t, x) + [π1
t (µ1 + (1 − α1)λ) + π2

t (µ2 + (1 − α2)λ)]ux(t, x)

+ 1
2 (π1

t σ1 + π2
t σ2)

2uxx(t, x) + λ[u(t, x− (1 − α1)π
1
t − (1 − α2)π

2
t ) − u(t, x)] = 0,

with the boundary condition u(T, x) = x ∧ 1. Define

û(t, X̂t) = E [X̂T ∧ 1|Ft],

where X̂t is the wealth process defined in Corollary 2.14 associated with the

strategies π̂1
t and π̂2

t . We will check their optimality in the following lemma.

Lemma 2.15. The value function û(t, x) satisfies

ût(t, x) + [π̂1
t (µ1 + (1 − α1)λ) + π̂2

t (µ2 + (1 − α2)λ)]ûx(t, x)

+ 1
2 (π̂1

t σ1 + π̂2
t σ2)

2ûxx(t, x) + λ[û(t, x− (1 − α1)π̂
1
t − (1 − α2)π̂

2
t ) − û(t, x)] = 0,

with the boundary condition û(T, x) = x ∧ 1.

Proof.Define

yk(T ) = P(NT = k) = e−λT (λT )k

k! , for k = 0, 1, 2...

The value function derived from X̂t in Corollary 2.14 can be computed as follows:

û(t, X̂t) = E[X̂T ∧ 1|Ft]

= P

(
ZT
Zt

> yZt

)

=
∞∑

k=0

yk(τ)[1 −N(dk(yZt, τ) + ψ
√
τ)].

Recall from Corollary 2.14 that X̂t and Zt are related by

X̂(t, Zt) =

∞∑

k=0

xk(τ)[1 −N(dk(yZt, τ))].

We can see that both û and X̂ are functions of Z. Therefore,
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û(t, x) =

∞∑

k=0

yk(τ)[1 −N(dk(yz, τ) + ψ
√
τ)],

where x =

∞∑

k=0

xk(τ)[1 −N(dk(yz, τ))],

ûx(t, x) =
ûz
xz

=

∑∞
k=0 yk(τ)[−N ′(dk(yz, τ) + ψ

√
τ)] 1

−ψ√τz∑∞
k=0 xk(τ)[−N ′(dk(yz, τ))]

1
−ψ√τz

=

∑∞
k=0 yk(τ)N

′(dk(yz, τ) + ψ
√
τ)∑∞

k=0 xk(τ)N
′(dk(yz, τ))

,

û(t, x− (1 − α1)π
1
t − (1 − α2)π

2
t ) =

∞∑

k=0

yk(τ)[1 −N(dk(yz
1

1 + ν
, τ) + ψ

√
τ)]

=
∞∑

k=0

yk(τ)[1 −N(dk+1(yz, τ) + ψ
√
τ)],

where x− (1 − α1)π
1
t − (1 − α2)π

2
t =

∞∑

k=0

xk(τ)[1 −N(dk(yz
1

1 + ν
, τ))]

=
∞∑

k=0

xk(τ)[1 −N(dk+1(yz, τ))],

ûx(t, x− (1 − α1)π
1
t − (1 − α2)π

2
t ) =

∑∞
k=0 yk(τ)N

′(dk(yz
1

1+ν , τ) + ψ
√
τ)

∑∞
k=0 xk(τ)N

′(dk(yz
1

1+ν , τ))

=

∑∞
k=0 yk(τ)N

′(dk+1(yz, τ) + ψ
√
τ)∑∞

k=0 xk(τ)N
′(dk+1(yz, τ))

,

ûxx(t, x) = ûxz(t,x)
xz

=
1

(
∑∞
k=0 xk(τ)N

′(dk(yz, τ)))
2

1∑∞
k=0 xk(τ)[−N ′(dk(yz, τ))]

1
−ψ√τz

·
{ ∞∑

k=0

yk(τ)N
′(dk(yz, τ) + ψ

√
τ)(−dk(yz, τ) − ψ

√
τ) 1

−ψ√τz

∞∑

k=0

xk(τ)N
′(dk(yz, τ))

−
∞∑

k=0

yk(τ)N
′(dk(yz, τ) + ψ

√
τ)

∞∑

k=0

xk(τ)N
′(dk(yz, τ))(−dk(yz, τ)) 1

−ψ√τz

}

=
1

(
∑∞
k=0 xk(τ)N

′(dk(yz, τ)))
3

·
{ ∞∑

k=0

yk(τ)N
′(dk(yz, τ) + ψ

√
τ)(dk(yz, τ) + ψ

√
τ)

∞∑

k=0

xk(τ)N
′(dk(yz, τ))

−
∞∑

k=0

yk(τ)N
′(dk(yz, τ) + ψ

√
τ)

∞∑

k=0

xk(τ)N
′(dk(yz, τ))dk(yz, τ))

}
.
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To find ût(t, x) we need

dxk(τ)

dt
= λ∗(xk(τ) − xk−1(τ)),

dyk(τ)

dt
= λ(yk(τ) − yk−1(τ)), for k = 0, 1, 2...,

where we define x−1(τ) = y−1(τ) = 0, and

∂ dk(yz, τ)

∂t
= −

( 1
2ψ

2 − λν)(−ψ√τ) − (ln yz + k ln(1 + ν) + ( 1
2ψ

2 − λν)τ) −ψ
2
√
τ

ψ2τ

=
dk(yz, τ)

2τ
−

1
2ψ

2 − λν

−ψ√τ .

Then

ût(t, x) = ût + ûz · zt = ût + ûz · −
xt
xz

= ût − ûx · xt

=

∞∑

k=0

λ(yk(τ) − yk−1(τ))[1 −N(dk(yz, τ) + ψ
√
τ)]

+

∞∑

k=0

yk(τ)[−N ′(dk(yz, τ) + ψ
√
τ)]

(
dk(yz, τ)

2τ
−

1
2ψ

2 − λν

−ψ√τ − ψ

2
√
τ

)

−
∑∞
k=0 yk(τ)N

′(dk(yz, τ) + ψ
√
τ)∑∞

k=0 xk(τ)N
′(dk(yz, τ))

·
{ ∞∑

k=0

λ∗(xk(τ) − xk−1(τ))[1 −N(dk(yz, τ))]

+
∞∑

k=0

xk(τ)[−N ′(dk(yz, τ))]

(
dk(yz, τ)

2τ
−

1
2ψ

2 − λν

−ψ√τ

)}

= −λ
∞∑

k=0

yk(τ)N(dk(yz, τ) + ψ
√
τ) + λ

∞∑

k=0

yk(τ)N(dk+1(yz, τ) + ψ
√
τ)

−
∞∑

k=0

yk(τ)N
′(dk(yz, τ) + ψ

√
τ)

(
dk(yz, τ)

2τ

)

+

∑∞
k=0 yk(τ)N

′(dk(yz, τ) + ψ
√
τ)∑∞

k=0 xk(τ)N
′(dk(yz, τ))

·
{
λ∗

∞∑

k=0

xk(τ)N(dk(yz, τ))

− λ∗
∞∑

k=0

xk(τ)N(dk+1(yz, τ))

+
∞∑

k=0

xk(τ)N
′(dk(yz, τ))

(
dk(yz, τ)

2τ
+

ψ

2
√
τ

)}
.
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Recall

π̂1(t, x) =
1

(1 − α2)σ1 − (1 − α1)σ2

{ ∞∑

k=0

xk(τ)N
′(dk(yz, τ))

(1 − α2)√
τ

+σ2

(
−

∞∑

k=0

xk(τ)N(dk+1(yz, τ)) +

∞∑

k=0

xk(τ)N(dk(yz, τ))

)}
,

π̂2(t, x) = − 1

(1 − α2)σ1 − (1 − α1)σ2

{ ∞∑

k=0

xk(τ)N
′(dk(yz, τ))

(1 − α1)√
τ

+σ1

(
−

∞∑

k=0

xk(τ)N(dk+1(yz, τ)) +

∞∑

k=0

xk(τ)N(dk(yz, τ))

)}
.

We have

π̂1(t, x)σ1 + π̂2(t, x)σ2 =

∞∑

k=0

xk(τ)N
′(dk(yz, τ))

1√
τ
,

π̂1(t, x)(µ1 + (1 − α1)λ) + π̂2(t, x)(µ2 + (1 − α2)λ)

= − ψ√
τ

∞∑

k=0

xk(τ)N
′(dk(yz, τ))

+ λ∗
( ∞∑

k=0

xk(τ)N(dk+1(yz, τ)) −
∞∑

k=0

xk(τ)N(dk(yz, τ))

)
.

It is routine to check the value function û and strategy π̂t satisfy the HJB

equality

ût(t, x) + [π̂1
t (µ1 + (1 − α1)λ) + π̂2

t (µ2 + (1 − α2)λ)]ûx(t, x)

+ 1
2 (π̂1

t σ1 + π̂2
t σ2)

2ûxx(t, x) + λ[û(t, x− (1 − α1)π̂
1
t − (1 − α2)π̂

2
t ) − û(t, x)] = 0.

�

2.3.3 Duality

Recall in the proof of Lemma 2.15, we have computed the value function to the

(Primal-Shortfall)

u(x) = û(0, x) =

∞∑

k=0

yk(T )[1 −N(dk(y, T ) + ψ
√
T )],

where x =
∞∑

k=0

xk(T )[1−N(dk(y, T ))], and

u′(x) = ûx(0, x) =

∑∞
k=0 yk(T )N ′(dk(y, T ) + ψ

√
T )∑∞

k=0 xk(T )N ′(dk(y, T ))
.



42 CHAPTER 2. COMPLETE MARKET MODELS

At the beginning of Chapter 2, we have shown that the optimal value function

to the (Dual-Shortfall) is

v(y) = E[(1 − yZT )+],

when H ≡ 1. We would once again like to check the duality results we have

derived in Section 1.4.

Lemma 2.16. The optimal value functions in the case of H ≡ 1 satisfy the

duality equality

v(y) = u(x) − xy, when y = u′(x).

Proof. Note that when y = u′(x),

E[(1 − yZT )+] = E

[(
1 − y (1 + ν)

NT e−λνT eψWT − 1
2ψ

2T

)+
]

= E

[
E

[(
1 − y (1 + ν)

k
e−λνT eψWT − 1

2ψ
2T

)

1
{WT√

T
>dk(y,T )+ψ

√
T}

∣∣∣NT = k

]]

=

∞∑

k=0

yk(T )[1 −N(dk(y, T ) + ψ
√
T )]

− y

∞∑

k=0

xk(τ)[1 −N(dk(y, T ))]

= u(x) − xu′(x)

= u(x) − xy.

�



Chapter 3

An Incomplete Market

Model

3.1 Set up of the mixed diffusion model

Suppose the dynamics of the discounted1 asset price process under P are

(1.1) dSt = St− [µtdt+ σtdWt − (1 − αt)dMt ] ,

where Mt = Nt−
∫ t
0
λsds is a compensated Poisson process, and Wt a standard

Brownian motion. Assume µt > 0, σt > 0, 0 < αt < 1, λt > 0 to be predictable

processes. The Doléans-Dade formula gives the solution to the above stochastic

differential equation

St = S(0)e
∫

t

0
lnαsdNs+

∫
t

0
σsdWs+

∫
t

0
(µs−1

2σ
2
s+(1−αs)λs)ds.

Note that the price follows an Itô process when there is no Poisson jump. In

the case when a jump occurs, the price jumps down to a fraction of itself αS.

Remark 3.1. Since we have two sources of uncertainty and only one price

process for hedging, the market is incomplete.

Proposition 3.1 in Bellamy and Jeanblanc (2000) uses the martingale repre-

sentation theorem to characterize the Radon-Nikodym derivatives of the local

1For simplicity of notation, we start with discounted prices to get rid of the interest rate.

43
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martingale measures with respect to P

M ∆
=

{
Q : Zt = EP

[
dQ

dP

∣∣∣Ft
]

= exp

[∫ t

0

ψsdWs − 1
2

∫ t

0

ψ2
sds

+

∫ t

0

ln(1 + νs)dNs − λt

∫ t

0

νsds

]
is a martingale,

and the predictable processes ψt and νt satisfy

µt + σt ψt − λt(1 − αt) νt = 0 and νt > −1 dP ⊗ dt a.s.
}
.

Obviously, the Radon-Nikodym derivative satisfies the SDE

dZt = Zt− [ψtdWt + νtdMt ] .

3.2 Characterization of primal and dual sets

Recall the set of admissible self-financing portfolios starting at x defined by

(1.1) in Chapter 1 is

X (x) =

{
X

∣∣∣∣ Xt = x+

∫ t

0

ξsdSs ≥ 0 P − a.s., for 0 ≤ t ≤ T

}
,

where ξ is a predictable process. The dual set defined by (1.3) in Chapter 1 is

Y(y) = {Y ≥ 0 | Y0 = y and XY is a P-supermartingale for any X ∈ X (1) } .

We will derive some general results characterizing these sets in the setting of

chapter 1 based on the assumption of the price process dynamics (1.1) which

are independent of the problem of minimizing shortfall risk raised in Section

1.4.

Lemma 3.2. Assume (1.1). Xt = x +
∫ t
0
ξsdSs is an element of X (x) if and

only if

ξt ≤ Xt−

(1−αt)St−
on the set {Xt− > 0}, and

ξt = 0 on the set {Xt− ≤ 0}.

Proof. When Xt− > 0 and 4Nt = 1,

Xt = Xt− + 4Xt ≥ 0 ⇔ 4Xt ≥ −Xt− ⇔
− (1 − αt)ξtSt− ≥ −Xt− ⇔ ξt ≤ Xt−

(1−αt)St−
.
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�

In this particular model, we can characterize the dual set Y(y) by the following

lemma and proposition.

Lemma 3.3. Assume (1.1). Yt ∈ Y(y) if and only if Yt ≥ 0 has the decompo-

sition

Yt = Zt −At,

where Zt is a local martingale under P starting at Z0 = y with the representation

dZt = Zt− [ψtdWt + νtdMt ] ,

where ψtand νt are predictable processes, and At is a predictable and increasing

process with A0 = 0 which can be decomposed into the part that is absolutely

continuous with respect to the Lebesgue measure, the singularly continuous part

and the jump part, i.e.,

dAt = atdt+ dAst + ∆At,

so that the following equation holds true

(2.2) 0 ≤ θt , µtYt−+Zt− {σtψt − λt(1 − αt)νt } ≤ (1−αt)at, dP⊗dt−a.s.

Proof. Let Y ∈ Y(y). Since 1 ∈ X (1), Y is a supermartingle. Using the

Doob-Meyer decomposition we can write

Yt = Zt −At,

where Z is a local martingale with Z0 = y and A is a predictable and increasing

process with A0 = 0. The martingale representation theorem gives

dZt = Zt− [ψtdWt + νtdMt ] ,

where ψt and νt are predictable processes. Obviously, At can also be decomposed

into three parts

dAt = atdt+ dAst + ∆At,

where the first part is absolutely continuous with respect to the Lebesgue mea-

sure, the second is the singularly continuous part, and the last is the pure jump

part. Notice that since A is predictable, N and A do not jump at the same time
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P − a.s.. Therefore for any X ∈ X (1) and Y ∈ Y(y), Ito’s lemma gives

XtYt =

∫ t

0

Xs−dY
c
s +

∫ t

0

Ys−dX
c
s +

∫ t

0

d〈Xc, Y c〉s +
∑

0<s≤t
(XsYs −Xs−Ys−)

=

∫ t

0

Xs−Zs−(ψsdWs − λsνsds) −
∫ t

0

Xs−(asds+ dAss)

+

∫ t

0

Ys−ξsSs−[µsds+ σsdWs + λs(1 − αs)ds] +

∫ t

0

σsZs−ψsSs−ξsds

∫ t

0

[(Xs− − (1 − αs)ξsSs−)(Ys− + Zs−νs) −Xs−Ys−] dNs

+
∑

0<s≤t
[Xs−(Ys− −4As) −Xs−Ys−]

= “local martingale part ” −
∫ t

0

Xs−dA
s
s −

∑

0<≤t
Xs−4As

+

∫ t

0

[−Xs−as + µsYs−ξsSs− + σsZs−ψsSs−ξs − λs(1 − αs)ξsSs−Zs−νs] ds.

XtYt is a supermartingale if and only if

(2.3) −Xs−as + ξsSs− {µsYs− + Zs− [σsψs − λs(1 − αs)νs] } ≤ 0

holds dP ⊗ ds − a.s. Therefore, Y ∈ Y(y) if and only if (2.3) holds for all

X ∈ X (1). Let

θt
∆
= µtYt− + Zt− {σtψt − λt(1 − αt)νt } .

We now show how to use Lemma 3.2 to prove that the inequality (2.3) which

can be written as

(2.4) −Xt−at + ξtSt−θt ≤ 0, dP ⊗ dt− a.s.

is equivalent to

(2.5) 0 ≤ θt ≤ (1 − αt)at, dP ⊗ dt− a.s.,

and therefore finish the proof of this lemma. Let τ = inf{t : θt < 0} and

τ̃ = inf{t > τ : θ ≥ 0} ∧ T . Suppose P(τ̃ − τ > 0) > 0. Define

ξt =

(
atXt−
θtSt−

− 1

)
1{Xt−>0}1{τ<t≤τ̃}.

Note that ξt is a predictable processes and Xt = 1 +
∫ t
0
ξsdSt is well-defined.

Since ξt < 0 < Xt−

(1−αt)St−
on the set {Xt− > 0}, ξt is an admissible strategy
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by Lemma 3.2, and X ∈ X (1). Let τ ′ = inf{t : Xt ≤ 0}. Because ξ = 0

on [0, τ ], Xτ = X0 = 1. Since ξt ≤ 0, Xt does not jump to 0, and therefore

P(τ ′ − τ > 0) = 1 and P(τ ′ ∧ τ̃ − τ > 0) > 0. On the set [τ, τ ′ ∧ τ̃ ],

ξt <
atXt−
θtSt−

, −Xt−at + ξtSt−θt > 0,

a contradiction to (2.4). Therefore, P(τ̃ − τ > 0) = 0 and θ ≥ 0 dP ⊗ dt − a.s.

Let B = {(t, ω) : θt > (1 − αt)at}. Define

ξt =
Xt−

(1 − αt)St−
1{Xt−>0}1B .

Again by Lemma 3.2, ξt is admissible andX ∈ X (1). Then on set B∩{Xt− > 0},

−Xt−at + ξtSt−θt = −Xt−at +
Xt−θt
1 − αt

= Xt−

(
−at +

θt
1 − αt

)
> 0,

a contradiction to (2.4). Therefore, P(B ∩{Xt− > 0}) = 0. Since the first jump

of the Poisson process is not predictable, P(B) = 0. We have (2.4) ⇒ (2.5). For

the reverse direction,

−Xt−at + ξtSt−θt ≤ −Xt−at +
θtXt−
1 − αt

= Xt−

(
θt

1 − αt
− at

)
≤ 0,

by Lemma 3.2, and (2.5). Thus we have (2.5) ⇒ (2.4). �

Proposition 3.4. Assume (1.1). Let Yt = Zt−At ∈ Y(y) be given. Then there

exists a local martingale Z̃t ∈ Y(y) such that Z̃t ≥ Yt. Z̃t has the decomposition

dZ̃t = Z̃t−[ ψ̃tdWt + ν̃tdMt ] on [0, τ), s.t. µt + σtψ̃t − λt(1 − αt)ν̃t = 0;

Z̃t ≡ 0 on [τ, T ],

where the stopping time τ is defined as τ = inf{t ≥ 0 : Z̃ ≤ 0}.

Remark 3.5. Recall from Theorem 1.18 in Section 1.4 that the (Dual-Shortfall)

problem has an optimal solution. A consequence of this Proposition when applied

to the shortfall minimization problem is that the optimal solutions are obtained

by local martingales of the above form in this mixed diffusion model.
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Proof. Define the stopping time

τy = inf{ t ≥ 0 : Yt = 0 }.

Since Yt is a nonnegative supermartingale, we have Yt ≡ 0 on [τ, T ]. Define Z̃t

to be a process with Z̃(0) = y satisfying

dZ̃t = Z̃t−[ ψ̃tdWt + ν̃tdMt ] on the set [0, τz),

Z̃t ≡ 0 on the set [τz, T ],

where

τz = inf{t ≥ 0 : Z ≤ 0},

ψ̃t =
ψtZt−
Yt−

1[0,τy),

ν̃t =

{
νtZt−
Yt−

+
θt

λt(1 − αt)Yt−

}
1[0,τy) +

µt
λt(1 − αt)

1[τy,τz),

“Z̃t ≥ Yt”: On [0, τy):

log Z̃t = log y +

∫ t

0

1

Z̃s−
dZ̃cs −

1

2

∫ t

0

1

Z̃2
s−
d〈Z̃c〉s +

∑

0<s≤t

(
log Z̃s − log Z̃s−

)

=

∫ t

0

ψ̃sdWs −
∫ t

0

λsν̃sds−
1

2

∫ t

0

ψ̃2
sds+

∫ t

0

log
Z̃s− + 4Z̃s

Z̃s−
dNs

=

∫ t

0

ψsZs−
Ys−

dWs −
∫ t

0

λsνsZs−
Ys−

ds−
∫ t

0

θs
(1 − αs)Ys−

ds

− 1

2

∫ t

0

ψ2
sZ

2
s−

Y 2
s−

ds+

∫ t

0

log(1 + ν̃s)dNs

log Yt = log y +

∫ t

0

1

Ys−
dY cs − 1

2

∫ t

0

1

Y 2
s−
d〈Y c〉s +

∑

0<s≤t
(log Ys − log Ys−)

=

∫ t

0

ψsZs−
Ys−

dWs −
∫ t

0

1

Ys−
(asds+ dAss) −

∫ t

0

λsνsZs−
Ys−

ds

− 1

2

∫ t

0

ψ2
sZ

2
s−

Y 2
s−

ds+

∫ t

0

log

(
1 +

4Ys
Ys−

)
dNs +

∑

0<s≤t
log

(
1 +

4Ys
Ys−

)
4As

Notice that at the jump times of A, 4Ys = −4As < 0, P − a.s. because A is

predictable and thus A and N do not jump at the same time. By Lemma 3.3,
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θs ≤ as(1 − αs), P − a.s.. Therefore,

log
Z̃t
Yt

=

∫ t

0

1

Ys

[
asds+ dAss −

θs
1 − αs

ds

]

+

∫ t

0

[
log(1 + ν̃s) − log

(
1 +

4Ys
Ys−

)]
dNs −

∑

0<s≤t
log

(
1 +

4Ys
Ys−

)
4As

≥
∫ t

0

[
log(1 + ν̃s) − log

(
1 +

4Ys
Ys−

)]
dNs

But at the jump times of N ,

4Ys
Ys−

=
4Zs
Ys−

=
νsZs−
Ys−

≤ ν̃s,

because Lemma 3.3 gives θs ≥ 0, P − a.s.. Therefore, log Z̃t

Yt
≥ 0, i.e., Z̃t ≥ Yt

on [0, τy).

On [τy, T ]:

Z̃t ≥ 0 = Yt.

“Z̃t ∈ Yt”: Z̃t ≥ Yt ≥ 0. On the set [0, τy),

µt + σtψ̃t − λt(1 − αt)ν̃t = µt +
σtψtZt−
Yt−

− λt(1 − αt)νtZt−
Yt−

− θt
Yt−

=
1

Yt−
[µtYt− + σtψtZt− − λt(1 − αt)νtZt− − θt ]

= 0.

On the set [τy, τz), µt + σtψ̃t − λt(1 − αt)ν̃t = 0 by definition. By Lemma 3.3

we conclude that Z̃t ∈ Y(y).

“Local martingale property ”: Since a stopped local martingale is a local

martingale, by construction, Z̃t ≥ 0 is a local martingale. �

3.3 An open question - Is the solution to (Dual-

Shortfall) a martingale?

Recall the (Dual-Shortfall) problem from Section 1.4.

v(y) = inf
Y ∈Y(y)

EP
[
(1 − Y )+H

]
= inf
h∈D(y)

EP
[
(1 − h)+H

]
.
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From Remark 3.5, we know that there is an optimal solution to (Dual-Shortfall)

that is a local martingale Z̃ ∈ Y(y) with the decomposition

dZ̃t = Z̃t−[ ψ̃tdWt + ν̃tdMt ] on [0, τ), s.t. µt + σtψ̃t − λt(1 − αt)ν̃t = 0;(3.6)

Z̃t ≡ 0 on [τ, T ],

where the stopping time τ is defined as τ = inf{t ≥ 0 : Z̃ ≤ 0}. If ψ̃ and ν̃

are bounded processes, then Z̃t will be a martingale2. Since we are maximizing

a convex function (when H ≡ 1), this reminds us of Hajek’s mean comparison

theorem from Hajek (1985) in the Brownian case:

Theorem 3.6 (Hajek’s Mean Comparison Theorem). Let x be a contin-

uous martingale with representation xt = x0 +
∫ t
0
σsdWs such that for some

Lipschitz continuous function ρ on R, |σs| ≤ ρ(xs). Let y be the unique solu-

tion to the stochastic differential equation ys = x0 +
∫ t
0
ρ(ys)dWs. Then for any

convex function Φ and any t ≥ 0

E[Φ(xt)] ≤ E[Φ(yt)].

If we could extend the comparison theorem to our case, then the following lemma

would be sufficient to prove that there indeed exists an optimal Ẑ ∈ Y(y) satis-

fying dẐt = Ẑt−[ ψ̂tdWt + ν̂tdMt ] when Zt− > 0, for some bounded predictable

processes ψ̂ and ν̂ as long as −µt

σt
and µt

(1−αt)λt
are bounded processes. This Ẑt

would be a martingale.

Lemma 3.7. Suppose an optimal solution Z̃ ∈ Y(y) to (Dual-Shortfall) has the

decomposition (ψ̃t, ν̃t) of (3.6). Define (ψ̂t, ν̂t) to be

ψ̂t = (ψ̃t ∧ 0) ∨ −µt
σt
, ν̂t =

µt + σtψ̂t
(1 − αt)λt

Then |ψ̂t| ≤ |ψ̃t| and |ν̂t| ≤ |ν̃t|. Obviously, (ψ̂t, ν̂t) lies on the line between the

two points (−µt

σt
, 0) and

(
0, µt

(1−αt)λt

)
.

However, counter-examples can be constructed to show that Hajek’s mean com-

parison theorem only holds in very specific cases and cannot be extended to

jump processes in general, see Večeř and Xu (2004).

2See corollary 3 in section 6, Chapter II of Protter (1995).
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3.4 Upper and lower bounds of the value func-

tion

From Remark 3.5, we know that there exists a dual optimal solution that is a

local martingale. Define the following set of interest

L = {Z : Z0 = 1 and for the stopping time τ = inf{t ≥ 0 : Z ≤ 0}
Z has the representation dZt = Zt−[ψtdWt + νtdMt ] on [0, τ),

s.t. µt + σtψt − λt(1 − αt)νt = 0, andZt ≡ 0 on [τ, T ]. }

We know that L ⊆ Y(1) from Lemma 3.3 and there exists an optimal solution

Ŷ ∈ Y(y) to (Dual-Shortfall) satisfying Ŷ
y
∈ L, for y ≥ 0, from Proposition 3.4.

Theorem 3.8. Let x < x̄ where x̄ is the super-hedging price defined in As-

sumption 1.14. There exists some y and an FT -measurable random variable γ̂

such that there is an optimal solution X̂ ∈ X (x) to (Primal-Shortfall) that can

be written as

X̂T ∧H = φ̂H = (1{0≤yẐT<1} + γ̂1{yẐT =1})H,

where Ẑ ∈ L, and yẐ ∈ Y(y) is an optimal solution to (Dual-Shortfall). Fur-

thermore,

EP[X̂T ẐT ] = x.

Proof.It is a direct application of Theorem 1.18, 1.19 and Proposition 3.4. �

Recall the primal and dual value functions defined in Section 1.4 for (Primal-

Shortfall) and (Dual-Shortfall) in this mixed diffusion model are

uBP (x) = sup
X∈X (x)

EP [H ∧XT ] = sup
g∈C(x)

EP [H ∧ g ] ;

vBP (y) = inf
Y ∈Y(y)

EP
[
(1 − Y )+H

]
= inf
h∈D(y)

EP
[
(1 − h)+H

]
.

Here we use superscripts BP to indicate that the price process involve both

Brownian motion and Poisson process. We know from theorem 1.18 that they

satisfy the duality equality

vBP (y) = max
x≥0

[uBP (x) − xy ] for any y ≥ 0,

uBP (x) = min
y≥0

[ vBP (y) + xy ] for any x ≥ 0,

vBP (yBP ) = uBP (xBP ) − xBP yBP when yBP ∈ ∂uBP (xBP ),

or equivalently, xBP ∈ −∂vBP (yBP ).
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3.4.1 Upper bounds

For any Z ∈ L, we can define

vZ(y) = EP [(1 − yZ)+H],(4.7)

uZ(x) = inf
y>0

[vZ(y) + xy].(4.8)

Since vZ(y) is convex, decreasing with the right limits for the right-hand deriva-

tives, similar results can be derived as in Appendix B so we know uZ(x) is

concave and increasing such that:

uZ(yZ) = vZ(xZ)+xZyZ when yZ ∈ ∂uZ(xZ), or equivalently, xZ ∈ −∂vZ(yZ).

Lemma 3.9. uZ(x) = EP [H] for x ∈ [EP[ZH] , ∞ ).

Proof. From (4.7), −vZy (0+) = EP[ZH]. Therefore

uZ(EP[ZH]) = vZ(0) = EP[H].

From (4.8), uZ(x) ≤ vZ(0). Since uZ(x) is an increasing function, we get the

desired result. �

Proposition 3.10. For any y ≥ 0, we have

vBP (y) ≤ vZ(y).

Proof. By Remark 3.5, we know

vBP (y) = inf
Y ∈L

EP
[
(1 − yY )+H

]
.

Since Z ∈ L, we easily conclude vBP (y) ≤ vZ(y). �

Lemma 3.11. Suppose u1 and u2 are concave functions on [a, b] and there exist

some x∗ ∈ (a, b) such that

(4.9) u1(x) − u2(x) ≤ u1(x
∗) − u2(x

∗),∀x ∈ [a, b],

then ∂u1(x
∗) ⊇ ∂u2(x

∗) 6= ∅.
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Proof. For a concave function u2(x), and an interior point x∗ ∈ (a, b)

∂u2(x
∗) = { y |u2(x) ≤ u2(x

∗) + y(x− x∗),∀x ∈ [a, b] }.

For any y ∈ ∂u2(x
∗), (4.9) implies

u1(x) ≤ u1(x
∗) − u2(x

∗) + u2(x) ≤ u1(x
∗) + y(x− x∗),∀x ∈ [a, b],

thus y ∈ ∂u1(x
∗). �

Recall from Assumption 1.14, the super-hedging price x̄ is assumed to be finite

x̄
∆
= sup

Q∈M
EQ[H] <∞.

Theorem 3.12. Suppose 0 ≤ x ≤ x̄. Then uBP (x) ≤ uZ(x).

Proof. Since uBP and uZ are continuous functions on [0, x̄] by Theorem 1.18,

we can define

x∗
∆
= argmax

x∈[0,x̄]

{uBP (x) − uZ(x)}.

Suppose x∗ ∈ (0, x̄). By Lemma 3.11, we can pick y∗ ∈ ∂uBP (x∗) ∩ ∂uZ(x∗).

From the duality relationship, we know uBP (x∗) = vBP (y∗)+x∗y∗, and uZ(x∗) =

vZ(y∗) + x∗y∗. Then for any x ∈ [0, x̄], we have

uBP (x) − uZ(x) ≤ uBP (x∗) − uZ(x∗)

= vBP (y∗) + x∗y∗ − (vZ(y∗) + x∗y∗) ≤ vBP (y∗) − vZ(y∗) ≤ 0,

by Proposition 3.10. Suppose x∗ = 0.

uBP (x) − uZ(x) ≤ uBP (0) − uZ(0) = 0 − inf
y>0

vZ(y) = 0.

Suppose x∗ = x̄. Lemma 3.9 gives uZ(x̄) = EP[H] and

uBP (x) − uZ(x) ≤ uBP (x̄) − uZ(x̄) = EP[H] − EP[H] = 0. �

Remark 3.13. Notice that we did not use any specific property from the jump-

diffusion price process in the above proofs. Therefore, this theorem can easily be

extended to the semimartingale models.

Remark 3.14. By Lemma 3.9 and Theorem 3.12, we know the upper bound is

effective on the interval x ∈ [ 0 , EP[ZH] ].
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We can specialize the above results to two familiar cases: the exponential Brow-

nian motion model and the exponential Poisson model. For the first one, the

stock price process is

dSt = St[µtdt+ σtdWt ].

There exists a unique Radon-Nikodym derivative process

ZBt = e−
∫

t

0
θsdWs−1

2

∫
t

0
θ2sds, where θs =

µs
σs
.

For the second model, the stock price process is

dSt = St[µtdt− (1 − αt)dMt ].

There exists a unique Radon-Nikodym derivative process

ZNT = e
∫

t

0
(lnλ∗

s−lnλs)dNs−
∫

t

0
(λ∗

s−λs)ds, where λ∗s =
µs + (1 − αs)λs

1 − αs
.

Obviously, ZBT ∈ L and ZNT ∈ L. We can define the corresponding value

functions

vB(y) = EP [(1 − yZBT )+H], vN (y) = EP [(1 − yZNT )+H],

uB(x) = inf
y>0

[vB(y) + xy], uN (x) = inf
y>0

[vN (y) + xy].

Corollary 3.15. For any y ≥ 0, we have

vBP (y) ≤ min{vB(y), vP (y)}.

Suppose 0 ≤ x ≤ min{EP [ZBH], EP [ZNH] } ≤ x̄. Then

uBP (x) ≤ min{uB(x), uP (x)}.

3.4.2 Lower bounds

Recall from Lemma 3.2, Xt = x+
∫ t
0
ξsdSs is an admissible strategy if and only

if

ξt ≤
Xt−

(1 − αt)St−
on the set {Xt− > 0}, and ξt = 0 on the set {Xt− ≤ 0}.

This is to make sure that Xt does not jump below 0, and once it hits 0, it stays

there. In the case of option payoff H, the primal problem is

u(x) = max
admissibleX

EP [H ∧XT ].
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Therefore, each particular strategy gives a lower bound for the value function

u(x). In the next section, we choose the strategy to invest the maximal amount

of capital in the stock to take advantage of the upward drift which, we call the

‘Bold Strategy’.3 As in Section 1.4, define the super-hedging wealth process to

be

Wt = ess sup
Q∈M

EQ [H | Ft ], W0 = x̄, WT = H.

Define

ξBoldt

∆
=

Xt−
(1 − αt)St−

on the set {0 < Xt− < Wt};

ξBoldt

∆
= 0 on the set {Xt− = 0};

ξBoldt

∆
= super-hedging strategy on the set {Xt− ≥Wt};

where x̄ is the super-hedging price, and

uBold(x)
∆
= EP [H ∧XBold

T ], where XBold
t

∆
= x+

∫ t

0

ξBolds dSs.

Then uBold(x) ≤ uBP (x) for all x ≥ 0.

3.5 Numerical results

3.5.1 Call option case

Let H = (ST − K)+. For the purpose of obtaining closed form solutions for

our numerical example, we let the parameters of the mixed-diffusion process be

constants. The stock price process therefore is

dSt = St−[µdt+ σdWt − (1 − α)dMt]

= St−[σdW ∗
t − (1 − α)dMt]

= St−[σdWt − (1 − α)dM∗
t ],

ST = S0e
[µ− 1

2σ
2+λ(1−α)]T+σWT +NT lnα

= S0e
[− 1

2σ
2+λ(1−α)]T+σW ∗

T +NT lnα,

where µ > 0, σ > 0, 0 < α < 1, λ > 0. W ∗
t = Wt + θt is a Brownian motion

under EB [·] when the Radon-Nikodym derivative is

ZBT = e−θWT − 1
2 θ

2T , θ =
µ

σ
.

3Intuitively, a more conservative strategy should work better because we don’t need to take

extra risk of bankruptcy for overshooting our goal too early.
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M∗
t = Nt−λ∗t is a compensated Poisson process under EN [·] when the Radon-

Nikodym derivative is

ZNT =

(
λ∗

λ

)NT

e−(λ∗−λ)T , λ∗ =
µ+ (1 − α)λ

1 − α
.

Define

d1(n)
∆
=

ln S0

K
+ [µ− 1

2σ
2 + λ(1 − α)]T + n lnα

σ
√
T

, d2(y)
∆
=

− ln y + 1
2θ

2T

θ
√
T

;

d∗1(n)
∆
= d1(n) − θ

√
T , d∗2(y)

∆
= d2(y) − θ

√
T ;

d3(y)
∆
=

− ln y + (λ∗ − λ)T

lnλ∗ − lnλ
.

We will compute, in the next two lemmas, upper bounds for our value function

from ZB and ZN .

Lemma 3.16. Suppose 0 < x ≤ EB [(ST −K)+]. There exists an N∗ and a yB

such that d∗1(N
∗ + 1) < d∗2(y

B) ≤ d∗1(N
∗) and

x = −∂vB(yB) = EB [(ST −K)+1{1≥yBZB}]

=

N∗∑

n=0

e−λT
(λT )n

n!

[
S0e

λ(1−α)T+n lnαN
(
d∗2(y

B) + σ
√
T
)
−KN

(
d∗2(y

B)
)]

+

∞∑

n=N∗+1

e−λT
(λT )n

n!

[
S0e

λ(1−α)T+n lnαN
(
d∗1(n) + σ

√
T
)
−KN (d∗1(n))

]
.

The corresponding value function can be computed

uB(x) = vB(yB) + xyB = E[(ST −K)+1{1≥yBZB}]

=
N∗∑

n=0

e−λT
(λT )n

n!

[
S0e

[µ+λ(1−α)]T+n lnαN
(
d2(y

B) + σ
√
T
)
−KN

(
d2(y

B)
)]

+

∞∑

n=N∗+1

e−λT
(λT )n

n!

[
S0e

[µ+λ(1−α)]T+n lnαN
(
d1(n) + σ

√
T
)
−KN (d1(n))

]
.

Proof. We need to solve for yB such that

x = −∂vB(yB)

= −∂E[(1 − yZB)+H]

= E[ZBH1{1≥yBZB}]

= E[ZB(ST −K)+1{1≥yBZB}]

= EB [(ST −K)+1{1≥yBZB}].
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Note that as y → ∞, EB [(ST − K)+1{1≥yZB}] → 0, as y → 0, EB [(ST −
K)+1{1≥yZB}] → EB [(ST −K)+], and EB [(ST −K)+1{1≥yZB}] is a decreasing

function of y. Therefore, if 0 < x ≤ EB [(ST − K)+], we can find a yB that

satisfies the above equation. To be more specific, note that, conditioned on

Nt = n,

ST ≥ K ⇔ −WT√
T

≤ d1(n) ⇔ −W
∗
T√
T

≤ d∗1(n),

1 ≥ yBZB ⇔ −WT√
T

≤ d2(y
B) ⇔ −W

∗
T√
T

≤ d∗2(y
B).

Then we can compute the expectation under the change of measure by ZB :

x = EB [(ST −K)+1{1≥yBZB}]

=
∞∑

n=0

e−λT (λT )n

n! EB
[(
S0e

[− 1
2σ

2+λ(1−α)]T+σW ∗
T +n lnα −K

)

1
{−W∗

T√
T
≤d∗

1
(n),−W∗

T√
T
≤d∗

2
(yB)}

]

=

N∗∑

n=0

e−λT (λT )n

n! EB
[(
S0e

[− 1
2σ

2+λ(1−α)]T+σW ∗
T +n lnα −K

)
1
{−W∗

T√
T
≤d∗

2
(yB)}

]

+

∞∑

n=N∗+1

e−λT (λT )n

n! EB
[(
S0e

[− 1
2σ

2+λ(1−α)]T+σW ∗
T +n lnα −K

)
1
{−W∗

T√
T
≤d∗

1
(n)}

]

=
N∗∑

n=0

e−λT (λT )n

n!

[
S0e

λ(1−α)T+n lnαN
(
d∗2(y

B) + σ
√
T
)
−KN

(
d∗2(y

B)
)]

+

∞∑

n=N∗+1

e−λT (λT )n

n!

[
S0e

λ(1−α)T+n lnαN
(
d∗1(n) + σ

√
T
)
−KN (d∗1(n))

]
.

uB(x) can be computed from the following formula

uB(x) = vB(yB) + xyB

= E[(1 − yBZB)+H] + yBE[ZBH1{1≥yBZB}]

= E[(1 − yBZB)H1{1≥yBZB}] + E[yBZBH1{1≥yBZB}]

= E[H1{1≥yBZB}]

= E[(ST −K)+1{1≥yBZB}]

=
N∗∑

n=0

e−λT (λT )n

n!

[
S0e

[µ+λ(1−α)]T+n lnαN
(
d2(y

B) + σ
√
T
)
−KN

(
d2(y

B)
)]

+

∞∑

n=N∗+1

e−λT (λT )n

n!

[
S0e

[µ+λ(1−α)]T+n lnαN
(
d1(n) + σ

√
T
)
−KN (d1(n))

]
. �
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Lemma 3.17. Suppose 0 < x ≤ EN [(ST − K)+]. There exists an N∗ and a

yN where d3(y
N ) = N∗, and 0 ≤ γ < 1 such that x ∈ −∂vN (yN ) and

x = EN [(ST −K)+1{1>yNZN}] + γNEN [(ST −K)+1{1=yNZN}]

=

N∗−1∑

n=0

e−λ
∗T (λ∗T )n

n!

[
S0e

[µ+λ(1−α)]T+n lnαN
(
d1(n) + σ

√
T
)
−KN (d1(n))

]

+ γNe−λ
∗T (λ∗T )N

∗

N∗!

[
S0e

[µ+λ(1−α)]T+N∗ lnαN
(
d1(N

∗) + σ
√
T
)
−KN (d1(N

∗))
]
.

The corresponding value function can be computed

uN (x) = vN (yN ) + xyN

= E[(ST −K)+1{1>yNZN}] + γNE[(ST −K)+1{1=yNZN}]

=
N∗−1∑

n=0

e−λT
(λT )n

n!

[
S0e

[µ+λ(1−α)]T+n lnαN
(
d1(n) + σ

√
T
)
−KN (d1(n))

]

+ γNe−λT
(λT )N

∗

N∗!

[
S0e

[µ+λ(1−α)]T+N∗ lnαN
(
d1(N

∗) + σ
√
T
)
−KN (d1(N

∗))
]
.

Proof. Note that

−∂vN (y) = [E [ZNH1{1>yZN}] , E [ZNH1{1≥yZN}] ].

We would like to find a yN such that x ∈ −∂vN (yN ). Then there exists 0 ≤
γN < 1 such that

x = E[ZNH1{1>yNZN}] + γNE[ZNH1{1=yNZN}]

= E[ZN (ST −K)+1{1>yNZN}] + γNE[ZN (ST −K)+1{1=yNZN}]

= EN [(ST −K)+1{1>yNZN}] + γNEN [(ST −K)+1{1=yNZN}].

Note that ZN ≥ e−(λ∗−λ)T . Therefore

• When y > e(λ
∗−λ)T , EN [(ST −K)+1{1≥yZN}] = 0.

• As y → 0, EN [(ST −K)+1{1≥yZN}] → EN [(ST −K)+].

Also, EN [(ST −K)+1{1≥yZN}] is a decreasing function of y. Therefore, if 0 <

x ≤ EN [(ST −K)+], we can find a yN and a γN that satisfy the above equation.

To be more specific, note that, conditioned on NT = n,

ST ≥ K ⇔ −WT√
T

≤ d1(n) ⇔ −W
∗
T√
T

≤ d∗1(n),

1 ≥ yNZN ⇔ NT ≤ d3(y
N ).
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Then we can compute the expectation under the change of measure by ZN :

x = EN [(ST −K)+1{1>yNZN}] + γNEN [(ST −K)+1{1=yNZN}]

=

∞∑

n=0

e−λ
∗T (λ∗T )n

n!
EN

[(
S0e

[µ− 1
2σ

2+λ(1−α)]T+σWT +n lnα −K

)

1{−WT√
T
≤d1(n),NT<d3(yN )}

]

+ γNe−λ
∗T (λ∗T )n

n!
EN

[(
S0e

[µ− 1
2σ

2+λ(1−α)]T+σWT +n lnα −K

)

1{−WT√
T
≤d1(n),NT =d3(yN )}

]

=
N∗−1∑

n=0

e−λ
∗T (λ∗T )n

n!
EN

[(
S0e

[µ− 1
2σ

2+λ(1−α)]T+σWT +n lnα −K

)

1{−WT√
T
≤d1(n)}

]

+ γNe−λ
∗T (λ∗T )N∗

N∗!
EN

[(
S0e

[µ− 1
2σ

2+λ(1−α)]T+σWT +N∗ lnα −K

)

1{−WT√
T
≤d1(N∗)}

]

=

N∗−1∑

n=0

e−λ
∗T (λ∗T )n

n!

[
S0e

[µ+λ(1−α)]T+n lnαN
(
d1(n) + σ

√
T
)
−KN (d1(n))

]

+ γNe−λ
∗T (λ∗T )N

∗

N∗!

[
S0e

[µ+λ(1−α)]T+N∗ lnαN
(
d1(N

∗) + σ
√
T
)
−KN (d1(N

∗))
]
.

uB(x) can be computed from the following formula:

uB(x) = vN (yN ) + xyN

= E[(1 − yNZN )+H] + yNE[ZNH1{1>yNZN}] + yNγNE[ZNH1{1=yNZN}]

= E[(1 − yNZN )H1{1>yNZN}] + E[yNZNH1{1>yNZN}]

+ yNγNE[ZNH1{1=yNZN}]

= E[H1{1>yNZN}] + yNγNE[ZNH1{1=yNZN}]

= E[H1{1>yNZN}] + γNE[H1{1=yNZN}]

= E[(ST −K)+1{1>yNZN}] + γNE[(ST −K)+1{1=yNZN}]

=

N∗−1∑

n=0

e−λT
(λT )n

n!

[
S0e

[µ+λ(1−α)]T+n lnαN
(
d1(n) + σ

√
T
)
−KN (d1(n))

]

+ γNe−λT
(λT )N

∗

N∗!

[
S0e

[µ+λ(1−α)]T+N∗ lnαN
(
d1(N

∗) + σ
√
T
)
−KN (d1(N

∗))
]
. �
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Now let us turn to the Bold Strategy for lower bounds. Note that the super-

hedging price for a call option in the mixed diffusion model is the current stock

price, see Bellamy and Jeanblanc (2000). Define a predictable time τ1 when the

value of the portfolio approaches zero continuously; a stopping time τ2 when it

jumps to zero; and a stopping time τ3 when the wealth reaches the super-hedging

price of the call option:

τ1 = inf{t > 0 : Xt− = 0};
τ2 = inf{t > 0 : Xt− > 0, Xt = 0};
τ3 = inf{t > 0 : Xt− = St−};
τ = τ1 ∧ τ2 ∧ τ3.

Then on the set t < τ ,

ξBoldt =
Xt−

(1 − α)St−

dXBold
t = XBold

t− ( µ
1−αdt+ σ

1−αdWt − dMt).

In our case, τ1 = ∞, and τ = τ2 ∧ τ3. The final wealth of the Bold Strategy is

XBold
T = x e

σ
1−αWT +

(
µ

1−α+λ− σ2

2(1−α)2

)
T

on the set {τ > T};
XBold
T = 0, on the set {τ2 < τ3, τ2 ≤ T};

XBold
T = ST , on the set {τ3 < τ2, τ3 ≤ T}.

By the independence of the Poisson process and the Brownian motion, we can

compute the corresponding value function,

uBold(x) = EP [(ST −K)+ ∧XBold
T ]

= EP
[
EP [(ST −K)+ ∧XBold

T · 1{τ≤T} + (ST −K)+ ∧XBold
T · 1{τ>T}|NT ]

]

= e−λT EP [(ST −K)+ ∧XBold
T · 1{τ≤T} + (ST −K)+ ∧XBold

T · 1{τ>T}|NT = 0]

+ (1 − e−λT )EP [(ST −K)+ ∧XBold
T · 1{τ≤T}

+ (ST −K)+ ∧XBold
T · 1{τ>T}|NT ≥ 1]

= e−λT EP

[(
S0e

σWT +
(
µ+λ(1−α)−σ

2

2

)
T −K

)+

· 1{τ3≤T}

+

(
S0e

σWT +
(
µ+λ(1−α)−σ

2

2

)
T −K

)+

∧ x e
σ

1−αWT +
(

µ
1−α+λ− σ2

2(1−α)2

)
T · 1{τ3>T}

]

+ (1 − e−λT )EP

[(
S0e

σWT +
(
µ+λ(1−α)−σ

2

2

)
T+NT lnα −K

)+

· 1{τ3<τ2} | τ2 ≤ T

]
.



3.5. NUMERICAL RESULTS 61

For notational simplicity, let’s define

θBold =
µ+ λ(1 − α) − σ2

2
2−α
1−α

σ
,

b(x) =
1−α
α

ln S0

x

σ
,

a =
ln K

S0
− σ2

2(1−α)T

σ
,

an(x) =
ln K

S0
− σ2

2(1−α)T − n lnα− σb(x)

σ
,

f1(w) = S0e
σw+

σ2

2(1−α)T −K,

f2(w) = xe
σ

1−αw+
σ2

2(1−α)T .

Notice that f1(a) = 0 < f2(a), both functions are convex, and they intersect at

most at two points. It will become clear in the proof of the following lemma that

we can compute the value function of the Bold Strategy under three different

cases:

• Case 1: f1(w) ≤ f2(w) on w ∈ [a, b(x)].

• Case 2: f1(w) ≤ f2(w) on w ∈ [a, c], and f1(w) ≥ f2(w) on w ∈ [c, b(x)].

• Case 3: f1(w) ≤ f2(w) on w ∈ [a, c1], f1(w) ≥ f2(w) on w ∈ [c1, c2],

and f1(w) ≤ f2(w) on w ∈ [c2, b(x)].

Lemma 3.18. Assume 0 < x < x̄ = S0 and a ≤ 0 < b(x). Then the value

function of the Bold Strategy is

• Case 1: uBold(x) = I1(a,∞, T ) − I2(a,∞, T ) + I7(x) − I8(x).

• Case 2: uBold(x) = I1(b(x),∞, T ) − I2(b(x),∞, T ) + I3(x, a, b(x), T ) −
I4(x, a, b(x), T ) + I1(a, c, T ) − I3(x, a, c, T ) − I2(a, c, T ) + I4(x, a, c, T ) +

I5(x, c, b(x), T ) − I6(x, c, b(x), T ) + I7(x) − I8(x).

• Case 3: uBold(x) = I1(b(x),∞, T ) − I2(b(x),∞, T ) + I3(x, a, b(x), T ) −
I4(x, a, b(x), T )+I1(a, c1, T )−I3(x, a, c1, T )−I2(a, c1, T )+I4(x, a, c1, T )+

I1(c2, b(x), T ) − I3(x, c2, b(x), T ) − I2(c2, b(x), T ) + I4(x, c2, b(x), T )

+I5(x, c1, c2, T ) − I6(x, c1, c2, T ) + I7(x) − I8(x).
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where N(·) is the cumulative distribution function of a standard normal random

variable, and

I1(l, u, τ) = S0e
(µ−αλ)τ

[
N
(
u−(σ+θBold)τ√

τ

)
−N

(
l−(σ+θBold)τ√

τ

)]
,

I2(l, u, τ) = Ke−λτ
[
N
(
u−θBoldτ√

τ

)
−N

(
l−θBoldτ√

τ

)]
,

I3(x, l, u, τ) = S0e
(µ−αλ)τ+2b(x)(σ+θBold)

·
[
N
(
u−2b(x)−(σ+θBold)τ√

τ

)
−N

(
l−2b(x)−(σ+θBold)τ√

τ

)]

= e2b(x)(σ+θBold)I1(l − 2b(x), u− 2b(x), τ),

I4(x, l, u, τ) = Ke−λτ+2b(x)θBold
[
N
(
u−2b(x)−θBoldτ√

τ

)
−N

(
l−2b(x)−θBoldτ√

τ

)]

= e2b(x)θ
Bold

I2(l − 2b(x), u− 2b(x), τ),

I5(x, l, u, τ) = xe
µ

1−ατ
[
N

(
u−(θBold+

σ
1−α )τ

√
τ

)
−N

(
l−(θBold+

σ
1−α )τ

√
τ

)]
,

I6(x, l, u, τ) = xe
µ

1−ατ+2b(x)(θBold+
σ

1−α )

·
[
N

(
u−2b(x)−(θBold+

σ
1−α )τ

√
τ

)
−N

(
l−2b(x)−(θBold+

σ
1−α )τ

√
τ

)]

= e
2b(x)(θBold+

σ
1−α )

I5(x, l − 2b(x), u− 2b(x), τ),

I7(x) =
∞∑

n=1

S0e
n lnα+(µ−αλ)T

∫ T

0

(
1 −N

(
an(x)−(σ+θBold)(T−s)√

T−s

))

· b(x)√
2πs3

e−
(b(x)−(θBold+σ)s)2

2s
(λ(T − s))n

n!
ds,

I8(x) =

∞∑

n=1

Ke−λT
∫ T

0

(
1 −N

(
an(x)−θBold(T−s)√

T−s

))

· b(x)√
2πs3

e−
(b(x)−θBolds)2

2s
(λ(T − s))n

n!
ds.

Proof.

XBold
T < ST ⇐⇒ W̃T

∆
= WT + θBoldT < b(x) on the set {τ2 > T},

and

ST −K = S0e
σW̃T +

σ2

2(1−α)T −K = f1(W̃T ),

XBold
T = xe

σ
1−αW̃T +

σ2

2(1−α)T = f2(W̃T ).
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We know for w̃ ≤ m̃, m̃ > 0,

P (M̃s ∈ dm̃, W̃s ∈ dw̃) =
2(2m̃− w̃)√

2πs3
e−

(2m̃−w̃)2

2s eθ
Boldw̃− 1

2 (θBold)2sdw̃dm̃,

where M̃ is the running maximum of the drifted Brownian motion W̃ . Note

that b(x) > 0 for 0 < x < S0, and

P (τ3 ∈ ds) =
|b(x)|√
2πs3

e−
(b(x)−θBolds)2

2s ds =
b(x)√
2πs3

e−
(b(x)−θBolds)2

2s ds, s > 0

on the set {s < τ2}. We can also compute the conditional probability

P (τ2 ∈ du | τ2 ≤ T ) =
P (τ2 ∈ du, τ2 ≤ T )

P (τ2 ≤ T )
=
P (τ2 ∈ du)

P (τ2 ≤ T )
=

λe−λu

1 − e−λT
du,

for 0 ≤ u ≤ T . Note that ST > K iff W̃T > a, on the set {τ2 > T}, and the

value function can be written as

uBold(x) = term 1 + term 2 + term 3,

where

term 1 = e−λTE
[
f1(W̃T ) · 1{M̃T>b(x),W̃T>a}

]
,

term 2 = e−λTE
[(
f1(W̃T ) ∧ f2(W̃T )

)
· 1{M̃T<b(x),W̃T>a}

]
,

term 3 = (1 − e−λT )

∫ T

0

∫ u

0

E



(
S0e

σ(b(x)+W̃T−s)+
σ2

2(1−α)T+(1+NT−u) lnα −K

)+



· P (τ3 ∈ ds)P (τ2 ∈ du | τ2 ≤ T ).

Note the condition a ≤ 0 < b(x), we have

term 1 = e−λT
∫ ∞

b(x)

∫ m̃

a

S0e
σw̃+

σ2

2(1−α)T
2(2m̃− w̃)√

2πT 3
e−

(2m̃−w̃)2

2T eθ
Boldw̃− 1

2 (θBold)2T dw̃dm̃

− e−λT
∫ ∞

b(x)

∫ m̃

a

K
2(2m̃− w̃)√

2πT 3
e−

(2m̃−w̃)2

2T eθ
Boldw̃− 1

2 (θBold)2T dw̃dm̃

= e−λT
∫ b(x)

a

S0e
(σ+θBold)w̃+

σ2

2(1−α)T− 1
2 (θBold)2T 1√

2πT
e−

(2b(x)−w̃)2

2T dw̃

− e−λT
∫ b(x)

a

Keθ
Boldw̃− 1

2 (θBold)2T 1√
2πT

e−
(2b(x)−w̃)2

2T dw̃

+ e−λT
∫ ∞

b(x)

S0e
(σ+θBold)w̃+

σ2

2(1−α)T− 1
2 (θBold)2T 1√

2πT
e−

w̃2

2T dw̃

− e−λT
∫ ∞

b(x)

Keθ
Boldw̃− 1

2 (θBold)2T 1√
2πT

e−
w̃2

2T dw̃

= I1(b(x),∞, T ) − I2(b(x),∞, T ) + I3(x, a, b(x), T ) − I4(x, a, b(x), T ).
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where

I1(l, u, τ) = e−λτ
∫ u

l

S0e
(σ+θBold)w̃+

σ2

2(1−α) τ−
1
2 (θBold)2τ 1√

2πτ
e−

w̃2

2τ dw̃

= S0e
(µ−αλ)τ

[
N
(
u−(σ+θBold)τ√

τ

)
−N

(
l−(σ+θBold)τ√

τ

)]
,

I2(l, u, τ) = e−λτ
∫ u

l

Keθ
Boldw̃− 1

2 (θBold)2τ 1√
2πτ

e−
w̃2

2τ dw̃

= Ke−λτ
[
N
(
u−θBoldτ√

τ

)
−N

(
l−θBoldτ√

τ

)]
,

I3(x, l, u, τ) = e−λτ
∫ u

l

S0e
(σ+θBold)w̃+

σ2

2(1−α) τ−
1
2 (θBold)2τ 1√

2πτ
e−

(2b(x)−w̃)2

2τ dw̃

= S0e
(µ−αλ)τ+2b(x)(σ+θBold)

[
N
(
u−2b(x)−(σ+θBold)τ√

τ

)

−N
(
l−2b(x)−(σ+θBold)τ√

τ

)]

= e2b(x)(σ+θBold)I1(l − 2b(x), u− 2b(x), τ),

I4(x, l, u, τ) = e−λτ
∫ u

l

Keθ
Boldw̃− 1

2 (θBold)2τ 1√
2πτ

e−
(2b(x)−w̃)2

2τ dw̃

= Ke−λτ+2b(x)θBold
[
N
(
u−2b(x)−θBoldτ√

τ

)
−N

(
l−2b(x)−θBoldτ√

τ

)]

= e2b(x)θ
Bold

I2(l − 2b(x), u− 2b(x), τ).

Under Case 1:

term 1 + term 2 = e−λTE

[(
S0e

σW̃T +
σ2

2(1−α)T −K

)
· 1{M̃T>b(x),W̃T>a}

]

+ e−λTE

[(
S0e

σW̃T +
σ2

2(1−α)T −K

)
· 1{M̃T<b(x),W̃T>a}

]

= e−λTE

[(
S0e

σW̃T +
σ2

2(1−α)T −K

)
· 1{W̃T>a}

]

= e−λT
∫ ∞

a

(
S0e

σw̃+
σ2

2(1−α)T −K

)
1√
2πT

e−
(w̃−θBoldT )2

2T dw̃

= e−λT
∫ ∞

a

(
S0e

(σ+θBold)w̃+
σ2

2(1−α)T− 1
2 (θBold)2T −Keθ

Boldw̃− 1
2 (θBold)2T

)

· 1√
2πT

e−
w̃2

2T dw̃

= I1(a,∞, T ) − I2(a,∞, T ).
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Under Case 2: (a < 0, c > 0)

term 2 = e−λT
∫ b(x)

0

∫ c∧m̃

a

S0e
σw̃+

σ2

2(1−α)T
2(2m̃− w̃)√

2πT 3
e−

(2m̃−w̃)2

2T

· eθBoldw̃− 1
2 (θBold)2T dw̃dm̃

− e−λT
∫ b(x)

0

∫ c∧m̃

a

K
2(2m̃− w̃)√

2πT 3
e−

(2m̃−w̃)2

2T eθ
Boldw̃− 1

2 (θBold)2T dw̃dm̃

+ e−λT
∫ b(x)

c

∫ m̃

c

xe
σ

1−αw̃+
σ2

2(1−α)T
2(2m̃− w̃)√

2πT 3
e−

(2m̃−w̃)2

2T

· eθBoldw̃− 1
2 (θBold)2T dw̃dm̃

= e−λT
∫ c

a

S0e
(σ+θBold)w̃+

σ2

2(1−α)T− 1
2 (θBold)2T

· 1√
2πT

(
e−

w̃2

2T − e−
(2b(x)−w̃)2

2T

)
dw̃

− e−λT
∫ c

a

Keθ
Boldw̃− 1

2 (θBold)2T 1√
2πT

(
e−

w̃2

2T − e−
(2b(x)−w̃)2

2T

)
dw̃

+ e−λT
∫ b(x)

c

xe

(
σ

1−α+θBold
)
w̃+

σ2

2(1−α)T− 1
2 (θBold)2T

· 1√
2πT

(
e−

w̃2

2T − e−
(2b(x)−w̃)2

2T

)
dw̃

= I1(a, c, T ) − I3(x, a, c, T ) − I2(a, c, T ) + I4(x, a, c, T )

+ I5(x, c, b(x), T ) − I6(x, c, b(x), T ),

where

I5(x, l, u, τ) = e−λτ
∫ u

l

xe

(
σ

1−α+θBold
)
w̃+

σ2

2(1−α) τ−
1
2 (θBold)2τ 1√

2πτ
e−

w̃2

2τ dw̃

= xe
µ

1−ατ
[
N

(
u−(θBold+

σ
1−α )τ

√
τ

)
−N

(
l−(θBold+

σ
1−α )τ

√
τ

)]

I6(x, l, u, τ) = e−λτ
∫ u

l

xe

(
σ

1−α+θBold
)
w̃+

σ2

2(1−α) τ−
1
2 (θBold)2τ

· 1√
2πτ

e−
(2b(x)−w̃)2

2τ dw̃

= xe
µ

1−ατ+2b(x)(θBold+
σ

1−α )

·
[
N

(
u−2b(x)−(θBold+

σ
1−α )τ

√
τ

)
−N

(
l−2b(x)−(θBold+

σ
1−α )τ

√
τ

)]

= e
2b(x)(θBold+

σ
1−α )

I5(x, l − 2b(x), u− 2b(x), τ).
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The case (a < 0, c < 0) yield the same result.

Under Case 3: (a < 0, c1 < 0, c2 > 0)

term 2 = e−λT
∫ b(x)

0

∫ c1

a

S0e
σw̃+

σ2

2(1−α)T
2(2m̃− w̃)√

2πT 3
e−

(2m̃−w̃)2

2T

· eθBoldw̃− 1
2 (θBold)2T dw̃dm̃

− e−λT
∫ b(x)

0

∫ c1

a

K
2(2m̃− w̃)√

2πT 3
e−

(2m̃−w̃)2

2T eθ
Boldw̃− 1

2 (θBold)2T dw̃dm̃

+ e−λT
∫ b(x)

c2

∫ m̃

c2

S0e
σw̃+

σ2

2(1−α)T
2(2m̃− w̃)√

2πT 3
e−

(2m̃−w̃)2

2T

· eθBoldw̃− 1
2 (θBold)2T dw̃dm̃

− e−λT
∫ b(x)

c2

∫ m̃

c2

K
2(2m̃− w̃)√

2πT 3
e−

(2m̃−w̃)2

2T eθ
Boldw̃− 1

2 (θBold)2T dw̃dm̃

+ e−λT
∫ b(x)

0

∫ m̃∧c2

c1

xe
σ

1−αw̃+
σ2

2(1−α)T
2(2m̃− w̃)√

2πT 3
e−

(2m̃−w̃)2

2T

· eθBoldw̃− 1
2 (θBold)2T dw̃dm̃

= e−λT
∫ c1

a

S0e
(σ+θBold)w̃+

σ2

2(1−α)T− 1
2 (θBold)2T

· 1√
2πT

(
e−

w̃2

2T − e−
(2b(x)−w̃)2

2T

)
dw̃

− e−λT
∫ c1

a

Keθ
Boldw̃− 1

2 (θBold)2T 1√
2πT

(
e−

w̃2

2T − e−
(2b(x)−w̃)2

2T

)
dw̃

+ e−λT
∫ b(x)

c2

S0e
(σ+θBold)w̃+

σ2

2(1−α)T− 1
2 (θBold)2T

· 1√
2πT

(
e−

w̃2

2T − e−
(2b(x)−w̃)2

2T

)
dw̃

− e−λT
∫ b(x)

c2

Keθ
Boldw̃− 1

2 (θBold)2T 1√
2πT

(
e−

w̃2

2T − e−
(2b(x)−w̃)2

2T

)
dw̃

+ e−λT
∫ c2

c1

xe

(
σ

1−α+θBold
)
w̃+

σ2

2(1−α)T− 1
2 (θBold)2T

· 1√
2πT

(
e−

w̃2

2T − e−
(2b(x)−w̃)2

2T

)
dw̃

= I1(a, c1, T ) − I3(x, a, c1, T ) − I2(a, c1, T ) + I4(x, a, c1, T )

+ I1(c2, b(x), T ) − I3(x, c2, b(x), T ) − I2(c2, b(x), T )

+ I4(x, c2, b(x), T ) + I5(x, c1, c2, T ) − I6(x, c1, c2, T )
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The cases (a < 0, c1 > 0, c2 > 0) and (a < 0, c1 < 0, c2 < 0) yield the same

result. Recall

an(x) =
ln K

S0
− σ2

2(1−α)T − n lnα− σb(x)

σ
.

We have

E



(
S0e

σ(b(x)+W̃T−s)+
σ2

2(1−α)T+(1+NT−u) lnα −K

)+



= E

[
E

[(
S0e

σ(b(x)+W̃T−s)+
σ2

2(1−α)T+(1+n) lnα −K

)
· 1{W̃T−s>an+1(x)}

]

∣∣∣NT−u = n
]

=

∞∑

n=0

e−λ(T−u) (λ(T − u))n

n!
e
σb(x)+

σ2

2(1−α) s+(1+n) lnα

· I1(x, an+1(x),∞, T − s)eλ(T−s)

−
∞∑

n=0

e−λ(T−u) (λ(T − u))n

n!
I2(x, an+1(x),∞, T − s)eλ(T−s).

Therefore, term 3 equals

(1 − e−λT )

∫ T

0

∫ u

0

E



(
S0e

σ(b(x)+W̃T−s)+
σ2

2(1−α)T+(1+NT−u) lnα −K

)+



· P (τ3 ∈ ds)P (τ2 ∈ du | τ2 ≤ T )

= I7(x) − I8(x),

where

I7(x) =

∞∑

n=1

∫ T

0

e
σb(x)+

σ2

2(1−α) s+n lnα
I1(x, an(x),∞, T − s)

· b(x)√
2πs3

e−
(b(x)−θBolds)2

2s −λs (λ(T − s))n

n!
ds

=

∞∑

n=1

S0e
n lnα+(µ−αλ)T

∫ T

0

(
1 −N

(
an(x)−(σ+θBold)(T−s)√

T−s

))

· b(x)√
2πs3

e−
(b(x)−(θBold+σ)s)2

2s
(λ(T − s))n

n!
ds,
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I8(x) =

∞∑

n=1

∫ T

0

I2(x, an(x),∞, T − s)
b(x)√
2πs3

e−
(b(x)−θBolds)2

2s −λs (λ(T − s))n

n!
ds

=

∞∑

n=1

Ke−λT
∫ T

0

(
1 −N

(
an(x)−θBold(T−s)√

T−s

))

· b(x)√
2πs3

e−
(b(x)−θBolds)2

2s
(λ(T − s))n

n!
ds.

�

As we can see from Figure 3.1 and Table 3.1, in the case of an at-the-money

call option when we expect on average one 20% of drop in the stock price each

year, 10% excess return and 20% volatility, the upper and lower bounds tell the

story which match our intuition. When the initial capital is small, the risky Bold

Strategy works very well, and the upper and lower bounds are very close. As the

initial capital gets bigger, the optimal investment strategy should become more

conservative, therefore the Bold Strategy is moving away from being optimal

and the bounds are not tight anymore.

As we can see from Figure 3.2 and Table 3.2, everything else being the same,

when we expect on average one 80% of drop in the stock price each year, the

upper bound produced by the change of measure on the Poisson part uN (x)

and the lower bound produced by the Bold Strategy uBold(x) are nearly indis-

tinguishable.

3.5.2 Bond case

When the option payoff is a constant, which we assume without loss of generality

is H ≡ 1, we can similarly compute the formulae which are simpler than the

ones computed in the call option case. Comparing Figure 3.5.2 and Figure 3.5.2,

we observe that when the Brownian motion becomes the dominant part in the

stock dynamics, the upper bounds switch positions. Recall from Corollary 3.15,

it is better to take the minimum of the two upper bounds. In general, we can

try to optimize the way we choose the dual processes to derive better upper

bounds.
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x uBold(x) uN (x) uB(x)

1 1.63 1.65 3.23

2 3.26 3.30 5.57

3 4.86 4.95 7.57

4 6.39 6.59 9.36

5 7.81 8.24 10.98

6 9.09 9.89 12.45

7 10.22 11.54 13.80

8 11.18 13.17 15.03

9 11.97 14.27 16.15

10 12.61 15.36 17.14

11 13.08 16.46 18.00

Table 3.1: The graph shows the upper and lower bounds in the call option

case with initial stock price S0 = 100, strike K = 100, maturity T = 1, and

parameters µ = .1, σ = .2, α = .8 and λ = 1. uB(x) is the upper bound

produced by the change of measure on the Brownian part; uN (x) is the upper

bound produced by the change of measure on the Poisson part; uBold(x) is the

lower bound produced by the bold strategy.
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x uBold(x) uN (x) uB(x)

1 1.1331 1.1331 3.4457

2 2.2663 2.2663 6.0485

3 3.3994 3.3994 8.3546

4 4.5326 4.5326 10.4712

5 5.6657 5.6657 12.4480

6 6.7989 6.7989 14.3138

7 7.9320 7.9320 16.0872

8 9.0651 9.0652 17.7815

9 10.1983 10.1983 19.4063

10 11.3314 11.3315 20.9692

11 12.4645 12.4646 22.4760

12 13.5976 13.5978 23.9316

13 14.7307 14.7309 25.3399

14 15.8638 15.8641 26.7041

15 16.9969 16.9972 28.0271

16 18.1300 18.1304 29.3113

17 19.2630 19.2635 30.5586

18 20.3960 20.3967 31.7709

19 21.5289 21.5298 32.9498

20 22.6618 22.6630 34.0965

21 23.7946 23.7961 35.2122

22 24.9273 24.9293 36.2981

23 26.0599 26.0624 37.3550

24 27.1923 27.1956 38.3836

25 28.3244 28.3287 39.3848

26 29.4562 29.4619 40.3590

27 30.5877 30.5950 41.3068

28 31.7185 31.7282 42.2286

29 32.8487 32.8613 43.1246

30 33.9778 33.9945 43.9952

31 35.1058 35.1276 44.8405

32 36.2320 36.2608 45.6606

33 37.3561 37.3940 46.4553

34 38.4772 38.5270 47.2246

35 39.5945 39.6602 47.9682

Table 3.2: The graph shows the upper and lower bounds in the call option

case with initial stock price S0 = 100, strike K = 100, maturity T = 1, and

parameters µ = .1, σ = .2, α = .2 and λ = 1. uB(x) is the upper bound

produced by the change of measure on the Brownian part; uN (x) is the upper

bound produced by the change of measure on the Poisson part; uBold(x) is the

lower bound produced by the bold strategy.
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Figure 3.1: The graph shows the upper and lower bounds in the call option

case with initial stock price S0 = 100, strike K = 100, maturity T = 1, and

parameters µ = .1, σ = .2, α = .8 and λ = 1. The green (upper) curve is the

upper bound uB(x) produced by the change of measure on the Brownian part;

the blue (middle) curve is the upper bound uN (x) produced by the change of

measure on the Poisson part; the red (lower) curve is the lower bound uBold(x)

produced by the bold strategy.
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Figure 3.2: The graph shows the upper and lower bounds in the call option

case with initial stock price S0 = 100, strike K = 100, maturity T = 1, and

parameters µ = .1, σ = .2, α = .2 and λ = 1. The green (upper) curve is the

upper bound uB(x) produced by the change of measure on the Brownian part;

the blue (middle) curve is the upper bound uN (x) produced by the change of

measure on the Poisson part; the red (lower) curve is the lower bound uBold(x)

produced by the bold strategy. The curves uN (x) and uBold(x) are nearly

indistinguishable.
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Figure 3.3: The graph shows the upper and lower bounds in the Bond case

(payoff ≡ 1) with maturity T = 1, and parameters µ = .1, σ = .2, α = .2

and λ = 1. The green line is the upper bound uB(x) produced by the change of

measure on the Brownian part; the blue line is the upper bound uN (x) produced

by the change of measure on the Poisson part; the red line is the lower bound

uBold(x) produced by the bold strategy.
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Figure 3.4: The graph shows the upper and lower bounds in the Bond case

(payoff ≡ 1) with maturity T = 1, and parameters µ = .1, σ = 1, α = .2 and

λ = .1. The green line is the upper bound uB(x) produced by the change of

measure on the Brownian part; the blue line is the upper bound uN (x) produced

by the change of measure on the Poisson part; the red line is the lower bound

uBold(x) produced by the bold strategy.



Appendix A

Lemmas for Proposition

1.12 in Chapter 1

Lemma A.1. Suppose Assumptions 1.1, 1.3 and 1.4 hold, then

sup
g∈Bn

inf
h∈D(y)

EP [U (g) − gh ] = inf
h∈D(y)

sup
g∈Bn

EP [U (g) − gh ]

Proof. “≤”: We always have

inf
h∈D(y)

EP [U (g) − gh ] ≤ EP [U (g) − gh ] ,

sup
g∈Bn

inf
h∈D(y)

EP [U (g) − gh ] ≤ sup
g∈Bn

EP [U (g) − gh ] ,

sup
g∈Bn

inf
h∈D(y)

EP [U (g) − gh ] ≤ inf
h∈D(y)

sup
g∈Bn

EP [U (g) − gh ] .

“≥”: Let h ∈ D(y) be given. Let (gk)k≥1 be a sequence in Bn such that the

expectation on the left-hand side increases to the limit:

EP [U (gk) − gkh ] ↗ sup
g∈Bn

EP [U (g) − gh ] as n→ ∞.

By Lemma 1.8, there exists a sequence

ĝk ∈ conv(gk, gk+1, . . . ), and ĝk → ĝ a.s.

Note that ĝk ∈ Bn and ĝ ∈ Bn. Concavity of U implies

EP [U (ĝk) − ĝkh ] ≥ EP [U (gk) − gkh ] .

73
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By Assumption 1.4 and the Dominated Convergence Theorem,

EP [U(ĝk) ] → EP [U(ĝ) ] .

Furthermore, |ĝk − ĝ|h ≤ 2n|h| ∈ L1, and again the dominated convergence

theorem implies

|EP [ ĝkh ] − EP [ ĝh ] | ≤ EP [ |ĝk − ĝ||h| ] → 0.

It follows that

EP [U (ĝ) − ĝh ] = lim
k→∞

EP [U (ĝk) − ĝkh ]

= sup
g∈Bn

EP [U (g) − gh ] .

Because ĝ depends on h, we now write it as ĝ(h). We have

EP [U (ĝ(h)) − ĝ(h)h ] = sup
g∈Bn

EP [U (g) − gh ] ,

inf
h∈D(y)

EP [U (ĝ(h)) − ĝ(h)h ] = inf
h∈D(y)

sup
g∈Bn

EP [U (g) − gh ] ,

sup
g∈Bn

inf
h∈D(y)

EP [U (g) − gh ] ≥ inf
h∈D(y)

EP [U (ĝ(h)) − ĝ(h)h ]

= inf
h∈D(y)

sup
g∈Bn

EP [U (g) − gh ] .

�

Remark A.2. We still need to prove equation (3.8):

lim
n→∞

sup
g∈Bn

inf
h∈D(y)

EP [U (g) − gh ] = sup
x>0

sup
g∈C(x)

EP [U (g) − xy ]

for Proposition 1.12 to be valid. It is basic technique to check for a function

f(·) the following two equations hold:

lim
n→∞

sup
g∈Bn

f(g) = sup
g∈∪∞

n=1
Bn

f(g) and sup
x>0

sup
g∈C(x)

f(g) = sup
g∈∪x>0C(x)

f(g).

Since

∪∞
n=1Bn = L∞

+ (Ω,F ,P),

equation (3.8) is equivalent to

sup
g∈L∞

+

inf
h∈D(y)

EP [U (g) − gh ] = sup
g∈∪x>0C(x)

EP [U (g) − xy ] ,

which will be a consequence of Lemma A.3 and Lemma A.5.
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Lemma A.3. Suppose Assumptions 1.1, 1.3 and 1.4 hold, then

sup
g∈L∞

+

inf
h∈D(y)

EP [U (g) − gh ] = sup
g∈∪x>0C(x)

inf
h∈D(y)

EP [U (g) − gh ]

Proof. “≤”: Note that for any g ∈ C(x), by definition, there exists X ∈
X (x), i.e.

Xt = x+

∫ t

0

ξsdSs ≥ 0 P − a.s., for 0 ≤ t ≤ T,

such that 0 ≤ g ≤ XT . For any x > 0, X ≡ x ∈ C(x), and thus

L∞
+ (Ω,F ,P) = ∪∞

n=1Bn ⊆ ∪x>0C(x).

Therefore,

sup
g∈L∞

+

inf
h∈D(y)

EP [U (g) − gh ] ≤ sup
g∈∪x>0C(x)

inf
h∈D(y)

EP [U (g) − gh ] .

“≥”: Given ε > 0, choose gε ∈ ∪x>0C(x) such that

inf
h∈D(y)

EP [U (gε) − gεh ] ≥ sup
g∈∪x>0C(x)

inf
h∈D(y)

EP [U (g) − gh ] − ε.

Define gk = gε ∧ k ∈ L∞
+ , we have gk ↗ gε a.s. Then

inf
h∈D(y)

EP [U (gk) − gkh ] = EP [U (gk) ] − sup
h∈D(y)

EP [ gkh ]

≥ EP [U (gk) ] − sup
h∈D(y)

EP [ gεh ] .

From Assumption 1.4, we can use the Monotone Convergence Theorem to get

lim inf
k→∞

inf
h∈D(y)

EP [U (gk) − gkh ] ≥ lim inf
k→∞

(
EP [U (gk) ] − sup

h∈D(y)

EP [ gεh ]

)

= EP [U (gε) ] − sup
h∈D(y)

EP [ gεh ]

= inf
h∈D(y)

EP [U (gε) − gεh ]

≥ sup
g∈∪x>0C(x)

inf
h∈D(y)

EP [U (g) − gh ] − ε.

Therefore, there exists a K such that

inf
h∈D(y)

EP [U (gK) − gKh ] ≥ sup
g∈∪x>0C(x)

inf
h∈D(y)

EP [U (g) − gh ] − 2ε.
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Recall that gk ∈ L∞
+ , we have

sup
g∈L∞

+

inf
h∈D(y)

EP [U (g) − gh ] ≥ sup
g∈∪x>0C(x)

inf
h∈D(y)

EP [U (g) − gh ] − 2ε.

This gives us the desired inequality. �

Example A.4. A simple example will show that the above lemma is relevant. In

a complete market, a call option is priced under the unique risk-neutral measure

x = EQ
[
(ST −K)+

]
<∞.

Starting with the initial capital x computed above, we can find a non-negative

self-financing portfolio that exactly replicates the option payoff at expiration time

T ,

XT = x+

∫ T

0

ξtdSt = (ST −K)+.

Therefore by definition

XT ∈ C(x).

However, since ST could be unbounded,

XT /∈ Bn, for any n > 0.

Lemma A.5. Suppose Assumptions 1.1, 1.3 and 1.4 hold, then

sup
g∈∪x>0C(x)

inf
h∈D(y)

EP [U (g) − gh ] = sup
g∈∪x>0C(x)

EP [U (g) − xy ] ,

or equivalently,

sup
x>0

sup
g∈C(x)

inf
h∈D(y)

EP [U (g) − gh ] = sup
x>0

sup
g∈C(x)

EP [U (g) − xy ] .

Proof. “≥”: For any g ∈ C(x) and h ∈ D(y), we have EP [ gh ] ≤ xy by

Proposition 1.6. Therefore

sup
g∈C(x)

inf
h∈D(y)

EP [U (g) − gh ] ≥ sup
g∈C(x)

EP [U (g) − xy ] .

And we have one direction of the inequality:

sup
x>0

sup
g∈C(x)

inf
h∈D(y)

EP [U (g) − gh ] ≥ sup
x>0

sup
g∈C(x)

EP [U (g) − xy ] .

“≤”: Let g ∈ C(x) be given and define

zy = sup
h∈D(y)

EP[gh] ≤ xy.
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This implies

EP[gh] ≤ zy ∀h ∈ D(y).

By (ii) of Theorem 1.6, we cam conclude that g ∈ C(z). Then

inf
h∈D(y)

EP [U (g) − gh ] = EP [U(g) ] − sup
h∈D(y)

EP[gh]

= EP [U(g) ] − zy

≤ sup
g̃∈C(z)

EP [U (g̃) − zy ]

≤ sup
0≤z≤x

sup
g̃∈C(z)

EP [U (g̃) − zy ] ,

where the right hand side is independent of z. Since the choice of g ∈ C(x) is

free,

sup
g∈C(x)

inf
h∈D(y)

EP [U (g) − gh ] ≤ sup
0≤z≤x

sup
g̃∈C(z)

EP [U (g̃) − zy ] ,

and thus

sup
x>0

sup
g∈C(x)

inf
h∈D(y)

EP [U (g) − gh ]

≤ sup
x>0

sup
0≤z≤x

sup
g̃∈C(z)

EP [U (g̃) − zy ]

= sup
z>0

sup
g̃∈C(z)

EP [U (g̃) − zy ] .

So the other direction of the inequality is proved and we obtain equality. �
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Appendix B

Results of convex dual

functions in space R

Assumption B.1. Suppose u(x) : (0,∞) → R is a concave and increasing

function, ur(0+) > 0 and ur(∞) = limx→∞ ur(x) = 0.

Definition B.2. x̄ = inf{x : u is a constant function on [x,∞) }.

Remark B.3. To derive results for the purpose of utility maximization, we

assume that u(x) is concave instead of being convex. Note that u(x) does not

have to be strictly concave.

Lemma B.4. Assume B.1. Define

(1.1) I(y) = inf{x : ur(x) ≤ y }, for y > 0.

Then I(y) is a decreasing, right continuous function, I(y) = 0 for y ≥ ur(0+),

and I(0+) = x̄. ur(x) is symmetrically related to I(y) by

(1.2) ur(x) = inf{ y : I(y) ≤ x }, for x > 0.

Proof. Since u(x) is concave, the right-hand derivative ur(x) exists and de-

creases to 0 as x → ∞. Therefore, I(y) is well defined for all y > 0. It is

straight forward to check that I(y) is decreasing, right continuous, I(y) = 0 for

y ≥ ur(0+) and I(0+) = x̄. Fix x̃, by definition (1.1)

I(ur(x̃)) = inf{x : ur(x) ≤ ur(x̃) }.

79
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Since ur(x) is right-continuous and decreasing, I(ur(x̃)) = x̃ if ur is strictly

decreasing on (x̃− ε, x̃] for some ε > 0. Also I(ur(x̃)) < x̃ if ur is a constant on

(x̃− ε, x̃] for some ε > 0. Therefore, I(ur(x̃)) ≤ x̃, and

ur(x̃) ≥ inf{ y : I(y) ≤ x̃ }.

Let ỹ > 0 satisfy I(ỹ) ≤ x̃. We have ur(I(ỹ)) ≥ ur(x̃). By definition (1.1),

ur(I(ỹ)) ≤ ỹ. Therefore ur(x̃) ≤ ỹ, and we have

ur(x̃) ≤ inf{ y : I(y) ≤ x̃ }.

�

Remark B.5. Since u(x) is a concave function, it can only have countably many

points where the derivative does not exist, i.e., UND = {x : ul(x) 6= ur(x) } is

a countable set. u also have only countably many linear pieces. For everywhere

else, u′, the derivative of u exists, is strictly decreasing and therefore invertible.

Suppose u(x) is linear on x ∈ [a, b]. Then y = u′(x) for some x ∈ (a, b) implies

I(y−) = b, I(y) = a. So the linear pieces of u are associated to the jumps in I.

Define

IJump = { y : I(y−) > I(y) }.

We know IJump is a countable set. Suppose ul(x) > ur(x). Then y ∈ [ur(x), ul(x))

implies I(y) = x. Therefore a kink in u (a point in UND), corresponds to a

constant piece in I. Define

IConst = { [ur(x), ul(x)) : ul(x) > ur(x) for some x > 0 }.

Define

IInv = (0, ur(0+))/(IJump ∪ IConst).

On the set IInv, I(y) is strictly decreasing, invertible and I = (u′)−1.

Theorem B.6. Assume B.1. Define the Legendre-Fenchel transform

v(y) = sup
x>0

[u(x) − xy ], for each y > 0.

Then

(i) v(y) is a convex and decreasing function, and v(y) <∞ for any y > 0.

(ii) u(x) = infy>0[ v(y) + xy ].

(iii) −vr(y) = I(y), i.e.,

−vr(y) = inf{x : ur(x) ≤ y } and ur(x) = inf{ y : −vr(y) ≤ x }.
(iv) When y ∈ (0, ur(0+)], v(y) = u(x) − xy if and only if y ∈ ∂u(x); when
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y ∈ [ur(0+),∞), v(y) ≡ u(0+) is a constant. When x ∈ (0, x̄], u(x) = v(y)+xy

if and only if x ∈ −∂v(y); when x ∈ [x̄,∞), u(x) = u(x̄) = v(0+) is a constant.

(v) u(x) is strictly concave at x if and only if vr(y) is continuous at y ∈ ∂u(x);

v(y) is strictly convex at y if and only if ur(x) is continuous at x ∈ −∂v(y).

Remark B.7. Suppose u(x) is right continuous at x = 0, and v(y) is right

continuous at y = 0. Note that ∂u(0) = [ur(0+),∞) and ∂v(0) = [x̄,∞). Then

(iv) can be stated in a stronger version:

(iv)’ v(y) = u(x) − xy if and only if y ∈ ∂u(x), or equivalently, x ∈ −∂v(y).

Proof. (iii) Since u(x) is concave, u(x) − xy is concave for any fixed y > 0.

Note that for y ∈ (0, ur(0+)), 0 < I(y) <∞, and

when x < I(y), ur(x) > y; when x > I(y), ur(x) ≤ y.

We conclude that

(1.3) v(y) = u(I(y)) − yI(y), for y ∈ (0, ur(0+)).

Suppose ur(0+) <∞. Then for y ≥ ur(0+), ur(x)− y ≤ 0, and thus u(x)− xy

is a decreasing function of x and so

(1.4) v(y) = u(0+), when ur(0+) <∞ and y ∈ [ur(0+),∞).

When y ≥ ur(0+), vr(y) = 0 = −I(y). When y ∈ (0, ur(0+)), we will discuss

in three cases. By definition and (1.3), for y ∈ (0, ur(0+)),

vr(y) = lim
h↘0

[u(I(y + h)) − (y + h)I(y + h) ] − [u(I(y)) − yI(y) ]

h
.

For any y ∈ IConst, I(y + h) = I(y) and u(I(y + h)) = u(I(y)), therefore

vr(y) = lim
h↘0

−hI(y)
h

= −I(y).

For any y ∈ IInv, I = (u′)−1 and u′ is continuous by the analysis of remark

B.5 and the symmetric relationship between I and ur in lemma B.4, therefore

vr(y) = lim
h↘0

{
u(I(y + h)) − u(I(y))

h
− y[I(y + h) − I(y)]

h
− I(y + h)

}

= lim
h↘0

{
u′(ξ)[I(y + h) − I(y)]

h
− y[I(y + h) − I(y)]

h

}
− I(y)

for some ξ ∈ [I(y + h), I(y)]

= −I(y).
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Since both vr and I are right continuous functions, they have to agree on the

countable set IJump. In conclusion,

(1.5) −vr(y) = I(y).

By Lemma B.4, we have

ur(x) = inf{ y : I(y) ≤ x } = inf{ y : −vr(y) ≤ x }.

(i) (1.3) and (1.4) implies v(y) <∞ for all y > 0. By (1.5) and Lemma B.4, we

know vr(y) ≤ 0 and is increasing. Therefore, v(y) is decreasing and convex.

(ii) By the definition of v, we have the inequality

v(y) ≥ u(x) − xy, or u(x) ≤ v(y) + xy, for any x > 0, y > 0.

When x ∈ (0, x̄), we will discuss in two cases. On the set IInv ∪ IConst, (1.3)

gives

u(x) = v(y) + xy, where x = I(y).

On the set IJump, u(x) is a linear function, and therefore

u(x) = v(y) + xy, where x =∈ [I(y), I(y−)].

When x ∈ [x̄,∞), u(x) = v(0+) is a constant.

(iv) Define

Ĩ(y) = {x : y ∈ ∂u(x) }.

Following the same analysis in deriving (1.3), we get

v(y) = u(x) − xy if and only if x ∈ Ĩ(y) when y ∈ (0, ur(0+)).

Or equivalently,

v(y) = u(x) − xy if and only if y ∈ ∂u(x) when y ∈ (0, ur(0+)).

By continuity, the equality works for y = ur(0+) as well. By (ii) and the fact

I(0+) = −vr(0+) = x̄, we conclude they are equivalent to x ∈ −∂v(y).
(v) This is an obvious consequence of the analysis in Remark B.5.

�



Bibliography

[1] Bellamy, N., M. Jeanblanc (2000): “Incompleteness of markets driven

by a mixed diffusion”, Finance and Stochastics, 4, 209–222.

[2] Bouchard, B., N. Touzi, A. Zeghal (2002): “Dual formulation of the

utility maximization problem: the case of nonsmooth utility”, Annals of

Applied Probability, to appear.

[3] Cvitanić, J. (2000): “Minimizing expected loss of hedging in incomplete

and constrained markets”, SIAM J. Control Optim. Vol. 38, No. 4, 1050–

1066.
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