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1 Introduction

The Black-Scholes model is the most celebrated example of option pricing and hedging in a complete
market using no-arbitrage theory and martingale methods. Harrison and Kreps [27] studied the
problem in the discrete-time case, and Harrison and Pliska [28] and [29] extended the results to
the continuous-time case. However, if a financial intermediary (or an individual trader) would like
to take a more realistic view of the financial world where she sees jumps in prices or stochastic
volatility effects (this paper does not take into account market frictions), she has to think again
about some fundamental questions in pricing and hedging facing the incomplete market. The no-
arbitrage assumption provides a set of equivalent martingale measures and an interval of arbitrage-
free prices. There is no exact replication to provide a unique price. If the trader decides to charge
a super-replication (super-hedging) price for selling an option so that she can trade to eliminate
all risks, as studied in El Karoui and Quenez [15], Kramkov [38] and Föllmer and Kabanov [18],
the price is usually forbiddingly high. Eberlein and Jacod [14] investigated this issue in pure-jump
models, and Bellamy and Jeanblanc [5] studied it in jump diffusion models. In both cases, the
super-replication price for a European option is the trivial upper bound of the no-arbitrage interval.

∗I would like to thank Steven Shreve for insightful comments, especially his suggestions to extend the pricing idea
from using shortfall risk measure to coherent ones, and to study its relationship to utility based derivative pricing.
The comments from the associate editor and the anonymous referee have reshaped the paper into its current version.
The paper has benefited from discussions with Freddy Delbaen, Jan Večeř, David Heath, Dmitry Kramkov, Peter
Carr, and Joel Avrin. All mistakes are the responsibilities of the author.
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In the most common example of a call option, the super-hedging strategy is to buy and hold, and
therefore the price of the call is equal to the initial stock price which is excessively expensive.
Since super-hedging is not a realistic solution under such circumstance, the trader is restricted to
charging a reasonable price, finding a partial hedging strategy according to some optimal criterion,
and bearing some risks in the end.

There are two major approaches that have been developed in searching for solutions of pricing and
hedging in incomplete markets. One is to pick a specific martingale measure for pricing according
to some optimal criterion, and the other is utility based derivative pricing.

The incompleteness of the market usually gives rise to infinitely many martingale measures, each of
which produces a no-arbitrage price. There have been multiple attempts to theoretically pick one
for pricing according to different optimal criteria, of which some are related to utility maximization.
For instance, we have seen the minimal martingale measure by Föllmer and Schweizer [22]; the
minimal entropy martingale measure by Miyahara [41] and Frittelli [23]; the minimax measure by
Bellini and Frittelli [6]; the minimal distance martingale measure by Goll and Rüschendorf [26];
and the Esscher transform by Gerber and Shiu [25]. In practice, financial intermediaries tend
to first decide a specific jump or mixed diffusion model with certain control parameters for the
underlying price process. Then they use the market data (for example, prices of vanilla options)
to calibrate those parameters which determine a probability measure they believe is picked by the
market, and use it for other exotic derivative pricing. The problem is that some methods do not
provide a hedging strategy at all, while some provide one that is not very reasonable financially (for
example, the Föllmer-Schweizer minimal martingale measure based on local variance minimization
provides a strategy that penalizes over-hedging).

The idea of utility based derivative pricing is as follows: the derivative security is priced so that
the utility remains the same whether the optimal trading portfolio includes a marginal amount
of the derivative security or not. An incomplete list of references includes Hodges and Neuberger
[32], Davis [9], Karatzas and Kou [35], Frittelli [24], Foldes [16], Rouge and El Karoui [47], Kallsen
[34], Henderson [30], Hugonnier, Kramkov and Schachermayer [33], Mania and Schweizer [40], and
Henderson and Hobson [31]. The disadvantage to this approach is that, in practice, it is quite
unusual for the trader to explicitly write down her utility function for derivative pricing.

There are many other approaches that try to extend the arbitrage pricing theory to incomplete
markets. See Carr et al. [7], Musiela and Zariphopoulou [43], [44] and [45], Barrieu and El Karoui
[3] and [4], and Klöppel and Schweizer [37]. Carr et al. [7] introduced two sets of valuation and
stress measures and the corresponding definition of no strictly acceptable opportunities (NSAO)
in a static model. Under the NSAO condition, the pricing measure was a linear combination of
valuation measures. Larsen et al. [39] adapted this framework to a dynamic setting and found
the option price that is associated with a trading strategy to acceptability. We will see in Section
3.2 that this approach is quite closely related to the risk measure pricing method presented in this
paper. Barrieu and El Karoui [3] and [4] set up a minimization problem for risk measure subject
to dynamic hedging similar to this paper. However, their technique involved modelling both risk
measures of the buyer and the seller, and solved for a pair of optimal derivative payoffs as well as
the price. I will derive the price for a given option H from modelling the risk measure of the trader
only. Meanwhile, Musiela and Zariphopoulou [43], [44] and [45] mainly delt with incompleteness
coming from non-traded assets and their pricing scheme is a novel mixture of utility indifference
and the martingale approach. An independent work by Klöppel and Schweizer [37] discussed risk
measure pricing (they named it ‘dynamic monetary concave utility function’) for bounded payoffs
in a dynamic time setting, with a backward stochastic differential equations representation that
induces time-consistency.
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Motivated by the idea of utility based derivative pricing, here I would like to keep the central
importance of optimal hedging to the theory of pricing, and replace the criterion of maximizing
utility by minimizing risk exposure because the latter is more often used in practice. Another
reason to adopt risk measure is that it is quite a natural extension to the idea of pricing and
hedging in complete markets. In the Black-Scholes world, there is a unique risk-neutral measure,
the trader quotes a unique price, does the delta-hedging, and presumably, ends up with no risk and
no profit. An extension of this idea into an incomplete market would be that the trader buys or
sells the option for an amount such that with active hedging, her risk exposure will not increase at
expiration. This would be the minimal condition for her to be willing to enter the deal in the first
place. Comparing to utility indifference pricing, we should call risk measure pricing, in essence,
risk indifference pricing.

I will set up our problem in the same background as in Hodges and Neuberger [32]. The trader
is assumed to start with a portfolio and an optimal hedging. If she buys or sells an additional
option, she would have to readjust the hedging strategy. Depending on the distribution of her
current portfolio and her risk exposure, it will not be surprising that she might be more willing
to buy or sell certain types of options, and this will be fully reflected in the prices she charges for
these options. This result is in contrast with the assumptions in Hodges and Neuberger [32] where
they argued that “To obtain a more tractable problem, we wish to ignore the interactions that
would normally exist between the new opportunity and the rest of the portfolio, and between the
success of the replicating strategy and the agent’s risk aversion”. By this reasoning, they adopted
an exponential utility function. However, financial intermediaries usually hedge a portfolio of risky
liabilities for the benefit of scale. So there is significant interaction going on between the new
options issued and the existing ones. The advance of computing power over the past years and the
explosion of active risk management have also made the approach more tractable and practical.
Therefore, it is desirable to consider a more sophisticated model that takes these interactions into
consideration.

I will implement this option pricing method with an abstract convex risk measure, define the
risk measure prices, and derive their properties in Section 2. In practice, the definitions can be
adapted to specific choices of risk measures depending on the reality within individual institutions.
I will also propose the idea of risk-efficient options and demonstrate its relationship to risk measure
pricing. In Section 3, I will show that utility based derivative pricing and pricing methods proposed
in Carr et al. [7] are special realizations of risk measure pricing. Two examples using the shortfall
risk measure and the average Value-At-Risk are given in Section 4. Section 5 concludes the paper
with cautionary remarks regarding the application of the risk measure pricing approach and some
discussions of future research.

2 Risk Measure Pricing

2.1 Model Setup

We start with a stochastic basis (Ω,F ,F = (Ft)0≤t≤T , P). As in usual financial models, there is a
money market account B and a risky asset S to invest in, and the market is frictionless. To simplify
notations, let the interest rate be zero, therefore B ≡ 1. The risky asset S is assumed to be a locally
bounded real-valued semimartingale process. This means that S is composed of a finite variation
part, a continuous local martingale part and a jump part. Intuitively, the finite variation part
controls the growth rate, the continuous local martingale part gives the quadratic variation, and
the model incorporates jumps of various sizes and intensity. Geometric Brownian motion, locally
bounded Lévy processes, and many jump-diffusion and pure-jump models fall into this category.
The reason we do not extend the model to more general processes than semimartingales is that
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Delbaen and Schachermayer [11] proved that if there is no arbitrage for simple strategies in the
market, then the risky asset has to be a semimartingale.

We would like to price an option that has a payoff H ≥ 0† with expiration date T . Mathematically,
this means H is a nonnegative FT -measurable random variable. A self-financing hedging strategy
can be written as a stochastic integral with respect to the risky asset when interest rate is assumed
to be zero: Xt = x +

∫ t

0
ξsdSs. We define the Admissible Set X (x) that collects all the processes

from admissible self-financing strategies with initial capital x in the same way as Delbaen and
Schachermayer [11]:

X (x) =
{

X
∣∣∣ Xt = x +

∫ t

0

ξsdSs ≥ c for some finite constant c and for all 0 ≤ t ≤ T

}
.

Note the admissibility of any strategy does not depend on the initial capital (since c could vary
for different strategies). To exclude arbitrage opportunities, we assume that the set of equivalent
local martingale measures M is non-empty‡:

Assumption 2.1 M = {Q ∼ P | S is a local martingale under Q } 6= ∅.

Suppose the trader starts with liability L which is an FT -measurable random variable uniformly
bounded below by some constant cL, and an admissible self-financing hedging portfolio Xx0 ∈
X (x0) with initial capital x0. Let her risk measure ρ map any§ random variable into some real
number or +∞. Then her initial risk is ρ(L −Xx0

T ) where Xx0
T = x0 +

∫ T

0
ξ0
t dSt. We can define

Minimal Risk to be the risk associated with optimal hedging:

(2.1) ρx(L) = inf
X∈X (x)

ρ(L−XT ).

Coherent Risk Measure is an axiomatic approach to define the measure of risk proposed by Artzner
et al. [2]. It requires the risk measure to satisfy a few fundamental properties. When X and Y
are in terms of liabilities, we can rewrite these properties as:¶

• Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y );

• Positive Homogeneity: If λ ≥ 0, then ρ(λX) = λρ(X);

• Monotonicity: If X ≤ Y , then ρ(X) ≤ ρ(Y );

• Translation Invariance: If m ∈ R, then ρ(X + m) = ρ(X) + m.

Föllmer and Schied [19] relaxed the first two conditions to require convexity:

• Convexity: ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ), for 0 ≤ λ ≤ 1.

They call a risk measure which satisfies convexity, monotonicity and translation invariance a Convex
Risk Measure. For our pricing purpose, we will make some assumptions about the trader’s risk
measure. Assumption 2.2 introduces some restrictions on the properties of the risk measure.
Assumption 2.3 will guarantee the finiteness of the risk measure prices defined later.

†As the associate editor points out, this method works equally well as long as H is uniformly bounded below by
a constant. More importantly, he/she points out that the introduction of options trading will in general affect the
dynamics of the underlying asset. Therefore, we should think of S as the equilibrium price process in a competitive
market where both S and H are traded.

‡See Delbaen and Schachermayer [11] for the equivalence between Assumption 2.1 and a variant of the no-
arbitrage condition called No Free Lunch With Vanishing Risk (NFLVR) when S is a locally bounded semimartingale.

§For the restriction on the set of random variables that have a well-defined risk measure, see the discussion after
Assumption 2.2.

¶Take ρ(X) = ψ(−X) for some coherent risk measure ψ(·) to derive these properties.
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Assumption 2.2 The trader has a convex risk measure ρ(·) that satisfies the Fatou property: If
Xn is a sequence of random variables which are uniformly bounded below by a constant, and Xn

converges to X a.s., then
ρ(X) ≤ lim inf

n→∞
ρ(Xn).

Moreover, ρ(X) = ρ(Y ) if X = Y a.s.

There is usually no problem to find a well-defined risk measure that is either coherent or convex
on the set of bounded random variables. However, we have to be careful when we are dealing
with unbounded random variables (see Delbaen [10]). For a random variable X that is uniformly
bounded from below, but unbounded from above, we define Xm = X ∧m = min{X, m} for some
constant m. Obviously, Xm is a uniformly bounded sequence and Xm ↗ X a.s. as m ↗∞. For a
sequence Yn uniformly bounded from below and Yn ↗ Y a.s., Fatou property and the monotonicity
of ρ(·) imply that ρ(Yn) ↗ ρ(Y ) whenever ρ(Y ) is defined. Thus it is natural to define ρ(X) as
the limit

(2.2) ρ(X) = lim
m↗∞

ρ(Xm) = lim
m↗∞

ρ(X ∧m),

whether it is finite or +∞. For a general unbounded random variable X, we define Xm = X ∨
(−m) = max{X,−m}. By the monotonicity property, ρ(Xm) is a decreasing sequence as m ↗∞.
In the case the limit is finite, we define

(2.3) ρ(X) = lim
m↗∞

ρ(Xm) = lim
m↗∞

ρ(X ∨ −m).

Otherwise, we will leave ρ(X) undefined.

The key in this paper is to define the risk measure on all hedged positions for the minimal risk,
and the following assumption would guarantee that.

Assumption 2.3 ρ(L + H) < ∞ and ρ0(0) > −∞.

Note that ρ0(0) > −∞ means ρ(−XT ) = limn→∞ ρ(−(XT ∧ n)) > −∞, for any X ∈ X (0). A risk
measure without this property will be quite unreasonable because one could trade from zero initial
capital to lower risk infinitely. Furthermore, ρ(L − XT ) ≥ ρ(cL − XT ) = cL + ρ(−XT ) > −∞,
so ρ(L − XT ) is well-defined for any X ∈ X (0). We will see from the following lemma that the
minimal risk ρx(L) inherits the properties of the original risk measure ρ(L) for any fixed number
x, and therefore the assumption of ρ0(0) being finite is the same as ρx(0) being finite for all finite
numbers x.

Lemma 2.4 Under Assumptions 2.2 and 2.3, the minimal risk defined in (2.1) is a convex risk
measure. In particular, the translation invariance property can be written as

(2.4) ρx1(X − x2) = ρx1+x2(X) = ρx1(X)− x2.

Proof. Without loss of generality, assume ρx(X) and ρx(Y ) are both finite. Fix any ε > 0 and
0 ≤ λ ≤ 1, find Z1 ∈ X (x) and Z2 ∈ X (x) such that ρ(X − Z1

T ) ≤ ρx(X) + ε and ρ(Y − Z2
T ) ≤

ρx(Y ) + ε. We know Z3 = λZ1 + (1− λ)Z2 ∈ X (x). By the convexity of ρ(·), we have

ρx(λX + (1− λ)Y ) ≤ ρ(λX + (1− λ)Y − Z3
T )

= ρ(λ(X − Z1
T ) + (1− λ)(Y − Z2

T ))

≤ λρ(X − Z1
T ) + (1− λ)ρ(Y − Z2

T )
≤ λρx(X) + (1− λ)ρx(Y ) + ε.

It follows that ρx(·) has the convexity property. The other properties are easy to prove. �
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Lemma 2.5 Under Assumptions 2.2 and 2.3, −∞ < ρ(L − H) ≤ ρ(L) ≤ ρ(L + H) < ∞ and
−∞ < ρx(L−H) ≤ ρx(L) ≤ ρx(L + H) < ∞ for any finite number x.

Proof. Since H ≥ 0, we only need to prove ρ(L−H) > −∞ for the first part to hold. We have
assumed that the initial liability L is bounded below by a constant cL. Therefore, ρ(L − H) ≥
ρ(cL −H) = cL + ρ(−H). So we need to prove that ρ(−H) > −∞, i.e., ρ(−(H ∧ n)) approaches
a finite limit when n → ∞. By convexity, ρ(0) ≤ 1

2ρ(H ∧ n) + 1
2ρ(−(H ∧ n)). Or equivalently,

ρ(−(H ∧ n)) ≥ 2ρ(0) − ρ(H ∧ n). We know that cL + ρ(H) = ρ(cL + H) ≤ ρ(L + H) < ∞.
Therefore, ρ(H ∧ n) ↗ ρ(H) < ∞ and −ρ(H ∧ n) ↘ −ρ(H) > −∞. Also from the definition of
the minimal risk and Assumption 2.3, we know ρ(0) ≥ ρ0(0) > −∞. Putting together the last two
inequalities, we can conclude the finiteness of the limit we needed to prove. For the second part,
notice that ρx(L+H) ≤ ρ(L+H −x) = ρ(L+H)−x < ∞. By Lemma 2.4, we know that ρx(·) is
a convex risk measure. So we can show ρx(L−H) > −∞ in a similar fashion as before, with the
help of −∞ < ρx(0) ≤ ρx(H ∧ n) ≤ ρx(0) + n ≤ ρ(0) + n ≤ ρ(H) + n ≤ ρ(L + H)− cL + n < ∞. �

The next theorem will present a proof of the existence of optimal strategies for obtaining the
minimal risk defined in (2.1) under slightly more restrictive admissible sets. Define

X (x, b) =
{

X
∣∣∣ X ∈ X (x) and XT ≥ x− b

}
, for b ∈ R+.

This means that if Xt = x +
∫ t

0
ξsdSs ∈ X (x, b), then

∫ T

0
ξsdSs ≥ −b. Obviously,

X (x) =
⋃

b∈R+

X (x, b).

Theorem 2.6 Suppose Assumption 2.1, Assumption 2.2 and Assumption 2.3 hold. Then for every
b ∈ R+ and x ∈ R, there exists an optimal admissible hedging portfolio X∗ ∈ X (x, b) that solves
the minimal risk problem:

(2.5) ρx
b (L) = inf

X∈X (x,b)
ρ(L−XT ) = ρ(L−X∗

T ).

Proof. Note that ρx(L) ≤ ρx
b (L) ≤ ρ(L− x) = ρ(L)− x. From Lemma 2.5, we know that ρx

b (L)
is finite. Choose Xn ∈ X (x, b) such that

ρ(L−Xn
T ) ↘ ρx

b (L).

Denote by conv(Xn
T , Xn+1

T , ...) a collection of finite convex combinations of elements in the set
{Xn

T , Xn+1
T , ...}. Then we can find a sequence Y n ∈ conv(Xn

T , Xn+1
T , ...) such that Y n → Y ∗

a.s.‖. Since Xn
T ≥ x − b, Y n ≥ x − b and Y ∗ ≥ x − b a.s. We can apply Fatou property to the

truncated sequence: ρ((L − Y ∗) ∨ (−m)) ≤ lim infn→∞ ρ((L − Y n) ∨ (−m)) for any constant m.
By monotonicity, we have ρ(L − Y ∗) ≤ ρ((L − Y ∗) ∨ (−m)) on one side. On the other side, we
will prove lim infn→∞ ρ((L − Y n) ∨ (−m)) ≤ lim infn→∞ ρ(L − Y n) + ε for any ε > 0 and any
large m. Letting ε → 0, we will get the desired inequality ρ(L − Y ∗) ≤ lim infn→∞ ρ(L − Y n).
Let nk be the subsequence such that limnk→∞ ρ(L− Y nk) = lim infn→∞ ρ(L− Y n). Note that for
any fixed n, ρ((L − Y n) ∨ (−m)) ↘ ρ(L − Y n) > −∞, as m ↗ ∞. The finiteness of ρ(L − Y n)
results from the fact that Y n is the time T wealth of some admissible self-financing strategy in
the set X (x, b). Then for any ε > 0, there exists some large number M such that for all m ≥ M ,
we have ρ((L − Y nk) ∨ (−m)) ≤ ρ(L − Y nk) + ε. Obviously, lim infn→∞ ρ((L − Y n) ∨ (−m)) ≤
lim infnk→∞ ρ((L−Y nk)∨ (−m)) ≤ limnk→∞ ρ(L−Y nk) + ε = lim infn→∞ ρ(L−Y n) + ε. Denote

Y n =
km∑

i=k1

λn
i Xi

T ,

‖A proof of this result is given in Delbaen and Schachermayer [11].
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where n ≤ k1 < k2 < ... < km, 0 ≤ λn
i ≤ 1 and

∑km

i=k1
λn

i = 1. Since ρ(·) is a convex risk measure,

ρ(L− Y n) = ρ(L−
km∑

i=k1

λn
i Xi

T ) = ρ(
km∑

i=k1

λn
i (L−Xi

T ))

≤
km∑

i=k1

λn
i ρ(L−Xi

T ) ≤
km∑

i=k1

λn
i ρ(L−Xn

T ) = ρ(L−Xn
T ).

We conclude that

ρ(L− Y ∗) ≤ lim inf
n→∞

ρ(L− Y n) ≤ lim
n→∞

ρ(L−Xn
T ) = ρx

b (L).

If we can show that Y ∗ ≤ X∗
T for some X∗ ∈ X (x, b), then ρ(L−X∗) ≤ ρ(L− Y ∗) and we will be

done. Define
K0 = {XT |X ∈ X (x) } and C0 = K0 − L0

+,

where L0
+ is the set of all nonnegative random variables. Assumption 2.1 implies NFLVR condition

and Theorem 4.2 in Delbaen and Schachermayer [11] showed that when S is bounded, NFLVR
guarantees that C0 is Fatou closed: if for every sequence (fn)n≥1 ∈ C0 uniformly bounded from
below and such that fn → f a.s, we have f ∈ C0. Actually, the boundedness condition on S can
be dropped, see Delbaen and Schachermayer [12]. Since Y n ∈ K0 ⊆ C0 and Y n is obviously Fatou
convergent to Y ∗, we conclude Y ∗ ∈ C0. This means we can find X∗ ∈ X (x) so that Y ∗ = X∗

T −B,
where B ∈ L0

+ is a non-negative random variable. Since X∗
T ≥ Y ∗ ≥ x− b, X∗ ∈ X (x, b). �

In practice, we assume that the trader will fix a number b and that her initial hedging portfolio
Xx0,b ∈ X (x0, b) is optimal in the sense of Theorem 2.6. In general,

(2.6) ρx0(L) = inf
X∈X (x0)

ρ(L−XT ) = lim
b↗∞

min
X∈X (x0,b)

ρ(L−XT ) = lim
b↗∞

ρx0
b (L) = lim

b↗∞
ρ(L−Xx0,b

T ).

2.2 Definition of Risk Measure Pricing

Recall the trader starts with initial liability L, initial capital x0, and initial minimal risk ρx0(L).
Let us define the selling and buying prices of an option H according to the following principle: the
trader will charge the minimal amount so that the total risk of her portfolio (after re-balancing the
hedging) will not increase from selling the option; and she will buy the option with the maximal
amount which will also keep the total risk of her portfolio stable.

Therefore, the Selling Price is defined as

(2.7) SP = inf{x : ρx0+x(L + H) ≤ ρx0(L) },

and the Buying Price is defined as

(2.8) BP = sup{x : ρx0−x(L−H) ≤ ρx0(L) }.

For the rest of Section 2, we will assume 2.1, 2.2 and 2.3. By the translation invariance property
of the minimal risk (2.4), the prices defined above can be written as

SP = ρx0(L + H)− ρx0(L),(2.9)
BP = ρx0(L)− ρx0(L−H).(2.10)

Before we move on to derive some general properties of these prices, let me give some justifications
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for the risk measure pricing method I have just proposed. First of all, the definition of risk measure
prices reduce to that of utility based prices as we will see in more detail in Section 3.1, when we
define the risk measure as expected utility. Since this approach generalizes from expected utility
functions to risk measures with the indifference pricing scheme intact, it is clear why we shall call
SP and BP Risk Indifference Prices as well.

Secondly, this concept extends the complete market risk-neutral pricing theory to the incomplete
case in the sense of risk preservation. In a complete market under the risk neutral pricing frame-
work, the trader starts with zero liability L = 0, zero capital x0 = 0, and zero risk ρ = 0. If she
sells an option with payoff H, then she charges the risk-neutral price EQ[H], and uses that capital
to set up an admissible self-financing hedging portfolio Xt with X0 = EQ[H]. Since the market is
complete, the risk-neutral probability Q is unique, and by the martingale representation theorem
XT = H. Therefore, after selling the option and executing the hedge, the trader ends up with zero
risk as she had started with. In an incomplete market under the risk measure pricing framework,
the trader starts with liability L, capital x0, and risk ρx0(L). If she sells an option with payoff H,
then she charges the risk measure selling price SP , and partially hedges her risk exposure with
an admissible self-financing portfolio Xt with total capital x0 + SP . After the transaction and
executing the optimal hedging, the trader ends up with the same risk as she started with, namely,
ρx0(L). As expected, Theorem 2.7 in Section 2.3 shows that the risk measure prices coincide with
the risk-neutral price in a complete market. This result is true even when the initial liability L
and capital x0 are nonzero in a complete market.

Last but not least, the risk measure prices are defined here in a way consistent with the principle
of optimal design of derivatives.∗∗ Suppose the trader has some existing pricing function p(H̃)
which decides the selling price for any option H̃. Let us define the Risk-Efficient Options to be
those payoffs, with the same selling price, that minimize the risk. They are the solutions to the
following minimization problem:

(2.11) inf
H̃

ρx0+x(L + H̃) s.t. p(H̃) = x.

Note that ρx0+x(L + H̃) is the minimal risk obtained by optimal hedging with increased capital
x0+x and additional liability H̃. When a trader has some flexibility to decide what types of options
to sell, it is favorable to sell risk-efficient options so that the trader’s risk exposure is minimized. We
claim that if the trader sells all options for their risk measure prices, i.e., p(·) = SP (·), then every
option she sells is a risk-efficient option. The reason is simple: By translation invariance (2.4) and
the equation (2.9) for SP , we have SP (H1) = SP (H2) = x implies ρx0+x(L+H1) = ρx0+x(L+H2).

2.3 Properties of Risk Measure Pricing

We now discuss some basic properties that we expect the risk measure prices (or risk indifference
prices) to satisfy under Assumptions 2.1, 2.2 and 2.3.

Property 1: Both the buying and the selling prices are finite, and the buying price is bounded
above by the selling price BP ≤ SP .

Proof. The finiteness of the prices follows from Lemma 2.5, and equations (2.9) and (2.10). By
Lemma 2.4,

1
2ρx0(L + H) + 1

2ρx0(L−H) ≥ ρx0(L).

This is equivalent to SP ≥ BP by inspecting equations (2.9) and (2.10). �
∗∗Barrieu and El Karoui [3] and [4] proposed an optimal derivative design problem that involved both risk measures

of the buyer and the seller.
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Property 2: The selling price is bounded above by the super-hedging price and the buying price
is bounded below by the sub-hedging price. Since the sub- and super-hedging prices span the
no-arbitrage price interval, the selling and buying prices are arbitrage-free.

Proof. Since H ≥ 0, the super-hedging price and the sub-hedging price satisfy

x̄ = sup
Q∈M

EQ[H] ≥ x = inf
Q∈M

EQ[H] ≥ 0,

where M is the set of equivalent local martingale measures. Without loss of generality, we suppose
x̄ < ∞ and X̄ ∈ X (x̄) is the super-hedging portfolio, i.e., X̄T ≥ H. Let Xx0,b ∈ X (x0, b) ⊆ X (x0)
be an optimal solution as in (2.5), i.e.,

ρx0
b (L) = ρ(L−Xx0,b

T ) = min
X∈X (x0,b)

ρ(L−XT ).

Note that Xx0,b + X̄ − x̄ ∈ X (x0). The translation invariance and the monotonicity of the risk
measure ρ(·) give

ρx0(L + H) ≤ ρ(L + H − (Xx0,b
T + X̄T − x̄))

= ρ(L−Xx0,b
T + H − X̄T ) + x̄

≤ ρ(L−Xx0,b
T ) + x̄

= ρx0
b (L) + x̄.

From equation (2.6), we have that ρx0
b (L) ↘ ρx0(L) as b ↗ ∞. Consequently, SP = ρx0(L +

H) − ρx0(L) ≤ x̄. Suppose the sub-hedging price x < ∞ and Xn ∈ X (xn) is the sub-hedging
portfolio for H ∧ n. Then we have Xn

T ≤ H ∧ n and Xn
t = infQ∈MEQ[H ∧ n|Ft] ≤ n. Note that

Xx0,b −Xn + xn ∈ X (x0). Then by the monotonicity and the translation invariance properties of
the risk measure ρ(·), we have

ρx0(L−H) ≤ ρx0(L−H ∧ n)

≤ ρ(L−H ∧ n− (Xx0,b
T −Xn

T + xn))

= ρ(L−Xx0,b
T + Xn

T −H ∧ n)− xn

≤ ρ(L−Xx0,b
T )− xn

= ρx0
b (L)− xn.

Since ρx0
b (L) ↘ ρx0(L) as b ↗∞, and xn ↗ x as n →∞, we have BP = ρx0(L)−ρx0(L−H) ≥ x.

Now suppose x = ∞. Then for any finite number x, there exists X ∈ X (x) such that XT ≤ H.
Repeating the above argument, we get BP ≥ x. Letting x → ∞, we arrive at a contradiction to
the fact that BP < ∞. �

Corollary to Property 2: The price of a bond with constant payoff c is equal to c.

Proof. The super- and sub-hedging price are

x̄ = sup
Q∈M

EQ[c] = c and x = inf
Q∈M

EQ[c] = c.

By Property 2, BP = SP = c. This result can also be proved directly from the translation
invariance property of the minimal risk measure (2.4) and pricing equations (2.9) and (2.10). �

Note that Property 2 and its corollary are worked out for general incomplete markets. Limiting
them to a complete market, we can reconcile our pricing and hedging theory with Risk Neutral
Pricing (or Arbitrage Pricing) Theory:
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Theorem 2.7 (Complete Market) In a complete market where M = {Q}, both the buying and
the selling prices coincide with the risk neutral price, i.e.,

SP = BP = EQ[H].

Proof. In this case, the super- and sub-hedging prices are unique and equal to the risk-neutral
price:

x̄ = x = EQ[H].

The theorem then follows easily from Property 2. �

Next, let us discuss the dependence of pricing and hedging on the initial capital x0, the distribution
of the initial liability L, and the option payoff H. From (2.4), (2.9) and (2.10), we can easily
conclude:

Property 3: Neither the selling price SP nor the buying price BP depends on the initial capital
x0 allocated for hedging. But both of them depend on the distribution of the initial liability L.

In fact, in the case of selling price, (2.9) can be written as SP = ρx(L + H)− ρx(L) for any finite
number x. The same holds true for the buying price. By definition (2.1) and equation (2.4), we
can further conclude:

Property 4: The optimal hedging strategies for selling/buying the option H are also initial-
wealth-x0 independent.

In Property 5, we will investigate how the existing liability interacts with the new issuing of options.

Property 5: When the initial liability is zero (L = 0),

SP = ρ0(H)− ρ0(0) and BP = ρ0(0)− ρ0(−H).

When the initial liability is the same as the option payoff (L = H),

BP = ρ0(H)− ρ0(0) ≤ SP = ρ0(2H)− ρ0(H).

Proof. By (2.9) and (2.4), when L = 0, SP = ρ0(H)−ρ0(0) = ρρ0(0)(H). Similarly, we can prove
the result in the case of BP . It is also straightforward to check them when L = H. �

When L = 0 and x0 = 0, we see that ρSP (H) = ρ0(H)− SP = ρ0(0). Not surprisingly, when the
trader uses SP for hedging the option H she has just sold, her minimal risk remains the same as
if she had kept the zero position. Here is the risk consistency principle of her pricing model: in
case the trader buys back the same option H she has just sold, she will not be exposed to any
additional risk and she will pay exactly the same amount that she has sold the option for; however,
if the trader takes on more concentrated risk by selling another option of the same type, she might
want to charge more for this unfavorable risk skew. Therefore, the risk measure pricing rule is in
general, not linear. For simplicity, we stated Property 5 by assuming L = 0. The result is true
even if we do not restrict ourselves in such a way.
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3 Relationships to Existing Pricing Methods

3.1 Relationship to Utility Based Derivative Pricing

A natural way to include the utility based derivative pricing theory as a special case is to make
the following definition:

(3.1) ρ(L) = −E[U(−L)],

where the utility function U(·) satisfies the usual conditions. The initial minimal risk can be
written as

ρx0(L) = inf
X∈X (x0)

ρ(L−XT ) = − sup
X∈X (x0)

E[U(XT − L) ].

By definition, the selling price is

SP = inf
{

x : ρx0+x(L + H) ≤ ρx0(L)
}

(3.2)

= inf

{
x : sup

X∈X (x0+x)

E[U(XT − L−H) ] ≥ sup
X∈X (x0)

E[U(XT − L) ]

}
.

This is precisely the price based on utility maximization first explored in Hodges and Neuberger
[32]. A similar argument holds for the buying price. However, the risk measure defined in (3.1) is
not translation invariant, and therefore is not a convex risk measure as we require in Assumption
2.2. Some of the properties related to risk measure pricing derived in Section 2.3 will not hold as
a consequence. In particular, this explains why the utility indifference prices are initial-capital-x0

dependent, while the risk indifference prices are not. To satisfy the translation invariance, we can
adopt the approach of deriving the risk measure from the acceptance set as in Section 4.1.

3.2 Relationship to Pricing by Valuation and Stress Measures

Carr et al. [7] proposed an approach of pricing options in incomplete markets by a specific set of
equivalent probability measures which are not necessarily local martingale measures. Define the
set of Valuation Measures to be

Q0 = {Q1, Q2, ..., Qn }, where Qi ∼ P for i = 1, ..., n.

Define the set of Stress Measures to be

Q1 = {Qn+1, ..., Qm }, where Qi ∼ P for i = n + 1, ...,m.

The Acceptance Set is a collection of liabilities that satisfy the following condition:

(3.3) A = { L̃ : EQ[L̃] ≤ γQ, ∀Q ∈ Q},

where Q = Q0 ∪ Q1, and each probability measure Q ∈ Q is associated with a floor that satisfies
γQ = 0 for Q ∈ Q0, and γQ > 0 for Q ∈ Q1. Their Selling Price is defined as the minimal capital
required for some partial hedging so that the outcome becomes acceptable:

(3.4) p (H) = inf{x : ∃X ∈ X (x) s.t. H −XT ∈ A}.

We can always define the risk measure induced from an acceptance set as the smallest amount of
capital injection to reduce the liability for it to be acceptable:

ρA(L̃) = inf{ y : L̃− y ∈ A}(3.5)

= inf{ y : EQ[L̃− y] ≤ γQ, ∀Q ∈ Q}

= max
Q∈Q

(
EQ[L̃]− γQ

)
.
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In contrast, the acceptance set induced from a risk measure ρ is usually defined as

Aρ = { L̃ : ρ(L̃) ≤ 0 }.

Lemma 3.1 For A defined in (3.3) and ρA defined in (3.5), we have

AρA = { L̃ : ρA(L̃) ≤ 0 } = A.

Proof. It is easy to show A ⊆ AρA . To prove the other inclusion, we have to show that L̃ * A
implies ρA(L̃) > 0. L̃ * A implies there exists some Qk ∈ Q such that EQk [L̃] = γQk + ε for some
ε > 0. Therefore, EQk [L̃− ε

2 ] = γQk + ε
2 > γQk and ρA(L̃) = inf{ y : L̃− y ∈ A} ≥ ε

2 > 0. �

In the risk measure pricing framework, let the initial liability L = 0 and the minimal risk be
normalized to ρ0(0) = 0. Then the risk measure prices coincide with the price defined in (3.4):

SP = inf{x : ρx0+x(L + H) ≤ ρx0(L) }
= inf{x : ρx(H) ≤ 0 }
= inf{x : ∃X ∈ X (x) s.t. ρ(H −XT ) ≤ 0 }
= inf{x : ∃X ∈ X (x) s.t. H −XT ∈ AρA }
= inf{x : ∃X ∈ X (x) s.t. H −XT ∈ A}
= p(H).

We will check now whether the induced risk measure ρA(·) defined in (3.5) satisfy the assumptions
imposed on risk indifference pricing measures.

Lemma 3.2 (Valuation and Stress Risk Measure) Suppose

EQ[L + H] < ∞ and sup
X∈X (0)

EQXT < ∞††, ∀Q ∈ Q.

Then the risk measure defined in (3.5) is a convex risk measure and satisfies Assumptions 2.2 and
2.3. Therefore, it can be used as a pricing risk measure as in (2.7) and (2.8). In particular, the
existence result (Theorem 2.6) and the properties of the risk measure prices derived in section 2.3
are valid under additional Assumption 2.1.

Proof. Since A defined in (3.3) is a convex set which satisfies the property that if X ∈ A and
Y ≤ X, then Y ∈ A, we can easily show that the induced risk measure ρA is a convex risk measure.
Let Xn be a sequence of random variables that are uniformly bounded from below by a constant
and Xn → X a.s. Fatou’s Lemma implies EQ[X] ≤ lim infn→∞EQ[Xn] for any Q ∈ Q. It follows
that ρ(X) ≤ lim infn→∞ ρ(Xn). It is also obvious that X = Y a.s. implies ρ(X) = ρ(Y ) because
Q only includes equivalent probability measures. For the assumption on finiteness:

ρ(L + H) = max
Q∈Q

(
EQ[L + H]− γQ )

< ∞;

ρ0(0) = inf
X∈X (0)

max
Q∈Q

(
−EQXT − γQ )

≥ max
Q∈Q

inf
X∈X (0)

(
−EQXT − γQ )

= max
Q∈Q

(
− sup

X∈X (0)

EQXT − γQ )
> −∞. �

††The second inequality is satisfied if Q only contains equivalent local martingale measures, under which case
all admissible self-financing portfolio processes are supermartingales and supX∈X (0) E

QXT = 0. As a result, the

minimal risk is normalized to ρ0(0) = 0.
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4 Some Examples of Risk Measure Pricing

4.1 An Example of Pricing with Shortfall Risk Measure

Cvitanić and Karatzas [8] defined the dynamic measure of shortfall risk that took into consider-
ation a dynamic hedging portfolio. Föllmer and Leukert [17] generalized the model to be based
on semimartingale processes. Föllmer and Schied [19] proposed a static version of shortfall risk
measure that was a convex risk measure. We extend these concepts to define a dynamic version of
shortfall risk measure that is convex, so it can serve the purpose of the pricing theory developed
in section 2.

Recall that the trader starts with initial liability L which is uniformly bounded below by a constant
cL, and initial capital x0 for hedging. Define the Shortfall Acceptance Set to be a collection of
liabilities that satisfy the following condition:

(4.1) A = { L̃ : E [ l(L̃+) ] ≤ x̃ },

where the loss function l(·) is convex and increasing on [0,∞), and is not a constant function.
Assume x̃ > l(0) is a finite number. We will discuss the special case x̃ = l(0) seperately. Define
the Shortfall Risk Measure from the acceptance set:

(4.2) ρ(L̃) = inf { a : L̃− a ∈ A} = inf { a : E [ l((L̃− a)+) ] ≤ x̃ }.

If E [l(L̃+)] is finite, then ρ(L̃) is finite and by the monotone convergence theorem,

ρ(L̃) = min { a : E [ l((L̃− a)+) ] ≤ x̃ }.

The shortfall risk measure is equal to the smallest amount of capital injection to reduce the liability
for it to be acceptable. As we will see from (4.3), (L−XT )+ is the shortfall after the trader hedges
the liability L with a self-financing admissible strategy X. x̃ is the amount of expected shortfall we
are willing to tolerate in the end. ρx0(L) turns out to be the minimal amount of additional capital
to be used for hedging so that the expected shortfall is bounded above by x̃. Observe that the
higher the tolerance of the expected shortfall x̃, the lower the risk measure ρx0(L). This implies
the riskier the trader, the less the capital she will use for the purpose of hedging.

Lemma 4.1 The minimal risk defined in (2.1) becomes

(4.3) ρx0(L) = inf
X∈X (x0)

ρ(L−XT ) = min { a : inf
X∈X (x0+a)

E [ l((L−XT )+) ] ≤ x̃ },

when applied to the shortfall risk measure defined in (4.2).

Proof.

ρx0(L) = inf
X∈X (x0)

ρ(L−XT )

= inf
X∈X (x0)

min { a : E [ l((L− a−XT )+) ] ≤ x̃ }

= min { a : inf
X∈X (x0)

E [ l((L− a−XT )+) ] ≤ x̃ }

= min { a : inf
X∈X (x0+a)

E [ l((L−XT )+) ] ≤ x̃ }. �(4.4)

Lemma 4.2 (Shortfall Risk Measure) Assume E [l((L + H)+)] is finite. Then the shortfall
risk measure defined in (4.2) is a convex risk measure and satisfies Assumptions 2.2 and 2.3 under
Assumption 2.1. Therefore, it can be used as a pricing risk measure as in (2.7) and (2.8). In
particular, the existence result (Theorem 2.6) and the properties of the risk measure prices derived
in section 2.3 are valid.
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Remark 4.3 Similar to Lemma 4.1, we can show that

ρx0
b (L) = inf

X∈X (x0,b)
ρ(L−XT ) = min { a : inf

X∈X (x0+a,b)
E [ l((L−XT )+) ] ≤ x̃ }.

Define
u(a) = inf

X∈X (x0+a,b)
E [ l((L−XT )+) ].

Then u(a) ≥ l(0) is a decreasing and convex function. Applying Theorem 2.6, we know the optimal
solution X∗ ∈ X (xb, b) to

ρx0
b (L) = min

X∈X (x0,b)
ρ(L−XT )

exists for any b ∈ R+ and x0 ∈ R. Then ρx0
b (L) + X∗ is the optimal solution to

u(ρx0
b (L)) = min

X∈X (x0+ρ
x0
b (L),b)

E [ l((L−XT )+) ] = min
X∈X (ρ0

b(L),b)
E [ l((L−XT )+) ],

and vice versa. In particular, u(ρx0
b (L)) = x̃. We may conclude the optimal solution to the

minimization problem
min

X∈X (x,b)
E [ l((L−XT )+) ]

exists. This is an enlargement of the admissible set of the existence Theorem 3.2 in Föllmer and
Leukert [17] where they required the admissible portfolios to be nonnegative.

Proof. As an ↗ ∞, (L + H − an)+ ↘ 0 a.s. By the Bounded Convergence Theorem, E [l((L +
H − an)+)] ↘ l(0). Because we chose x̃ > l(0), we can thus be sure that ρ(L + H) < ∞. We
will prove ρ0(0) > −∞ by showing Assumption 2.1 is otherwise violated. Suppose ρ0(0) = −∞.
This implies that for any large number n, we can find some Xn ∈ X (0) such that ρ(−Xn

T ) < −n
or E [ l((n −Xn

T )+) ] ≤ x̃. Since l(·) is a convex and increasing function on [0,∞) which is not a
constant, it is continuous and satisfies l(x) →∞ as x →∞. Then there exists a subsequence of Xn

T

which converges to ∞ a.s. This creates an arbitrage opportunity and contradicts Assumption 2.1.
It is obvious that if X = Y a.s., then ρ(X) = ρ(Y ). Since l(x+) is a convex and increasing function,
the shortfall acceptance set A defined in (4.1) is a convex set. It can be easily verified that if X ∈ A
and Y ≤ X, then Y ∈ A. Therefore the induced shortfall risk measure ρ(·) defined in (4.2) is a
convex risk measure. We will finish the proof by showing that ρ(·) satisfies the Fatou property.
Let L̃n be a sequence of random variables that are uniformly bounded below by a constant and
converge to L̃ a.s. By Fatou’s Lemma,

E[ l((L̃− a)+) ] ≤ lim inf
n→∞

E[ l((L̃n − a)+) ].

This implies ρ(L̃) ≤ lim infn→∞ ρ(L̃n). �

Let us study the special case when x̃ = l(0). Without loss of generality, let the shortfall tolerance
be zero (x̃ = 0), and the loss function l(x) be strictly increasing near x = 0 and satisfies l(0) = 0.
The shortfall acceptance set becomes

A = { L̃ : E [ l(L̃+) ] ≤ 0 } = { L̃ : L̃ ≤ 0 a.s. }.

The shortfall risk measure can be computed from the acceptance set:

ρ(L̃) = inf { a : L̃− a ∈ A} = inf { a : L̃ ≤ a a.s. }.

By Lemma 4.1, the initial minimal risk with initial capital x0 = 0 is

ρ0(L) = min { a : inf
X∈X (a)

E [ l((L−XT )+) ] ≤ 0 }

= min { a : ∃X ∈ X (a) s.t. L ≤ XT a.s. }
= x̄(L) (the super-hedging price for L).
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By translation invariance, the buying and selling prices are

SP = x̄(L + H)− x̄(L) and BP = x̄(L)− x̄(L−H),

where they are reduced to the differences between the super-hedging prices. In particular, when
the initial liability L = 0 a.s., the risk measure prices coincide with super-hedging prices SP =
BP = x̄(H) which (not surprisingly because x̃ = 0) is a very conservative choice.

4.2 An Example of Pricing with Average VaR

Recall from Section 2.1 that our probability space is (Ω,F , P). An industry-standard risk measure
is VaR (Value-at-Risk) defined by

V aRλ(L) = inf{m | P[L > m ] ≤ λ }.

For an overview of VaR, see Duffie and Pan [13]. Artzer et al. [2] looked for an axiomatic approach
to define coherent risk measures with desirable properties which VaR lack. They provided an
example called Worst Conditional Expectation:

WCEλ(L) = sup{E[L |A ] |A ∈ F , P[A] > λ }.

A variant of VaR which is a coherent risk measure is called Average Value at Risk‡‡

AV aRλ(L) =
1
λ

∫ λ

0

V aRγ(L)dγ.

Notice that AVaR takes into consideration the size of the loss as well as its probability. When
the probability space Ω is atomless, AVaR coincides with the Worst Conditional Expectation. In
general, we have the following relationship between these concepts:

AV aRλ(L) ≥ WCEλ(L) ≥ E[L |L ≥ V aRλ(L) ] ≥ V aRλ(L).

Lemma 4.4 (Average Value at Risk) Assume AV aRλ(L+H) < ∞. Then the Average Value-
at-Risk defined above is a coherent risk measure, and therefore a convex risk measure, and satisfies
Assumptions 2.2 and 2.3 under Assumption 2.1. Therefore, it can be used as a pricing risk measure
as in (2.7) and (2.8). In particular, the existence result (Theorem 2.6) and the properties of the
risk measure prices derived in section 2.3 are valid.

Proof. Since almost sure convergence imply convergence in distribution, the Fatou property is
easily satisfied. It is also obvious that if X = Y a.s., then AV aRλ(X) = AV aRλ(Y ). Note

ρ0(0) = inf
X∈X (0)

AV aRλ(−XT ) ≥ inf
X∈X (0)

V aRλ(−XT ).

Suppose infX∈X (0) V aRλ(−XT ) = −∞. Then for any large number n, we can find Xn ∈ X (0)
such that V aRλ(−Xn

T ) ≤ −n. Thus P (Xn
T < n) ≤ λ. This is a contradiction to Assumption 2.1.

Therefore, infX∈X (0) V aRλ(−XT ) > −∞ and ρ0(0) > −∞. �

5 Conclusion

The Arbitrage Pricing Theory in complete markets has been widely adopted in financial industries.
The lack of such a transparent, strong and applicable pricing and hedging theory has limited the
use of incomplete market models in practice. This article attempts to extend the pricing theory to
‡‡See Föllmer, Schield [21] for references. Average Value-at-Risk is sometimes called Conditional Value at Risk

or Expected Shortfall, and they are studied in Acerbi, Tasche [1], and Rockafellar, Uryasev [46].
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incomplete markets based on a more practical choice of risk measure (which is mostly a mandatory
banking practice), and attempts to associate prices with optimal hedging strategies as in utility
based pricing. All the definitions and properties of pricing and hedging strategies derived are
related to the general properties of the risk measure and the admissibility of the hedging processes,
and are quite independent of the specifics of the underlying processes. Therefore, only general
pricing properties are given which can serve as a guideline for building specific implementations.
This approach is still quite subjective and specific to each institution’s financial position and risk
control, therefore it should be applied only where appropriate. Looking at the problem more closely,
I think traders trade options for different reasons. A trader might actively buy or sell options
to make profits. In this case, the trader is trying to maximize return (presumably positively
associated to her bonus) over the risk taken, and there might not be a better alternative than
existing approaches, for example, some sort of utility maximization subject to risk limits. Another
reason a trader trades is to provide market with liquidity. She has to quote either a buying or
selling price when a customer shows interest in a product. In this case, risk measure pricing can
provide a bottom line for the pricing and hedging requirement.

We are only concerned with European type of options in this paper. An excellent earlier work which
covers the American option pricing case is Merton [42]. Further research can be done to extend risk
measure pricing to American type of options. As for the shortfall risk measure defined in Section
4.1, more work can be done in the direction of a robust version. Specifically, the acceptance set
(4.1) can be modified to

A = {L : sup
P∈P

EP [ l(L+) ] ≤ x̃ },

where P is a set of test measures. Related topics are studied in Kirch [36], Sekine [48] and Föllmer
and Schied [20].
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