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Abstract

The theta graph Θ`,t consists of two vertices joined by t vertex-disjoint paths of length ` each. For fixed

odd ` and large t, we show that the largest graph not containing Θ`,t has at most c`t
1−1/`n1+1/` edges and

that this is tight apart from the value of c`.

1 Introduction

Given a graph F , the Turán number for F , denoted by ex(n, F ) is the maximum number of edges in an n-vertex

graph that contains no subgraph isomorphic to F . Mantel and Turán determined this function exactly when

F is a complete graph, and the study of Turán numbers has become a fundamental problem in combinatorics

(see [20, 22, 26] for surveys). The Erdős–Stone theorem [13] determines the asymptotic behavior of ex(n, F )

whenever χ(F ) ≥ 3, and so the most interesting Turán-type problems are when the forbidden graph is bipartite.

One of the most well-studied bipartite Turán problems is the even cycle problem: the study of ex(n,C2`).

Erdős initiated the study of this problem when he needed an upper bound on ex(n,C4) in order to prove a

theorem in combinatorial number theory [10]. The combination of the upper bounds by Kővari, Sós and Turán

[23] and the lower bounds by Brown [5] and Erdős, Rényi and Sós [12] gave the asymptotic formula

ex(n,C4) ∼ 1

2
n3/2.

It is now known that for certain values of n the extremal graphs must come from projective planes [16, 18, 15]

and this is conjectured to be the case for all n (see [17]).

A general upper bound of ex(n,C2`) of c`n
1+1/` for sufficiently large n was originally claimed by Erdős

[11] and first published by Bondy and Simonovits [4] who showed that one can take c` = 20`. Subsequent

improvements of the best constant c` to 8(` − 1) by Verstraëte [28], to (` − 1) by Pikhurko [25], and to

80
√
` log ` by Bukh and Jiang [8] were made, and this final bound is the current record.

As stated above, we have an asymptotic formula for ex(n,C4). Additionally, the upper bound on ex(n,C2`)

is of correct order of magnitude for ` ∈ {3, 5} [2, 30], i.e., ex(n,C2`) = Θ(n1+1/`) for these values of `. However,

unlike the case of C4, the sharp multiplicative constant is not known; see [19] for the best bounds on ex(n,C6).

The order of magnitude for ex(n,C2`) is unknown for any ` /∈ {2, 3, 5}. The best known general lower bounds

are given by Lazebnik, Ustimenko and Woldar [24] (but see [27] for a better bound for the ex(n,C14) case).

Although it is unclear whether ex(n,C2`) = Ω(n1+1/`) holds in general, more is known if instead of forbidding

a pair of internally disjoint paths of length ` between pairs of vertices (that is, a C2`) one forbids several paths

of length ` between pairs of vertices. For t ∈ N, let Θ`,t be the graph made of t internally disjoint paths of
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length ` connecting two endpoints. The study of ex(n,Θ`,t) generalizes the even cycle problem as Θ`,2 = C2`.

Faudree and Simonovits showed [14] that

ex(n,Θ`,t) = O`,t

(
n1+1/`

)
.

More recently, Conlon showed that this upper bound gives the correct order of magnitude if the number of

paths is a large enough constant [9]. That is, there exists a constant c` such that ex(n,Θ`,c`) = Θ`(n
1+1/`).

Verstraëte and Williford [29] constructed graphs with no Θ4,3 that have ( 1
2 − o(1))n5/4 edges.

In this paper, we are interested in the behavior of ex(n,Θ`,t) when ` is fixed and t is large. When ` = 2,

the result of Füredi [21] shows that ex(n,Θ2,t) ∼ 1
2

√
tn3/2. For general `, the result of Faudree and Simonovits

gives that ex(n,Θ`,t) ≤ c`t`
2

n1+1/`. We improve this bound as follows.

Theorem 1. For fixed ` ≥ 2, we have

ex(n,Θ`,t) = O`

(
t1−1/`n1+1/`

)
.

When ` is odd, we show that the dependence on t in Theorem 1 is correct.

Theorem 2. Let ` ≥ 3 be a fixed odd integer. Then

ex(n,Θ`,t) = Ω`

(
t1−1/`n1+1/`

)
.

We do not know if Theorem 1 is tight when ` is even. In this case, our best lower bound is the following.

Theorem 3. Let ` ≥ 2 be a fixed even integer. Then

ex(n,Θ`,t) = Ω`(t
1/`n1+1/`).

It would be interesting to close the gap between Theorems 1 and 3 for even `.

Since the proof of Theorem 1 is relatively involved, we begin by introducing the main ideas in Section 2

where we prove the theorem in the case ` = 3. Then in Sections 3 and 4 we extend this argument to prove the

general upper bound. In Sections 5 and 6 we give constructions for odd and even values of ` respectively.

2 Case ` = 3

In this section we present the proof of Theorem 1, dealing with the case ` = 3. As every graph of average degree

4d contains a bipartite subgraph of average degree 2d, and since every graph of average degree 2d contains a

subgraph of minimum degree d, we henceforth assume that the graph is bipartite of minimum degree d.

Lemma 4. Let r be any vertex of G. Call a vertex u bad if u 6= r and u has more than t common neighbors

with r. If G is Θ3,t-free, then no neighbor of r is adjacent to t bad vertices.

Proof. Suppose w is adjacent to bad vertices u1, . . . , ut. Define a sequence of vertices z1, . . . , zt as follows. We

let zi be any common neighbor of r and ui other than w, z1, . . . , zi−1. It exists since there are more than t

common neighbors between r and ui. Then (wuizir)
t
i=1 is a collection of t disjoint paths of length 3 from w

to r.

Proof of Theorem 1 for ` = 3. Let r be any vertex of G. Let L0 = {r}. Let L1 be the set of all the neighbors

of r. Let L2 be the set of all vertices at distance 2 from r that have at most t common neighbors with r. Note

that by Lemma 4 each vertex in L1 has at least d− t neighbors in L2. Call a vertex v1 ∈ L1 a parent of v2 ∈ L2

if v1 and v2 are adjacent. Note that a vertex in L2 can have at most t parents. Hence, each vertex in L2 has

at least d− t neighbors in V (G) \ L1.
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Let L3 be all vertices in V (G) \ L1 that are adjacent to some L2. Call v3 ∈ L3 a descendant of v1 ∈ L1 if

there is a path of the form v1v2v3 with v2 ∈ L2.

Let B(v1) ⊂ L3 be the set of all the descendants of v1 that have more than t common neighbors with v1.

By Lemma 4, each v2 ∈ N(v1) has fewer than t neighbors in B(v1).

Let H be the subgraph of G obtained from G by removing all edges between B(v1) and N(v1) for all

v1 ∈ L1. Since each v2 ∈ L2 has at most t parents, each vertex in L2 has at least d − t − t(t − 1) = d − t2
neighbors in L3.

For a vertex v3 ∈ L3, let p(v3) be the number of paths (in H) of the form rv1v2v3 with vi ∈ Li. We claim

that p(v3) ≤ 2t(t − 1) for every v3 ∈ L3. Indeed, suppose the contrary. We will construct a Θ3,t subgraph

as follows. First, we pick any path rv
(1)
1 v

(1)
2 v3 counted by p(v3). Since v3 and v

(1)
1 have at most t common

neighbors, and since r and v
(1)
2 have at most t common neighbors, at most 2t paths counted by p(v3) intersect

{v(1)1 , v
(2)
2 }. So, we can pick another path rv

(2)
1 v

(2)
2 v3 that is disjoint from {v(1)1 , v

(2)
2 }. We can repeat this, at

each step selecting path rv
(i)
1 v

(i)
2 v3 that is disjoint from

⋃
j<i{v

(j)
1 , v

(j)
2 } for i = 1, . . . , t. The paths rv

(i)
1 v

(i)
2 v3

together form a Θ3,t. So, p(v3) ≤ 2t(t− 1) after all.

Since each vertex in L1 has at least d− t neighbors in L2 and each vertex in L2 has at least d− t2 neighbors

in L3, it follows that

|L3| ≥
d(d− t)(d− t2)

2t(t− 1)
.

Since |L3| ≤ n the result follows.

3 General case

Outline. The case of general ` is similar to the case ` = 3. Starting with a root vertex, we build a sequence

of layers L1, L2, . . . , L` such that each next layer is about d times larger than the preceding. The condition of

being Θ`,t-free is used to ensure that a vertex in Lj descends from a vertex in Li in at most O(tj−i−1) ways.

However, there are two complications that are not present in the proof of the ` = 3 case.

First, in the definition of L2 we excluded vertices that have too many neighbors back. Doing so affects

degrees of yet-unexplored vertices, such as those in L3. That was not important for the ` = 3 case because the

L3 was the final layer. In general, though, we will maintain a set of ‘bad’ vertices and will control how removal

of these vertices affects subsequent layers.

Second, removing vertices from later layers reduces degrees of the vertices in the preceding layers. So,

instead of trying to ensure that each vertex has large degree, we will maintain a weaker condition that there

are many paths from the root to the leaves of the tree.

Minimum and maximum degree control. As in the proof of the case ` = 3, we will need to ensure that

all vertices are of large degree. For technical reasons, which will become apparent in Section 4 we need to

control not only the minimum, but also the maximum degrees. This is done with the help of the following

lemma:

Lemma 5 (Theorem 12 in [8], only in arXiv version). Every n-vertex graph with ≥ 4cn1+1/` edges contains a

subgraph G such that

• The graph G′ has at least cn1/2` vertices, and

• Degree of each vertex of G′ is between cv(G′)1/` and ∆cv(G′)1/` where ∆ = (20`)2`.

Henceforth we assume that our graph is bipartite, and that each vertex has degree between d and ∆d, where

∆ is as above. We will show that d` ≤ (8`t)`−1n
(
1 + o`(1)

)
, and hence that every Θ`,t-free graph has at most
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64`t1−1/`n1/`
(
1 + o`(1)

)
edges (a factor of 4 is from the preceding lemma, and another factor of 2 is because

of passing to a bipartite subgraph).

Graph exploration process. We shall use the same terminology as in the case ` = 3. Namely, if v ∈ Li
and u ∈ Li+1 are neighbors, then we say that v is a parent of u and u is a child of v. A path of the form

vivi+1 · · · vj with vs ∈ Ls for i ≤ s ≤ j is called a linear path; vertex vj is called a descendant of vi. We let

P (vi, vj) denote the number of linear paths from vi to vj . For sets A ⊂ Li and B ⊂ Lj , we denote by P (A,B)

the number of linear paths going from a vertex in A to a vertex in B.

In addition to sets L0, L1, . . . , Lk we will also maintain a sets B1, . . . , Bk−1 of bad vertices. All the sets

L0, L1, . . . , Lk, B1, . . . , Bk−1 will be disjoint. We shall say that we are at stage k if the sets L0, L1, . . . , Lk
and B1, . . . , Bk−1 have been defined, but the sets Lk+1 and Bk have not yet been defined. We denote by

U
def
= V (G) \ (L0 ∪ · · · ∪ Lk ∪B1 ∪ · · · ∪Bk−1) the set of unexplored vertices.

For v ∈ Li, let
−→
N (v) be the set of children of v, and let

←−
N (v) be the set of parents of v. We define−→

deg(v)
def
= |
−→
N (v)| and

←−
deg(v)

def
= |
←−
N (v)| to be the number of children and parents of v, respectively. The reason

for this notation is that we imagine L0, . . . , Lk grow from left to right.

· · · ...

L0 L1 Lk

Let

Rm
def
=

(2`)m

m+ 1

(
2m

m

)
tm.

Note that 1
m+1

(
2m
m

)
is the m’th Catalan number. We call a pair of layers (Li, Lj) with i < j regular if for every

pair of vertices (vi, vj) ∈ Li × Lj the number of linear paths from vi to vj is P (vi, vj) ≤ Rj−i−1.

We start the exploration process by picking a root vertex r, and setting L0 = {r} and L1 = N(r). At the

k’th stage of the sets B1, B2, . . . , Bk−1, L0, L1, . . . , Lk satisfy the following properties:

P1. The root is preserved: L0 = {r}.

P2. No orphans: every vertex of Li for i = 1, 2, . . . , k has at least one parent.

P3. The explored part is tree-like: every pair of layers (Li, Lj) with 0 ≤ i < j < k is regular. (Note that pairs

of the form (Li, Lk) might be irregular.)

P4. Bad sets are small: |Bj | ≤ τjdj−1 for all 1 ≤ j < k, where τj
def
= 2`t

∑j−1
i=0 (i+ 1)∆i.

P5. The ‘tree’ is growing: there are at least dk−1(d − ηk) linear paths from root r to layer Lk, where

ηk
def
=
∑k−2
i=0

(
(∆ + 1)Ri + 2(i+ 1)`t∆i + τi

)
.

P6. There are many children: each vertex in Lk has at least d neighbors in Lk−1 ∪Bk−1 ∪U , and each vertex

in U has at least d neighbors in Lk ∪ U .

The main step in going from k’th stage to k + 1’st is to make P3 hold with j = k. To that end, we rely on

the following lemma showing that only a few vk ∈ Lk are in pairs (vi, vk) that violate P3.

Lemma 6 (Proof is in Section 4). Let B′
def
= {vk ∈ Lk : ∃i < k ∃vi ∈ Li P (vi, vk) > Rk−i−1}. Then

P (r,B′) ≤ 2k`t(∆d)k−1.
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Assuming the lemma, we show next how to go from stage k to stage k + 1, for k < `.

Because of P2, P (r, v) ≥
←−
deg(v) and so

←−
deg(vk) ≤ Rk−1 for every vk ∈ Lk \B′. Since degree of every vertex

of Lk is at least d, by P6 this implies that every vertex in Lk \B′ has at least d−Rk−1 neighbors in U ∪Bk−1.

Let B′′ consist of those vertices in Lk \B′ that have at least ∆Rk−1 neighbors in Bk−1. Note that

∆Rk−1|B′′| ≤ d∆|Bk−1|,

and hence |B′′| ≤ d|Bk−1| ≤ τk−1

Rk−1
dk−1.

Let Lk+1 be all vertices in U that are adjacent to some vertex in Lk \(B′∪B′′), replace Lk by Lk \(B′∪B′′),
and set Bk

def
= B′ ∪B′′. That way, each linear path from r to Lk can be extended to a path to Lk+1 in at least

d−Rk−1 −∆Rk−1 = d− (∆ + 1)Rk−1 ways. So, since the number of linear paths from r to the new Lk is at

least

dk−1(d− ηk)− P (r,B′)− P (r,B′′) ≥ dk−1(d− ηk − 2k`t∆k−1)−Rk−1|B′′|
≥ dk−1(d− ηk − 2k`t∆k−1 − τk−1),

it follows that the number of linear paths from r to Lk+1 is at least(
d− (∆ + 1)Rk−1

)
P (r, Lk) ≥ dk

(
d− ηk − 2k`t∆k−1 − τk−1 − (∆ + 1)Rk−1

)
= dk(d− ηk+1)

This shows that P5 holds at stage k + 1. Since P2 held at stage k, it follows that |B′| ≤ P (r,B′), implying

|Bk| = |B′|+ |B′′| ≤ 2k`t(∆d)k−1 + τk−1d
k−1 = τkd

k−1,

and so Property P4 holds at stage k + 1. Property P6 holds at stage k + 1 because it held at stage k and the

graph is bipartite. The other properties are immediate.

At `’th stage, the number of linear paths from r to L` is at least d`−1(d− η`) = d`
(
1 + o(1)

)
. On the other

hand, it is at most |L`|R`−1 ≤ (8`t)`−1n. The result then follows.

4 Embedding Θ`,t

In this section we prove Lemma 6 that controls the number of linear paths in a Θ`,t-free graph. For that

we show that if there are many linear paths from some vertex v to its descendants, then we can embed a

subdivision of a star so that its leaves are mapped to the children of v. Adding vertex v to the subdivision of

the star yield a copy of Θ`,t.

The standard method for embedding trees is to find a substructure of large ‘minimum degree’ (in a suitable

sense), and then embed vertex-by-vertex avoiding already-embedded vertices. For us the relevant notion of a

degree is the number of linear paths.

Definition 7. A pair of layers (Li, Lj) with i < j is almost-regular if every pair of layers (Li′ , Lj′), with

i ≤ i′ < j′ ≤ j and (i′, j′) 6= (i, j), is regular.

Lemma 8. Suppose i < k and pair (Li−1, Lk) is almost-regular, and we are given a vertex vi−1 ∈ Li−1 and

subsets A ⊂
−→
N (vi−1), B ⊂ Lk. Suppose that the number of linear paths between A and B satisfies

P (A,B)/|A| > 2`t(∆d)k−i−1, (1)

P (A,B)/|B| > Rk−i. (2)

Then G contains Θ`,r.

Proof. The proof naturally breaks into three parts: finding a substructure of a large minimum degree, using

that substructure to locate many disjoint paths, and then joining these paths to form a copy of Θ`,t.
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Part 1 (large minimum degree substructure): We will select a subset B′ ⊂ B that is well connected by

linear paths to the preceding layer Lk−1. We use a modification of the standard proof that a graph of average

degree 2d contains a subgraph of minimum degree d.

At start, set B′ = B. To each pair (a, b) ∈ A×B′ we associate a set P(a, b) of linear paths between a and b.

At start, P(a, b) is the set of all linear paths from a to b. For brevity we use notations P(·, b) def
=
⋃
a∈A P(a, b),

P(a, ·) def
=
⋃
b∈B′ P(a, b), and similarly for P(·, ·).

Perform the following two operations, for as long as any of them is possible to perform:

1. if |P(·, b)| ≤ Rk−i/2 for some b ∈ B′, then remove vertex b from B′,

2. if some linear path avi+1vi+2 · · · vk−1 is a prefix of fewer than `t paths in P(a, ·), remove all these paths

from respective P(a, b)’s.

Since each step decreases the size of P(·, ·), the process terminates.

Since operation 1 is performed at most |B| times, the operation decreases the size of P(·, ·) by at most than

|B|Rk−i/2 < P (A,B)/2.

Since each vertex has degree at most ∆d, operation 2 is performed on at most (∆d)k−i−1|A| linear paths

terminating in the layer Lk−1. Therefore, the operation decreases |P(·, ·)| by less than

(∆d)k−i−1|A| · `t < P (A,B)/2.

So, the total number of edges removed by the two operations is less than P (A,B), and so P(·, ·) is non-empty

when the process terminates. Therefore, B′ is non-empty as well.

Part 2 (many disjoint paths from vertices of B′): Next we use the obtained set B′ and P(·, ·) to

embed Θ`,t. We start by proving that, for every vertex b ∈ B′, there are `t linear paths in P(·, b) that are

vertex-disjoint apart from sharing vertex b itself. We will pick these paths one-by-one subject to the constraint

of being vertex-disjoint.

Indeed, consider any linear path vivi+1 . . . vk−1b ∈ P(·, b). Because (Li−1, Lk) is almost-regular the number

of paths in P(·, ·) that intersect {vi, vi+1, . . . , vk−1} is at most

k−1∑
j=i

P (vi−1, vj)P (vj , vk) ≤
k−1∑
j=i

Rj−i ·Rk−j−1 =
∑

u+v=k−i−1

RuRv =
1

2`t
Rk−i,

where the last equality relies on the convolution identity for the Catalan numbers.

From |P(·, b)| > Rk−i/2 it follows that as long we have picked fewer than `t paths, there is another path in

P(·, b) that is disjoint from the already-picked.

Part 3 (embedding): Let

S
def
= {vk−1 ∈ Lk−1 : vk−1 is on some path in P(·, ·)}.

Consider the subgraph H of G that is induced by S ∪ B′. This is a bipartite graph with parts S and B′.

The vertex-disjoint paths found in the previous step show that degree of each vertex in B′ is at least `t. We

claim that vertices of S are also of degree at least `t. Indeed, let s ∈ S be arbitrary. Then P(·, ·) contains

a linear path of the form avi+1vi+2 · · · vk−2sb. Since it was not removed by operation 2, there are at least `t

linear paths having avi+1vi+2 · · · vk−2s as a prefix. Therefore, s is adjacent to at least `t vertices of B′.

Because the minimum degree of H is at least `t, it is possible to embed any rooted tree on at most `t

vertices into V (H) = S ∪ B′ with the root as any prescribed vertex of S ∪ B′. In particular, we can find a
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vertex u ∈ S ∪B′ and t vertex-disjoint paths from u to B′ of length `− k+ i− 1 each. Note that the choice of

whether u ∈ S or u ∈ B′ depends on the parity of `− k + i− 1.

Let b1, · · · , bt ∈ B′ be the endpoints of these paths, and let T be all the vertices in the union of the paths.

Since |T | < `t, at least one of the `t vertex-disjoint paths from b1 to A misses T . We then join this path to b1.

We can extend paths ending at b2, b3, . . . , bt in turn in a similar way. We obtain an embedding of Θ`,t minus

one vertex. Adding vi−1 we obtain an embedding of Θ`,t into G.

We are now ready to prove Lemma 6 that controls the number of bad vertices.

Proof of Lemma 6. Inductively define sets B′k−1, B
′
k−2, . . . , B

′
1 (in that order) by

B′i
def
= {vk ∈ Lk : ∃vi−1 ∈ Li−1 s.t. P (vi−1, vk) > Rk−i} \ (B′i+1 ∪ · · · ∪B′k−1).

Note that B′ =
⋃
iB
′
i. We will prove that P (r,B′i) ≤ 2`t(∆d)k−1, from which the lemma would follow.

Decompose B′i further into sets

B′(vi−1)
def
= {vk ∈ Lk : P (vi−1, vk) > Rk−i} \ (B′i+1 ∪ · · · ∪B′k−1).

Clearly B′i =
⋃
vi−1∈Li−1

B′(vi−1).

To start, observe that if we remove B′i+1 ∪ · · · ∪B′k−1 from Lk then the pair of layers (Li−1, Lk) is almost-

regular. Therefore, for every vi−1 ∈ Li−1, since

P
(−→
N (vi−1), B′(vi−1)

)
> Rk−i|B′(vi−1)|,

it follows from Lemma 8 that

P
(−→
N (vi−1), B′(vi−1)

)
≤ 2
−→
deg(vi−1)`t(∆d)k−i−1.

In particular,

P (r,B′i) =
∑

vi−1∈Li−1

P (r, vi−1)P (
−→
N (vi−1), B′(vi−1)) ≤ P (r, Li−1)2`t(∆d)k−i

≤ 2`t(∆d)k−1

since degree of every vertex is at most d∆. Adding these over all i completes the proof.

5 Lower bound for odd length paths

In this section we will construct graphs on n vertices that do not contain a Θ`,t with Ω`
(
t1−1/`n1+1/`

)
edges

when ` is odd, showing that Theorem 1 has the correct dependence on t for odd `.

We will use the random polynomial method [3, 6]. Our construction is in two stages. First we use random

polynomials to construct graphs with only few short cycles. In the second stage we blow up the graph by

replacing vertices by large independent sets. We will show that the resulting graph is Θ`,t-free.

Let q be a prime power and let Psd be the set of polynomials in s variables of degree at most d over Fq.
That is, Psd is the set of linear combinations over Fq of monomials Xa1

1 · · ·Xas
s with

∑s
i=1 ai ≤ d.

We reserve the term random polynomial to mean a polynomial chosen uniformly from Psd . We note that

a random polynomial can equivalently be obtained by choosing the coefficients of each monomial Xa1
1 · · ·Xas

s

uniformly and independently from Fq. In particular, because the constant term of a random polynomial is

chosen uniformly from Fq, it follows that

Pr[f(x) = 0] =
1

q
(3)

for a random polynomial f and any fixed x ∈ Fsq.
We now define a random graph model that we use in our constructions.
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Definition 9 (Random algebraic graphs). Set d
def
= 2`2. Let U and V be disjoint copies of F`q, and consider

the following random bipartite graph with parts U and V . We pick ` − 1 independent random polynomials

f1, . . . , f`−1 from P2`
d , and declare uv to be an edge of G if and only if

f1(u, v) = f2(u, v) = · · · = f`−1(u, v) = 0.

We call the resulting graph a random algebraic graph.

Note that in this definition we fixed the degree and number of polynomials, to suit our particular application.

More general random algebraic graphs have been been used for instance in [7] .

Let G be a random algebraic graph. For T ∈ N, we say that a pair of vertices x, y is T -bad if there are at

least T paths of length at most ` between x and y. Define BT to be the set of T -bad pairs of vertices in G.

Proposition 10. [Case h = 1 of Proposition 12] There exists a constant T = T (`) depending only on ` such

that

E
[
|BT |

]
= O`(1).

The proof of Proposition 12 is similar to arguments in [7] and [9], and we defer it to Section 7. We use

Proposition 10 to make a graph with Ω
(
n1+1/`

)
edges where each pair of vertices is joined by only a few short

paths.

Theorem 11. There exists a constant T such that, for all n large enough, there is a bipartite graph on n

vertices with at least 1
4n

1+1/` edges and no T -bad pair.

Proof. Let q be the largest prime power with 2q` ≤ n. Note that 2q` ∼ n, as there is a prime between x and

x+x0.525 for all large x [1]. Let G be a random algebraic graph as in Definition 9. Let T be the constant from

Proposition 10. Remove all T -bad pairs from G to obtain a subgraph G′ of G. Note that for each pair in BT
which is removed from G, at most 2n edges are removed.

Since f1, . . . , f`−1 are chosen independently, (3) implies that the expected number of edges in G is

q` · q` ·
(

1

q

)`−1
= q`+1.

Therefore by Proposition 10, we have

E
[
e(G′)

]
≥ q`+1 − 2nE

[
|BT |

]
= q`+1 −O(n).

Since 2q` ∼ n, for n large enough we have E
[
e(G′)

]
≥ 1

4n
1+1/`, and so a graph with the desired properties

exists.

We now construct our Θ`,t-free graphs. Given a graph H, an m-blowup of H is obtained by replacing every

vertex of H with an independent set of size m and replacing each edge of H with a copy of Km,m. Note that

an m-blowup of H has m2e(H) edges. If H ′ is a blowup of H, for u ∈ V (H ′) and v ∈ V (H), we say that v is

a supervertex of u if u is in the independent set which replaced v.

Proof of Theorem 2. Let ` ≥ 3 be odd, and let T be as above. With foresight, set m
def
= b t−1T c. Let G′ be the

graph on n
m vertices whose existence is guaranteed by Theorem 11. So G′ has at least 1

4

(
n
m

)1+1/`
edges and

no T -bad pair. Let G be an m-blowup of G′. To show that G is Θ`,t-free, let x and y be vertices in G and let

P1 = xu11 · · ·u1`−1y
...

PR = xuR1 · · ·uR`−1y

8



be R internally disjoint paths of length ` from x to y. Since ` is odd and G′ is bipartite, x and y have distinct

supervertices in G′, call them x′ and y′. For 1 ≤ i ≤ ` − 1 and 1 ≤ j ≤ R, let vji ∈ V (G′) be the supervertex

of uji ∈ V (G). Now consider the multiset

P ′1 = x′v11 · · · v1`−1y′

...

P ′R = x′vR1 · · · vR`−1y′.

This is a multiset of R not necessarily disjoint or distinct walks of length ` from x′ to y′ in G′. Removing cycles

from these walks, we obtain a multiset of R paths of length at most ` between x′ and y′ in G′. Although these

paths are not necessarily disjoint or distinct, since G is an m-blowup of G′ and since P1, . . . , PR are internally

disjoint, each vertex besides x′ and y′ may appear in the multiset of G′-paths at most m times. In particular,

each distinct G′-path may appear at most m times. Since G′ has at most T paths of length at most ` between

x′ and y′, we have that

R ≤ Tm < t

by the choice of m.

So, G is a graph on n vertices with no Θ`,t and at least

1

4

( n
m

)1+1/`

m2 =
1

4
n1+1/`m1−1/` = Ω`

(
t1−1/`n1+1/`

)
edges.

6 Lower bound for even length paths

Let h be a parameter to be chosen later. Let G1, . . . , Gh be h independent random algebraic graphs with parts

U = V = F`q, chosen as in Definition 9. Consider the multigraph G which is the union of all the Gi’s. Call

a pair of vertices T -bad if they are joined by at least T paths of length at most ` in G. By Proposition 12

(proved in Section 7) there are constants T = T (`) and C = C(`) such that the expected number of Th`-bad

pairs is at most Ch`. Let G be obtained from G by removing the multiple edges.

The expected number of edges in the multigraph G is h · q`+1 = h
(
n
2

)1+1/`
. Let M be the number of

multiple edges. Then

E[M ] ≤ n2h2
(
q−`−1

)2
= o(n).

Remove from G all Th`-bad pairs of vertices. Doing this removes at most 2n edges per pair removed. The

expected number of edges in the obtained graph is at least

h
(n

2

)1+1/`

− 2Ch`n− o(n).

Choosing h =
(
t
T

)1/`
shows that there is a Θ`,t-free graph with Ω`

(
t1/`n1+1/`

)
edges and at most n vertices.

7 Analysis of the random algebraic construction

Here we prove the bound, whose proof we deferred, on the number of T -bad pairs. Recall that G1, . . . , Gh are

independent random algebraic graphs with parts U = V = F`q, and G is the multigraph which is the union of

the Gi’s. As before, a pair of vertices is T -bad if it is joined by at least T paths of length at most `.

Let BT be the set of all T -bad pairs in G.

9



Proposition 12. There exist constants T = T (`) and C = C(`) such that

E
[
|BTh` |

]
≤ Ch`.

Proof of Proposition 12. Let r ≤ ` and (i1, . . . , ir) ∈ [h]r be fixed. A path made of edges e1, . . . , er (in order) is

of type (i1, . . . , ir) if ej ∈ E(Gij ). For a type I, a pair of vertices x, y is (T, I)-bad if there are T paths of type I

between x and y. We will show that there is a constant T = T (`) such that, for each fixed type I, the expected

number of (T/`, I)-bad pairs is O`(1). Since the total number of types is
∑
r≤` h

r ≤ `hr, the proposition will

follow by the linearity of expectation.

We will need the fact that if the degrees of random polynomials are large enough, then the values of these

polynomials in a small set are independent. Specifically, because of the way we defined graphs Gi, we are

interested in the probabilities that the polynomials vanish on a given set.

Lemma 13. [Lemma 2.3 in [7] and Lemma 2 in [9]] Suppose that q ≥
(
m
2

)
and d ≥ m − 1. Then if f is a

random polynomial from Ptd and x1, . . . , xm are fixed distinct points in Ftq, then

Pr [f(x1) = · · · = f(xm) = 0] =
1

qm
.

We need to estimate the expected number of short paths between pairs of vertices. To this end, let x and

y be fixed vertices in G, let I = (i1, . . . , ir) be fixed, and let Sr be the set of paths of type I between x and y.

We use an argument of Conlon [9], to estimate the 2`’th moment of SI .

The |SI |2` counts ordered collections of 2` paths of type I from x to y. Let Pm,r be all such ordered

collections of paths in Kq`,q` whose union has exactly m edges. Note that m ≤ 2` · r ≤ 2`2 ≤ d. Conlon showed

[9, p.5] that every collection in Pm,r spans at least (r − 1)m/r vertices other than x and y.

By Lemma 13 and independence between different Gi’s, the probability that a given collection in Pm,r is

contained in G is q−(`−1)m. From Conlon’s bound on the number of internal vertices it follows that

|Pm,j | ≤ q`m(j−1)/j .

Therefore,

E
[
|SI |2`

]
=

2`2∑
m=1

|Pm,r|q−(`−1)m ≤
2`2∑
m=1

q`m−
`m
r q−`m+m ≤

2`2∑
m=1

1,

where the last inequality uses r ≤ `.
We next show that |SI | is either bounded or is of order at least q. To do this, we must describe the paths

as a points on appropriate varieties. We write Fq for the algebraic closure of Fq. A variety over Fq is a set

W = {x ∈ Ftq : f1(x) = · · · = fs(x) = 0}

where f1, . . . , fs : Ftq → Fq are polynomials. We say that W is defined over Fq if the coefficients of the

polynomials are in Fq and we let W (Fq) = W ∩Fq. We say W has complexity at most M if s, t, and the degree

of each polynomial are at most M . We need the following lemma of Bukh and Conlon [7].

Lemma 14. [Lemma 2.7 in [7]] Suppose W and D are varieties over Fq of complexity at most M which are

defined over Fq. Then one of the following holds:

• |W (Fq) \D(Fq)| ≤ cM , where cM depends only on M , or

• |W (Fq) \D(Fq)| ≥ q
(
1−OM (q−1/2)

)
.
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Note that SI is a subset of a variety. Indeed, suppose x ∈ U and y ∈ V (if r is odd) or y ∈ U (if r is even)

be the two endpoints. Let

W
def
= {(u0, . . . , ur) ∈ (F`q)r+1 : u0 = x, ur = y, f i1k (u0, u1) = · · · = f irk (ur−1, ur) = 0, 1 ≤ k ≤ `− 1},

where f ik is the k’th random polynomial used to define the random graph Gi.

The set W (Fq) is nothing but the set of walks of type I from x to y. To obtain SI we need to exclude the

walks that are not paths. To that end, define

Da,b
def
= W ∩ {(u0, . . . , ur) : ua = ub} for 0 ≤ a < b ≤ r,

and set D
def
=
⋃
a,bDa,b, which is a variety since the union of varieties is a variety. Furthermore, its complexity

is bounded since it is defined by polynomials that are products of polynomials defining Da,b’s.

We then have that

SI = W (Fq) \D(Fq).

Since complexity of both W and D is bounded, Lemma 14 implies that either |W (Fq) \ D(Fq)| ≤ cj or

|W (Fq) \ D(Fq)| ≥ q
(
1−Or(q−1/2)

)
where cr is a constant depending only on r. In particular, there is a

constant Tr such that, for q large enough, we have either |SI | ≤ Tr or |SI | ≥ q
2 . Since E

[
|SI |2`

]
≤ 2`2,

Markov’s inequality gives that

Pr
[
|SI | > Tr

]
= Pr

[
|SI | ≥

q

2

]
= Pr

[
|SI |2` ≥ (q/2)2`

]
≤ E(|SI |2`)

(q/2)2`
= Or

(
q−2`

)
. (4)

Upon letting T
def
= ` ·maxr≤` Tr, inequality (4) implies that the expected number of (T/`, I)-bad pairs is at

most Or
(
|V ||U |q−2`

)
= Or(1).
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[17] Z. Füredi. Quadrilateral-free graphs with the maximum number of edges. In Proceedings of the Japan

Workshop on Graph Theory and Combinatorics, pages 13–22. Keio University, Yokohama, Japan, 1994.
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[20] Z. Füredi and M. Simonovits. The history of degenerate (bipartite) extremal graph problems. In Erdős
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