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ABSTRACT OF THE DISSERTATION

Connections between graph theory, additive combinatorics, and finite

incidence geometry

by

Michael Tait

Doctor of Philosophy in Mathematics

University of California San Diego, 2016

Professor Jacques Verstraëte, Chair

This thesis studies problems in extremal graph theory, combinatorial num-

ber theory, and finite incidence geometry, and the interplay between these three

areas.

The first topic is the study of the Turán number for C4. Füredi showed

that C4-free graphs with ex(n,C4) edges are intimately related to polarity graphs

of projective planes. We prove a general theorem about dense subgraphs in a

wide class of polarity graphs, and as a result give the best-known lower bounds

for ex(n,C4) for many values of n. We also study the chromatic and independence

numbers of polarity graphs, with special emphasis on the graph ERq.

Next we study Sidon sets on graphs by considering what sets of integers may

look like when certain pairs of them are restricted from having the same product.

Other generalizations of Sidon sets are considered as well.

We then use C4-free graphs to prove theorems related to solvability of equa-

tions. Given an algebraic structure R and a subset A ⊂ R, define the sum set and

product set of A to be A + A = {a + b : a, b ∈ A} and A · A = {a · b : a, b ∈ A}
respectively. Showing under what conditions at least one of |A + A| or |A · A| is

large has a long history of study that continues to the present day. Using spectral

properties of the bipartite incidence graph of a projective plane, we deduce that

nontrivial sum-product estimates hold in the setting where R is a finite quasifield.

xi



Several related results are obtained.

Finally, we consider a classical question in finite incidence geometry: what

is the subplane structure of a projective plane? A conjecture widely attributed to

Neumann is that all non-Desarguesian projective planes contain a Fano subplane.

By studying the structural properties of polarity graphs of a projective plane,

we show that any plane of even order n which admits a polarity such that the

corresponding polarity graph has exactly n+1 loops must contain a Fano subplane.

The number of planes of order up to n which our theorem applies to is not bounded

above by any polynomial in n.
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1

Introduction

“It is often forcefully stated that combinatorics is a collection of

problems, which may be interesting in themselves but are not linked and

do not constitute a theory.”

– László Lovász, Combinatorial Problems and Exercises

This thesis studies the interplay between graph theory, additive combina-

torics, and finite incidence geometry. Questions in extremal graph theory ask to

optimize some graph parameter subject to a constraint. A fundamental question in

this area is to maximize the number of edges in a graph or hypergraph which is not

allowed to contain fixed forbidden subgraphs. These questions are called Turán-

type problems and are a cornerstone in extremal combinatorics. Starting from the

question of maximizing the number of edges in a C4-free graph, we branch into

the field of additive combinatorics. This field, also called combinatorial number

theory, asks to deduce combinatorial properties of a set when the only information

one knows is the size of the set. The use of various graphs coming from projective

planes will be central in our study of both areas. We also go the opposite direction

and study a question about the subplane structure of a projective plane from the

perspective of graph theory.

We now briefly describe the main results given in the thesis. Each chapter

will contain its own introduction containing definitions, historical background, and

motivation for the problems it contains.

1
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1.1 Polarity graphs and the Turán number for C4

Given a fixed graph H, the Turán number of H is denoted by ex(n,H)

and is the maximum number of edges in a simple n-vertex graph that does not

contain H as a subgraph. In Chapter 2, we give the best-known lower bounds on

the Turán number ex(n,C4) for many values of n by proving a general theorem

that guarantees subgraphs in certain polarity graphs that contain many edges.

Estimating Turán numbers of various graphs (or more generally: for various

families of hypergraphs) is one of the most important topics in combinatorics, as

most questions in extremal combinatorics can be phrased as a Turán problems

with the appropriate families of excluded graphs. As such, these problems have a

rich history of study (cf [39, 56, 76]), an incomplete version of which is given in

the introduction of Chapter 2.

The connection between the Turán number for C4 and graphs coming from

projective planes is well-known. We prove a general theorem, given in Chapter

2, that gives the best-known lower bounds for ex(n,C4) for many values of n by

manipulating various polarity graphs. One particular case of this theorem gives

the following corollary, improving a result of the author and Timmons [80] and

disproving a conjecture of Abreu, Balbuena, and Labbate [1].

Theorem. If q is a prime power, then

ex(q2 − q − 2, C4) ≥ 1

2
q3 − q2 +

3

2
q −O

(
q1/2
)
.

From here, we study properties of polarity graphs without Turán numbers

in mind. One polarity graph of particular interest is the graph ERq. If q is a

prime power, the vertices of ERq are the one-dimensional subspaces of a three-

dimensional vector space over Fq, and two distinct subspaces are adjacent if they

are orthogonal to each other. The graph ERq has been studied in a variety of

settings, some of which are described in Chapter 3. In Chapter 3, we study the

chromatic number of ERq. In particular, we prove the following theorem, which

is best possible up to the constant 2.

Theorem. If q = p2r where p is an odd prime and r ≥ 1 is an integer, then

χ (ERq) ≤ 2q1/2 +O
(
q1/2/log q

)
.
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In Chapter 4, we extend this theorem to a more general setting, studying

the chromatic and independence numbers of a large family of polarity graphs that

includes ERq.

1.2 Sidon sets and sum-product estimates

Given a monoid R and a subset A ⊂ R, A is called a Sidon set if for

a, b, c, d ∈ A,

a+ b = c+ d (1.1)

implies that {a, b} = {c, d}. Sidon sets and their generalizations have been studied

in hundreds of research articles, and some background is given in Chapter 5. We

study a generalization of Sidon sets to graphs. A Sidon set is a set where all pairs

are required to have distinct sums. By introducing a graph, one can prescribe which

pairs must have distinct sums. We study this generalization to graphs where R is

the integers under multiplication. That is, we are studying sets of integers where

prescribed pairs of products must be distinct. A coloring χ of a graph G is called

product-injective if χ(u) · χ(v) 6= χ(x) · χ(y) for distinct edges uv, xy ∈ E(G). Let

P (G) denote the smallest integer N such that there is a product-injective coloring

χ : V (G) → [N ]. Let P (n, d) represent the maximum possible value of P (G)

over all n-vertex graphs G of maximum degree at most d. We prove the following

theorem in Chapter 5:

Theorem. There exists constant a, b > 0 such that P (n, d) ∼ n if d ≤ n1/2(log n)−a

and P (n, d) ∼ n log n if d ≥ n1/2(log n)b.

Sidon sets are sets where the sum set A+A := {a+ b : a, b ∈ A} is as large

as it possibly could be. What if one asks for a set A with a small sum set? If

A ⊂ Z, then if A is an arithmetic progression it has as small a sum set as possible.

However, in this case the product set of A, A · A = {a · b : a, b ∈ A} is very large.

Erdős and Szemerédi showed that in general, if A is a subset of the integers, than

either A + A or A · A is large [33]. Heuristically, a set cannot look like both an
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arithmetic progression and a geometric progression at the same time. Numerous

analogs of this theorem have been proven in other algebraic settings, which we

discuss in Chapter 6. We expand this active research area by proving that such a

sum-product estimate holds in the setting of a finite quasifield. The takeaway of

our theorem is that one does not require associativity of multiplication to have a

nontrivial sum-product estimate.

Theorem. Let Q be a finite quasifield with q elements and A ⊂ Q\{0}. There is

a positive constant c such that the following hold.

If q1/2 � |A| < q2/3, then

max{|A+ A|, |A · A|} ≥ c
|A|2

q1/2
.

If q2/3 ≤ |A| � q, then

max{|A+ A|, |A · A|} ≥ c(q|A|)1/2.

We prove several results of similar flavor in Chapter 6 concerning the solv-

ability of various equations over a finite quasifield.

1.3 Subplanes of projective planes

A fundamental question in incidence geometry is about the subplane struc-

ture of projective planes. There are relatively few results concerning when a pro-

jective plane of order k is a subplane of a projective plane of order n. Neumann [67]

found Fano subplanes in certain Hall planes, which led to the conjecture that every

finite non-Desarguesian plane contains PG(2, 2) as a subplane (this conjecture is

widely attributed to Neumann, though it does not appear in her work). We prove

the following.

Theorem. Let Π be a finite projective plane of even order which admits an or-

thogonal polarity. Then Π contains a Fano subplane.

The number of projective planes of order less than n which our theorem

applies to is not bounded above by any polynomial in n.
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1.4 Frequently used notation

• Interval notation: For real numbers y ≥ x ≥ 1, we use the notation

[x] = {1, 2, . . . , bxc} and [x, y] = {bxc, . . . , byc}.

• Asymptotic notation: Let f and g be functions f, g : Z+ → R. We write

f = O(g) if there exists a constant M and n0 such that for n ≥ n0,

f(n) ≤Mg(n).

We write f = o(g) if

lim
n→∞

f(n)

g(n)
= 0.

We write f ∼ g if

lim
n→∞

f(n)

g(n)
= 1.

We write f = Ω(g) if g = O(f) and f � g if f = o(g). We write f = Θ(g)

if f = O(g) and g = O(f).

• Probabilistic notation: If (An)n∈N is a sequence of events in a probabil-

ity space, then we say An occurs asymptotically almost surely as n → ∞ if

limn→∞ P (An) = 1. If X is a random variable we write E(X) for the expec-

tation of X. Let the Erdős-Rényi random graph, Gn,p, be a graph chosen

uniformly from the probability space Gn,p where edges of Kn are present in

Gn,p independently with probability p.

• Graph notation: Let F and G be graphs and S, T ⊂ V (G). We use

χ(G) and α(G) to denote the chromatic and independence numbers of G

respectively. G[S] will denote the graph induced by the set S. e(S) will

denote the number of edges induced by S, ie e(S) = |E(G[S])|. e(S, T ) will

denote the number of edges with one endpoint in S and one endpoint in T .

∆(G) will denote the maximum degree of G. C4 is the cycle on 4 vertices

and ERq is the Erdős-Rényi orthogonal polarity graph of order q2 + q + 1.

The Turán number for F is denoted by ex(n, F ).

• Algebraic notation: For q a prime power Fq denotes the field with q ele-

ments and F∗q denotes the multiplicative group of Fq. Fkq will denote either
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the k-fold direct product of Fq or a k-dimensional vector space over Fq, and

the meaning will be clear from context. Fq[X] denotes the polynomial ring

in one indeterminate over Fq.



2

Quadrilateral-free graphs

“Furthermore it is typically easy to verify at least one of the prop-

erties in a class, thereby establishing that all the properties in the class

hold.”

– Fan Chung and Ron Graham [22]

2.1 Introduction

Let F be a graph. Recall that a graph G is said to be F -free if G does not

contain F as a subgraph, and that ex(n, F ) denotes the Turán number of F , which

is the maximum number of edges in an n-vertex F -free graph. Write Ex(n, F ) for

the family of n-vertex graphs that are F -free and have ex(n, F ) edges. Graphs in

the family Ex(n, F ) are called extremal graphs. Determining ex(n, F ) for different

graphs F is one of the most well-studied problems in extremal graph theory. A

case of particular interest is when F = C4, the cycle on four vertices. A well known

result of Kővari, Sós, and Turán [57] implies that ex(n,C4) ≤ 1
2
n3/2 + 1

2
n. Brown

[15], and Erdős, Rényi, and Sós [32] proved that ex(q2 + q + 1, C4) ≥ 1
2
q(q + 1)2

whenever q is a power of a prime. It follows that ex(n,C4) = 1
2
n3/2 + o(n3/2). For

more on Turán numbers of bipartite graphs, we recommend the survey of Füredi

and Simonovits [39].

The C4-free graphs constructed in [15] and [32] are examples of polarity

7



8

graphs. To define these graphs, we introduce some ideas from finite geometry. Let

P and L be disjoint, finite sets, and let I ⊂ P × L. We call the triple (P ,L, I)

a finite geometry. The elements of P are called points, and the elements of L are

called lines. A polarity of the geometry is a bijection from P∪L to P∪L that sends

points to lines, sends lines to points, is an involution, and respects the incidence

structure. Given a finite geometry (P ,L, I) and a polarity π, the polarity graph

Gπ is the graph with vertex set V (Gπ) = P and edge set

E(Gπ) = {{p, q} : p, q ∈ P , (p, π(q)) ∈ I}.

Note that Gπ will have loops if there is a point p such that (p, π(p)) ∈ I.

Such a point is called an absolute point. We will work with polarity graphs that

have loops, and graphs obtained from polarity graphs by removing the loops. A

case of particular interest is when the geometry is the Desarguesianian projective

plane PG(2, q). For a prime power q, this is the plane obtained by considering the

one-dimensional subspaces of F3
q as points, the two-dimensional subspaces as lines,

and incidence is defined by inclusion. A polarity of PG(2, q) is given by sending

points and lines to their orthogonal complements. The polarity graph obtained

from PG(2, q) with this polarity is often called the Erdős-Rényi orthogonal polarity

graph and is denoted ERq. This is the graph that was constructed in [15, 32] and

we recommend [8] for a detailed study of this graph. We will study ERq in more

detail in Chapter 3.

The main theorem of the chapter will apply to ERq as well as to other

polarity graphs that come from projective planes that contain an oval. An oval in

a projective plane of order q is a set of q+1 points, no three of which are collinear.

It is known that PG(2, q) always contains ovals. One example is the set of q + 1

points

{(1, t, t2) : t ∈ Fq} ∪ {(0, 1, 0)}

which form an oval in PG(2, q). There are also non-Desaurgesian planes that

contain ovals. We now state the main theorem of this chapter.

Theorem 2.1.1. Let Π be a projective plane of order q that contains an oval and

has a polarity π. If m ∈ {1, 2, . . . , q + 1}, then the polarity graph Gπ contains a
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subgraph on at most m+
(
m
2

)
vertices that has at least

2

(
m

2

)
+
m4

8q
−O

(
m4

q3/2
+m

)
edges.

Theorem 2.1.1 allows us to obtain the best-known lower bounds for ex(n,C4)

for certain values of n by taking the graph ERq and removing a small subgraph

that has many edges. All of the best lower bounds in the current literature are

obtained using this technique (see [1, 35, 80]). An open conjecture of McCuaig is

that any graph in Ex(n,C4) is an induced subgraph of some orthogonal polarity

graph (cf [37]). For q ≥ 15 a prime power, Füredi [38] proved that any graph

in Ex(q2 + q + 1, C4) is an orthogonal polarity graph of some projective plane of

order q. For some recent progress on this problem, see [35]. By considering certain

induced subgraphs of ERq, Abreu, Balbuena, and Labbate [1] proved that

ex(q2 − q − 2, C4) ≥ 1

2
q3 − q2

whenever q is a power of 2. They conjectured that this lower bound is best possible.

Using Theorem 2.1.1, we answer their conjecture in the negative.

Corollary 2.1.2. If q is a prime power, then

ex(q2 − q − 2, C4) ≥ 1

2
q3 − q2 +

3

2
q −O

(
q1/2
)
.

Corollary 2.1.2 also improves the main result of [80]. In Section 2.2 we give

some necessary background on projective planes and polarity graphs. We prove

Theorem 2.1.1 and Corollary 2.1.2 in Section 2.3. We finish this chapter with some

concluding remarks in Section 2.4.

2.2 Preliminaries

Let Π = (P ,L, I) be a finite projective plane of order q. A k-arc is a set

of k points in Π such that no three of the points are collinear. It is known that

k ≤ q+1 when q is odd, and k ≤ q+2 when q is even. A line l ∈ L is called exterior,
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tangent, or secant if it intersects the k-arc in 0, 1, or 2 points, respectively. A k-arc

has exactly
(
q
2

)
+
(
q+2−k

2

)
exterior lines, k(q+ 2− k) tangents, and

(
k
2

)
secants (see

[28], page 147). A (q + 1)-arc is called an oval and in the plane PG(2, q), ovals

always exist (see [28], Ch 1). The next lemma is known (cf [52], Ch 12). A short

proof is included for completeness.

Lemma 2.2.1. Let G be a polarity graph obtained from a projective plane of order

q. If A is the adjacency matrix of G, then the eigenvalues of A are q+1 and ±√q.

Proof. In a projective plane, every pair of points is contained in a unique line.

Therefore, in a polarity graph, there is a unique path of length 2 between any pair

of vertices (this path may include a loop). This means that (A2)ij = 1 whenever

i 6= j. Since any point is on exactly q+1 lines, every vertex of G has degree exactly

q + 1 where loops add 1 to the degree of a vertex. The diagonal entries of A2 are

all q + 1 thus,

A2 = J + qI.

The eigenvalues of J + qI are (q + 1)2 with multiplicity 1, and q with multiplicity

q2 + q.

We remark here that the multiplicity of q + 1 is 1 and the multiplicities

of ±√q are such that the sum of the eigenvalues is the trace of A, which is the

number of absolute points of G. This implies that given two polarity graphs from

projective planes of order q, if they have the same number of absolute points, then

they are cospectral. Since not all polarity graphs with the same number of absolute

points are isomorphic, this gives examples of graphs that are not determined by

their spectrum, which may be of independent interest. For more information about

determining graphs by their spectrum, see [84].

The next result is a consequence of Lemma 2.2.1 and the so-called Expander

Mixing Lemma (cf [3] or [20]). We provide a proof which uses some basic ideas

from linear algebra.

Lemma 2.2.2. Let G be a polarity graph of a projective plane of order q, and let S

be a subset of V (G). Let e(S) denote the number of edges in S, possibly including
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loops.Then

e(S) ≥ (q + 1)|S|2

2(q2 + q + 1)
−
√
q|S|
2

.

Proof. Let A be the adjacency matrix of G and let n = q2 + q + 1. Let {xi} be

an orthonormal set of eigenvectors of A. Since A has constant row sum, x1 = 1√
n
1

and λ1 = q + 1. By Lemma 2.2.1, the other eigenvalues of A are all ±√q.

Now let S be a subset of V (G) and let 1S be the characteristic vector for S.

Let ê(S) denote the number of non-loop edges of S and l(S) denote the number of

loops in S. Then

1TSA1S =
∑
i,j∈S

Aij = 2ê(S) + l(S). (2.1)

Next we give a spectral decomposition of 1S:

1S =
n∑
i=1

〈1S, xi〉xi.

Noting that 〈1S, x1〉 = |S|√
n

and expanding (2.1), we see that

2ê(S) + l(S) =
n∑
i=1

〈1S, xi〉2λi =
(q + 1)|S|2

n
+

n∑
i=2

〈1S, xi〉2λi.

Therefore,∣∣∣∣2ê(S) + l(S)− (q + 1)|S|2

n

∣∣∣∣ ≤ n∑
i=2

∣∣〈1S, xi〉2λi∣∣ ≤ √q n∑
i=2

〈1S, xi〉2 ≤
√
q|S|.

Since e(S) = ê(S) + l(S) and l(S) ≥ 0, rearranging gives the result.

Note that Lemma 2.2.2 does not give us any information when |S| = O(q).

Lemma 2.2.2 is not strong enough for our purposes in terms of proving Corollary

2.1.2.

2.3 Proof of Theorem 2.1.1 and Corollary 2.1.2

In this section we prove Theorem 2.1.1 and Corollary 2.1.2.
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Proof of Theorem 2.1.1. Let Π be a finite projective plane of order q that contains

an oval H. Let π be a polarity of Π and let G be the corresponding polarity graph.

We omit the subscript π for notational convenience. For v ∈ V (G), write Γ(v) for

the set of neighbors of v in G. Given S ⊂ H, let

YS = {v ∈ V (G) : |Γ(v) ∩ S| = 2}

and XS = YS\S. Since H is an oval, the number of secants to H is
(
q+1

2

)
. Thus,

for any pair of distinct vertices si, sj ∈ H, there is a unique vertex ti,j ∈ YH such

that ti,j is adjacent to both si and sj. The vertex ti,j corresponds to the unique

secant that intersects H at si and sj. Further, the only neighbors of ti,j in H are

si and sj and so

|YS| =
(
|S|
2

)
for any S ⊂ H. This implies

|S|+ |XS| ≥ |YS| =
(
|S|
2

)
. (2.2)

When S = H, we get that |XH | ≥
(
q+1

2

)
− (q + 1) so by Lemma 2.2.2,

e(G[XH ]) ≥ q3

8
−O(q5/2). (2.3)

Let m ∈ {1, 2, . . . , q + 1}. Choose S ⊂ H uniformly at random from the set of all

subsets of H of size m. If e(S,XS) is the number of edges with one endpoint in S

and the other in XS, then using (2.2),

e(S,XS) = 2|XS| ≥ 2

(
|S|
2

)
− 2|S| = 2

(
m

2

)
− 2m. (2.4)

If e = uv ∈ E(G[XH ]), then the at most four vertices in (Γ(u) ∩H) ∪ (Γ(v) ∩H)

must be chosen in S in order to have e ∈ E(G[XS]). Therefore,

P(e ∈ E(G[XS])) ≥
(
q−3
m−4

)(
q+1
m

) =
m(m− 1)(m− 2)(m− 3)

(q + 1)q(q − 1)(q − 2)

≥ m(m− 1)(m− 2)(m− 3)

q4
.

By (2.3) and linearity of expectation,

E(e(G[XS])) ≥ m(m− 1)(m− 2)(m− 3)

8q
−O

(
m4

q3/2

)
. (2.5)
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Combining (2.4) and (2.5), we see that there is a choice of S ⊂ H with |S| = m

and

e(G[S ∪XS]) ≥ 2

(
m

2

)
+
m(m− 1)(m− 2)(m− 3)

8q
−O

(
m4

q3/2
+m

)
.

Lastly, observe |S ∪XS| ≤ |S|+ |YS| = m+
(
m
2

)
.

Now we use Theorem 2.1.1 to prove Corollary 2.1.2. We first prove a simple

inequality that expresses the number of edges of an induced subgraph of a polarity

graph in terms of the removed set of vertices.

Let G be a polarity graph of a projective plane of order q and let X ⊂ V (G).

The number of edges in the graph G \X is

e(G)− e(X)− e(X,Xc)

where e(X) includes counting loops in G. Since

e(X) + e(X,Xc) =
∑
x∈X

d(x)− e(X) ≤ (q + 1)|X| − e(X),

we have

e(G \X) ≥ e(G)− (q + 1)|X|+ e(X). (2.6)

Proof of Corollary 2.1.2. Let q be a prime power and ERq be the Erdős-Rényi

orthogonal polarity graph. It is known that this graph has 1
2
q(q+1)2 edges. Let m

be the largest integer satisfying m+
(
m
2

)
≤ 2q+ 3. Then m = b

√
4q + 25/4− 1/2c

and

2

(
m

2

)
+
m(m− 1)(m− 2)(m− 3)

q4
= 6q −O(q1/2).

By Theorem 2.1.1, there is a set S ⊂ V (ERq) with |S| = m +
(
m
2

)
such that S

induces a subgraph with at least 6q − O(q1/2) edges. Let X = S ∪ S ′ where S ′ is

an arbitrarily chosen set of 2q + 3− |S| vertices disjoint from S. Then by (2.6),

e(ERq \X) ≥ 1

2
q(q+1)3−(q+1)(2q+3)+6q−O(q1/2) =

1

2
q3−q2 +

3

2
q−O

(
q1/2
)
.

Since ERq is C4-free, we have

ex(q2 − q − 2, C4) ≥ 1

2
q3 − q2 +

3

2
q −O

(
q1/2
)
.
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2.4 Concluding remarks

There are two special circumstances in which one can improve Theorem

2.1.1. Each indicates the difficulty of finding exact values for the parameter

ex(n,C4).

• The first situation is when q is a square. In this case, Fq contains the subfield

F√q and this subfield may be used to find small graphs that contain many

edges. For instance ERq contains a subgraph F that is isomorphic to ER√q.

One can choose m =
√
q + 1 and let S be the set of absolute points in F .

These m vertices will also be absolute points in ERq and thus are contained

in an oval (the absolute points of an orthogonal polarity of PG(2, q) form an

oval when q is odd). If we then consider the
(
m
2

)
vertices in YS, these will

be the vertices in F that are adjacent to the absolute points of F . The set

YS induces a 1
2
(
√
q − 1)-regular graph in F (see [8]). The set X = S ∪ YS

will span roughly q3/2

8
edges which is much larger than the linear in q lower

bound provided by Theorem 2.1.1 when m =
√
q + 1.

• The second situation is when q is a power of 2 and q − 1 is prime. Assume

that this is the case and consider ERq−1. Let F be a subgraph of ERq−1

obtained by deleting three vertices of degree q − 1. The number of vertices

of F is (q− 1)2 + (q− 1) + 1− 3 = q2 − q− 2, and the number of edges of F

is at least 1
2
(q− 1)q2− 3(q− 1) = 1

2
q3− 1

2
q2− 3q+ 3. This is better than the

result of Corollary 2.1.2 by a factor of about 1
2
q2. A prime of the form 2m−1

with m ∈ N is known as a Mersenne Prime. It has been conjectured that

there are infinitely many such primes, but this is a difficult open problem.

In [80], Sidon sets are used to construct C4-free graphs. For a prime power

q, these graphs have q2 − 1 vertices, and 1
2
q3 − q + 1

2
edges when q is odd, and

1
2
q3 − q edges when q is even. These graphs have a degree sequence similar to the

degree sequence of an orthgonal polarity graph and it seemed possible that these

graphs could be extremal. However, Theorem 2.1.1 can be applied to show

ex(q2 − 1, C4) ≥ 1

2
q3 −O(

√
q),
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which shows that the graphs constructed in [80] are not extremal.

Chapter 2 is a version of material appearing in “Small dense subgraphs of

polarity graphs and the extremal number for the 4-cycle, Australasian Journal of

Combinatorics, 63(1), (2015), 107–114, co-authored with Craig Timmons. The

author was the primary investigator and author of this paper.
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Coloring ERq

“Beautiful graphs are rare.”

– László Babai and Péter Frankl

3.1 Introduction

In Chapter 2, we gave a geometric description of adjacency in ERq. We

now give an algebraic description that will be more suitable for our purposes in this

chapter. Let q be a prime power and let V be a 3-dimensional vector space over

Fq. Let PG(2, q) be the projective geometry whose points are the 1-dimensional

subspaces of V and whose lines are the 2-dimensional subspaces of V . Recall

that ERq is the graph whose vertices are the points of PG(2, q). Distinct vertices

(x0, x1, x2) and (y0, y1, y2) are adjacent if and only if x0y0 + x1y1 + x2y2 = 0. One

obtains an isomorphic graph if the equation for adjacency is x2y0 + x0y2 = x1y1

(see [65]) and it is this definition of ERq that we will use.

In Chapter 2, we saw that the graph ERq plays an important role in the

study of the Turán number for C4. Later these same graphs were used to solve

other extremal problems in a variety of areas such as Ramsey theory [6, 21, 58],

hypergraph Turán theory [60], and even the Cops and Robbers game on graphs

[11]. We remark that graphs without short cycles are related to LDPC codes (cf

[64]).

16
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Because of its important place in extremal graph theory, many researchers

have studied the graph ERq as an interesting graph in its own right. Parsons [69]

determined the automorphism group of ERq and obtained several other results. In

particular, Parsons showed that for q ≡ 1(mod 4), ERq contains a 1
2
(q+ 1)-regular

graph on
(
q
2

)
vertices with girth 5. This construction gives one of the best known

lower bounds on the maximum number of edges in an n-vertex graph with girth

5. It is still an open problem to determine this maximum, and for more on this

problem, see [2]; especially their Conjecture 1.7 and the discussion preceding it.

Bachratý and Širáň [8] reproved several of the results of [69] and we recommend

[8] for a good introduction to the graph ERq. They also used ERq to construct

vertex-transitive graphs with diameter two.

Benny Sudakov posed the question of determining the independence number

of ERq (see [90]), and it has since been investigated in several papers. Mubayi and

Williford [65] proved that if p is a prime, n ≥ 1 is an integer, and q = pn, then

α(ERq) ≥



1
2
q3/2 + 1

2
q + 1 if p is odd and n is even,

120q3/2

73
√

73
if p is odd and n is odd,

q3/2

2
√

2
if p = 2 and n is odd,

q3/2 − q + q1/2 if p = 2 and n is even.

An upper bound on the independence number of ERq may be obtained by

eigenvalue techniques by the well-known Hoffman Ratio Bound.

Theorem 3.1.1 (Hoffman [50]). Let G be a d-regular graph on n vertices and λn

be the smallest eigenvalue of its adjacency matrix. Then

α(G) ≤ n
−λn
d− λn

.

As the graph ERq with loops on the absolute points is regular, Hoffman’s

theorem may be applied to obtain α(ERq) ≤ q3/2 + q1/2 + 1. Therefore, the order

of magnitude of α(ERq) is q3/2. Godsil and Newman refined the upper bound

obtained from Hoffman’s bound in [42]. Their result was then improved using the

Lovász theta function in [26]. When q is even, Hobart and Williford [49] used

coherent configurations to provide upper bounds for the independence number of
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general orthogonal polarity graphs. When q is an even square, the known upper

bound and lower bound for α(ERq) differ by at most 1. In the case when p is odd

or when p = 2 and n is odd, it is still an open problem to determine an asymptotic

formula for α(ERq).

Since the independence number has been well-studied and its order of mag-

nitude is known, it is natural to investigate the chromatic number of ERq which

is closely related to α(ERq). Let q be any prime power. Then ERq has q2 + q + 1

vertices and α(ERq) = Θ(q3/2), and so a lower bound for χ(ERq) is q2+q+1
α(ERq)

≥ q1/2.

One may ask whether this lower bound actually gives the right order of magnitude

of χ(ERq). We confirm this for q being an even power of an odd prime.

Theorem 3.1.2. If q = p2r where p is an odd prime and r ≥ 1 is an integer, then

χ(ERq) ≤ 2q1/2 +O
(
q1/2/ log q

)
.

This upper bound is within a factor of 2 of the lower bound χ(ERq) ≥
q2+q+1
α(ERq)

≥ q1/2. Any improvement in the coefficient of q1/2 would give an improve-

ment to the best known lower bound on the independence number of ERq from

[65]. The lower order term O(q1/2/ log q) is obtained using probabilistic methods

[5] and while the implied constant is absolute, we have not made an effort to com-

pute it. By using Brooks’ Theorem instead of the result of [5], we obtain the upper

bound χ(ERq) ≤ 4q1/2 + 1 for all q = p2r where r ≥ 1 is an integer and p is an

odd prime.

When q is not an even power, we first prove the following general theorem.

Theorem 3.1.3. Let q be an odd power of an odd prime and let r ≥ 1 be an

integer. If there is a µ ∈ Fq such that x2r+1 − µ is irreducible in Fq[x], then

χ(ERq2r+1) ≤ 2r + 5

3
q

4r
3

+1 + (2r + 1)qr+1 + 1.

Given an odd integer 2r + 1 ≥ 3, there are infinitely many primes p for

which there is a µ ∈ Fq such that x2r+1 − µ ∈ Fq[x] is irreducible (see Section 3.5

for more details), where q is an arbitrary odd power of p. Our method can also be

used to prove that if q is a power of any odd prime, then

χ(ERq3) ≤ 6q2 + 1.
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Here we do not need the existence of an irreducible polynomial x3 − µ ∈ Fq[x].

For q an odd power of an odd prime, we have the following corollary.

Corollary 3.1.4. Let q = ps for an odd prime p and an odd integer s ≥ 3. If

t > 1 is the smallest divisor of s such that xt−µ is irreducible in Fps/t [x] for some

µ ∈ Fps/t, then

χ(ERq) ≤
t+ 4

3
ps(2t+1)/3t + tp(t+1)/2 + 1.

We encountered difficulties in extending this upper bound to the general

case. In particular, when p is a prime, we have not been able to improve the upper

bound χ(ERp) = O(p/ log p) which is obtained by applying the main result of [5].

Conjecture 3.1.5. Let p be an odd prime. For any integer r ≥ 0,

χ(ERp2r+1) = O(pr+1/2).

Instead of working with ERq, we work with a related graph that is a bit

more suitable for our computations.

Definition 3.1.6. Let q be a power of an odd prime and A = {(a, a2) : a ∈ Fq}.
Let Gq be the graph with vertex set Fq×Fq, and distinct vertices (x1, x2) and (y1, y2)

are adjacent if and only if

(x1, x2) + (y1, y2) ∈ A.

Let G◦q be the graph obtained from Gq by adding loops to all vertices

(x1, x2) for which (x1, x2) + (x1, x2) ∈ A. Vinh [87] proved that the graph G◦q

is a (q2, q,
√

2q)-graph. Recall an (n, d, λ) graph is an n-vertex d-regular graph

whose second eigenvalue max{|λ2|, |λn|} is at most λ. Vinh used the fact that G◦q

is a (q2, q,
√

2q)-graph to count solutions to x1+x2 = (x3+x4)2 where (x1, x3) ⊂ B,

(x2, x4) ⊂ C, and B,C ⊂ F2
q. For similar results that are obtained using techniques

from combinatorial number theory, see [24]. We prove that Gq is isomorphic to an

induced subgraph of the Erdős-Rényi orthogonal polarity graph.

Theorem 3.1.7. If q is a power of an odd prime, then the graph Gq is isomorphic

to an induced subgraph of ERq.
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In the course of proving Theorem 3.1.7 we will show how to obtain ERq

from Gq by adding vertices and edges to Gq. This will allow us to translate upper

bounds on χ(Gq) to upper bounds on χ(ERq).

In addition to finding a proper coloring of ERq, we also investigate proper

colorings of small subgraphs of ERq. In particular, we obtain the following result

concerning small subgraphs of ERq that are not 3-colorable.

Theorem 3.1.8. If q is sufficiently large, then ERq contains a subgraph H with

at most 36 vertices and χ(H) ≥ 4.

Let Cr be the family of graphs with chromatic number r, and Crk be the

family of graphs with at most k vertices and chromatic number r. Theorem 3.1.8

is motivated by the following problem of Allen, Keevash, Sudakov, and Verstraëte

[2].

Problem 3.1.9 (Allen, et al. [2]). Let F be a family of bipartite graphs. Determine

if there is an integer k such that

ex(n,F ∪ Crk) ∼ ex(n,F ∪ Cr).

When considering Problem 3.1.9, a question that arises is if every extremal

F -free n-vertex graph (here n is tending to infinity) must contain some member of

Crk? In other words, does forbidding Crk actually have an effect on extremal F -free

graphs. By Theorem 3.1.8, one cannot take ERq to obtain a lower bound on the

Turán number ex(n, {C4}∪C3
k) for k ≥ 36 without modifying ERq in some way. It

seems likely that for any integer r ≥ 5, there exists integers qr and f(r) such that

for any q ≥ qr, the graph ERq contains a subgraph with at most f(r) vertices and

chromatic number at least r.

In Section 3.2 we prove Theorem 3.1.7. In Section 3.3 we prove Theorems

3.1.2 and 3.1.3. In Section 3.4 we prove Theorem 3.1.8. Section 3.5 contains some

concluding remarks.
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3.2 Proof of Theorem 3.1.7

Let q be a power of an odd prime power and A = {(a, a2) : a ∈ Fq}. Let

Fq = {b1, . . . , bq} and assume that bq = 0. Let F = {bq} × Fq. Then F is a

subgroup of F2
q and we let

Fi = F + (bi, 0)

be the cosets of F where Fq = F . Add new vertices z1, . . . , zq, y to Gq. Make zi

adjacent to all vertices in Fi, and make y adjacent to each zi. Call this graph Hq.

Observe that Gq is an induced subgraph of Hq. We define an isomorphism φ from

Hq to ERq as follows.

1. For any bj ∈ Fq, let φ((0, bj)) = (1, 0, 2−1bj).

2. For any bi, bj ∈ Fq with bi 6= 0, let φ((bi, bj)) = (1, bi, 2
−1(bj − b2

i )).

3. Let φ(y) = (0, 0, 1) and φ(zi) = (0, 1, bi) for 1 ≤ i ≤ q.

We will show that φ is an isomorphism by considering the different types

of vertices in Hq. Recall that the rule for adjacency in ERq is that (x0, x1, x2) is

adjacent to (y0, y1, y2) if and only if x0y2 + x2y0 = x1y1.

Case 1: Vertices of type (0, bj).

Let bj ∈ Fq. In Hq, the neighborhood of (0, bj) is {zq} ∪ {(x, x2 − bj) : x ∈
Fq}. In ERq, the neighborhood of (1, 0, 2−1bj) is

{(0, 1, 0)} ∪ {(1, x,−2−1bj) : x ∈ Fq}. (3.1)

By definition, φ((0,−bj)) = (1, 0,−2−1bj) and for x 6= 0,

φ((x, x2 − bj)) = (1, x, 2−1(x2 − bj − x2)) = (1, x,−2−1bj).

This shows that (3.1) coincides with the set

{φ(zq)} ∪ {φ((x, x2 − bj)) : x ∈ Fq}.

We conclude that for any bj ∈ Fq, (0, bj) is adjacent to u in Hq if and only if

φ((0, bj)) is adjacent to φ(u) in ERq.
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Case 2: Vertices of type (bi, bj) with bi 6= 0.

Let bi, bj ∈ Fq with bi 6= 0. In Hq, the neighborhood of (bi, bj) is

{zi} ∪ {(x− bi, x2 − bj) : x ∈ Fq}.

In ERq, the neighborhood of (1, bi, 2
−1(bj − b2

i )) is

{(0, 1, bi)} ∪ {(1, x, xbi − 2−1(bj − b2
i )) : x ∈ Fq}. (3.2)

We have φ(zi) = (0, 1, bi) and

φ((bi − bi, b2
i − bj)) = (1, 0,−2−1(bj − b2

i )).

For y 6= bi,

φ((y − bi, y2 − bj)) = (1, y − bi, 2−1(y2 − bj − (y − bi)2))

= (1, y − bi, ybi − 2−1(bj + b2
i )).

If we take x = y − bi in (3.2), we obtain

(1, y − bi, ybi − 2−1(bj + b2
i ))

using the fact that 2−1 − 1 = −2−1. We conclude that for any bi, bj ∈ Fq with

bi 6= 0, (bi, bj) is adjacent to u in Hq if and only if φ((bi, bj)) is adjacent to φ(u) in

ERq.

Case 3: Vertices of type zi.

Let 1 ≤ i ≤ q and consider zi. The neighborhood of zi is {y}∪{(bi, x) : x ∈
Fq}. In ERq, the neighborhood of (0, 1, bi) is

{(0, 0, 1)} ∪ {(1, bi, x) : x ∈ Fq} = {φ(y)} ∪ {(1, bi, x) : x ∈ Fq}.

If i = q, then φ((0, y)) = (1, 0, 2−1y). If i 6= q, then φ((bi, y)) = (1, bi, 2
−1(y − b2

i )).

As y ranges over Fq, we obtain (1, bi, x) for all x ∈ Fq.

We have not checked the neighborhood condition for y ∈ V (Hq) but since

we have considered all other vertices, this is not necessary.
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3.3 Proof of Theorems 3.1.2 and 3.1.3

Throughout this section p is an odd prime and q is a power of p. The set F∗q
consisting of the nonzero elements of Fq can be partitioned into two sets F+

q and

F−q where

a ∈ F+
q if and only if −a ∈ F−q .

Observe that the vertices (x1, x2) and (y1, y2) are adjacent in Gq if and only if

x1 + y1 = a and x2 + y2 = a2 for some a ∈ Fq. This is equivalent to (x1 + y1)2 =

x2 + y2. It is often this relation that we will use in our calculations.

Lemma 3.3.1. (i) If Fq2 = {aθ + b : a, b ∈ Fq} for some θ ∈ Fq2 \ Fq, then both

{(x, yθ + z) : x, z ∈ Fq, y ∈ F+
q } and {(x, yθ + z) : x, z ∈ Fq, y ∈ F−q }

are independent sets in Gq.

(ii) If t ≥ 3 is odd and Fqt = {a0 + · · ·+ at−1θ
t−1 : ai ∈ Fq} for some θ ∈ Fqt, then

both

{(x0 + · · ·+ x(t−3)/2θ
t−3
2 , y0 + · · ·+ yt−1) : xi, yj ∈ Fq, yt−1 ∈ F+

q }

and

{(x0 + · · ·+ x(t−3)/2θ
t−3
2 , y0 + · · ·+ yt−1) : xi, yj ∈ Fq, yt−1 ∈ F−q }

are independent sets in Gq.

Proof. We prove the first case of (i) as the proofs of the remaining statements

are very similar. Suppose (x1, y1θ + z1) and (x2, y2θ + z2) are vertices in Gq with

x1, x2, z1, z2 ∈ Fq and y1, y2 ∈ F+
q . Then (x1+x2)2 ∈ Fq but (y1+y2)θ+(z1+z2) /∈ Fq

since y1 + y2 6= 0. Therefore, the vertices (x1, y1θ + z1) and (x2, y2θ + z2) are not

adjacent.

Lemma 3.3.2. For any k ∈ F∗q, the maps ψk, φk : V (Gq)→ V (Gq) given by

ψk((x, y)) = (x+ k, y + 4kx+ 2k2) and φk((x, y)) = (kx, k2y)

are automorphisms of Gq.
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Proof. Let k ∈ F∗q. Suppose (x1, x2) is adjacent to (y1, y2) so that (x1 + y1)2 =

x2 + y2. In this case,

(x1 + k + y1 + k)2 = (x1 + y1)2 + 4kx1 + 4ky1 + 4k2

= (x2 + 4kx1 + 2k2) + (y2 + 4ky1 + 2k2).

This shows that (x1 + k, x2 + 4kx1 + 2k2) is adjacent to (y1 + k, y2 + 4ky1 + 2k2).

Conversely, if (x1 +k, x2 + 4kx1 + 2k2) is adjacent to (y1 +k, y2 + 4ky1 + 2k2), then

it must be the case that (x1 + y1)2 = x2 + y2 and so (x1, y1) is adjacent to (x2, y2).

To show that φk is an isomorphism it is enough to observe that (x1 +y1)2 =

x2 + y2 is equivalent to (kx1 + ky1)2 = k2x2 + k2y2.

3.3.1 q a square

In this subsection we prove the following.

Theorem 3.3.3. Let q be a power of an odd prime. The chromatic number of Gq2

satisfies

χ(Gq2) ≤ 2q +O(q/ log q).

Proof. Let θ be a root of an irreducible quadratic polynomial in Fq[x] so that

Fq2 = {aθ + b : a, b,∈ Fq}. Assume that θ2 = µ1θ + µ0 where µ0, µ1 ∈ Fq. Let

I+ = {(x, yθ + z) : x, z ∈ Fq, y ∈ F+
q }, I− = {(x, yθ + z) : x, z ∈ Fq, y ∈ F−q },

and J = I+ ∪ I−. By Lemma 3.3.1, J is the union of two independent sets and so

χ(Gq2 [J ]) ≤ 2. Let

S =
⋃
k∈Fq

ψkθ(J).

By Lemma 3.3.2, each ψkθ is an isomorphism and so χ(Gq2 [S]) ≤ 2q. Let X =

V (Gq2)\S. Since F+
q ∪ F−q = F∗q, we can write

S = {(x+ kθ, yθ + z + 4kθx+ 2k2θ2) : x, k, y, z ∈ Fq, y 6= 0}.

Given a vertex (s, t) ∈ V (Gq2), say with s = s0 + s1θ and t = t0 + t1θ, we can take

x = s0 and k = s1 to obtain

{(s0 + s1θ, yθ + z + 4s1s0θ + 2s2
1(µ1θ + µ0)) : y, z ∈ Fq, y 6= 0} ⊂ S.
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The second coordinate in the above subset of S simplifies to

(z + 2s2
1µ0) + (y + 4s1s0 + 2s2

1µ1)θ.

We can choose z = t0 − 2s2
1µ0 and as long as t1 6= 4s1s0 + 2s2

1µ1, we can take

y = t1 − 4s1s0 − 2s2
1µ1. Otherwise, t1 = 4s1s0 + 2s2

1µ1 and so

X = {(s0 + s1θ, t0 + (4s1s0 + 2s2
1µ1)θ) : s0, s1, t0 ∈ Fq}.

Partition X into q sets Xs where s ∈ Fq and

Xs = {(sθ + s2, (2s
2µ1 + 4ss2)θ + t2 : s2, t2 ∈ Fq}.

Claim 1: For any s ∈ Fq, ∆(Gq2 [Xs]) ≤ q.

Let s ∈ Fq. A pair of vertices

(sθ + s2, (2s
2µ1 + 4ss2)θ + t2) and (sθ + u2, (2s

2µ1 + 4su2)θ + v2),

both in Xs, are adjacent if and only if 4s2µ2 + (s2 + u2)2 = t2 + v2. If s2 and t2

are fixed, then there are q choices for u2 and once u2 is fixed, v2 is determined.

Therefore, the maximum degree of Gq2 [Xs] is q.

Claim 2: ∆(Gq2 [X]) ≤ 2q − 1.

By Claim 1, a vertex in Xs has at most q other neighbors in Xs. Let s, t ∈ Fq
where s 6= t. The vertex (sθ + s2, (2s

2µ1 + 4ss2)θ + t2) ∈ Xs is adjacent to the

vertex (tθ + u2, (2t
2µ1 + 4tu2)θ + v2) ∈ Xt if and only if

µ1(s2 + 2st+ t2) + 2(s+ t)s2 + 2(s+ t)u2 = µ1(2s2 + 2t2) + 4ss2 + 4tu2 (3.3)

and

(s+ t)2µ0 + (s2 + u2)2 = t2 + v2. (3.4)

Equation (3.3) can be rewritten as

µ1(s− t)2 = 2(t− s)s2 + 2(s− t)u2. (3.5)

Thus if s2 and t2 are fixed, then (3.5) and (3.4) determine u2 and v2 since 2(s−t) 6=
0. This shows that a vertex in Xs has exactly one neighbor in Xt whenever s 6= t.

Namely, given the vertex (sθ + s2, (2s
2µ1 + 4ss2)θ + t2) ∈ Xs, its unique neighbor

in Xt where t 6= s is (tθ + u2, (2t
2µ1 + 4tu2)θ + v2) where
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u2 = 2−1µ1(s− t) + s2 and v2 = (s+ t)2µ0 + (2s2 + 2−1µ1(s− t))2 − t2.

We conclude that a vertex x ∈ X has at most q neighbors in Xs when x ∈ Xs, and

one neighbor in each Xt for t 6= s. Since X = ∪s∈FqXs, we have proved Claim 2.

Alon, Krivelevich, and Sudakov [5] proved that any graph with maximum

degree d with the property that the neighborhood of every vertex contains at

most d2/f edges has chromatic number at most c(d/ log f) where c is an absolute

constant. A C4-free graph with maximum degree d has the property that the

neighborhood of every vertex contains at most d/2 edges. Applying the result of

[5] to Gq2 [X], we obtain χ(Gq2 [X]) = O(q/ log q). Combining this coloring with our

coloring of S, we obtain a proper coloring of Gq2 with 2q +O(q/ log q) colors.

To obtain a coloring of ERq2
∼= Hq2 , we only need one additional color for

the vertices z1, . . . , zq2 , y. The vertices z1, . . . , zq2 form an independent set in Hq2

and so we use one new color on these vertices. The vertex y has no neighbors in

Gq2 and so we may use any one of the 2q +O(q/ log q) colors used to Gq2 to color

y. This proves Theorem 3.1.2.

3.3.2 q not a square

In this subsection we prove the following result.

Theorem 3.3.4. Let q be a power of an odd prime. If r ≥ 1 and for some µ ∈ Fq,
the polynomial x2r+1 − µ ∈ Fq[x] is irreducible, then

χ(Gqt) ≤
2r + 5

3
q

4r
3

+1 + (2r + 1)qr+1.

Proof. Suppose there is a µ ∈ F∗q such that the polynomial xt − µ ∈ Fq[x] is

irreducible. Let θ be a root of xt−µ in an extension field of Fq. We may view θ as

an element of Fqt and {1, θ, . . . , θ2r} is a basis for Fqt over Fq. For 2r+1 ≤ l ≤ 6r+3,

θl =

{
µθl−2r−1 if 2r + 1 ≤ l < 4r + 2,

µ2θl−4r−2 if 4r + 2 ≤ l < 6r + 3.

This identity will be used frequently throughout this subsection. Define

I+ = {(x0 + x1θ + · · ·+ xr−1θ
r−1, y0 + · · ·+ y2rθ

2r) : xi, yj ∈ Fq, y2r ∈ F+
q }
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and

I− = {(x0 + x1θ + · · ·+ xr−1θ
r−1, y0 + · · ·+ y2rθ

2r) : xi, yj ∈ Fq, y2r ∈ F−q }.

By Lemma 3.3.1, both I+ and I− are independent sets. Let J = I+ ∪ I−. Since

J is the union of two independent sets, χ(Gqt [J ]) ≤ 2. For k ∈ Fqt , the map

ψk((x, y)) = (x+ k, y + 4kx+ 2k2) is an isomorphism of Gqt by Lemma 3.3.2. Let

S =
⋃

(xr,...,x2r)∈Fr+1
q

ψxrθr+···+x2rθ2r(J).

We properly color the vertices of S with at most 2qr+1 colors. Let X = F2
qt\S.

It remains to color the vertices in X. To do this, we will proceed as follows. By

Lemma 3.3.2, for any k ∈ F∗qt , the map φk((x, y)) = (kx, k2y) is an isomorphism of

Gqt . Let 1 ≤ l ≤ 2r and consider φθl(X). Let Yl = S ∩ φθl(X). The graph Gqt [Yl]

is isomorphic to a subgraph of Gqt [S]. We have shown that χ(Gqt [S]) ≤ 2qr+1 and

so χ(Gqt [Yl]) ≤ 2qr+1 for any 1 ≤ l ≤ 2r. Therefore, we can properly color the

vertices in

φ−1
θl

(Yl) = φ−1
θl

(S) ∩X

with at most 2qr+1 colors. This gives a proper coloring that uses at most (2r +

1)2qr+1 colors. The only vertices that have not been colored are those that are in

the set

Z := X ∩ φθ(X) ∩ φθ2(X) ∩ · · · ∩ φθ2r(X).

We are now going to show that if (s0 + · · · + s2rθ
2r, t0 + · · · + t2rθ

2r) ∈ Z, then

each ti is determined by s0, . . . , s2r. This will allow us to prove an upper bound on

the maximum degree of Gqt [Z] and we can then color Gqt [Z] by applying Brooks’

Theorem.

We will use the following notation for the rest of this subsection. If s ∈ Fqt ,
then s0, . . . , s2r will be the coefficients of s in the unique representation s = s0 +

s1θ + · · · + s2rθ
2r where si ∈ Fq. Given a 2r + 1-tuple (z0, z1, . . . , z2r) ∈ F2r+1

q ,

define

α(z0, z1, . . . , z2r) = 2z2
r + 4

r−1∑
j=0

zjz2r−j.
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Claim 1: If (s0 + · · ·+ s2rθ
2r, t0 + · · ·+ t2rθ

2r) ∈ X, then

t2r = α(s0, s1, . . . , s2r).

Proof of Claim 1. A vertex in S is of the form

(x0 + · · ·+ xr−1θ
r−1 + xrθ

r + · · ·+ x2rθ
2r, y0 + · · ·+ y2rθ

2r

+4(xrθ
r + · · ·+ x2rθ

2r)(x0 + · · ·+ xr−1θ
r−1) + 2(xrθ

r + · · ·+ x2rθ
2r)2)

for some xi, yj ∈ Fq, and y2r ∈ F+
q ∪ F−q = F∗q. The coefficient of θ2r in the second

coordinate is

y2r + 2x2
r + 4

r−1∑
j=0

xjx2r−j.

Thus, given any vertex (s, t) ∈ F2
qt , we have that (s, t) ∈ S unless

t2r = 2s2
r +

r−1∑
j=0

sjs2r−j.

Claim 2: If 1 ≤ l ≤ 2r and (s, t) ∈ X ∩ φθl(X), then

t2l−1 = µα(sl, sl+1, . . . , s2r, µ
−1s0, . . . , µ

−1sl−1) if 1 ≤ l ≤ r,

and

t2l−2r−2 = µ2α(sl, sl+1, . . . , s2r, µ
−1s0, . . . , µ

−1sl−1) if r + 1 ≤ l ≤ 2r.

Proof of Claim 2. Suppose (s, t) ∈ X ∩ φθl(X). There is an (x, y) ∈ X such that

(s, t) = φθl((x, y)). From the equation (s, t) = (θlx, θ2ly) we obtain by equating

coefficients of θ0, θ1, . . . , θ2r in the first component,

xi = sl+i for 0 ≤ i ≤ 2r − l and µxi = si−2r+l−1 for 2r − l + 1 ≤ i ≤ 2r. (3.6)

If 1 ≤ l ≤ r, then we obtain t2l−1 = µy2r by considering the coefficient of θ2l−1 in

the second component. Similarly, if r + 1 ≤ l ≤ 2r, we obtain t2l−2r−2 = µ2y2r by
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considering the coefficient of θ2l−2r−2 in the second component. Since (x, y) ∈ X,

we have by Claim 1 that

y2r = α(x0, x1, . . . , x2r). (3.7)

Using (3.6), we can solve for the xi’s in terms of the sj’s and then substitute into

(3.7) to complete the proof of Claim 2.

For 0 ≤ k ≤ 2r, let

Uk = {{i, j} ⊂ {0, 1, . . . , 2r} : i+ j ≡ k(mod 2r + 1)}.

Given {i, j} ⊂ {0, 1, . . . , 2r}, let

µ{i,j} =

{
1 if 1 ≤ i+ j ≤ 2r,

µ if 2r + 1 ≤ i+ j ≤ 4r − 1.

Claim 3: Suppose (s, t) ∈ Z. If 1 ≤ l ≤ r, then

t2l−1 = 2µs2
l+r + 4

∑
{i,j}∈U2l−1

µ{i,j}sisj.

If 0 ≤ l ≤ r − 1, then

t2l = 2s2
l + 4

∑
{i,j}∈U2l

µ{i,j}sisj.

Proof of Claim 3. First suppose 1 ≤ l ≤ r. By Claim 2,

t2l−1 = µα(sl, sl+1, . . . , s2r, µ
−1s0, . . . , µ

−1sl−1).

Using the definition of α, we get that

t2l−1 = µ(2s2
l+r + 4(slµ

−1sl−1 + sl+1µ
−1sl−2 + · · ·+ s2l−1µ

−1s0

+ s2ls2r + · · ·+ sl+r−1sl+r+1))

= 2µs2
l+r + 4

∑
{i,j}∈U2l−1

µ{i,j}sisj.

Assume now that 0 ≤ l ≤ r − 1. By Claim 2,

t2l = µ2α(sl+r+1, sl+r+2, . . . , s2r, µ
−1s0, . . . , µ

−1sl+r).

We can now proceed as before using the definition of α.
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Claim 4: Let s, x ∈ Fqt . If 0 ≤ l ≤ 2r, then the coefficient of θl in (s+ x)2 is

(sl/2 + xl/2)2 + 2
∑
{i,j}∈Ul

µ{i,j}(si + xi)(sj + xj) if l is even,

and

µ(sr+l/2+1/2 + xr+l/2+1/2)2 + 2
∑
{i,j}∈Ul

µ{i,j}(si + xi)(sj + xj) if l is odd.

Proof of Claim 4. Consider

(s+ x)2 =
2r∑
i=0

(si + xi)
2θ2i + 2

∑
0≤i<j≤2r

(si + xi)(sj + xj)θ
i+j.

The claim follows from the definitions of µ{i,j}, Ul, and the identity θ2r+k = µθk−1

for 1 ≤ k ≤ 2r.

Claim 5: If (s, t), (x, y) ∈ Z and (s+ x)2 = t+ y, then

µ(sl+r − xl+r)2 + 2
∑

{i,j}∈U2l−1

µ{i,j}(si − xi)(sj − xj) = 0 for 1 ≤ l ≤ r,

and

(sl − xl)2 + 2
∑

{i,j}∈U2l

µ{i,j}(si − xi)(sj − xj) = 0 for 0 ≤ l ≤ r.

Proof of Claim 5. By Claim 4, equating coefficients of 1, θ, . . . , θ2r in the equation

(s+ x)2 = t+ y gives

t2l−1 + y2l−1 = µ(sl+r + xl+r)
2 + 2

∑
{i,j}∈U2l−1

µ{i,j}(si + xi)(sj + xj) if 1 ≤ l ≤ r,

and

t2l + y2l = (sl + xl)
2 + 2

∑
{i,j}∈U2l

µ{i,j}(si + xi)(sj + xj) if 0 ≤ l ≤ r.

Now we apply Claim 3 to t2l−1 and y2l−1. This gives

2µ(s2
l+r + x2

l+r) + 4
∑

{i,j}∈U2l−1

µ{i,j}(sisj + xixj) =

µ(sl+r + xl+r)
2 + 2

∑
{i,j}∈U2l−1

µ{i,j}(si + xi)(sj + xj)
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for 1 ≤ l ≤ r. This can be rewritten as

µ(sl+r − xl+r)2 + 2
∑

{i,j}∈U2l−1

µ{i,j}(si − xi)(sj − xj) = 0.

A similar application of Claim 3 (and Claim 1 in the case of t2r and y2r) gives

(sl − xl)2 + 2
∑

{i,j}∈U2l

µ{i,j}(si − xi)(sj − xj) = 0

for 0 ≤ l ≤ r.

We are now ready to find an upper bound on the maximum degree of the

subgraph of Gqt induced by Z. Fix a vertex (s, t) ∈ Z. Suppose (x, y) is a

neighbor of (s, t) with (x, y) ∈ Z. By Claim 5, (x0, . . . , x2r) ∈ F2r+1
q is a solution

to the system

µ(sl+r − xl+r)2 + 2
∑

{i,j}∈U2l−1

µ{i,j}(si − xi)(sj − xj) = 0 for 1 ≤ l ≤ r,

and

(sl − xl)2 + 2
∑

{i,j}∈U2l

µ{i,j}(si − xi)(sj − xj) = 0 for 0 ≤ l ≤ r.

If we set zi = si − xi for 0 ≤ i ≤ 2r, then we see that we have a solution to the

following system of 2r+1 homogeneous quadratic equations in the 2r+1 unknowns

z0, . . . , z2r+1:

µz2
l+r + 2

∑
{i,j}∈U2l−1

µ{i,j}zizj = 0 for 1 ≤ l ≤ r,

and

z2
l + 2

∑
{i,j}∈U2l

µ{i,j}zizj = 0 for 0 ≤ l ≤ r.

Lemma 3.3.5. The number of solutions (z0, . . . , z2r) ∈ F2r+1
q to the above system

of 2r + 1 homogeneous quadratic equations is at most

2r + 5

3
q

4t
3

+1.

Proof. Let m be the largest integer such that m ≤ 2(r+1)
3

. If there is set T of size

m such that each zi’ in the set {zi : i ∈ T} either is zero or is determined uniquely
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by the zj’s in the set {zj : j ∈ {0, 1, . . . , 2r}\T}, then there are at most q2r+1−m

solutions. We will show there are at most (m+1) choices for the index set T which

implies that we have at most (m+ 1)q2r+1−m solutions in total.

Let A be the 2(r−m+ 1)×m matrix with entries in Fq, where for 1 ≤ i ≤
2(r −m + 1) and 1 ≤ j ≤ m, the (i, j) entry of A is the coefficient of zj−1 in the

equation

µz2
m+r+(i−1)/2 + 2

∑
{k,l}∈U2(m+(i−1)/2)−1

µ{k,l}zkzl = 0

if i is odd, and the coefficient of zj−1 in the equation

z2
m+(i−2)/2 + 2

∑
{k,l}∈U2(m+(i−2)/2)

µ{k,l}zkzl = 0

if i is even. If A is the matrix formed in this way, then one check that

A =



z2m−1 z2m−2 z2m−3 . . . zm

z2m z2m−1 z2m−2 . . . zm+1

z2m+1 z2m z2m−1 . . . zm+2

...
...

...
. . .

...

z2r z2r−1 z2r−2 . . . z2r−m+1


As m ≤ 2(r+1)

3
, we have 2(r −m+ 1) ≥ m. Let x = (z0, z1, . . . , zm−1)T and

bi =


−2−1µzm+r+(i−1)/2 −

∑
{k,l}∈U2(m+(i−1)/2)−1
{k,l}∩{0,1,...,m−1}=∅

µ{k,l}zkzl if i is odd

−2−1zm+(i−2)/2 −
∑
{k,l}∈U2(m+(i−2)/2)
{k,l}∩{0,1,...,m−1}=∅

µ{k,l}zkzl if i is even

for 1 ≤ i ≤ 2(r −m+ 1). Let b = (b1, b2, . . . , b2(r−m+1))
T .

We next show an upper bound m+ 1 for the possible choices for the index

set T . Let ri be the i-th row of A so that

ri = (z2m−1+(i−1), z2m−2+(i−1), z2m−3+(i−1), . . . , zm+(i−1)).

If r1 = 0, then we take T = {m,m + 1, . . . , 2m − 1}. We assume r1 6= 0 for the

rest of the proof of the lemma.

Claim: If i ≥ 1 and ri+1 ∈ SpanFq
{r1, . . . , ri}, then

zm+i+j ∈ SpanFq
{zm, zm+1, . . . , zm+i−1} for j = 0, 1, . . . ,m− 1.
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Proof of Claim. We prove the claim by induction on j. Suppose

ri+1 = α1r1 + · · ·+ αiri (3.8)

for some αj ∈ Fq. By considering the last coordinate, we get that

zm+i =
i∑

j=1

αjzm+(j−1) ∈ SpanFq
{zm, . . . , zm+i−1}

establishing the base case j = 0. If zm+i+j0 ∈ SpanFq
{zm, . . . , zm+i−1} for 0 ≤ j0 ≤

m− 2, then by (3.8),

zm+i+j0+1 =
i∑

j=1

αjzm+j0+1+(j−1) = αizm+i+j0 +
i−1∑
j=1

αjzm+j+j0 .

By the inductive hypothesis, this is in SpanFq
{zm, . . . , zm+i−1}.

By the Claim, if there is an i ∈ {1, 2, . . . ,m− 1} such that

ri+1 ∈ SpanFq
{r1, . . . , ri},

then there exist m zi’s that are uniquely determined by the other zj’s and we can

take T = {zm+i, zm+i+1, . . . , z2m+i−1}. Otherwise, r1, . . . , rm are linearly indepen-

dent which implies that the rank of A is at least m. It is at this step where we

need m ≤ 2(r+1)
3

as we require the number of rows of A, which is 2(r −m+ 1), to

be at least m. Since the rank of A is at least m, there is at most one solution x to

Ax = b. In this case we take T = {0, 1, . . . ,m− 1} and each of {z0, z1, . . . , zm−1}
is determined by {zm, zm+1, . . . , z2r}.

Altogether, we have at most

(m+ 1)q
4r
3
− 1

3 ≤ 2r + 5

3
q

4r
3

+1

solutions which proves the lemma.

By Lemma 3.3.5, the maximum degree of Gqt [Z] is at most 2r+5
3
q

4r
3

+1.

Therefore,

χ(Gqt) ≤
2r + 5

3
q

4r
3

+1 + (2r + 1)qr+1
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We obtain a coloring of ERqt from a coloring of Gqt as before. We use one

new color on the vertices z1, . . . , zt, and then give y any color that is used on Gqt .

This gives a coloring of ERqt that uses at most 2r+5
3
q

4r
3

+1 + (2r+ 1)qr+1 + 1 colors

which proves Theorem 3.1.3.

3.4 Proof of Theorem 3.1.8

The following lemma is easily proved using the definition of adjacency in

Gq.

Lemma 3.4.1. Suppose αi, αj, αk are distinct elements of Fq such that

αi + αj = a2, αj + αk = b2, and αk + αi = c2

for some a, b, c ∈ Fq. If x+ y = a, y + z = b, and z + x = c, then

{(x, αi), (y, αj), (z, αk)}

induces a triangle in Gq.

Given an odd prime power q, let χ : Fq → {0,±1} be the quadratic character

on Fq. That is, χ(0) = 0, χ(a) = 1 if a is a nonzero square in Fq, and χ(a) = −1

otherwise. For the next lemma, we require some results on finite fields (see Chapter

5 of [61]).

Proposition 3.4.2. Let q be an odd prime and f(x) = a2x
2 + a1x + a0 ∈ Fq[x]

where a2 6= 0. If a2
1 − 4a0a2 6= 0, then∑

c∈Fq

χ(f(c)) = −χ(a2).

Proposition 3.4.3 (Weil). If f(x) ∈ Fq[x] is a degree d ≥ 1 polynomial that is

not the square of another polynomial, then∣∣∣∣∣∣
∑
x∈Fq

χ(f(x))

∣∣∣∣∣∣ ≤ (d− 1)
√
q.
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Lemma 3.4.4. If q > 487 is a power of an odd prime, then there are elements

α1, . . . , α5 ∈ F∗q such that α1, . . . , α5 are all distinct, and

χ(αi + αj) = 1

for 1 ≤ i < j ≤ 5.

Proof. Choose α1 ∈ F∗q arbitrarily. There are q−1
2

nonzero squares in F∗q so we can

easily find an α2 ∈ Fq\{0, α1} such that χ(α1 +α2) = 1. Observe that this implies

α2 6= −α1 otherwise χ(α1 + α2) = 0. Assume that we have chosen α1, . . . , αk ∈ F∗q
so that α1, . . . , αk are all distinct and

χ(αi + αj) = 1

for 1 ≤ i < j ≤ k. Let

f(x) =
k∏
i=1

(1 + χ(αi + x))

and X = {β ∈ Fq : f(β) = 2k}. If β ∈ Fq and f(β) > 0, then χ(αi + β) ∈ {0, 1}
for 1 ≤ i ≤ k. We have χ(αi + β) = 0 if and only if β = −αi. Therefore, there are

at most k distinct β’s in Fq such that 0 < f(β) < 2k which implies

2k|X|+ k2k−1 ≥
∑
x∈Fq

f(x) = q +
∑
∅6=S⊂[k]

∑
x∈Fq

χ

(∏
α∈S

(x+ α)

)
.

For any i ∈ [k],
∑

x∈Fq
χ(αi + x) = 0. For any 1 ≤ i < j ≤ k,∑
x∈Fq

χ(x2 + (αi + αj)x+ αiαj) = −1

by Proposition 3.4.2. When k = 2, if q−3−3·22
23

≥ 3 + 1, then |X| ≥ 4 and we can

choose an α3 ∈ Fq\{0, α1, α2} that has the desired properties. When k ∈ {3, 4}, we

use Weyl’s inequality to obtain a lower bound on |X|. Observe that since α1, . . . , αk

are distinct, no product (x+αi1) · · · (x+αil) for 1 ≤ i1 < · · · < il ≤ k is the square

of a polynomial in Fq[x]. By Weyl’s inequality, for any 1 ≤ i1 < · · · < il ≤ k,∣∣∣∣∣∣
∑
x∈Fq

χ((x+ αi1) · · · (x+ αil))

∣∣∣∣∣∣ ≤ l
√
q.
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The hypothesis on q implies that q is large enough so that |X| ≥ 5 when k = 3,

and |X| ≥ 6 when k = 4. Therefore, we can inductively choose α4 and α5 so that

α1, . . . , α5 satisfy all of the required properties.

Choose elements α1, . . . , α5 ∈ F∗q satisfying the properties of Lemma 3.4.4.

Let

αi + αj = a2
i,j

for 1 ≤ i < j ≤ 5. Since αi 6= −αj, no ai,j’s is zero. For 1 ≤ i < j < k ≤ 5, let

xi,j,k, yi,j,k, and zi,j,k be any elements of Fq that satisfy

xi,j,k + yi,j,k = ai,j, yi,j,k + zi,j,k = aj,k, and zi,j,k + xi,j,k = ai,k.

Then the vertices (xi,j,k, αi), (yi,j,k, αj), and (zi,j,k, αk) form a triangle in Gq and

this holds for any 1 ≤ i < j < k ≤ 5.

Now we use these triangles, which are in Gq, together with the new vertices

z1, . . . , zq, y that are added to Gq to from Hq
∼= ERq to obtain a subgraph with

chromatic number at least four. For 1 ≤ i ≤ 5, the vertex zαi
is adjacent to

all vertices of the form (x, αi). The vertex y is adjacent to each zi. Consider

the subgraph Hq whose vertices are y, zα1 , . . . , zα5 together with all (xi,j,k, αi),

(yi,j,k, αj), and (zi,j,k, αk) for 1 ≤ i < j < k ≤ 5. Suppose we have a proper 3-

coloring of this subgraph, say with colors 1, 2, and 3. If the color 1 is given to three

distinct vertices zαi
’s, say zαi

, zαj
, and zαk

, then only colors 2 and 3 may be used

on the triangle whose vertices are (xi,j,k, αi), (yi,j,k, αj), and (zi,j,k, αk). Therefore,

all three colors must be used to color the vertices in the set {zα1 , . . . , zα5} but then

no color may be used on y. The number of vertices in this subgraph is at most

1 + 5 +
(

5
3

)
3 = 36.

3.5 Concluding remarks on coloring ERq

The upper bounds of Theorems 3.3.4 and 3.1.3 can be improved for large

q by applying the main result of [5] to the graph Gqt [Z] instead of using Brooks’

Theorem. We have chosen to use Brooks’ Theorem as then there is no issue of
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how large the implicit constant is, and because we believe that the upper bound

should be closer to O(qt/2).

Using a similar argument as the one used to prove Theorem 3.1.3, we can

prove the following.

Theorem 3.5.1. If q is a power of an odd prime, then

χ(Gq3) ≤ 6q2.

A consequence is that χ(ERq3) ≤ 6q2 + 1 whenever q is a power of an odd

prime. Unfortunately, we were not able to extend this bound to the general case.

In the q3 case, one can explicitly compute the relations satisfied by vertices in X

(see Section 3.3.2)) and then use these equations to bound the maximum degree

of Gq3 [X]. Dealing with the set X is one of the main obstacles in our approach.

We remark that if one could improve the bound in Lemma 3.3.5, it would

improve our result in Theorem 3.1.3. It seems likely that Lemma 3.3.5 could be

strengthened enough to improve the bound in Theorem 3.1.3 all the way down to

χ(ERq2r+1) ≤ (2r + 1 + o(1))qr+1.

Perhaps this can be done using techniques from algebraic geometry.

The conditions on q for which there exists an irreducible polynomial xt−µ ∈
Fq[x] are known (see Theorem 3.75 of [61]). Let q be a power of an odd prime and

let t ≥ 3 be an odd integer. Let ord(µ, q) be the order of µ in group F∗q. Then

xt − µ ∈ Fq[x] is irreducible if and only if each prime factor of t divides ord(µ, q)

but does not divide q−1
ord(µ,q)

. Since F∗q is cyclic, for any divisor d of q − 1, there

is an element a ∈ F∗q with ord(a, q) = d. As long as t divides q − 1, we can

choose an element µ ∈ F∗q so that t divides ord(µ, q) but t does not divide q−1
ord(µ,q)

.

Therefore, if q ≡ 1(mod t), then Theorem 3.1.3 applies and we obtain the upper

bound χ(ERqt) ≤ 2r+5
3
q

4r
3

+1 + (2r + 1)qr+1 + 1 in this case. For a fixed t ≥ 3,

Dirichlet’s Theorem on primes in arithmetic progressions implies that there are

infinitely many primes p such that p ≡ 1(mod t). Then for any q which is an odd

power of such p, we have q ≡ 1(mod t).
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We end this chapter with a problem that, if solved, would significantly

strengthen our results. In Chapter 4 we give some evidence that such a theorem

might be true.

Problem 3.5.2. Determine if there is an absolute constant C such that the fol-

lowing holds. If G is an orthogonal polarity graph of a projective plane of order q,

then

χ(G) ≤ Cq1/2.

Chapter 3 is a version of the material appearing in “On the chromatic num-

ber of the Erdős-Rényi orthogonal polarity graph”, Electronic Journal of Combi-

natorics, P2.21, (2011), 1–19, co-authored with Xing Peng and Craig Timmons.

The author was the primary investigator and author of this paper.
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Chromatic and Independence

Numbers of General Polarity

Graphs

“Swimming instruction, which in time became swimming practice,

was grueling, but there was the deep pleasure of doing a stroke with in-

creasing ease and speed, over and over, till hypnosis practically, the water

turning from molten lead to liquid light.”

– Piscine Molitor Patel

4.1 Introduction

In Chapter 3, it was noted that an upper bound on the independence num-

ber of ERq of the correct order of magnitude is given by the Hoffman Ratio Bound

(Theorem 3.1.1). In Chapter 2, we computed the eigenvalues of the adjacency ma-

trix of any polarity graph, and so Hoffman’s Theorem applies in this more general

setting, which we now describe.

Let Σ = (P ,L, I) be a projective plane of order q. Recall that a bijection

θ : P ∪ L → P ∪ L is a polarity if θ(P) = L, θ(L) = P , θ2 is the identity map,

and pIl if and only if lθIpθ. A point p ∈ P is called an absolute point if pIpθ. A

39
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classical result of Baer is that any polarity of a projective plane of order q has at

least q + 1 absolute points. A polarity with q + 1 points is called an orthogonal

polarity, and such polarities exist in the Desarguesian projective plane as well as

in other non-Desarguesian planes. For more on polarities see [52], Chapter 12.

Given a projective plane Σ = (P ,L, I) of order q and an orthogonal polarity θ,

the corresponding orthogonal polarity graph G(Σ, θ) is the graph with vertex set P
where two distinct vertices p1 and p2 are adjacent if and only if p1Ipθ2. Let G◦(Σ, θ)

be the graph obtained from G(Σ, θ) by adding loops to the absolute points of θ.

In Chapter 2, we showed that the integer q + 1 is an eigenvalue of G◦(Σ, θ) with

multiplicity 1, and all other eigenvalues are
√
q or −√q. Then Theorem 3.1.1 yields

α(G◦(Σ, θ)) ≤ −(q2 + q + 1)(−q1/2)

q + 1−√q
(4.1)

which gives α(G(Σ, θ)) ≤ q3/2 + q1/2 + 1. An improved estimate in the case that q

is even was obtained by Hobart and Williford [49] using association schemes. They

conjectured that the upper bound (4.1) can be improved to

α(G(Σ, θ)) ≤ q(q1/2 + 1)− 2(q1/2 − 1)(q + q1/2)1/2

but this is still open.

In Chapter 3, we discussed Mubayi and Williford’s result [65] giving a lower

bound for α(ERq) of the correct order of magnitude. In this chapter we obtain a

strengthening of their result to a wider class of orthogonal polarity graphs which we

introduce now and will be the focus of much of our investigations. We remark that

the study of polarity graphs coming from non-Desarguesian planes was suggested

in [8].

Let q be a power of an odd prime and f(X) ∈ Fq[X]. The polynomial f(X)

is a planar polynomial if for each a ∈ F∗q, the map

x 7→ f(x+ a)− f(x)

is a bijection on Fq. Planar polynomials were introduced by Dembowski and Os-

trom [29] in their study of projective planes of order q that admit a collineation

group of order q2. Given a planar polynomial f(X) ∈ Fq[X], one can construct a
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projective plane as follows. Let P = {(x, y) : x, y ∈ Fq} ∪ {(x) : x ∈ Fq} ∪ {(∞)}.
For a, b, c ∈ Fq, let

[a, b] = {(x, f(x− a) + b) : x ∈ Fq} ∪ {(a)},

[c] = {(c, y) : y ∈ Fq} ∪ {(∞)},

[∞] = {(c) : c ∈ Fq} ∪ {(∞)}.

Let L = {[a, b] : a, b ∈ Fq} ∪ {[c] : c ∈ Fq} ∪ {[∞]}. Define Πf to be the

incidence structure whose points are P , whose lines are L, and incidence I is given

by containment. When f is a planar polynomial, Πf is a projective plane. For

instance if f(X) = X2 and q is any power of an odd prime, Πf is isomorphic to

the Desarguesian plane PG(2, q). For other examples, see [25].

Assume that f(X) ∈ Fq[X] is a planar polynomial. The plane Πf possesses

an orthogonal polarity ω given by

(∞)ω = [∞], [∞]ω = (∞), (c)ω = [−c], [c]ω = (−c)

(x, y)ω = [−x,−y], and [a, b]ω = (−a,−b)

where a, b, c ∈ Fq. We write Gf for the corresponding orthogonal polarity graph.

This is the graph whose vertices are the points of Πf and two distinct vertices p1

and p2 are adjacent in Gf if and only if p1 is incident to pω2 in Πf . For vertices

of the form (x, y) the adjacency relation is easily described in terms of f . The

distinct vertices (x1, y1) and (x2, y2) are adjacent if and only if

f(x1 + x2) = y1 + y2.

Our first result is a generalization of Mubayi and Williford’s result in [65]

to orthogonal polarity graphs which need not come from a Desarguesian plane.

Theorem 4.1.1. If q is a power of an odd prime and f(X) ∈ Fq2 [X] is a planar

polynomial all of whose coefficients belong to the subfield Fq, then

α(Gf ) ≥
1

2
q2(q − 1)

Even though we have the restriction that the coefficients of f belong to

Fq, many of the known examples of planar functions have this property. Most of
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the planar functions discussed in [25], including those that give rise to the famous

Coulter-Matthews plane, satisfy our requirement.

It is still an open problem to determine an asymptotic formula for the

independence number of ERp for odd prime p. However, given the results of [65]

and Theorem 4.1.1, it would be quite surprising to find an orthogonal polarity

graph of a projective plane of order q whose independence number is o(q3/2). We

believe that the lower bound Ω(q3/2) is a property shared by all polarity graphs,

including polarity graphs that come from polarities which are not orthogonal.

Conjecture 4.1.2. If G(Σ, θ) is a polarity graph of a projective plane of order q,

then

α(G(Σ, θ)) = Ω(q3/2).

There are polarity graphs which are not orthogonal polarity graphs for

which Conjecture 4.1.2 holds. If G(Σ, θ) is a polarity graph where θ is unitary

and Σ has order q, then α(G(Σ, θ)) ≥ q3/2 + 1. Indeed, the absolute points of any

polarity graph form an independent set and a unitary polarity has q3/2 +1 absolute

points. In Section 4.3 we show that there is a polarity graph G(Σ, θ) where θ is

neither orthogonal or unitary and Conjecture 4.1.2 holds.

Theorem 4.1.3. Let p be an odd prime, n ≥ 1 be an integer, and q = p2n. There

is a polarity graph G(Σ, θ) such that Σ has order q, θ is neither orthogonal nor

unitary, and

α(G(Σ, θ)) ≥ 1

2
q(
√
q − 1).

In connection with Theorem 4.1.1 and Conjecture 4.1.2, we would like to

mention the work of De Winter, Schillewaert, and Verstraëte [27] and Stinson [79].

In these papers the problem of finding large sets of points and lines such that

there is no incidence between these sets is investigated. Finding an independent

set in a polarity graph is related to this problem as an edge in a polarity graph

corresponds to an incidence in the geometry. The difference is that when one finds

an independent set in a polarity graph, choosing the points determines the lines.

In [27] and [79], one can choose the points and lines independently.
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As mentioned above, Conjecture 4.1.2 holds for unitary polarity graphs as

the absolute points form an independent set. Mubayi and Williford [65] asked

whether or not there is an independent set in the graph Uq of size Ω(q3/2) that

contains no absolute points. For q a square of a prime power, the graph Uq has

the same vertex set as ERq and two distinct vertices (x0, x1, x2) and (y0, y1, y2)

are adjacent if and only if x0y
√
q

0 + x1y
√
q

1 + x2y
√
q

2 = 0. We could not answer their

question, but we were able to produce an independent set of size Ω(q5/4) that

contains no absolute points. We remark that a lower bound of Ω(q) is trivial.

Theorem 4.1.4. Let q be an even power of an odd prime. The graph Uq has an

independent set I that contains no absolute points and

|I| ≥ 0.19239q5/4 −O(q).

Related to the independence number is the chromatic number. In Chapter

3, it is shown that χ(ERq2) ≤ 2q+O( q
log q

) whenever q is a power of an odd prime.

Here we prove that this upper bound holds for another family of orthogonal polarity

graphs.

Definition 4.1.5. Let p be an odd prime. Let n and s be positive integers such

that s < 2n and 2n
s

is an odd integer. Let d = ps and q = pn. We call the pair

{q, d} an admissible pair.

If {q, d} is an admissible pair, then the polynomial f(X) = Xd+1 ∈ Fq2 [X]

is a planar polynomial. For a nice proof, see Theorem 3.3 of [25].

Theorem 4.1.6. Let q be a power of an odd prime and {q, d} be an admissible

pair. If f(X) = Xd+1, then

χ(Gf ) ≤ 2q +O

(
q

log q

)
.

The eigenvalue bound (4.1) gives a lower bound of χ(Gf ) ≥ q4+q2+1
q3+q+1

so that

the leading term in the upper bound of Theorem 4.1.6 is best possible up to a

constant factor. Not only does this bound imply that α(Gf ) ≥ 1
2
q3 − o(q3), but

shows that most of the vertices of Gf can be partitioned into large independent

sets.
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The technique that is used to prove Theorem 4.1.6 is the same as the one

used in [70] and can be applied to other orthogonal polarity graphs. In Section

4.6, we sketch an argument that the bound of Theorem 4.1.6 also holds for a plane

coming from a Dickson commutative division ring (see [52]). It is quite possible

that the technique applies to more polarity graphs, but in order to obtain a general

result, some new ideas will be needed. Furthermore, showing that every polarity

graph of a projective plane of order q has chromatic number O(
√
q) is a significant

strengthening of Conjecture 4.1.2. When p is prime, it is still unknown whether

χ(ERp) = O(
√
p).

4.2 Proof of Theorem 4.1.1

Let q be a power of an odd prime and f(X) ∈ Fq2 [X] be a planar polynomial,

all of whose coefficients are in the subfield Fq. Let Gf be the orthogonal polarity

graph whose construction is given before the statement of Theorem 4.1.1. Partition

F∗q into two sets F+
q and F−q where a ∈ F+

q if and only if −a ∈ F−q . Let µ be a root

of an irreducible quadratic over Fq and so Fq2 = {a+ µb : a, b ∈ Fq}. Let

I = {(x, y + zµ) : x, y ∈ Fq, z ∈ F+
q }.

Note that |I| = 1
2
q2(q − 1) and we claim that I is an independent set. Suppose

(x1, y1 +z1µ) and (x2, y2 +z2µ) are distinct vertices in I and that they are adjacent.

Then

f(x1 + x2) = y1 + y2 + (z1 + z2)µ. (4.2)

The left-hand side of (4.2) belongs to Fq since the coefficients of f are in Fq and

x1 + x2 ∈ Fq. The right-hand side of (4.2) is not in Fq since z1 + z2 6= 0. We have

a contradiction so no two vertices in I are adjacent.

4.3 Proof of Theorem 4.1.3

Let p be an odd prime, n ∈ N, and q = p2n. Let {1, λ} be a basis for a

2-dimensional vector space over Fq. Let σ : Fq → Fq be the map xσ = xp
n
. Observe
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that σ is a field automorphism of order 2, and the fixed elements of σ are precisely

the elements of the subfield Fpn in Fq. Let θ be a generator of F∗q which is the

group of non-zero elements of Fq under multiplication. Let D be the division ring

whose elements are {x + λy : x, y ∈ Fq} where addition is done componentwise,

and multiplication is given by the rule

(x+ λy) · (z + λt) = xz + θtyσ + λ(yz + xσt).

Here we are following the presentation of [52]. Define the map α : D → D by

(x+ λy)α = x+ λyσ.

Let ΠD = (P ,L, I) be the plane coordinatized by D. That is,

P = {(x, y) : x, y ∈ D} ∪ {(x) : x ∈ D} ∪ {(∞)}

and

L = {[m, k] : m, k ∈ D} ∪ {[m] : m ∈ D} ∪ {[∞]}

where

[m, k] = {(x, y) : m · x+ y = k} ∪ {(m)},

[k] = {(k, y) : y ∈ D} ∪ {(∞)},

[∞] = {(m) : m ∈ D} ∪ {(∞)}.

The incidence relation I is containment. A polarity of ΠD is given by the map ω

where

(∞)ω = [∞], [∞]ω = (∞), (m)ω = [mα], [k]ω = (kα)

and

(x, y)ω = [xα,−yα], [m, k] = (mα,−kα).

The polarity ω has |D|5/4 + 1 absolute points. Let G(ΠD, ω) be the corresponding

polarity graph.

We now derive an algebraic condition for when the distinct vertices

u = (x1 + λx2, y1 + λy2) and v = (z1 + λz2, t1 + λt2)
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are adjacent. The vertex u is adjacent to v if and only if uIvω. This is equivalent

to

(x1 + λx2, y1 + λy2)I[z1 + λ(z2)σ,−t1 + λ(−(t2)σ)]

which in turn, is equivalent to

(z1 + λ(z2)σ) · (x1 + λx2) = −y1 − t1 + λ(−y2 − (t2)σ). (4.3)

Using the definition of multiplication in D, (4.3) can be rewritten as

z1x1 + θx2z2 + λ((z2)σx1 + (z1)σx2) = −y1 − t1 + λ(−y2 − (t2)σ).

This gives the pair of equations

x1z1 + θx2z2 = −y1 − t1 (4.4)

and

x1(z2)σ + x2(z1)σ = −y2 − (t2)σ.

Let �q be the set of nonzero squares in Fq. Note that any element of Fpn

is a square in Fq. Define

I = {(x1 + λx2, y1 + λy2) : x1, y1 ∈ Fpn , x2 ∈ �q, y2 ∈ Fq}.

Then |I| = 1
2
(q − 1)q(pn)2 = 1

2
q2(q − 1). We now show that I is an independent

set. Suppose that (x1 + x2λ, y1 + y2λ) and (z1 + z2λ, t1 + t2λ) are distinct vertices

in I that are adjacent. Then (4.4) holds so

θ = (x2z2)−1(−y1 − t1 − x1z1). (4.5)

The left hand side of (4.5) is not a square in Fq. Since x2 and z2 belong to �q,

we have that (x2z2)−1 is a square in Fq. Since y1, t1, x1, z1 ∈ Fpn , we have that

−y1−t1−x1z1 is in Fpn and thus is a square in Fq. We conclude that the right hand

side of (4.5) is a square. This is a contradiction and so I must be an independent

set. This shows that

α(G(ΠD, ω)) ≥ 1

2
q2(q − 1).
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4.4 Proof of Theorem 4.1.4

Let p be an odd prime, n ∈ N, and q = p2n. Let θ be a generator of F∗q. The

field Fq contains a subfield with
√
q elements and we write F√q for this subfield.

We will use the fact that x
√
q = x if and only if x ∈ F√q and that the characteristic

of Fq is a divisor of
√
q without explicitly saying so.

Let Uq be the graph whose vertex set is V (ERq) and two vertices (x0, x1, x2)

and (y0, y1, y2) are adjacent if and only if

x0y
√
q

0 + x1y
√
q

1 + x2y
√
q

2 = 0.

In [65], it is shown that Uq has an independent set J of size q3+1. This independent

set consists of the absolute points in Uq; namely

J = {(x0, x1, x2) : x
√
q+1

0 + x
√
q+1

1 + x
√
q+1

2 = 0}.

To find an independent set in Uq with no absolute points and size Ω(q5/4),

we will work with a graph that is isomorphic to Uq. Let U∗q be the graph whose

vertex set is V (ERq) where (x0, x1, x2) and (y0, y1, y2) are adjacent if and only if

x0y
√
q

2 + x2y
√
q

0 = x1y
√
q

1 .

The proof of Proposition 3 of [65] is easily adapted to prove the following.

Lemma 4.4.1. The graph Uq is isomorphic to the graph U∗q .

For any µ ∈ Fq\F√q, we have Fq = {a + bµ : a, b ∈ F√q}. The next lemma

shows that we can find a µ that makes many of our calculations significantly easier.

Lemma 4.4.2. There is a µ ∈ Fq\F√q such that µ
√
q + µ = 0.

Proof. Let µ = θ
1
2

(
√
q+1). Since F∗√q = 〈θ

√
q+1〉, we have that µ /∈ F√q. Using the

fact that −1 = θ
1
2

(q−1), we find that

µ
√
q + µ = θ

1
2

√
q(
√
q+1) + θ

1
2

(
√
q+1) = θ

1
2

√
q(
√
q+1) − θ

1
2

(q−1)+ 1
2

(
√
q+1)

= θ
1
2

(q+
√
q) − θ

1
2

(q+
√
q) = 0.
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For the rest of this section we fix a µ ∈ Fq\F√q that satisfies the statement

of Lemma 4.4.2. Given c ∈ F√q, define

Xc = {(1, a, b+ cµ) : a, b ∈ F√q}.

Lemma 4.4.3. If c1 and c2 are elements of F√q with c1 6= c2, then the graph U∗q

has no edge with one endpoint in Xc1 and the other in Xc2.

Proof. Suppose that (1, a1, b1 + c1µ) is adjacent to (1, a2, b2 + c2µ) where ai, bi, ci ∈
F√q. By definition of adjacency in U∗q ,

b2 + c2µ
√
q + b1 + c1µ = a1a2.

By Lemma 4.4.2, this can be rewritten as

(c1 − c2)µ = a1a2 − b1 − b2. (4.6)

The right hand side of (4.6) belongs to the subfield F√q. Therefore, c1 − c2 = 0

since µ /∈ F√q.

Now we consider the subgraph U∗q [Xc] where c ∈ F√q. The vertex set of

U∗q [Xc] is

{(1, a, b+ cµ) : a, b ∈ F√q}

and two vertices (1, a1, b1 + cµ) and (1, a2, b2 + cµ) are adjacent if and only if

b2 + c(µ
√
q + µ) + b1 = a1a2.

By Lemma 4.4.2, this is equivalent to

b2 − a1a2 + b1 = 0. (4.7)

Let ER∗√q be the graph whose vertex set is V (ER√q) and (x0, x1, x2) is

adjacent to (y0, y1, y2) if and only if

x0y2 − x1y1 + x2y0 = 0.

Proposition 3 of [65] shows that ER∗√q is isomorphic to ER√q. It follows from

(4.7) that the graph U∗q [Xc] is isomorphic to the subgraph of ER∗√q induced by
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{(1, x1, x2) : x1, x2 ∈ F√q}. Note that ER∗√q has exactly
√
q+ 1 vertices more than

U∗q [Xc]. By Theorem 5 of [65], we can find an independent set in U∗q [Xc] with at

least .19239q3/4 − q1/2 − 1 vertices. Call this independent set Ic.

We want to throw away the absolute points in U∗q that are in Ic. In U∗q [Xc],

the vertex (1, a, b+ cµ) is an absolute point if and only if

b+ cµ+ b+ cµ
√
q = a2

which, again by Lemma 4.4.2, is equivalent to

2b = a2.

There are
√
q choices for a and a given a uniquely determines b. Thus Ic contains

at most q1/2 absolute points in Uq. Let Jc be the set Ic with the absolute points

removed so that |Jc| ≥ .19239q3/4 − 2q1/2 − 1.

Define

I =
⋃
c∈F√q

Jc.

By Lemma 4.4.3, I is an independent set in U∗q . Observe that

|I| ≥ √q(0.19239q3/4 − 2q1/2 − 1) = 0.19239q5/4 −O(q)

and I contains no absolute points.

We note that when q is a fourth power, the coefficient 0.19239 may be raised

to 1
2
, as Theorem 5 in [65] is stronger in this case.

4.5 Proof of Theorem 4.1.6

Let s and n be positive integers with 2n
s

= r ≥ 3 an odd integer. Let q = pn,

d = ps, and note that {q, d} is an admissible pair. Let F∗q2 be the non-zero elements

of Fq2 and θ be a generator of the cyclic group F∗q2 . Write Fq and Fd for the unique

subfields of Fq2 of order q and d, respectively. An identity that will be used is

p2n − 1

ps − 1
= (ps)r−1 + (ps)r−2 + · · ·+ ps + 1.
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It will be convenient to let

t =
p2n − 1

ps − 1
(4.8)

and observe that t is odd since r = 2n
s

is odd.

Lemma 4.5.1. There is a µ ∈ Fq2\Fq such that when µd is written in the form

µd = u1 + u2µ with u1, u2 ∈ Fq, the element u2 is a (d− 1)-th power.

Proof. Let h(X) = Xd+(θq+1)d−1X. We claim that the roots of h are the elements

in the set Z = {0}∪{θq+1+it : 0 ≤ i ≤ d−2}. Clearly 0 is a root. Let 0 ≤ i ≤ d−2.

Note that since 2n = sr,

dt ≡ ps
(
(ps)r−1 + (ps)r−2 + · · ·+ ps + 1

)
≡ p2n + (ps)r−1 + · · ·+ p2s + ps

≡ 1 + (ps)r−1 + · · ·+ p2s + ps ≡ t(mod p2n − 1).

This implies d(q + 1 + it) ≡ (q + 1)(d− 1) + (q + 1) + it(mod q2 − 1) so that

(θq+1+it)d − (θq+1)d−1θq+1+it = 0.

We conclude that the roots of h are the elements in Z.

Let µ = θq+1+t. The non-zero elements of the subfield Fq are the elements

of the subgroup 〈θq+1〉 in F∗q2 . Since t is odd and q + 1 is even, q + 1 + t is not

divisible by q + 1 thus µ /∈ Fq. Let u2 = (θq+1)d−1 and u1 = 0. We have

0 = h(µ) = µd − (θq+1)d−1µ = µd − u1 − u2µ

so µd = u1 + u2µ. By construction, µ ∈ Fq2\Fq, µd = u1 + u2µ with u1, u2 ∈ Fq,
and u2 is a (d− 1)-th power.

The next lemma is known (see Exercise 7.4 in [61]). A proof is included for

completeness.

Lemma 4.5.2. If u2, δ ∈ F∗q2 and u2 is a (d − 1)-th power, then for any ξ ∈ Fq2,

the equation

Xd + u2δ
d−1X = ξ

has a unique solution in Fq2.
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Proof. Let u2, δ ∈ F∗q2 and g(X) = Xd + u2δ
d−1X. The polynomial g is a permu-

tation polynomial if and only if the only root of g is 0 (see Theorem 7.9 of [61]).

If g(X) = 0, then X(Xd−1 + u2δ
d−1) = 0. It suffices to show that −u2δ

d−1 is

not a (d − 1)-th power of any element of Fq2 as this would imply that the equa-

tion Xd−1 + u2δ
d−1 = 0 has no solutions. By hypothesis, u2 = wd−1 for some

w ∈ F∗q2 . Since −1 is not a (d − 1)-th power, the product −u2δ
d−1 = −(wδ)d−1

is not a (d − 1)-th power. We conclude that g is a permutation polynomial on

Fq2 . In particular, given any ξ ∈ Fq2 , there is a unique solution to the equation

Xd + u2δ
d−1X = ξ.

For the rest of this section, we fix a µ ∈ Fq2\Fq that satisfies the conclusion

of Lemma 4.5.1; that is,

µd = u1 + u2µ

where u1, u2 ∈ Fq and u2 is a (d− 1)-th power in Fq2 . Let

µd+1 = w1 + w2µ

where w1, w2 ∈ Fq. We fix a partition of F∗q into two sets

F∗q = F+
q ∪ F−q (4.9)

where a ∈ F+
q if and only if −a ∈ F−q .

It will be convenient to work with a graph that is isomorphic to a large

induced subgraph of Gf . By Lemma 4.5.2, the map x 7→ xd + x is a permutation

on Fq2 . Therefore, every element of Fq2 can be written in the form ad + a for some

a ∈ Fq2 and this representation is unique. Let Aq2,d be the graph with vertex set

Fq2 ×Fq2 where distinct vertices (ad + a, x) and (bd + b, y) are adjacent if and only

if

adb+ abd = x+ y.

Working with this equation defining our adjacencies will be particularly helpful for

the rather technical Lemma 4.5.8 below.

Lemma 4.5.3. The graph Aq2,d is isomorphic to the subgraph of Gf induced by

Fq2 × Fq2.



52

Proof. One easily verifies that the map τ : V (Aq2,d)→ Fq2 × Fq2 defined by

τ((ad + a, x)) = (a, x+ ad+1)

is a graph isomorphism from Aq2,d to the subgraph of Gf induced by Fq2×Fq2 .

Lemma 4.5.4. If

I+ = {(ad + a, x1 + x2µ) : a, x1 ∈ Fq, x2 ∈ F+
q },

then I+ is an independent set in the graph Aq2,d. The same statement holds with

I− and F−q in place of I+ and F+
q , respectively.

Proof. Suppose that (ad+a, x1+x2µ) is adjacent to (bd+b, y1+y2µ) where a, b ∈ Fq.
The left hand side of

adb+ abd = (x1 + y1) + (x2 + y2)µ

is in Fq so x2 + y2 = 0. If x2, y2 ∈ F+
q , then x2 + y2 6= 0 and so no two vertices in

I+ can be adjacent. Similarly, no two vertices in I− can be adjacent.

Lemma 4.5.5. For any k = αd + α ∈ Fq2, the map

φk((a
d + a, x)) = (ad + a+ k, x+ adα + aαd + αd+1)

is an automorphism of the graph Aq2,d.

Proof. The vertex φk((a
d + a, x)) is adjacent to φk((b

d + b, y)) if and only if

v = (ad + a+ αd + α, x+ adα + aαd + αd+1)

is adjacent to

w = (bd + b+ αd + α, y + bdα + bαd + αd+1).

Since d is a power of p, v = ((a+ α)d + (a+ α), x+ adα+ aαd + αd+1). Similarly,

w = ((b+ α)d + (b+ α), y + bdα + bαd + αd+1).

From this we see that v is adjacent to w if and only if

(a+ α)d(b+ α) + (a+ α)(b+ α)d =

x+ adα + aαd + αd+1 + y + bdα + bαd + αd+1.
(4.10)

A routine calculation shows that (4.10) is equivalent to the equation adb + abd =

x+ y which holds if and only if (ad + a, x) is adjacent to (bd + b, y) in Aq2,d.
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Let J = I+ ∪ I− and observe that J = {(ad + a, x1 + x2µ) : a, x1 ∈ Fq, x2 ∈
F∗q}. Let

K =
⋃
β∈Fq

φ(βµ)d+(βµ)(J).

Lemma 4.5.6. If Aq2,d[K] is the subgraph of Aq2,d induced by K, then

χ(Aq2,d[K]) ≤ 2q.

Proof. By Lemma 4.5.4, the vertices in J may be colored using at most 2 colors.

By Lemma 4.5.5, the vertices in φk(J) can also be colored using at most 2 colors.

Since K is the union of q sets of the form φk(J) where k ∈ Fq2 , we may color K

using at most 2q colors.

Lemma 4.5.6 shows that we can color all but at most O(q3) vertices of Aq2,d
with at most 2q colors. We now show that the remaining vertices can be colored

with o(q) colors. Before stating the next lemma we recall that µd = u1 + u2µ and

we let µd+1 = w1 + w2µ where u1, u2, w1, w2 ∈ Fq.

Lemma 4.5.7. If X = (Fq2 × Fq2)\K, then

X = {((a+ βµ)d + (a+ βµ), t1 + (adβ + aβdu2 + βd+1w2)µ) : a, β, t1 ∈ Fq}.

Proof. For any β ∈ Fq, the set φ(βµ)d+(βµ)(J) can be written as

{(ad+a+(βµ)d+(βµ), x1 +x2µ+ad(βµ)+a(βµ)d+(βµ)d+1) : a, x1 ∈ Fq, x2 ∈ F∗q}.

Let (s1 +s2µ, t1 +t2µ) ∈ Fq2×Fq2 where s1, s2, t1, t2 ∈ Fq. The vertex (s1 +s2µ, t1 +

t2µ) is in K if we can find a, x1, β ∈ Fq and x2 ∈ F∗q such that

s1 + s2µ = (a+ βµ)d + a+ βµ, (4.11)

t1 + t2µ = x1 + x2µ+ ad(βµ) + a(βµ)d + (βµ)d+1. (4.12)

Since every element of Fq2 can be written as zd + z for some z ∈ Fq2 , we can write

s1 + s2µ = zd + z and then choose a and β in Fq so that z = a + βµ. With this

choice of a and β, equation (4.11) holds.
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Since µd+1 = w1 + w2µ, equation (4.12) can be rewritten as

t1 + t2µ = (x1 + aβdu1 + βd+1w1) + (x2 + adβ + aβdu2 + βd+1w2)µ. (4.13)

Let x1 = t1 − aβdu1 − βd+1w1. If t2 6= adβ + aβdu2 + βd+1w2, then we can take

x2 = t2−adβ−aβdu2−βd+1w2 and (4.12) holds. Therefore, the vertices in Fq2×Fq2
not in K are those vertices in the set

{((a+ βµ)d + (a+ βµ), t1 + (adβ + aβdu2 + βd+1w2)µ) : a, β, t1 ∈ Fq}.

Lemma 4.5.8. If Aq2,d[X] is the subgraph of Aq2,d induced by X = (Fq2×Fq2)\K,

then

χ(Aq2,d[X]) = O

(
q

log q

)
.

Proof. For β ∈ Fq, partition X into the sets Xβ where

Xβ = {((a+ βµ)d + (a+ βµ), t1 + (adβ + aβdu2 + βd+1w2)µ) : a, t1 ∈ Fq}.

Fix a β ∈ Fq and a vertex

v = ((a+ βµ)d + (a+ βµ), t1 + (adβ + aβdu2 + βd+1w2)µ)

in Xβ. Let γ ∈ Fq. We want to count the number of vertices

w = ((x+ γµ)d + (x+ γµ), y1 + (xdγ + xγdu2 + γd+1w2)µ)

in Xγ that are adjacent to v. The vertices v and w are adjacent if and only if

(a+ βµ)d(x+ γµ) + (a+ βµ)(x+ γµ)d

= t1 + y1 + (adβ + aβdu2 + βd+1w2 + xdγ + xγdu2 + γd+1w2)µ.
(4.14)

If γ = β, then we can choose x ∈ Fq in q different ways and the above equation

uniquely determines y1. We conclude that the vertex v ∈ Xβ has at most q other

neighbors in Xβ.
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Assume now that γ 6= β. We need to count how many x, y1 ∈ Fq satisfy

(4.14). A computation using the relations µd = u1 + u2µ and µd+1 = w1 + w2µ

shows that (4.14) is equivalent to

adx+ adγµ+ βdx(u1 + u2µ) + βdγ(w1 + w2µ)

+axd + aγd(u1 + u2µ) + βxdµ+ βγd(w1 + w2µ)

= t1 + y1 + (adβ + aβdu2 + βd+1w2 + xdγ + xγdu2 + γd+1w2)µ.

Equating the coefficients of µ gives

adγ + βdxu2 + βdγw2 + aγdu2 + βxd + βγdw2 =

adβ + aβdu2 + βd+1w2 + xdγ + xγdu2 + γd+1w2.

This equation can be rewritten as

xd(γ − β) + x(γd − βd)u2 = ξ (4.15)

for some ξ ∈ Fq that depends only on a, γ, β, and µ. Since γ − β 6= 0, equation

(4.15) is equivalent to

xd + u2(γ − β)d−1x = ξ(γ − β)−1. (4.16)

By Lemma 4.5.2, (4.16) has a unique solution for x since u2 is a (d− 1)-power and

γ−β ∈ F∗q. Once x is determined, (4.14) gives a unique solution for y1. Therefore,

v has at most one neighbor in Xβ. We conclude that the degree of v in X is at

most q + (q − 1) < 2q.

The graph Aq2,d[X] does not contain a 4-cycle and has maximum degree

at most 2q. This implies that the neighborhood of any vertex contains at most q

edges. By a result of Alon, Krivelevich, and Sudakov [5], the graph Aq2,d[X] can

be colored using O
(

q
log q

)
colors.

Proof of Theorem 4.1.6. Partition the vertex set of Aq2,d as

V (Aq2,d) = K ∪X.
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By Lemmas 4.5.6 and 4.5.8, we can color the vertices in K∪X using 2q+O
(

q
log q

)
colors. This gives a coloring of the vertices in Fq2 × Fq2 in Gf and it only remains

to color the vertices in the set {(m) : m ∈ Fq2} ∪ {(∞)}.
The vertex (∞) is adjacent to (m) for every m ∈ Fq2 . Since Gf is C4-free,

the subgraph of Gf induced by the neighborhood of (∞) induces a a graph with

maximum degree at most 1. We may color the vertices in {(m) : m ∈ Fq2}∪{(∞)}
using three new colors not used to color Fq2×Fq2 to obtain a 2q+O( q

log q
) coloring

of Gf .

4.6 Dickson Commutative Division Rings

Let p be an odd prime, n > 1 be an integer, q = pn, and a be any element

of Fq that is not a square. Let 1 ≤ r < n be an integer. Let D be a 2-dimensional

vector space over Fq with basis {1, λ}. Define a product · on D by the rule

(x+ λy) · (z + λt) = xz + ayp
r

tp
r

+ λ(yz + st).

With this product and the usual addition, D is a commutative division ring (see

[52], Theorem 9.12 and note that it is common to call such a structure a semifield).

We can use D to define a projective plane Π (see [52], Theorem 5.2). This plane

also has an orthogonal polarity (see [52], page 248). Let GDq2 be the corresponding

orthogonal polarity graph. Using the argument of Section 4.5, one can prove that

χ(GDq2) ≤ 2q +

(
q

log q

)
.

A rough outline is as follows. Let ADq2 be the subgraph of GDq2 induced by the

vertices

{((x1 + λx2, y1 + λy2) : x1, x2, y1, y2 ∈ Fq}.

Partition F∗q into the sets F+
q and F−q where a ∈ F+

q if and only if −a ∈ F−q . The

sets

I+ = {(x2λ, y1 + y2λ) : x2, y1 ∈ Fq, y2 ∈ F+
q }

and

I− = {(x2λ, y1 + y2λ) : x2, y1 ∈ Fq, y2 ∈ F−q }
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are independent sets in GDq2 . For any k ∈ Fq, the map

φk(x1 + λx2, y1 + λy2) = (x1 + λx2 + k, y1 + λy2 + kx1 + 2−1k2 + λx2k)

is an automorphism of AGq2 .
Let J = I+ ∪ I− and K =

⋃
k∈Fq

φk(J) and observe that

K = {(k + x2λ, y1 + y2λ+ 2−1k2 + λx2k) : x1, y1, k ∈ Fq, y2 ∈ F∗q}.

If X = (D ×D)\K, then

X = {(s1 + s2λ, t1 + (s2s1)λ) : s1, s2, t1 ∈ Fq}.

It can then be shown that the subgraph of GDq2 induced by X has maximum

degree at most 2q. The remaining details are left to the reader.

4.7 Concluding Remarks

The argument used to prove Theorem 4.1.4 can be extended to other unitary

polarity graphs. We illustrate with an example. Let a and e be integers with

a 6≡ ±(mod 2e), e ≡ 0(mod 4), and gcd(a, e) = 1. Let f : Fq → Fq be the

polynomial f(X) = Xn where n = 1
2
(3a + 1) and q = 3e. The map f is a planar

polynomial and the corresponding plane is the Coulter-Matthews plane [25]. This

plane has a unitary polarity whose action on the affine points and lines is given by

(x, y)θ = [−x
√
q,−y

√
q] and (a, b)θ = (−a

√
q,−b

√
q).

The proof of Theorem 4.1.4 can be modified to show that the corresponding unitary

polarity graph has an independent set of size 1
2
q5/4 − o(q5/4) that contains no ab-

solute points. The reason for the condition e ≡ 0(mod 4) instead of e ≡ 0(mod 2),

which is the condition given in [25] for f to be planar, is that we need
√
q to be

a square in order to apply Theorem 4.1.1 to the subgraphs that correspond to the

U∗q [Xc] in the proof of Theorem 4.1.4.

Chapter 4 is a version of the material in “Independent sets in polarity

graphs”, co-authored with Craig Timmons, which has been submitted for publica-

tion. The author was the primary investigator and author of this paper.
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Sidon Sets

“Which way does Jensen’s inequality go again?”

– anonymous second-year graduate student

5.1 Introduction

The study of Sidon sets dates back to the 1930s, when Simon Sidon [75]

studied sets of integers A with the property that |{a1, a2 ∈ A : a1 + a2 = k}|
is bounded. He then asked Erdős how large a subset of [n] can be if all of its

sums are distinct. Such a set is now called a Sidon set. That is, A is a Sidon

set if for a, b, c, d ∈ A, a + b = c + d implies that {a, b} = {c, d}. Since Sidon

asked this question, hundreds of papers have been written on Sidon sets and their

generalizations (see [4, 12, 19, 31, 34, 43, 62, 63, 66, 72, 77] for an incomplete list).

One such generalization is to introduce a graph to the question. A Sidon

set is when all pairs of sums are distinct. By specifying a graph, one may choose

which pairs of sums must be distinct. Given a graph G, a sum-injective labeling of

G is an injection χ : V (G) → Z such that χ(u) + χ(v) 6= χ(x) + χ(y) for distinct

edges uv, xy ∈ E(G). A Sidon set then represents a sum-injective labeling of the

complete graph with loops on each vertex. Let S(G) be the smallest integer N such

that G admits a sum-injective labeling from V (G) to [N ]. Old results on Sidon sets

imply that S(Kn) = (1+o(1))n2. Surprisingly, Bollobás and Pikhurko [10] showed
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that there are graphs with only n3/2+o(1) edges also giving S(G) = (1 + o(1))n2.

The main result of this chapter shows that a similar phenomenon happens

when one considers products instead of sums. Let G be a graph. We analogously

define a product-injective labeling of G to be an injection χ : V (G) → Z such

that χ(u) · χ(v) 6= χ(x) · χ(y) for distinct edges uv, xy ∈ E(G). Let P (G) denote

the smallest positive integer N such that there is a product-injective labeling χ :

V (G)→ [N ]. Our main results of the chapter give asymptotically tight bounds on

P (G) relative to the maximum degree d and number of vertices of the graph G, for

all but a small range of values of d ≤ n− 1. Let P (n, d) be the maximum possible

value of P (G) over n-vertex graphs G of maximum degree at most d. Specifically,

we prove the following theorem:

Theorem 5.1.1. There exist constants a, b > 0 such that (i) P (n, d) ∼ n if d ≤
n1/2(log n)−a and (ii) P (n, d) ∼ n log n if d ≥ n1/2(log n)b.

An old result of Erdős [31] implies P (Kn) ∼ n log n, whereas Theorem 5.1.1

shows that P (G) ∼ n log n for graphs which are much sparser than Kn. The

labeling of the vertices of any n-vertex graph G with the first n prime numbers

is always a product-injective labeling from [N ] where N ∼ n log n, via the Prime

Number Theorem. Theorem 5.1.1 then is an analogous result for products that

Bollobás and Pikhurko [10] proved for sums and differences, where a change in

behavior was also observed around d = n1/2. Theorem 5.1.1 will be proved with

a > log 2 and b > 5.5; while our method allows these values to be slightly improved,

new ideas would be needed to determine P (n, d) for all the intermediate values of d.

In fact, the proof of Theorem 5.1.1(ii) establishes the much stronger result that if G

is the random graph on n vertices with edge-probability d/n and d ≥ n1/2(log n)b,

then P (G) ∼ n log n almost surely as n→∞. We also remark that Theorem 5.1.1

determines the maximum value of P (G) over n-vertex graphs with m edges for

almost all possible values of m.

It is a natural question to ask about other functions besides sums and

products. Let H be a k-uniform hypergraph and denote by Kk
n the complete

k-uniform hypergraph on n vertices. If φ is a general symmetric function of k

variables, then Sφ(H) is the minimum integer N such that there exists an injection
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c : V (H) → [N ] such that whenever {v1, v2, . . . , vk}, {w1, w2, . . . , wk} ∈ E(H) are

distinct hyperedges, φ(c(v1), c(v2), . . . , c(vk)) 6= φ(c(w1), c(w2), . . . , c(wk)).

The question of determining S(G) and P (G) then is the case when k = 2

and φ(x, y) = x+y or φ(x, y) = x·y respectively. For general H and φ, this quantity

depends on number theoretic questions involving the number of representations of

integers as evaluations of φ. For instance, if k = 2 and φ(x, y) = (xy)2 + x + y

and φ(x, y) = φ(u, v), then it is not hard to show {x, y} = {u, v} and therefore

Sφ(G) = n for every n-vertex graph G. Define

Rφ(N) =
∑

x,y∈[N ]k

x 6=y

1φ(x)=φ(y).

This is the number of ways of writing integers in two ways as evaluations of φ on

[N ]k. We prove the following general theorem:

Theorem 5.1.2. Let φ : Zk → Z be a symmetric function, and let H be an

n-vertex k-uniform graph of maximum degree d ≥ 1 such that for N ≥ 8kn,

Rφ(N)

N2k
≤ 1

4d2n
.

Then Sφ(H) ≤ max{N, 4n}.

A difficult open question in combinatorial number theory is to determine

the largest Sidon subset of the integer squares {x2 : x2 ≤ N}, which is equivalent

to determining Sφ(Kn) when φ(x, y) = x2 +y2. In 1990, Cilleruelo [23] constructed

a Sidon sequence of squares {ak}, where ak � k4. Theorem 5.1.2 applies to

φ(x, y) = x2 + y2, and in this case Rφ(N) = O(N2 logN) [59], and therefore if G

is an n-vertex graph of maximum degree d:

Sφ(G) = O(d
√
n log n+ n). (5.1)

Note that this gives Sφ(G) = O(n) for G with maximum degree O(
√
n/ log n). If

φr(x1, x2, . . . , xk) = xr1 + xr2 + · · · + xrk, then Euler’s Extended Conjecture states

that φr(x) = φr(y) has no non-trivial solutions if r > 2k, which would show

Sφ(Kk
n) = n. It seems plausible that for k < r ≤ 2k, the number of solutions

(x, y) ∈ [N ]k× [N ]k is O(N), which would give Sφ(Kk
n) = O(n). In the special case
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φ(x, y) = x3 +y3, Euler (see Hardy and Wright [46], pages 199-200) determined all

solutions to x3 + y3 = z3 +w3 in the rationals. A complete solution in the positive

integers is given by Choudhry [18]. Hooley [51], showed that for φ(x, y) = x3 + y3,

Rφ(N) = cN4/3 + o(N4/3) and therefore if G is an n-vertex graph of maximum

degree d, then

Sφ(G) = O(d3/4n3/8 + n). (5.2)

Note that this gives Sφ(G) = O(n) for G with maximum degree O(n5/6).

Using (5.1) and (5.2) we have the following theorem as a corollary:

Theorem 5.1.3. There is a Sidon set A ⊂ [n2] such that every term of A is a

square and |A| � n1/3−o(1). There is a Sidon set B ⊂ [n3] such that every term of

B is a cube and |B| � n8/9.

The chapter is organized as follows. The proof of Theorem 5.1.1 uses the

modified local lemma, which we state in Section 5.2, together with some facts on

the distribution of the number of divisors function τ . The proof of Theorem 5.1.1(i)

is given in Section 5.3, and Theorem 5.1.1(ii) is proved in Section 5.4. Theorem

5.1.2 is proved in Section 5.5.

5.2 Preliminaries

To prove Theorem 5.1.1, we make use of a probabilistic result known as the

modified local lemma, together with some well-known facts from analytic number

theory regarding the number of divisors of positive integers.

Modified local lemma. The modified local lemma, which is a version

of the Lovász Local Lemma (see Alon and Spencer [7], page 65), is used in the

following form:

Proposition 5.2.1. Let A1, ..., An be events in a probability space and for each

i ∈ [n], let (Ji, Ki) be a partition of [n]\{i}. If there exists γ ∈ [0, 1) such that for

all i and any choice K ′i ⊂ Ki,

P

Ai | ⋂
k∈K′i

Ak

 ≤ γ(1− |Ji|γ)
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then

P

(
n⋂
i=1

Ai

)
> 0.

We note that Proposition 5.2.1 can be made stronger as well as nonsym-

metric, but we will not require this.

Distribution of the number of divisors. For a natural number k, let

τ(k) be the number of divisors of k, and let Ω(k) be the number of prime power

divisors of k. The Hardy-Ramanujan Theorem [45] gives |{x ≤ N : |Ω(x) −
log logN | �

√
log logN}| � N as N → ∞. Since τ(n) ≤ 2Ω(n), one has the

following result:

Proposition 5.2.2.

|{n ≤ N : τ(n) ≥ (logN)log 22κ(N)
√

log logN}| � N,

for any function κ with κ(N)→∞ as N →∞.

In fact it turns out that Ω and log τ have normal orders – for more on

normal orders see Tenenbaum [83].

5.3 Proof of Theorem 5.1.1(i)

We show that P (G) ∼ n for any graph G with V (G) = [n] and maximum

degree

d ≤ n1/2(log n)− log 22−κ(n)
√

log logn,

where κ(n) → ∞ and κ(n) ≤ (log log n)1/4. This in turn shows that Theorem

5.1.1(i) holds for any a > log 2. Let m = d4n/κ(n)e, and let L be the set of the

first n+m natural numbers with at most

t = κ(n)−1(log n)log 22κ(n)
√

log logn

divisors. Since κ(n) ≤ (log log n)1/4 and m� n, Proposition 5.2.2 shows that

maxL ∼ n+m ∼ n.
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Now uniformly and randomly select an n-element subset {`1, `2, . . . , `n} of L and

define the injective labeling χ(i) = `i. For an unordered pair {xy, uv} ∈
(
E(G)

2

)
of

distinct edges of G, let Axy,uv be the event that χ(x)χ(y) = χ(u)χ(v) and define

Jxy,uv = {Ajk,rs : {j, k, r, s} ∩ {x, y, u, v} 6= ∅}

and

Kxy,uv = {Ajk,rs : {j, k, r, s} ∩ {x, y, u, v} = ∅}.

We apply the modified local lemma, Proposition 5.2.1, to the events Axy,uv. The

set

M := L\{χ(z) : z ∈ V (G)\{u, v, x, y}}

has size m+ 4. For any labels χ(u), χ(v), the number of ways of choosing

χ(x), χ(y) ∈M

such that χ(x)χ(y) = χ(u)χ(v) is at most

τ(χ(u)χ(v)) ≤ τ(χ(u))τ(χ(v)) ≤ t2.

Now, given a labeling of {z ∈ V (G) \ {u, v, x, y}}, the set M is fixed.

Therefore, given any labeling of {z ∈ V (G) \ {u, v, x, y}}, choosing the labels of

x, y, u, v uniformly from M yields that the probability that χ(x)χ(y) = χ(u)χ(v)

is bounded above by
t2(|M |
2

) < 2t2

m2
.

Since this upper bound did not depend on the choice of M , it holds for any labeling

of {z ∈ V (G) \ {u, v, x, y}}. Note that once M has been determined, labeling

x, y, u, v from M does not affect whether or not events in Kxy,uv occur. Therefore,

given any choice of K ⊂ Kxy,uv

P(Axy,uv |
⋂

{jk,rs}∈K

Ajk,rs) ≤ P(Axy,uv occurs when labeling from M) <
2t2

m2
.

For any {xy, uv} ∈
(
E(G)

2

)
,

|Jxy,uv| ≤ 4d|E(G)| ≤ 2d2n.
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Taking γ = 1/(4d2n), and using m2 ≥ 16d2t2n, we find

γ(1− γ|Jxy,uv|) ≥
1

8d2n
≥ 2t2

m2
.

By the modified local lemma, the probability that none of the events Axy,uv occur is

positive. In other words, there exists a product-injective labeling χ : V (G)→ [N ]

where N = maxL ∼ n.

5.4 Proof of Theorem 5.1.1(ii)

In this section, we prove that labeling with primes is asymptotically optimal

for graphs that are much less dense than Kn, namely for the random graph Gn,d/n

with d ≥ n1/2(log n)b and b > 5.5. Since Gn,d/n for d ≥ n1/2(log n)b has maximum

degree asymptotic to d, this is enough for Theorem 5.1.1(ii). Throughout this

section, if H is a graph then C4(H) is the number of 4-cycles in H.

5.4.1 Counting 4-cycles

Lemma 5.4.1. Let B = B(U, V ) be a bipartite graph with |U | = m and |V | = n,

and let d be the average degree of the vertices in V . If nd2 ≥ 4m2 and d ≥ 2, then

C4(B) ≥ n2d4

64m2
.

Proof. This is a standard exercise in applying Jensen’s Inequality, but we include

the proof for completeness. Let d(u, v) be the codegree of u and v, that is, the

number of vertices of B adjacent to both u and v. Then the number C4(B) of

4-cycles in B is precisely

C4(B) =
∑
{u,v}⊂U

(
d(u, v)

2

)
.

Let M =
(
m
2

)
. By Jensen’s Inequality, and since

∑
{u,v}⊂U

d(u, v) =
∑
w∈V

(
d(w)

2

)
,
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we have

C4(B) ≥M

(
1
M

∑
w∈V

(
d(w)

2

)
2

)
.

By Jensen’s Inequality again, ∑
w∈V

(
d(w)

2

)
≥ n

(
d

2

)
.

Therefore

C4(B) ≥M

(
n
M

(
d
2

)
2

)
.

Since nd2 ≥ 4m2, and
(
x
2

)
≥ 1

4
x2 for x ≥ 2,

n

M

(
d

2

)
≥ nd2

2m2
≥ 2.

Using
(
x
2

)
≥ 1

4
x2 again for x ≥ 2,

C4(B) ≥ n2d4

64M
≥ n2d4

64m2
.

This proves the lemma.

5.4.2 Counting solutions to uv = xy

A solution to uv = xy is non-trivial if {u, v} 6= {x, y}.

Lemma 5.4.2. For all ε > 0, there exist δ > 0 and n0(ε) such that for n ≥ n0(ε),

if A ⊂ [n] and |A| ≥ (1 + ε)n/ log n, then the number of non-trivial quadruples

{a, b, c, d} ∈
(
A
4

)
satisfying ab = cd is at least δn2(log n)−10(log log n)−2.

Proof. We shall prove the lemma with δ = 2−14ε4 and n ≥ n0(ε), where n0(ε) is

the smallest positive integer such that for n ≥ n0(ε),

ε
√
n

(2 log n)2
≥ 2. (5.3)

1

log log n
≤ ε2

27
. (5.4)

(1 + 1
2
ε)

n

log n
≥ π(n). (5.5)

8(log n)12(log log n)3 < 16δ1/2n/ log n. (5.6)
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Note that (5.5) is possible since π(n) ∼ n/ log n by the Prime Number Theorem.

Consider the bipartite graph H = H(U, V ) with parts U = [n2/3] ∪ P and

V =
[
n1/2

]
, where P comprises the primes in the interval [n2/3, n]. Erdős [31] made

the following observation:

for any a ∈ [n], there exist ua ∈ U and va ∈ V such that a = uava and ua ≥ va.

Therefore, for each a ∈ A, choose a unique representation uava = a with

ua ∈ U and va ∈ V (note that there may be many choices; choose one arbitrarily).

Now define E(H) by uv ∈ E(H) if there exists an a ∈ A with u = ua and

v = va.

Consequently, |E(H)| = |A|. If {uv, vw,wx, xu} is a 4-cycle in H, then

uv, wx ∈ A and vw, xu ∈ A and (uv)(wx) = (vw)(ux). Therefore C4(H) is a lower

bound for the number of non-trivial solutions to ab = cd with a, b, c, d ∈ A. For

the remainder of the proof, we show C4(H) ≥ δn2(log n)−10(log log n)−2.

Let k0 be the largest integer k such that 2k+1 < n1/2(log n)−4(log log n)−1.

For 1 ≤ k ≤ k0, let

Uk := {u ∈ U : 2k−1n1/2 ≤ u < 2kn1/2} and Vk := {v ∈ V : v ≤ 21−kn1/2}.

Denote by Hk the subgraph of H induced by Uk and Vk. Also, let H0 be the

subgraph of H induced by U0 and V0, where

U0 = {u ∈ U : u ≤ n1/2} and V0 = {v ∈ V : v ≤ n1/2}.

Finally, let H∗ be the subgraph of H induced by U∗ and V∗, where

U∗ =

{
u ∈ U : u >

n

2(log n)4 log log n

}
V∗ =

{
v ∈ V : v ≤ 2(log n)4 log log n

}
.

Then H = H∗
⋃k0
k=0 Hk. We consider the subgraphs Hk : k ≥ 0 separately from

H∗.
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Claim 1. If for some k ∈ {0} ∪ [k0], |E(Hk)| ≥ εn/(2 log n)2, then

C4(Hk) ≥ δn2(log n)−10(log log n)−2.

Proof. The average degree in Hk of vertices in Vk is

d =
|E(Hk)|
|Vk|

≥ ε2k−1n1/2

(2 log n)2
.

Since n ≥ n0(ε), (5.3) gives d ≥ 2. Now

|Vk|d2 =
|E(Hk)|2

|Vk|
≥ ε22k−1n3/2

(2 log n)4
,

and so (5.4) and 2k0 < n1/2(log n)−4(log log n)−1 gives

|Vk|d2 = |E(Hk)|2/|Vk| ≥ 4|Uk|2.

By Lemma 5.4.1 with m = |Uk|,

C4(Hk) ≥
ε4n2

214(log n)8
= δn2(log n)−8 > δn2(log n)−10(log log n)−2.

This proves the claim.

Since C4(H) ≥ C4(Hk), we are done if |E(Hk)| ≥ εn/(2 log n)2 for some

k ∈ [k0], so we assume this is not the case for any k ∈ [k0]. Then

k0∑
k=1

|E(Hk)| ≤
εk0n

(2 log n)2
<

εn

4 log n
. (5.7)

Next we consider H∗.

Claim 2. If C4(H) < δn2(log n)−10(log log n)−2, then

|E(H∗)| < π(n) +
16δ1/2n

log n
. (5.8)

Proof. Let Ũ∗ comprise all vertices of U∗ of degree at least two in H∗ and let H̃∗

be the subgraph of H∗ induced by Ũ∗ ∪ V∗. Then

|E(H∗\H̃∗)| ≤ |U∗| ≤ π(n). (5.9)

Now we will have proved the claim if we can show that |E(H̃∗)| ≤ 16δ1/2n/ log n.

First we show that we may assume that |Ũ∗| ≥ |V∗|2. For if not, then we have
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|E(H̃∗)| ≤ |V∗|3 = 8(log n)12(log log n)3

and we would be done by (5.6). Therefore we may assume |Ũ∗| ≥ |V∗|2.

Let d be the average degree in H̃∗ of the vertices in Ũ∗. Then d ≥ 2 and

|Ũ0|d2 ≥ 4|Ũ0| ≥ 4|V0|2. By Lemma 5.4.1 with m = |V0|,

C4(H̃0) ≥ |Ũ0|2d4

64m2
≥ |E(H̃0)|2

64m2
. (5.10)

Since C4(H∗) < δn2(log n)−10(log log n)−2 and m ≤ 2(log n)4 log log n, (5.10) gives

|E(H̃0)| < 8δ1/2(log n)−5(log log n)−1mn <
16δ1/2n

log n
.

Together with (5.9), this completes the proof of Claim 2.

We now complete the proof of the lemma. By (5.7) and (5.8),

|E(H)| ≤ |E(H∗) +

k0∑
k=0

|E(Hk)| < π(n) +
16δ1/2n

log n
+

εn

4 log n
.

Since δ = 2−14ε4, the last two terms above are at most εn/2 log n. By (5.5), π(n) ≤
(1 + ε/2)n/ log n, so we conclude |E(H)| < (1 + ε)n/ log n. Since |A| = |E(H)|
and |A| ≥ (1 + ε)n/ log n, this contradiction completes the proof.

5.4.3 Proof of Theorem 5.1.1(ii)

Let ε > 0, and let δ be given by Lemma 5.4.2. Let p = (log n)b/
√
n with

b > 5.5. For a fixed labeling χ : V (Gn,p) → Z, let P(χ) denote the probability

that χ is a product-injective labeling of G = Gn,p. To prove Theorem 5.1.1(ii), we

show that if n ≥ (1+ε)N/ logN , then the expected number E of product-injective

labelings χ : V (G)→ [N ] satisfies

E =
∑

χ:V (G)→[N ]

P(χ) ≤
(
N

n

)
max
χ

P(χ)� 1. (5.11)

To prove this, we show P(χ) � N−n for every fixed labeling χ : V (G) → [N ].

Let k ∈ [N2], and let gk be the number of representations (for the given function

χ) of the form k = χ(i)χ(j). That is gk is the number of pairs {i, j} with i 6= j
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such that k = χ(i)χ(j). Then for χ to be product-injective, for each k, at most

one of the gk possible edges {i, j} with k = χ(i)χ(j) may be selected to be in the

random graph G. For each k, let Ak be the event that at most one edge {i, j} with

χ(i)χ(j) = k is selected to be an edge of the random graph. Then by the union

bound, P(Ak) ≤ (1−p)gk + gkp(1−p)gk−1. Since the events {Ak} are independent,

we have

P(χ) ≤
N2∏
k=1

(
(1− p)gk + gkp(1− p)gk−1

)
. (5.12)

For a real-valued function f , let f+ = max{f, 0}. Then by Lemma 5.4.2, if n ≥
n0(ε), then

N2∑
k=1

(gk − 1)+ ≥
δn2

(log n)10(log log n)2
. (5.13)

For x ≥ 1 let h(x) = ((1−p)x+xp(1−p)x−1). One may check that log h(x)

is a concave function. Thus, if gi ≥ gj + 2 and gj ≥ 1, we have h(gj)h(gi) ≤
h(gj + 1)h(gi − 1).

Therefore, if gi ≥ gj + 2 and gj ≥ 1, then (5.12) increases by replacing gi

with gi − 1 and gj with gj + 1. So by (5.13)

P(χ) ≤
(
(1− p)2 + 2p(1− p)

)g
= (1− p2)g ≤ e−p

2g,

where g = δn2(log n)−10(log log n)−2. Since p2g = δn(log n)2b−10(log log n)−2 �
n log n, P(χ) � n−2n � N−n. This proves (5.11), and completes the proof of

Theorem 5.1.1(ii).

5.5 Proof of Theorem 5.1.2

The proof is similar to that of Theorem 5.1.1(i). We show that if H is an

n-vertex k-uniform hypergraph of maximum degree d, then

Sφ(G) ≤ N

whenever Rφ(N)/N2k ≤ 1/4d2n and N ≥ 8kn. Randomly label the vertices of G

with integers in [N ], and let l(v) be the label of vertex v. Let Au,v be the event
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that vertices u, v ∈ V (G) receive the same label, and let Be,f be the event that

φ(l(v) : v ∈ e) = φ(l(v) : v ∈ f) for edges e, f ∈ H. Then

P(Au,v) =
1

N
and P(Be,f ) =

Rφ(N)

N2k
.

An event Au,v or Be,f is mutually independent with any set of events Ax,y and Bg,h

such that {x, y} ∩ {u, v} = ∅ and (g ∪ h) ∩ {u, v} = ∅. Therefore Au,v is mutually

independent with a set of at least
(
n
2

)
− 2n other events Ax,y and a set of at least

2d · |H| ≤ 2d2n/k events Bg,h, and Be,f is mutually independent with a set of at

least
(|H|

2

)
−2kd · |H| ≥

(|H|
2

)
−2d2n other events Bg,h and at least

(
n
2

)
−2kn events

Ax,y. By the local lemma, if for some γ, δ ∈ (0, 1) we have

1

N
≤ γ(1− γ)2n(1− δ)2d2n/k Rφ(N)

N2k
≤ δ(1− γ)2kn(1− δ)2d2n

then with positive probability none of the events Au,v and Bg,h occur, in which case

the coloring has a chance of being φ-injective. Select γ = 1/2kn and δ = 1/2d2n.

Then it is sufficient that

1

N
≤ 1

8kn
and

Rφ(N)

N2k
≤ 1

8d2n

and these are satisfied by the assumptions in the theorem. This proves Theorem

5.1.2.

Chapter 5 is a version of the material appearing in “On sets of integers with

restrictions on their products”, European Journal of Combinatorics, 51, (2016),

268–274, co-authored with Jacques Verstraëte. The author was the primary inves-

tigator and author of this paper.
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Equations and Sum-Product

Estimates in Finite Quasifields

“It’s exactly like linear algebra. Linear algebra’s an unbelievably

specific subject. And in fact, there’s only, like, two things in all of linear

algebra. There’s all these definitions and mumbo-jumbo. But basically,

there’s only Gaussian elimination and the eigenvalue problem. And abso-

lutely every single problem in linear algebra is some variant on Gaussian

elimination or the eigenvalue problem. And yet despite being able to de-

scribe linear algebra in such a banal way, it’s one of the most important

subjects in mathematics because of its applications.”

– Jim Agler

6.1 Introduction

Let R be a ring and A ⊂ R. The sum set of A is the set A + A = {a + b :

a, b ∈ A}, and the product set of A is the set A · A = {a · b : a, b ∈ A}. A well-

studied problem in arithmetic combinatorics is to prove non-trivial lower bounds

on the quantity

max{|A+ A|, |A · A|}

71



72

under suitable hypotheses on R and A. One of the first results of this type is due

to Erdős and Szemerédi [33]. They proved that if R = Z and A is finite, then there

are positive constants c and ε, both independent of A, such that

max{|A+ A|, |A · A|} ≥ c|A|1+ε.

This improves the trivial lower bound of max{|A + A|, |A · A|} ≥ |A|. Erdős

and Szemerédi conjectured that the correct exponent is 2−o(1) where o(1)→ 0 as

|A| → ∞. Despite a significant amount of research on this problem, this conjecture

is still open. For some time the best known exponent was 4/3−o(1) due to Solymosi

[78] who proved that for any finite set A ⊂ R,

max{|A+ A|, |A · A|} ≥ |A|4/3

2(log |A|)1/3
.

Another case that has received attention is whenR is a finite field. Let p be a

prime and let A ⊂ Zp. Bourgain, Katz, and Tao [13] proved that if pδ < |A| < p1−δ

where 0 < δ < 1/2, then

max{|A+ A|, |A · A|} ≥ c|A|1+ε (6.1)

for some positive constants c and ε depending only on δ. Hart, Iosevich, and

Solymosi [48] obtained bounds that give an explicit dependence of ε on δ. Let q

be a power of an odd prime, Fq be the finite field with q elements, and A ⊂ Fq. In

[48], it is shown that if |A+ A| = m and |A · A| = n, then

|A|3 ≤ cm2n|A|
q

+ cq1/2mn (6.2)

where c is some positive constant. Inequality (6.2) implies a non-trival sum-product

estimate when q1/2 � |A| � q. The most general setting where a sum-product

estimate has been shown to hold is in [81], where Tao shows that such an estimate

holds in an arbitrary ring as long as, roughly speaking, A is not too close to a

subring and does not contain too many zero divisors. Using a graph theoretic

approach, Vinh [86] and Vu [89] improved (6.2) and as a result, obtained a better

sum-product estimate.
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Theorem 6.1.1 ([86]). Let q be a power of an odd prime. If A ⊂ Fq, |A+A| = m

and |A · A| = n, then

|A|2 ≤ mn|A|
q

+ q1/2
√
mn.

Corollary 6.1.2 ([86]). If q is a power of an odd prime and A ⊂ Fq, then there

is a positive constant c such that the following hold. If q1/2 � |A| < q2/3, then

max{|A+ A|, |A · A|} ≥ c|A|2

q1/2
.

If q2/3 ≤ |A| � q, then

max{|A+ A|, |A · A|} ≥ c(q|A|)1/2.

In the case that q is a prime, Corollary 6.1.2 was proved by Garaev [41] using

exponential sums. Cilleruelo [24] also proved related results using dense Sidon sets

in finite groups involving Fq and F∗q. In particular, versions of Theorem 6.1.3 and

(6.3) (see below) are proved in [24], as well as several other results concerning

equations in Fq and sum-product estimates.

Theorem 6.1.1 was proved using the following Szemerédi-Trotter type the-

orem in Fq.

Theorem 6.1.3 ([86]). Let q be a power of an odd prime. If P is a set of points

and L is a set of lines in F2
q, then

|{(p, l) ∈ P × L : p ∈ l}| ≤ |P ||L|
q

+ q1/2
√
|P ||L|.

We remark that a Szemerédi-Trotter type theorem in Zp was obtained in

[13] using the sum-product estimate (6.1).

In this chapter, we generalize Theorem 6.1.1, Corollary 6.1.2, and Theorem

6.1.3 to finite quasifields. Any finite field is a quasifield. There are many examples

of quasifields which are not fields; see for example, Chapter 5 of [28] or Chapter 9

of [52]. Quasifields appear extensively in the theory of projective planes.

Theorem 6.1.4. Let Q be a finite quasifield with q elements. If A ⊂ Q\{0},
|A+ A| = m and |A · A| = n, then

|A|2 ≤ mn|A|
q

+ q1/2
√
mn.
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Theorem 6.1.4 gives the following sum-product estimate.

Corollary 6.1.5. Let Q be a finite quasifield with q elements and A ⊂ Q\{0}.
There is a positive constant c such that the following hold.

If q1/2 � |A| < q2/3, then

max{|A+ A|, |A · A|} ≥ c
|A|2

q1/2
.

If q2/3 ≤ |A| � q, then

max{|A+ A|, |A · A|} ≥ c(q|A|)1/2.

From Corollary 6.1.5 we conclude that any algebraic object that is rich

enough to coordinatize a projective plane must satisfy a non-trivial sum-product

estimate. Following [86], we prove a Szemerédi-Trotter type theorem and then use

it to deduce Theorem 6.1.4.

Theorem 6.1.6. Let Q be a finite quasifield with q elements. If P is a set of

points and L is a set of lines in Q2, then

|{(p, l) ∈ P × L : p ∈ l}| ≤ |P ||L|
q

+ q1/2
√
|P ||L|.

Another consequence of Theorem 6.1.6 is the following corollary.

Corollary 6.1.7. If Q is a finite quasifield with q elements and A ⊂ Q, then there

is a positive constant c such that

|A · (A+ A)| ≥ cmin

{
q,
|A|3

q

}
.

Furthermore, if |A| � q2/3, then one may take c = 1 + o(1).

The next result generalizes Theorem 1.1 from [88].

Theorem 6.1.8. Let Q be a finite quasifield with q elements. If A,B,C ⊂ Q,

then

|A+B · C| ≥ q − q3

|A||B||C|+ q2
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Our methods in proving the above results can be used to generalize theorems

concerning the solvability of equations over finite fields. Let p be a prime and let

A,B,C,D ⊂ Zp. Sárközy [73] proved that if N(A,B,C,D) is the number of

solutions to a+ b = cd with (a, b, c, d) ∈ A×B × C ×D, then∣∣∣∣N(A,B,C,D)− |A||B||C||D|
p

∣∣∣∣ ≤ p1/2
√
|A||B||C||D|. (6.3)

In particular, if |A||B||C||D| > p3, then there is an (a, b, c, d) ∈ A × B × C × D
such that a + b = cd. This is best possible up to a constant factor (see [73]). It

was generalized to finite fields of odd prime power order by Gyarmati and Sárközy

[44], and then by the Vinh [85] to systems of equations over Fq. Here we generalize

the result of Gyarmati and Sárközy to finite quasifields.

Theorem 6.1.9. Let Q be a finite quasifield with q elements and let A,B,C,D ⊂
Q. If γ ∈ Q and Nγ(A,B,C,D) is the number of solutions to a+ b+ γ = c · d with

a ∈ A, b ∈ B, c ∈ C, and d ∈ D, then∣∣∣∣Nγ(A,B,C,D)− (q + 1)|A||B||C||D|
q2 + q + 1

∣∣∣∣ ≤ q1/2
√
|A||B||C||D|.

Theorem 6.1.9 implies the following Corollary which generalizes Corollary

3.5 in [87].

Corollary 6.1.10. If Q is a finite quasifield with q elements and A,B,C,D ⊂ Q

with |A||B||C||D| > q3, then

Q = A+B + C ·D.

We also prove a higher dimensional version of Theorem 6.1.9.

Theorem 6.1.11. Let d ≥ 1 be an integer. If Q is a finite quasifield with q

elements and A ⊂ Q with |A| > q
d+2
2d+2 , then

Q = A+ A+ A · A+ · · ·+ A · A︸ ︷︷ ︸
d terms

.

Another problem considered by Sárközy was the solvability of the equation

ab+ 1 = cd over Zp. Sárközy [74] proved a result in Zp which was later generalized

to the finite field setting in [44].
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Theorem 6.1.12 (Gyarmati, Sárközy). Let q be a power of a prime and

A,B,C,D ⊂ Fq.

If N(A,B,C,D) is the number of solutions to ab + 1 = cd with a ∈ A, b ∈ B,

c ∈ C, and d ∈ D, then∣∣∣∣N(A,B,C,D)− |A||B||C||D|
q

∣∣∣∣ ≤ 8q1/2(|A||B||C||D|)1/2 + 4q2.

Our generalization to quasifields is as follows.

Theorem 6.1.13. Let Q be a finite quasifield with q elements and kernel K. Let

γ ∈ Q\{0}, and A,B,C,D ⊂ Q. If Nγ(A,B,C,D) is the number of solutions to

a · b+ c · d = γ, then∣∣∣∣Nγ(A,B,C,D)− |A||B||C||D|
q

∣∣∣∣ ≤ q

(
|A||B||C||D|
|K| − 1

)1/2

.

Corollary 6.1.14. Let Q be a quasifield with q elements whose kernel is K. If

A,B,C,D ⊂ Q and |A||B||C||D| > q4(|K| − 1)−1, then

Q\{0} ⊂ A ·B + C ·D.

By appropriately modifying the argument used to prove Theorem 6.1.13,

we can prove a higher dimensional version.

Theorem 6.1.15. Let Q be a finite quasifield with q elements whose kernel is K.

If A ⊂ Q and |A| > q
1
2

+ 1
d (|K| − 1)−1/2d, then

Q\{0} ⊂ A · A+ · · ·+ A · A︸ ︷︷ ︸
d terms

.

If Q is a finite field, then |K| = q, and the bounds of Theorems 6.1.13 and

6.1.15 match the bounds obtained by Hart and Iosevich in [47].

The rest of the chapter is organized as follows. In Section 6.2 we collect

some preliminary results. Section 6.3 contains the proof of Theorem 6.1.4, 6.1.6,

and 6.1.9, as well as Corollary 6.1.5, 6.1.7, and 6.1.10. Section 6.4 contains the

proof of Theorems 6.1.8, 6.1.11, 6.1.13, and 6.1.15.
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6.2 Preliminaries

We begin this section by recalling the definition of a quasifield. A set L

with a binary operation · is called a loop if

1. the equation a · x = b has a unique solution in x for every a, b ∈ L,

2. the equation y · a = b has a unique solution in y for every a, b ∈ L, and

3. there is an element e ∈ L such that e · x = x · e = x for all x ∈ L.

A (left) quasifield Q is a set with two binary operations + and · such that (Q,+)

is a group with additive identity 0, (Q∗, ·) is a loop where Q∗ = Q\{0}, and the

following three conditions hold:

1. a · (b+ c) = a · b+ a · c for all a, b, c ∈ Q,

2. 0 · x = 0 for all x ∈ Q, and

3. the equation a · x = b · x + c has exactly one solution for every a, b, c ∈ Q
with a 6= b.

We use 1 to denote the identity in the loop (Q∗, ·). It is a consequence of

the definition that (Q,+) must be an abelian group. One also has x · 0 = 0 and

x · (−y) = −(x · y) for all x, y ∈ Q (see [52], Lemma 7.1). For more on quasifields,

see Chapter 9 of [52]. A (right) quasifield is required to satisfy the right distributive

law instead of the left distributive law. The kernel K of a quasifield Q is the set

of all elements k ∈ Q that satisfy

1. (x+ y) · k = x · k + y · k for all x, y ∈ Q, and

2. (x · y) · k = x · (y · k) for all x, y ∈ Q.

Note that (K,+) is an abelian subgroup of (Q,+) and (K∗, ·) is a group.

Lemma 6.2.1. If a ∈ Q and λ ∈ K, then −(a · λ) = (−a) · λ.
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Proof. First we show that a · (−1) = −a. Indeed, a · (1 + (−1)) = a · 0 = 0 and so

a+ a · (−1) = 0. We conclude that −a = a · (−1). If λ ∈ K, then

−(a · λ) = a · (−λ) = a · (0− λ) = a · ((0− 1) · λ)

= (a · (0− 1)) · λ = (0 + a · (−1)) · λ = (−a) · λ.

For the rest of this section, we assume that Q is a finite quasifield with

|Q| = q. We can construct a projective plane Π = (P ,L, I) that is coordinatized

by Q. We will follow the notation of [52] and refer the reader to Chapter 5 of [52]

for more details. Let ∞ be a symbol not in Q. The points of Π are

P = {(x, y) : x, y ∈ Q} ∪ {(x) : x ∈ Q} ∪ {(∞)}.

The lines of Π are

L = {[m, k] : m, k ∈ Q} ∪ {[m] : m ∈ Q} ∪ {[∞]}.

The incidence relation I is defined according to the following rules:

1. (x, y)I[m, k] if and only if m · x+ y = k,

2. (x, y)I[k] if and only if x = k,

3. (x)I[m, k] if and only if x = m,

4. (x)I[∞] for all x ∈ Q, (∞)I[k] for all k ∈ Q, and (∞)I[∞].

Since |Q| = q, the plane Π has order q.

Next we associate a graph to the plane Π. Let G(Π) be the bipartite graph

with parts P and L where p ∈ P is adjacent to l ∈ L if and only if pIl in Π. The

first lemma is known (see [14], page 432).

Lemma 6.2.2. The graph G(Π) has eigenvalues q + 1 and −(q + 1), each with

multiplicity one. All other eigenvalues of G(Π) are ±q1/2.

The next lemma is a bipartite discrepancy inequality.
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Lemma 6.2.3 (Bipartite Expander Mixing Lemma). Let G be a d-regular bipartite

graph on 2n vertices with parts X and Y . Let M be the adjacency matrix of

G. Let d = λ1 ≥ λ2 ≥ · · · ≥ λ2n = −d be the eigenvalues of M and define

λ = maxi 6=1,2n |λi|. If S ⊂ X and T ⊂ Y , then∣∣∣∣e(S, T )− d|S||T |
n

∣∣∣∣ ≤ λ
√
|S||T |.

Proof. Assume that the columns of M have been been ordered so that the columns

corresponding to the vertices of X come before the columns corresponding to the

vertices of Y . For a subset B ⊂ V (G), let χB be the characteristic vector for B.

Let {x1, . . . , x2n} be an orthonormal set of eigenvectors for M . Note that since G

is a d-regular bipartite graph, we have

x1 =
1√
2n

(χX + χY ) , (6.4)

x2n =
1√
2n

(χX − χY ) . (6.5)

Now χTSMχT = e(S, T ). Expanding χS and χT as linear combinations of eigenvec-

tors yields

e(S, T ) =

(
2n∑
i=1

〈χS, xi〉xi

)T

M

(
2n∑
i=1

〈χT , xi〉xi

)
=

2n∑
i=1

〈χS, xi〉〈χT , xi〉λi.

Now by (6.4) and (6.5), 〈χS, x1〉 = 〈χS, x2n〉 = 1√
2n
|S| and 〈χT , x1〉 = −〈χT , x2n〉 =

1√
2n
|T |. Since λ1 = −λ2n = d, we have∣∣∣∣e(S, T )− 2d|S||T |

2n

∣∣∣∣ =

∣∣∣∣∣
2n−1∑
i=2

〈χS, xi〉〈χT , xi〉λi

∣∣∣∣∣
≤ λ

2n−1∑
i=2

|〈χS, xi〉〈χT , xi〉|

≤ λ

(
2n−1∑
i=2

〈χS, xi〉2
)1/2(2n−1∑

i=2

〈χT , xi〉2
)1/2

.

Where the last inequality is by Cauchy-Schwarz. Finally by the Pythagorean

Theorem,
2n−1∑
i=2

〈χS, xi〉2 = |S| − 2|S|2

2n
< |S|
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and
2n−1∑
i=2

〈χT , xi〉2 = |T | − 2|T |2

2n
< |T |.

Combining Lemmas 6.2.2 and 6.2.3 gives the next lemma.

Lemma 6.2.4. For any S ⊂ P and T ⊂ L,∣∣∣∣e(S, T )− (q + 1)|S||T |
q2 + q + 1

∣∣∣∣ ≤ q1/2
√
|S||T |

where e(S, T ) is the number of edges in G(Π) with one endpoint in S and the other

in T .

We now state precisely what we mean by a line in Q2.

Definition 6.2.5. Given a, b ∈ Q, a line in Q2 is a set of the form

{(x, y) ∈ Q2 : y = b · x+ a} or {(a, y) : y ∈ Q}.

When multiplication is commutative, b · x + a = x · b + a. In general, the

binary operation · need not be commutative and so we write our lines with the

slope on the left.

The next lemma is due to Elekes [30] (see also [82], page 315). In working

in a (left) quasifield, which is not required to satisfy the right distributive law,

some care must be taken with algebraic manipulations.

Lemma 6.2.6. Let A ⊂ Q∗. There is a set P of |A+A||A ·A| points and a set L

of |A|2 lines in Q2 such that there are at least |A|3 incidences between P and L.

Proof. Let P = (A+ A)× (A · A) and

l(a, b) = {(x, y) ∈ Q2 : y = b · x− b · a}.

Let L = {l(a, b) : a, b ∈ A}. The statement that |P | = |A+A||A ·A| is clear from

the definition of P . Suppose l(a, b) and l(c, d) are elements of L and l(a, b) = l(c, d).

We claim that (a, b) = (c, d). In a quasifield, one has x · 0 = 0 for every x, and
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x · (−y) = −(x · y) for every x and y ([52], Lemma 7.1). The line l(a, b) contains

the points (0,−b · a) and (1, b− b · a). Furthermore, these are the unique points in

l(a, b) with first coordinate 0 and 1, respectively. Similarly, the line l(c, d) contains

the points (0,−d · c) and (1, d − d · c). Since l(a, b) = l(c, d), we must have that

−b · a = −d · c and b − b · a = d − d · c. Thus, b = d and so b · a = b · c. We can

rewrite this equation as b · a− b · c = 0. Since −x · y = x · (−y) and Q satisfies the

left distributive law, we have b · (a − c) = 0. If a = c, then (a, b) = (c, d) and we

are done. Assume that a 6= c so that a − c 6= 0. Then we must have b = 0 for if

b 6= 0, then the product b · (a− c) would be contained in Q∗ as multiplication is a

binary operation on Q∗. Since A ⊂ Q∗, we have b 6= 0. It must be the case that

a = c. We conclude that each pair (a, b) ∈ A2 determines a unique line in L and

so |L| = |A|2.

Consider a triple (a, b, c) ∈ A3. The point (a + c, b · c) belongs to P and is

incident to l(a, b) ∈ L since

b · (a+ c)− b · a = b · a+ b · c− b · a = b · c.

Each triple in A3 generates an incidence and so there are at least |A|3 incidences

between P and L.

6.3 Proof of Theorem 6.1.4, 6.1.6, and 6.1.9

Throughout this section, Q is a finite quasifield with q elements, Π =

(P ,L, I) is the the projective plane coordinatized by Q as in Section 6.2. The

graph G(Π) is the bipartite graph defined before Lemma 6.2.2 in Section 6.2.

Proof of Theorem 6.1.6. Let P ⊂ Q2 be a set of points and view P as a subset of

P . Let r(a, b) = {(x, y) ∈ Q2 : y = b · x+ a}, R ⊂ Q2, and let

L = {r(a, b) : (a, b) ∈ R}

be a collection of lines in Q2. The point p = (p1, p2) in P is incident to the

line r(a, b) in L if and only if p2 = b · p1 + a. This however is equivalent to
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(p1,−p2)I[b,−a] in Π. If S = {(p1,−p2) : (p1, p2) ∈ P} and T = {[b,−a] : (a, b) ∈
R}, then

|{(p, l) ∈ P × L : p ∈ l}| = e(S, T )

where e(S, T ) is the number of edges in G(Π) with one endpoint in S and the other

in T . By Lemma 6.2.4,

|{(p, l) ∈ P × L : p ∈ l}| ≤ |S||T |
q

+ q1/2
√
|S||T |

which proves Theorem 6.1.6.

Proof of Theorem 6.1.4 and Corollary 6.1.5. Let A ⊂ Q∗. Let S = (A+A)× (A ·
A). We view S as a subset of P . Let s(a, b) = {(x, y) ∈ Q2 : y = b · x− b · a} and

L = {s(a, b) : a, b ∈ A}.

By Lemma 6.2.6, |L| = |A|2 and there are at least |A|3 incidences between S and

L. Let T = {[−b,−b · a] : a, b ∈ A} so T is a subset of L. By Lemma 6.2.4,

e(S, T ) ≤ |S||T |
q

+ q1/2
√
|S||T |.

We have |L| = |T | = |A|2. If m = |A+ A| and n = |A · A|, then

e(S, T ) ≤ mn|A|2

q
+ q1/2|A|

√
mn.

Next we find a lower bound on e(S, T ). By construction, an incidence between S

and L corresponds to an edge between S and T in G(Π). To see this, note that

(x, y) ∈ S is incident to s(a, b) ∈ L if and only if y = b ·x− b · a. This is equivalent

to the equation −b · x + y = −b · a which holds if and only if (x, y) is adjacent to

[−b,−b · a] in G(Π). Thus,

|A|3 ≤ e(S, T ) ≤ mn|A|2

q
+ q1/2|A|

√
mn. (6.6)

To prove Corollary 6.1.5, observe that from (6.6), we have

|A+ A||A · A| ≥ min

{
cq|A|, c|A|

4

q

}
where c is any real number with c + c1/2 < 1. If x = max{|A + A|, |A · A|}, then

x ≥ min{(cq|A|)1/2, c
1/2|A|2
q1/2

} and Corollary 6.1.5 follows from this inequality.
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Proof of Corollary 6.1.7. Let A ⊂ Q, P = A× (A · (A+ A)),

l(b, c) = {(x, y) ∈ Q2 : y = b · (x+ c)},

and L = {l(b, c) : b, c ∈ A}. Then |P | = |A||A · (A + A)|, |L| = |A|2, and L is a

set of lines in Q2. Let z = |A · (A+A)|. Observe that each l(b, c) ∈ L contains at

least |A| points from P . By Theorem 6.1.6,

|A|3 ≤ |P ||L|
q

+ q1/2
√
|P ||L| = |A|

3z

q
+ q1/2|A|3/2z1/2.

This implies that q|A|3/2 ≤ |A|3/2z + q3/2
√
z. Therefore,

√
z ≥
−q3/2 +

√
q3 + 4|A|3q

2|A|3/2
=

4|A|3q
2|A|3/2(q3/2 +

√
q3 + 4|A|3q)

,

which implies that

|A · (A+ A)| ≥ cmin

{
q,
|A|3

q

}
.

We note that if |A| � q2/3 then we can take c = 1 + o(1).

Proof of Theorem 6.1.9 and Corollary 6.1.10. Let A,B,C,D ⊂ Q. Consider the

sets P = {(d,−a) : d ∈ D, a ∈ A} and L = {[c, b + γ] : c ∈ C, b ∈ B}. An edge

between P and L in G(Π) corresponds to a solution to c · d + (−a) = b + γ with

c ∈ C, d ∈ D, a ∈ A, and b ∈ B. Therefore, e(P,L) is precisely the number of

solutions to a + b + γ = c · d with (a, b, c, d) ∈ A × B × C × D. Observe that

|P | = |D||A| and |L| = |C||B|. By Lemma 6.2.4,∣∣∣∣Nγ(A,B,C,D)− (q + 1)|A||B||C||D|
q2 + q + 1

∣∣∣∣ ≤ q1/2
√
|A||B||C||D|.

To obtain Corollary 6.1.10, apply Theorem 6.1.9 with A, B, C, and−D. For

any −γ ∈ Q, the number of (a, b, c,−d) ∈ A×B×C×(−D) with a+b−γ = c·(−d)

is at least
(q + 1)|A||B||C|| −D|

q2 + q + 1
− q1/2

√
|A||B||C|| −D|. (6.7)

When |A||B||C||D| > q3, (6.7) is positive and so we have a solution to a+ b− γ =

c · (−d). Since this equation is equivalent to a+ b+ c · d = γ and γ was arbitrary,

we get

Q = A+B + C ·D.
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6.4 Proof of Theorems 6.1.8, 6.1.11, 6.1.13, and

6.1.15

Let Q be a finite quasifield with q elements and let K be the kernel of Q.

Let d ≥ 1 be an integer and γ ∈ Q. The product graph, denoted DPQ(d, γ), is the

bipartite graph with parts X and Y where X and Y are disjoint copies of Qd+1.

The vertex (x1, . . . , xd+1)X ∈ X is adjacent to (y1, . . . , yd+1)Y ∈ Y if and only if

xd+1 + γ = x1 · y1 + x2 · y2 + · · ·+ xd · yd + yd+1. (6.8)

Lemma 6.4.1. The graph DPQ(d, γ) is qd-regular.

Proof. Fix a vertex (x1, . . . , xd+1)X ∈ X. We can choose y1, . . . , yd arbitrarily and

then (6.8) gives a unique solution for yd+1. Therefore, (x1, . . . , xd+1)X has degree

qd. A similar argument shows that every vertex in Y has degree qd.

Lemma 6.4.2. If λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of DPQ(d, γ), then

|λ| ≤ qd/2 where λ = maxi 6=1,n |λi|.

Proof. Let M be the adjacency matrix of DPQ(d, γ). Assume that the first qd+1

rows/columns of M correspond to the vertices of X. We can write

M =

(
0 N

NT 0

)

where N is the qd+1× qd+1 matrix whose (x1, . . . , xd+1)X × (y1, . . . , yd+1)Y -entry is

1 if (6.8) holds, and is 0 otherwise. Let J be the qd+1 × qd+1 matrix of all 1’s and

let

P =

(
0 J

J 0

)
.

We claim that

M3 = qdM + qd(qd−1 − 1)P. (6.9)

The (x, y)-entry of M3 is the number of walks of length 3 from x = (x1, . . . , xd+1)X

to y = (y1, . . . , yd+1)Y . Suppose that xy′x′y is such a walk where

y′ = (y′1, . . . , y
′
d+1)Y and x′ = (x′1, . . . , x

′
d+1)X .
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By Lemma 6.4.1, there are qd vertices x′ ∈ X such that x′ is adjacent to y. In

order for xy′x′y to be a walk of length 3, y′ must be adjacent to both x and x′ so

we need

xd+1 = x1 · y′1 + · · ·+ xd · y′d + y′d+1 (6.10)

and

x′d+1 = x′1 · y′1 + · · ·+ x′d · y′d + y′d+1. (6.11)

We want to count the number of y′ that satisfy both (6.10) and (6.11). We consider

two cases.

Case 1 : x is not adjacent to y.

If xi = x′i for 1 ≤ i ≤ d, then (6.10) and (6.11) imply that xd+1 = x′d+1.

This implies x = x′ and so x is adjacent to y but this contradicts our assumption

that x is not adjacent to y. Therefore, xi 6= x′i for some 1 ≤ i ≤ d. Without loss

of generality, assume that x1 6= x′1. Subtracting (6.11) from (6.10) gives

xd+1 − x′d+1 = x1 · y′1 + · · ·+ xd · y′d − x′1 · y′1 − · · · − x′d · y′d. (6.12)

Choose y′2, . . . , y
′
d ∈ Q. Since Q is a quasifield and x1 − x′1 6= 0, there is a unique

solution for y′1 in (6.12). Equation (6.10) then gives a unique solution for y′d+1 and

so there are qd−1 choices for y′ = (y′1, . . . , y
′
d+1)Y for which both (6.10) and (6.11)

hold. In this case, the number of walks of length 3 from x to y is (qd−1)qd−1 since

x′ may be chosen in qd − 1 ways as we require (x′1, x
′
2, . . . , x

′
d) 6= (x1, x2, . . . , xd)

otherwise x = x′.

Case 2 : x is adjacent to y.

The same counting as in Case 1 shows that there are (qd − 1)qd−1 paths

xy′x′y with x 6= x′. By Lemma 6.4.1, there are qd paths of the form xy′xy since

the degree of x is qd.

From the two cases, we deduce that

M3 = qdM + qd−1(qd − 1)P.

Let λj be an eigenvalue of M with j 6= 1 and j 6= n. Let vj be an eigenvector for

λj. Since vj is orthogonal to χX + χY and χX − χY , we have Pvj = 0 and so

M3vj = qdMvj.
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This gives λ3
j = qdλj so |λj| ≤ qd/2.

Proof of Theorem 6.1.8. Let A,B,C ⊂ Q where Q is a finite quasifield with q

elements. Given γ ∈ Q, let

Zγ = {(a, b, c) ∈ A×B × C : a+ b · c = γ}.

We have
∑

γ |Zγ| = |A||B||C| so by the Cauchy-Schwarz inequality,

|A|2|B|2|C|2 =

(∑
γ

|Zγ|

)2

≤ |A+B · C|
∑
γ∈Q

|Zγ|2. (6.13)

Let x =
∑

γ |Zγ|2. By (6.13),

|A+B · C| ≥ |A|
2|B|2|C|2

x
. (6.14)

The integer x is the number of ordered triples (a, b, c), (a′, b′, c′) in A×B×C such

that a+ b · c = a′ + b′ · c′. This equation can be rewritten as

a = b · (−c) + b′ · c′ + a′.

This is equivalent to the statement that (b, b′, a)X is adjacent to (−c, c′, a′)Y in the

graph DPQ(2, 0). Thus, x is the number of edges between the sets

S = {(b, b′, a)X : a ∈ A, b, b′ ∈ B}

and

T = {(−c, c′, a′)Y : a′ ∈ A, c, c′ ∈ C}

in DPQ(2, 0). By Lemma 6.2.4 and Lemma 6.4.2,

x = e(S, T ) ≤ |S||T |
q

+ q1/2
√
|S||T |.

This inequality together with (6.14) gives

|A|2|B|2|C|2

|A+B · C|
≤ x ≤ |A|

2|B|2|C|2

q
+ q|A||B||C|

from which we deduce

|A+B · C| ≥ q − q3

|A||B||C|+ q2
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Proof of Theorem 6.1.11. Let A ⊂ Q, S = A × · · · × A × (−A) ⊂ Qd+1, and

T = A× · · · ×A×A ⊂ Qd+1. View S as a subset X and T as a subset of Y in the

graph DPQ(γ, d). By Lemmas 6.2.4 and 6.4.2,∣∣∣∣e(S, T )− qd|S||T |
qd+1

∣∣∣∣ ≤ 2qd/2
√
|S||T |.

An edge between S and T corresponds to a solution to

−ad+1 + γ = a1 · a′1 + · · ·+ ad · a′d + a′d+1

with ai, a
′
i ∈ A. If |A| > q

d+2
2d+2 , then e(S, T ) > 0. Since γ is an arbitrary element

of Q, we get

Q = A+ A+ A · A+ · · ·+ A · A︸ ︷︷ ︸
d terms

which completes the proof of Theorem 6.1.11.

Proof of Theorem 6.1.13. We will work in the graph DPQ(2, 0). Let γ ∈ Q∗ and

A,B,C,D ⊂ Q. For each pair (b, d) ∈ B ×D, define

Lγ(b, d) = {(b · λ, d · λ,−γ · λ)Y : λ ∈ K∗}.

Claim 1 : If (a, c) ∈ A×C and a · b+ c · d = γ, then (a, c, 0)X is adjacent to every

vertex in Lγ(b, d).

Proof. Assume (a, c) ∈ A× C satisfies a · b+ c · d = γ. If λ ∈ K∗, then

a · (b · λ) + c · (d · λ) = (a · b) · λ+ (c · d) · λ = (a · b+ c · d) · λ = γ · λ.

Therefore, 0 = a · (b · λ) + c · (d · λ)− γ · λ which shows that (a, c, 0)X is adjacent

to (b · λ, d · λ,−γ · λ)Y .

Claim 2 : If (b1, d1) 6= (b2, d2), then Lγ(b1, d1) ∩ Lγ(b2, d2) = ∅.

Proof. Suppose that Lγ(b1, d1)∩Lγ(b2, d2) 6= ∅. There are elements λ, β ∈ K∗ such

that

(b1 · λ, d1 · λ,−γ · λ)Y = (b2 · β, d2 · β,−γ · β)Y .
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This implies

b1 · λ = b2 · β, d1 · λ = d2 · β, and γ · λ = γ · β.

Since γ · λ = γ · β, we have γ · (λ − β) = 0. As γ 6= 0, we must have λ = β so

b1 · λ = b2 · β = b2 · λ. Using Lemma 6.2.1,

0 = b1 · λ− (b2 · λ) = b1 · λ+ (−b2) · λ = (b1 − b2) · λ.

Since λ 6= 0, we have b1 = b2. A similar argument shows that d1 = d2.

Let S = {(a, c, 0)X : a ∈ A, c ∈ C} and

T =
⋃

(b,d)∈B×D

Lγ(b, d).

The number of edges between S and T in DPQ(2, 0) is Nγ(|K| − 1) where Nγ is

the number of 4-tuples (a, b, c, d) ∈ A × B × C × D such that a · b + c · d = γ.

Furthermore |S| = |A||C| and |T | = |B||D|(|K|−1) by Claim 2. By Lemmas 6.2.4

and 6.4.2, ∣∣∣∣Nγ(|K| − 1)− |S||T |
q

∣∣∣∣ ≤ q
√
|S||T |. (6.15)

This equation is equivalent to∣∣∣∣Nγ −
|A||B||C||D|

q

∣∣∣∣ ≤ q

(
|A||B||C||D|
|K| − 1

)1/2

which completes the proof of Theorem 6.1.13.

The proof of Theorem 6.1.15 is similar to the proof of Theorem 6.1.13.

Instead of working with the graph DPQ(2, 0), one works with the graph DPQ(d, 0).

One counts edges between the sets

S = {(a′1, . . . , a′d, 0)X : a′i ∈ A}

and

T =
⋃

(a1,...,ad)∈Ad

Lγ(a1, . . . , ad)
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where Lγ(a1, . . . , ad) = {(a1 · λ, . . . , ad · λ,−γ · λ)Y : λ ∈ K∗}. The remaining

details are left to the reader.

Chapter 6 is a version of the material in “A Szemerédi-Trotter type theorem,

sum-product estimates in finite quasifields, and related results”, co-authored with

Thang Pham, Craig Timmons, and Le Anh Vinh, which has been submitted for

publication. The author was one of the primary investigators and authors of this

paper.



7

Fano Subplanes of Projective

Planes

“The survival of finite geometry as an active field of study depends

on someone finding a finite projective plane of a non-prime-power order.”

– Gary Ebert

7.1 Introduction

A fundamental question in incidence geometry is about the subplane struc-

ture of projective planes. There are relatively few results concerning when a pro-

jective plane of order k is a subplane of a projective plane of order n. Neumann

[67] found Fano subplanes in certain Hall planes, which led to the conjecture that

every finite non-Desargesian plane contains PG(2, 2) as a subplane (this conjecture

is widely attributed to Neumann, though it does not appear in her work).

Johnson [53] and Fisher and Johnson [36] showed the existence of Fano

subplanes in many translation planes. Petrak [71] showed that Figueroa planes

contain PG(2, 2) and Caliskan and Petrak [17] showed that Figueroa planes of

odd order contain PG(2, 3). Caliskan and Moorhouse [16] showed that all Hughes

planes contain PG(2, 2) and that the Hughes plane of order q2 contains PG(2, 3)

if q ≡ 5 (mod 6). We prove the following.

90
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Theorem 7.1.1. Let Π be a finite projective plane of even order which admits an

orthogonal polarity. Then Π contains a Fano subplane.

Ganley [40] showed that a finite semifield plane admits an orthogonal po-

larity if and only if it can be coordinatized by a commutative semifield. A result

of Kantor [54] implies that the number of nonisomorphic planes of order n a power

of 2 that can be coordinatized by a commutative semifield is not bounded above

by any polynomial in n. Thus, Theorem 7.1.1 applies to many projective planes.

7.2 Proof of Theorem 7.1.1

We collect some definitions and results first. Let Π = (P ,L, I) be a pro-

jective plane of order n. We write p ∈ l or say p is on l if (p, l) ∈ I. Let π be

a polarity of Π. That is, π maps points to lines and lines to points, π2 is the

identity function, and π respects incidence. Then one may construct the polarity

graph Go
π as follows. V (Go

π) = P and p ∼ q if and only if p ∈ π(q). That is,

the neighborhood of a vertex p is the line π(p) that p gets mapped to under the

polarity. If p ∈ π(p), then p is an absolute point and the vertex p will have a loop

on it. A polarity is orthogonal if exactly n + 1 points are absolute. We note that

as neighborhoods in the graph represent lines in the geometry, each vertex in Go
π

has exactly n + 1 neighbors (if v is an absolute point, it has exactly n neighbors

other than itself). We provide proofs of the following preliminary observations for

completeness.

Lemma 7.2.1. Let Π be a projective plane with polarity π, and Go
π be the associated

polarity graph.

(a) For all u, v ∈ V (Go
π), u and v have exactly 1 common neighbor.

(b) Go
π is C4 free.

(c) If u and v are two absolute points of Go
π, then u 6∼ v.

(d) If v ∈ V (Go
π), then the neighborhood of v induces a graph of maximum degree

at most 1.
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(e) Let e = uv be an edge of Go
π such that neither u nor v is an absolute point.

Then e lies in a unique triangle in Go
π.

Proof. To prove (a), let u and v be an arbitrary pair of vertices in V (Go
π). Because

Π is a projective plane, π(u) and π(v) meet in a unique point. This point is the

unique vertex in the intersection of the neighborhood of u and the neighborhood

of v. (b) and (c) follow from (a).

To prove (d), if there is a vertex of degree at least 2 in the graph induced

by the neighborhood of v, then Go
π contains a 4-cycle, a contradiction by (b).

Finally, let u ∼ v and neither u nor v an absolute point. Then by (a) there

is a unique vertex w adjacent to both u and v. Now uvw is the purported triangle,

proving (e).

Proof of Theorem 7.1.1. We will now assume Π is a projective plane of even order

n, that π is an orthogonal polarity, and that Go
π is the corresponding polarity graph

(including loops). Since n is even and π is orthogonal, a classical theorem of Baer

([9], see also Theorem 12.6 in [52]) says that the n + 1 absolute points under π

all lie on one line. Let a1, . . . , an+1 be the set of absolute points and let l be the

line containing them. Then there is some p ∈ P such that π(l) = p. This means

that in Go
π, the neighborhood of p is exactly the set of points {a1, . . . , an+1}. For

1 ≤ i ≤ n + 1, let Ni be the neighborhood of ai (note that ai ∈ Ni). Then by

Lemma 7.2.1.b, Ni ∩Nj = {p} if i 6= j. Further, counting gives that

V (Go
π) =

n+1⋃
i=1

Ni. (7.1)

Let ERo
2 be the graph on 7 points which is the polarity graph (with loops) of

PG(2, 2) under the orthogonal polarity (Figure 7.2).

Lemma 7.2.2. If ERo
2 is a subgraph of Go

π, then Π contains a Fano subplane.

Proof. Let v1, . . . , v7 be the vertices of a subgraph ERo
2 of Go

π. Let li = π(vi) for

1 ≤ i ≤ 7. Then the lines l1, . . . , l7 in Π restricted to the points v1, . . . , v7 form
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Figure 7.1: ERo
2

a point-line incidence structure, and one can check directly that it satisfies the

axioms of a projective plane.

Thus, it suffices to find ERo
2 in Go

π. To find ERo
2 it suffices to find distinct

i, j, k such that there are vi ∈ Ni, vj ∈ Nj, and vk ∈ Nk where vivjvk forms a

triangle in Go
π, for then the points p, ai, aj, ak, vi, vj, vk yield the subgraph ERo

2.

Now note that for all i, and for v ∈ Ni, v has exactly n neighbors that are not

absolute points. There are n + 1 choices for i and n − 1 choices for v ∈ Ni. As

each edge is counted twice, this yields

n(n− 1)(n+ 1)

2

edges with neither end an absolute point. By Lemma 7.2.1.e, there are at least

n3 − n
6

triangles in Go
π. By Lemma 7.2.1.c, there are no triangles incident with p, by

Lemma 7.2.1.b, there are no triangles that have more than one vertex in Ni for

any i, and by Lemma 7.2.1.d there are at most bn−1
2
c = n

2
− 1 triangles incident

with ai for each i. Therefore, by (7.1), there are at least

n3 − n
6
− (n+ 1)

(n
2
− 1
)

copies of ERo
2 in Go

π. This expression is positive for all even natural numbers n.



94

7.3 Concluding Remarks

First, we note that the proof of Theorem 7.1.1 actually implies that there

are Ω (n3) copies of PG(2, 2) in any plane satisfying the hypotheses, and echoing

Petrak [71], perhaps one could find subplanes of order 4 for n large enough. We

also note that it is crucial in both proofs that the absolute points form a line.

When n is odd, the proof fails (as it must, since the proofs do not detect if Π is

Desargesian or not).

Finally, Bill Kantor [55] communicated to the author that Theorem 7.1.1

can be proved in an even shorter way by using the language of finite incidence

geometry and a theorem of Ostrom (Theorem 5.1 in [68]). Using this theorem, it

suffices to find a self-polar triangle in the projective plane (equivalent to finding the

triangle vivjvk in our proof). An advantage of our proof is that we get an explicit

lower bound on the number of Fano subplanes in the projective plane, whereas an

advantage of Kantor’s proof is that one does not even require the projective plane

to be finite.
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[83] Gérald Tenenbaum. Introduction to analytic and probabilistic number theory,
volume 46. Cambridge university press, 1995.

[84] Edwin R Van Dam and Willem H Haemers. Which graphs are determined by
their spectrum? Linear Algebra and its applications, 373:241–272, 2003.

[85] Le Anh Vinh. On the solvability of systems of sum-product equations in finite
fields. Glasgow Mathematical Journal, 53(03):427–435, 2011.



101
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