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Abstract

In this work, we investigate the fewest number of colors needed to guarantee a rainbow solution to
the equation x1 + x2 = kx3 in Zn. This value is called the Rainbow number and is denoted by rb(Zn, k)
for positive integer values of n and k. We find that rb(Zp, 1) = 4 for all primes greater than 3 and that
rb(Zn, 1) can be deterimined from the prime factorization of n. Furthermore, when k is prime, rb(Zn, k)
can be determined from the prime factorization of n.

Introduction

Let Zn be the cyclic group of order n, and let an r-coloring of Zn be a function c : Zn → [r] where
[r] := {1, ..., r}. In this paper, we assume that each r-coloring is exact (surjective). Given an exact r-
coloring, we define r color classes Ci = {x ∈ Zn | c(x) = i} for 1 ≤ i ≤ r. Occasionally, when convenient, we
will use R, G, B, and Y to denote the colors or the color classes red, green, blue, and yellow, respectively.

Fix an integer k. Let a triple (x1, x2, x3) be any three elements in Zn which are a solution to x1+x2 ≡ kx3

mod n. When k = 1, we will call these triples Schur triples. Such a triple is called a rainbow triple under
a coloring c when c(x1) 6= c(x2), c(x1) 6= c(x3), and c(x2) 6= c(x3). Consequently, a coloring will be called
rainbow-free when there does not exist a rainbow triple in Zn under c.

The rainbow number of Zn given x1 +x2 = kx3, denoted rb(Zn, k), is the smallest positive integer r such
that any r-coloring of Zn admits a rainbow triple. By convention, if such an integer does not exist, we set
rb(Zn, k) = n+ 1. A maximum coloring is a rainbow-free r-coloring of Zn where r = rb(Zn, k)− 1.

For a coloring c of Zst, the ith residue class modulo t is the set of all the elements in Zst which are
congruent to i mod t. Denote each residue class as Ri = {j ∈ Zst|j ≡ i mod t}. We say the ith residue
palette modulo t is the set of colors which appear in the ith residue class, and we will denote each palette as
Pi = {c(j)|j ≡ i mod t}.

Rainbow numbers for the equation x1 + x2 = 2x3, for which the solutions are 3-term arithmetic progres-
sions, have been studied in [4], [5], [7], and [9]. These problems are historically rooted in Roth’s Theorem,
Szemerédi’s Theorem, and van der Waerden’s Theorem. The first half of our paper explores the rainbow
numbers of Zn given the Schur equation, x1 + x2 = x3. We rely on the work of Llano and Montenjano in
[8], Jungić et al. in [7], and Butler et al. in [5] to prove exact values for rb(Zn, 1) in terms of the prime
factorization of n. Our results are an extension to the results in [4], [7], and [9].
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Theorem 1. For a prime p ≥ 5, rb(Zp, 1) = 4.

Remark 1. It can be deduced through inspection that rb(Z2, 1) = rb(Z3, 1) = 3.

Theorem 1 gives exact values for rb(Zp, 1) where p is prime. Therefore, Theorems 2 and 1 give exact
values for rb(Zn, 1). The proof for Theorem 2 is at the end of Section 1.3.

Theorem 2. For a positive integer n with prime factorization n = pα1

1 · pα2

2 · · · pαm
m ,

rb(Zn, 1) = 2 +
m
∑

i=1

(

αi(rb(Zpi
, 1)− 2)

)

.

We continue by considering the equation x1 + x2 = px3 for any prime p. Many of the techniques for
the k = 1 case generalize. However, there are complications. If we let the prime factorization of n be
n = pα · qα1

1 · · · qαm
m , then we can produce a recursive formula for rb(Zn, p) detailed in Theorem 5.

Theorem 3. Let p, q be distinct and prime. Then rb(Zq , p) = 4 if and only if p, q do not satisfy either of
the following conditions:

1. p generates Z
∗

q,

2. |p| = (q − 1)/2 in Z
∗

q and (q − 1)/2 is odd.

Otherwise, rb(Zq , p) = 3.

Theorem 4. For p ≥ 3 prime and α ≥ 1,

rb(Zpα , p) =











3 p = 3, α = 1

4 p = 3, α ≥ 2
p+1

2
+ 1 p ≥ 5

The values for rb(Z2α , 2) are resolved in [4]. In conjunction with Theorems 3 and 4, Theorem 5 determines
exact values for rb(Zn, p). The proof for Theorem 5 is at the end of Section 2.4.

Theorem 5. Let n be a positive integer, and let p be prime. Let n have prime factorization n = pα ·
qα1

1 · · · qαm
m . Then

rb(Zn, p) = rb(Zpα , p) +
m
∑

i=1

(

αi(rb(Zqi , p)− 2)
)

.

In the case that α = 0, let rb(Zpα , p) = 2.

1 Schur Triples

Section 1 is dedicated to proving Theorem 2. In Section 1.1 we introduce the idea of a dominant color to
describe the structural properties of colorings of Zp. Additionally, we prove Proposition 9, the Schur triple
counterpart of Theorem 3.2 in [7]. We use Proposition 9 to prove Theorem 1, concluding Section 1.1. In
Section 1.2 we show that the lower bound of rb(Zn, 1) can be determined by the prime factorization of n.
The equivalent upper bound is proved in 1.3. Combining Sections 1.2 and 1.3 proves Theorem 2.
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1.1 Schur Triples in Zp, p prime

Let c be a coloring of Zn. We say a sequence S1, S2, . . . , Sk of colors appears at position i if c(i) = S1, c(i+1) =
S2, . . . , c(i+ k− 1) = Sk. A sequence is bichromatic if it contains exactly two colors. A color R is dominant
if for S = {c(x) : i ≤ x ≤ j, i < j}, |S| = 2 implies R ∈ S. That is, R appears in every bichromatic string.
Using dominant colors to derive a contradiction is used in [7]. We also use this idea to describe the structure
of rainbow-free colorings of Zp. However, we must show that a dominant color exists.

Lemma 6. There exists a dominant color in every rainbow-free coloring of Zn. Furthermore, c(1) is domi-
nant.

Proof. Let c be a rainbow-free coloring of Zn. Note that (1, i, i+ 1) is a Schur triple for all i 6∈ {0, 1}. Since
c is rainbow-free, either c(i) = c(i + 1), c(1) = c(i), or c(1) = c(i + 1). Thus, if c(i) 6= c(i + 1), then c(1)
must appear on either i or i+ 1. This implies that c(1) is dominant.

An immediate result from this lemma is that any color which doesn’t appear on 1 must be adjacent to
itself or the dominant color. Now we can relate the structure of our coloring to the presence of a rainbow
triple. Without loss of generality, let c(1) = R be dominant.

Lemma 7. Let c be an r-coloring of Zn with r ≥ 3. If BB and GG appears in c, then there exists a rainbow
Schur triple in c.

Proof. Let c be an r-coloring of Zn with r ≥ 3 such that BB and GG appears in c. Without loss of generality,
assume R is dominant, and c contains BB and GG. Then, the sequence BBR must appear at some position
i and the sequence GGR must appear at some position j.

Consider the Schur triple (i, j + 2, i + j + 2). Since c(i) = B, and c(j + 2) = R, then either c contains
a rainbow Schur triple, or c(i + j + 2) is R or B. Assume the second case, and consider the Schur triple
(i+2, j, i+j+2). Since c(i+2) = R, and c(j) = G then either c contains a rainbow Schur triple or c(i+j+2)
is R. Again, assume the second case, and finally consider the triple (i+1, j+1, i+ j+2). Since c(i+1) = B,
c(j + 1) = G, and c(i+ j + 2) = R, this triple is rainbow. Therefore, c contains a rainbow Schur triple.

Therefore, if c is a rainbow-free coloring of Zn with R dominant, either GG or BB can appear in c, but
not both. Next we show that there are ways to re-order colorings while maintaining whether or not Schur
triples are rainbow.

Lemma 8. Let c be an r-coloring of Zn. If m is relatively prime to n, then c has a rainbow Schur triple if
and only if ĉ(x) := c(mx) contains a rainbow Schur triple. Additionally, the cardinality of each color class
will be maintained.

Proof. Let (x1, x2, x3) be a triple in c. By definition, x1 + x2 = x3 in Zn is equivalent to

x1 + x2 = sn+ r

x3 = tn+ r,

as equations in the integers for some s, t ∈ Z. Multiply both equations by m to get

mx1 +mx2 = msn+mr

mx3 = mtn+mr

Therefore, mx1 + mx2 ≡ mr mod n, and mx3 ≡ mr mod n, so mx1 + mx2 ≡ mx3 mod n. Thus,
(mx1,mx2,mx3) is rainbow in ĉ if and only if (x1, x2, x3) is rainbow in c.

Finally, the last statement of Lemma 8 follows from the fact that if m is relatively prime to n, then the
map F : x 7→ mx is a bijection.

Our next result is the Schur equation counterpart to Theorem 3.2 in [7].
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Proposition 9. Let p be prime. Then every 3-coloring c of Zp with min(|R|, |G|, |B|) > 1 contains a rainbow
Schur triple.

Proof. For the sake of contradiction, assume that c is a rainbow-free 3-coloring of Zp and min(|R|, |G|, |B|) >
1. Without loss of generality, assume that |R| = min(|R|, |G|, |B|). Since there are at least two elements of Zp

colored R, there exists a minimal element 1 ≤ i ≤ p− 1 such that c(i) = R Because p is prime, i is relatively
prime to p and i has a multiplicative inverse. Let ĉ(x) := c(ix) so that ĉ(1) = R. Therefore, by Lemma 6,
R is dominant in ĉ. By Lemma 7, BB and GG cannot both appear in ĉ. Without loss of generality, assume
that GG does not appear in ĉ. Because R is dominant, R must follow each G, so |R| ≥ |G|. Furthermore,
BR must appear in ĉ. This implies that |R| ≥ |G| + 1 in ĉ which implies |R| ≥ |G| + 1 in c by Lemma 8.
This contradicts our assumption that |R| = min(|R|, |G|, |B|).

Lemma 10. If c is a rainbow-free r-coloring of Zp for a prime p with r > 2, then c(x) = c(−x).

Proof. Let c be a rainbow-free r-coloring of Zp. For the sake of contradiction, assume that there exists i,−i
with c(i) 6= c(−i). Without loss of generality, let c(i) = R and c(−i) = G. Now, let ĉ(x) := c(ix) and let
c̄(x) := c(−ix). By Lemma 8, ĉ and c̄ are both rainbow-free. Since ĉ(1) = c(i) = R and c̄(1) = c(−i) = G,
R is dominant in ĉ, and G is dominant in c̄. Notice that ĉ(x) = c̄(−x), so if two colors are adjacent at some
position in ĉ, then they are also adjacent at some position in c̄. Thus, since G is dominant in c̄, G must also
appear in every bichromatic sequence in ĉ, and, consequently, G is also dominant in ĉ. If both R and G are
dominant in ĉ, then ĉ must only contain R and G, and r = 2; this is a contradiction.

Note that this lemma shows that the coloring from 1 to p−1 must be symmetric in a rainbow-free coloring
of Zp.

Remark 2. For any prime p ≥ 5, Zp can be colored with three colors by coloring zero uniquely and coloring
1 to p − 1 with two colors in any way such that c(x) = c(−x) for all x. This coloring is rainbow-free since
any three group elements which witness three colors must contain 0, and in order to make a Schur triple of
three distinct elements where one of the elements is 0 the other two elements must be x and −x for some x
(see also Corollary 2 in [8]).

Now we have enough information about the structure of rainbow-free colorings to prove Theorem 1. A
color class C is singleton if |C| = 1.

Proof of Theorem 1. For the sake of contradiction, suppose that r + 1 = rb(Zp, 1) > 4 for a prime p ≥ 5,
and let c be a rainbow-free r-coloring of Zp with r > 3. Note that since c is rainbow-free, at least one of
the color classes in c must contain more than one element. Partition the color classes of c into three sets to
define ĉ, an exact 3-coloring of Zp. We use the union of the color classes within each part of the partition as
the color classes for ĉ. Since we are concatenating colors, ĉ is also rainbow-free. By Proposition 9, regardless
of how the color classes of c are partitioned, there exists some color class in ĉ with exactly one element. If
r ≥ 5, then there exists a partition of the five or more color classes such that each color class has more than
one element. Therefore, r = 4.

Furthermore, if two or more color classes are not singleton, then there would exist a partition of the color
classes that yields no singleton color classes in ĉ. Therefore, all but one of the four color classes in c must
be singleton.

If there are three singleton color classes in c, then there exists an x 6= 0 such that c(x) 6= c(−x). This
contradicts Lemma 10, and c cannot be rainbow-free.

Thus, there does not exist an exact rainbow-free r-coloring of Zp for r > 3 and p ≥ 5.

1.2 Lower Bound

In order to prove the lower bound for rb(Zn, 1), we examine the relationship between Schur triples in Zn

and Z n
m

where m divides n.
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Lemma 11. If there exists a Schur triple of form (x1, x2, x3) in Zn where m|x1, x2, x3 for some m|n,
m,n ∈ Z, then there exists a Schur triple of the form (x1/m, x2/m, x3/m) in Z n

m
.

Proof. By definition, x1 + x2 = x3 in Zn implies that in the integers

x1 + x2 = qn+ r

x3 = tn+ r,

for some q, t ∈ Z. Divide both equations by m to get

x1

m
+

x2

m
= q

n

m
+

r

m
x3

m
= t

n

m
+

r

m
.

Now we must check that r
m is an integer. Since m|(x1 + x2 − qn), we know m|r.

By definition, this means that there exists a Schur triple of the form (x1/m, x2/m, x3/m) in Z n
m
.

This shows that Schur triples can be “projected” from the cyclic group Zn to a subgroup Z n
m
. Next, we

will show another property of Schur triples related to the divisibility of a triple’s elements by a prime.

Lemma 12. For a positive integer n and a prime p, if x1 + x2 ≡ x3 mod np, then p cannot divide exactly
two of (x1, x2, x3).

Proof. If x1 + x2 ≡ x3 mod np, then there exist integers c1, c2, and r0 such that x1 + x2 = c1np+ r0 and
x3 = c2np+ r0.

Assume that p divides x1 and x2. Then there exist integers c3 and c4 such that x1 = c3p and x2 = c4p.
We know there exist integers c5 and r1 with 0 ≤ r1 < p such that x3 = c5p+ r1, so we want to show r1 = 0.
Immediately, we see that c3p + c4p = c1np + r0 and c5p+ r1 = c2np + r0, which, after substituting for r0,
shows us c3p+ c4p = c1np+ c5p+ r1 − c2np. Solving for r1 gives us

r1 = c3p+ c4p− c1np− c5p+ c2np

= p(c3 + c4 − c1n− c5 + c2n)

This means that p divides r1, forcing r1 = 0. Thus, p divides x3.
Now assume p divides x1 and x3, i.e. there exist integers c6 and c7 such that x1 = c6p and x3 = c7p. We

know there exist integers c8 and r2 with 0 ≤ r2 < p such that x2 = c8p + r2, so we want to show r2 = 0.
Immediately, we see that c6p + c8p + r2 = c1np+ r0 and c7p = c2np + r0, which, after substituting for r0,
shows us c6p+ c8p+ r2 = c1np+ c7p− c2np. Solving for r2 gives us

r2 = c1np+ c7p− c2np− c6p− c8p

= p(c1n+ c7 − c2n− c6 − c8)

This means that p divides r2, forcing r2 = 0. Thus, p divides x2. By symmetry, this case is identical to the
case where p divides x2 and x3.

Therefore, we can see that if p divides two elements in (x1, x2, x3), then p must also divide the third.

Lemma 13. Let p, t be positive integers with p prime. If there exists a rainbow-free r-coloring of Zt, then
there exists a rainbow-free r + rb(Zp, 1)− 2-coloring of Zpt.

Proof. Let t, p be positive integers such that p is a prime. Assume ĉ is a rainbow-free r-coloring of Zt. Then
let c be an exact (r+ rb(Zp, 1)− 2)-coloring (if p = 2 or p = 3, then c is an exact (r+1)-coloring. Otherwise,
c is an exact r + 2 coloring) of Zpt as follows:

c(x) :=











ĉ(x/p) x ≡ 0 mod p

r + 1 x ≡ 1 or p− 1 mod p

r + 2 otherwise
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Notice that if (x1, x2, x3) is a Schur triple in Zpt, then there are three cases by Lemma 12: p divides exactly
one of (x1, x2, x3), p divides each of (x1, x2, x3), or p divides none of (x1, x2, x3).

Case 1: The two terms xi, xj where i, j ∈ {1, 2, 3} that are not divisible by p are either additive inverses
modulo p or are equal modulo p. Thus, c(xi) = c(xj) and (x1, x2, x3) does not form a triple.

Case 2: The coloring of each xi is inherited from ĉ. Since ĉ does not admit rainbow triples, we know
that this triple will not be rainbow by Lemma 11.

Case 3: The three integers in the triple will be colored from {r + 1, r + 2}, so the triple will not be
rainbow. In each case, c is a rainbow-free r + rb(Zp, 1)− 2-coloring of Zpt.

Proposition 14. For any positive integer n = pα1

1 · · · pαm
m ,

rb(Zn, 1) ≥ 2 +

m
∑

i=1

(

αi(rb(Zpi
, 1)− 2)

)

.

Proof. If n is prime, there is nothing to show. Suppose that the claim holds true for n where n has N prime
factors.

Assume that n = pα1

1 · · · pαm
m where α1 + · · ·+ αm = N + 1. By the induction hypothesis, there exists a

rainbow-free r-coloring of Zn/p1
where

r = 1 +

m
∑

i=1

(

αi(rb(Zpi
, 1)− 2)

)

− rb(Zp1
, 1) + 2.

Therefore, by Lemma 13, there exists a rainbow-free r + rb(Zp1
, 1)− 2 coloring of Zn. Thus, by induction

rb(Zn, 1) ≥ 2 +

m
∑

i=1

(

αi(rb(Zpi
, 1)− 2)

)

.

1.3 Upper Bound

To establish the upper bound for rb(Zn, 1), we consider residue classes and their corresponding residue
palettes under c.

Lemma 15. Let R0, R1, . . . , Rt−1 be the residue classes modulo t for Zst, and let P0, P1, · · · , Pt−1 be the
corresponding residue palettes under rainbow-free c. Then |Pi \ P0| ≤ 1 for 1 ≤ i ≤ t− 1.

Proof. Assume that |Pi \ P0| ≥ 2. Then Ri must contain at least two elements which receive colors that do
not appear in P0. Without loss of generality, let G and B denote two colors in Pi \P0. Then there exists two
integersm and n such that c(mt+i) = G and c(nt+i) = B. Consider the Schur triple (mt−nt, nt+i,mt+i).
Notice that mt− nt ≡ 0 mod t, c(mt− nt) 6= G,B. Thus, we have a rainbow triple under c in Zst, which is
a contradiction. Therefore, |Pi \ P0| ≤ 1 for 1 ≤ i ≤ t− 1.

Lemma 15 lets us create a well-defined reduction of a coloring of Zst to a coloring of Zt.

Lemma 16. Let s and t be positive integers. Let R0, R1, . . . , Rt−1 be the residue classes modulo t for Zst

with corresponding residue palettes Pi. Suppose c is a coloring of Zst where |Pi \P0| ≤ 1. Let ĉ be a coloring
of Zt given by

ĉ(i) :=

{

Pi \ P0 if |Pi \ P0| = 1

α otherwise

where α 6∈ Pi for 0 ≤ i ≤ t. If ĉ contains a rainbow Schur triple, then c contains a rainbow Schur triple.

6



Proof. Suppose (x1, x2, x3) is a rainbow Schur triple in ĉ. Then, at least two of x1, x2, x3 must receive a
color other than α. We consider the following two cases.

Case 1: Neither x1 nor x2 receive color α.
Without loss of generality, assume that c(x1) = G and C(x2) = B. This implies that there exist n,m

such that c(nt + x1) = G and c(mt + x2) = B. There is a Schur triple of the form (nt + x1,mt + x2, (n +
m)t + (x1 + x2)) in Zst. Since x1 + x2 ≡ x3 mod t, (n + m)t + (x1 + x2) is in the residue class Rx3

. As
ĉ(x3) 6= G,B, we have G,B /∈ Px3

. Therefore, the triple (nt+ x1,mt+ x2, (n+m)t+ (x1 + x2)) is rainbow.
Case 2: One of x1 or x2 is colored α.
Without loss of generality, assume that c(x1) = α, c(x2) = B, and c(x3) = G. Then c(nt + x2) = B for

some n, and c(mt + x3) = G for some m. There is a Schur triple of the form ((m − n)t + (x3 − x2), nt +
x2,mt+x3) in Zst. Since x1+x2 ≡ x3 mod t, (m−n)t+(x3−x2) is in the residue class Rx1

. As ĉ(x1) = α,
we have G,B /∈ Px1

. Therefore, the triple ((m− n)t+ (x3 − x2), nt+ x2,mt+ x3) is rainbow.
Hence, if ĉ has a rainbow Schur triple, then c has a rainbow Schur triple.

We use the coloring described in Lemma 16 to prove an upper bound for rb(Zst, 1).

Proposition 17. Let s and t be positive integers. Then rb(Zst, 1) ≤ rb(Zs, 1) + rb(Zt, 1)− 2.

Proof. Let c be an exact r-coloring of Zst, and let ĉ be a coloring constructed from c as in Lemma 16. Notice
that the set of colors used in c is comprised of the colors in R0 and each color used in ĉ other than α. Thus,
r = |P0|+ |ĉ| − 1, where |ĉ| is the number of colors appearing in ĉ. If c is a rainbow-free coloring of Zst, then
R0 is a rainbow-free coloring of Zs. Thus, |P0| ≤ rb(Zs, 1) − 1. Also, ĉ is a rainbow-free coloring of Zt, so
|ĉ| ≤ rb(Zt, 1)− 1. Thus, r ≤ rb(Zs, 1) + rb(Zt, 1)− 3. If we let c be the maximum rainbow-free coloring of
Zst, then r = rb(Zst, 1)− 1. This shows that rb(Zst, 1) ≤ rb(Zs, 1) + rb(Zt, 1)− 2.

Using both the upper bound we just established and the lower bound established in Proposition 14 of
Section 1.2, we prove Theorem 2.

Proof of Theorem 2. Recursively applying Proposition 17 to prime factors of n yields

rb(Zn, 1) ≤ 2 +

m
∑

i=1

(

αi(rb(Zpi
, 1)− 2)

)

.

Since this is identical to the lower bound from Proposition 14 in Section 1.2, we can conclude

rb(Zn, 1) = 2 +

m
∑

i=1

(

αi(rb(Zpi
, 1)− 2)

)

.

2 Triples for x1 + x2 = px3, p prime

Section 2 is dedicated to proving Theorem 5. In Section 2.1, we establish exact values for rb(Zq, p) where
p 6= q are prime. Finding an exact value for rb(Zp, p) is more difficult, and is the subject of Section 2.2.
Some properties of rainbow-free colorings of Zq are used in the construction of the general lower bound in
Section 2.3. The equivalent upper bound is proved in 2.4. Combining Sections 2.3 and 2.3 proves Theorem
5.
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2.1 Exact values for rb(Zq, p), p 6= q prime

Lemmas 20, 21, 22, 23 establish the upper bound rb(Zq , p) ≤ 4. These lemmas are proven by assuming that
there exists a rainbow-free r-coloring c with r ≥ 4, and reducing c to a 3-coloring ĉ. In each case, we find
that ĉ does not conform to the structure of a rainbow-free 3-coloring outlined in Theorem 18 proven in [8].
For convenience, we include Theorem 18 and the necessary definitions from [8].

For a subset X ⊆ Z
∗

q and a ∈ Z
∗

q define aX := {ax | x ∈ X}, X + a := {x + a | x ∈ X}, and
X − a := X + (−a). We say the set aX is the dilation of X by a. Let 〈x〉 ≤ Z

∗

q denote the subgroup
multiplicatively generated by x. A subset X ∈ Z

∗

q is H-periodic if X is the union of cosets of H , where
H ≤ Z

∗

p. In the case that X is 〈−1〉-periodic, we say that X is symmetric. This coincides with the notion
that X is symmetric if and only if X = −X .

Theorem 18. [[8], Theorem 2] A 3-coloring Zq = A ∪ B ∪ C with 1 ≤ |A| ≤ |B| ≤ |C| is rainbow-free for
x1 + x2 = kx3 if and only if, up to dilation, one of the following holds.

1. A = {0} and both B and C are symmetric and 〈k〉-periodic subsets.

2. A = {1} for

(i) k = 2 mod q, (B − 1) and (C − 1) are symmetric and 〈2〉-periodic subsets.

(ii) k = −1 mod q, (B \ {2}) + 2−1, (C \ {2}) + 2−1 are symmetric subsets.

3. |A| ≥ 2, for k = −1 mod q and A,B, and C are arithmetic progressions with difference 1 such that
A = [a1, a2 − 1], B = [a2, a3 − 1], and C = [a3, a1 − 1], with (a1 + a2 + a3) = 1 or 2.

Suppose that q ≥ 5 is prime. Let c be a coloring of Zq with color classes C1, . . . , Cr with 1 ≤ |C1| ≤
|C2| ≤ · · · ≤ |Cr| and r ≥ 4.

Observation 19. If C1 = {0} and C2 = {x}, then (x,−x, 0) is a rainbow triple for x 6= 0.

Therefore, if c has two or more singleton color classes, we can assume that {0} is not a color class.
Furthermore, since dilation preserves the rainbow-free property, we can assume that if |C2| = 1, then
C1 = {1}.

Lemma 20. If p 6≡ −1 mod q and |C2| = 1, then c admits a rainbow triple.

Proof. Consider the coloring ĉ given by the color classes C1, C2,
⋃r

i=3
Ci. If ĉ admits a rainbow triple, then

c also admits a rainbow triple and we are done. If ĉ does not admit a rainbow triple, then ĉ must conform
to case 2.(i) in Theorem 18. Therefore, p ≡ 2 mod q. In this case, triples satisfying x1 +x2 = kx3 in Zq are
3-term arithmetic progressions. In [5], Proposition 3.5 establishes that rb(Zq , 2) ≤ 4. Therefore, there exists
a rainbow triple under c.

Lemma 21. If p ≡ −1 mod q and |C3| = 1, then c admits a rainbow triple.

Proof. Let C2 = {x}, C3 = {y}. For the sake of contradiction, assume that c is rainbow free.
If x = 2, then (x,−3, 1) is a rainbow triple. The same argument for y shows that x, y 6= 2.
Consider the coloring ĉ given by the color classes C1, C2,

⋃r
i=3

Ci. Then by Theorem 18 we must have
C2 \ {2}+ 2−1 is symmetric and so x + 2−1 = −2−1 − x. Solving for x gives that x = −2−1. Considering
the coloring given by C1, C3, C2 ∪

⋃r
i=4

Ci gives that y = −2−1, which is a contradiction.

Lemma 22. If p 6≡ −1 mod q, and |C2| ≥ 2, then c admits a rainbow triple.

Proof. For the sake of contradiction, suppose that c does not admit a rainbow triple. Consider the coloring
ĉ given by C1 ∪ C2, C3,

⋃r
i=4

Ci. Since |C3| ≥ |C2| ≥ 2, notice that ĉ does not have a singleton color class
and is rainbow-free. This contradicts Theorem 18.

Lemma 23. If p ≡ −1 mod q and |C3| ≥ 2, then c admits a rainbow triple.
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Proof. For the sake of contradiction, suppose that c does not admit a rainbow triple. There are two cases:
|C2| ≥ 2, or |C2| = 1.

Case 1: Assume that |C2| ≥ 2 and C1 = {x}. By Theorem 18, the coloring C1 ∪ C2, C3,
⋃r

i=4
Ci is of

the form
C1 ∪ C2 = [a1, a2 − 1],

C3 = [a2, a3 − 1],

r
⋃

i=4

Ci = [a3, a1 − 1].

x is not adjacent to at least one of C3 or
⋃r

i=4
Ci. Without loss of generality, assume x is not adjacent

to C3 (the other case follows the same argument). Consider the coloring ĉ given by C2, C1 ∪ C3,
⋃r

i=4
Ci.

Notice that ĉ can only be dilated by 1 or −1 to preserve the interval structure of
⋃r

i=4
Ci. However, dilating

by 1 or −1 will not make C1 ∪ C3 an arithmetic progression with difference 1. This is a contradiction.
Case 2: Assume that |C2| = 1. Consider the coloring ĉ given by C1 ∪ C2, C3,

⋃r
i=4

Ci. By Theorem 18,
ĉ is of the form

C1 ∪ C2 = [a1, a2 − 1],

C3 = [a2, a3 − 1],

r
⋃

i=4

Ci = [a3, a1 − 1]

with a1 + a2 + a3 ∈ {1, 2}. Since every set is an arithmetic progression with difference 1, a2 − 1 = a1 + 1.
This implies that a3 ∈ {−2a1 − 1,−2a1}. This implies that c(−2a1 − 1) 6= c(a1), c(a1 + 1). Therefore, triple
(−2a1 − 1, a1, a1 + 1) is rainbow, which is a contradiction.

Proof of Theorem 3. By Lemmas 20, 21, 22, and 23, we know that rb(Zq , p) ≤ 4. Therefore, it suffices to
show that there exists a rainbow-free 3-coloring of Zq if and only if p, q do not satisfy either condition 1 or 2.
First we will prove that if there exists a rainbow-free 3-coloring, then p, q do not satisfy conditions 1 and 2.

Let c be a rainbow-free 3-coloring. There are two cases, p 6≡ −1 mod q or p ≡ −1 mod q.
Case 1: By Theorem 18, either 0 is uniquely colored, or p ≡ 2 mod q.
Suppose 0 is uniquely colored and c(1) = R. Notice that if c(x) = R, then c(px) = R and c(−x) = R. If

p, q satisfy either 1 or 2, then {pi,−pi | i ∈ Z} = Z
∗

q , which contradicts the fact that c is a 3-coloring.
Suppose p ≡ 2 mod q. Then neither 1 nor 2 are satisfied by Theorem 3.5 in [7].
Case 2: Suppose p ≡ −1 mod q. Then |p| = 2. If (q − 1)/2 is odd, then (q − 1)/2 6= 2. Therefore,

neither 1 nor 2 are satisfied.
To prove the reverse direction, suppose that p, q do not satisfy either 1 or 2. Let c be given by

C1 = {0}, C2 = {pi,−pi | i ∈ Z}, C3 = Z
∗

q \ C2.

Since p, q do not satisfy either 1 or 2, C3 is non-empty. Notice that any rainbow triple must contain 0 and
some element y ∈ C2. However, if 0, y, z is a triple, then z ∈ C2. Therefore, c is rainbow-free.

The following corollary is used in Section 2.3 to prove a general lower bound for rb(Zn, p).

Corollary 24. There exists a maximum rainbow-free coloring of Zq where 0 is uniquely colored and the color
classes are symmetric.
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2.2 Exact values for rb(Zpα , p), p prime

In order to determine the rainbow numbers for equations of the form x1 + x2 = px3 for prime p ≥ 3 we
still need to determine rb(Zpα , p) for α ≥ 1. We will prove Theorem 4 using induction. Observation 25 and
Propositions 26, 27, and 28 provide the lower bound and base case for our induction argument. Lemmas 29
and 30 provide the basic structure of a rainbow-free coloring of Zpα . Lastly, Lemmas 31, and 32 exploit the
structure to derive a contradiction by forcing a rainbow triple. Throughout this section, for 0 ≤ k ≤ p− 1,
recall that the kth residue class mod p is the set Rk = {j ∈ Zpα : j ≡ k mod p} and that the kth residue
palette Pk is the set of colors which appear on Rk.

Observation 25. Notice rb(Z3, 3) = 3 and rb(Z9, 3) = 4.

Proposition 26. Let p ≥ 3 be prime. Then rb(Zp, p) =
p+1

2
+ 1.

Proof. To prove the lower bound, consider the following coloring:

c(x) =

{

x 0 ≤ x ≤ p+1

2

−x otherwise
.

Notice that c(x) = c(−x) for all x ∈ Zp. Furthermore, if (x1, x2, x3) is a triple, then x1 = −x2. Thus, c is a
rainbow-free p+1

2
coloring, and rb(Zp, p) >

p+1

2
.

To prove the upper bound, assume that c is an p+1

2
+1 coloring of Zp. By the pigeonhole principle, there

exists x ∈ Zp such that x 6= 0 and c(x) 6= c(−x). Since p ≥ 3, x 6= −x, and there exist y 6= x,−x such that
c(y) 6= c(x), c(−x). Therefore, (x,−x, y) is a rainbow-triple, and rb(Zp, p) ≤

p+1

2
+ 1.

For the rest of the section, we will assume that α ≥ 2.

Proposition 27. For α ≥ 2,
rb(Z3α , 3) > 3.

Proof. Suppose that α ≥ 3 and c̄ is a rainbow-free 3-coloring of Z9. Let c be a 3-coloring of Zpα given by
c(i) := c̄(i mod 9). Assume that x1, x2, x3 is a triple in Z3α . Then x1, x2, x3 is a triple in Z9 and cannot be
rainbow.

Proposition 28. For prime p ≥ 5 and α ≥ 1,

rb(Zpα , p) ≥
p+ 1

2
+ 1.

Proof. Color all of Ri, Rp−i color i for 0 ≤ i ≤ p+1

2
. Suppose x1 + x2 = px3 and x1 ≡ j mod p for

0 ≤ j ≤ p− 1. Then x2 ≡ p− j mod p, and x1, x2, x2 is not rainbow.

Lemma 29. If c does not admit a rainbow triple, then

Pi = Pp−i

when 0 < i < p.

Proof. For the sake of contradiction, suppose that there exists 0 < i < p with G ∈ Pi \ Pp−i. Then there
exists an element px+ i with color G in Ri. Let py + p− i be an element in Rp−i. Notice that

x1 = p(py − x+ p− 1− i) + p− i

x2 = px+ i

x3 = py + p− i

is a triple. SinceG /∈ Pp−i, we have c(x3) = c(x1). Furthermore, x1−x3 = p(py−x+p−1−i)+p−i−py−p+i =
p(y(p − 1) − x + p − 1). Since py + p − i was arbitrary, we can choose y so that y(p − 1) − x + p − 1 6≡ 0

10



mod p. Since y(p− 1)− x+ p− 1 6≡ 0 mod p, we know that y(p− 1)− x+ p− 1 is an additive generator of
Zpα−1 . This implies that Pp−i = {B}.

Let pz + j be an element with c(pz + j) /∈ {G,B}. Then

x1 = p(pz − x+ j − 1) + p− i

x2 = px+ i

x3 = pz + j

is a rainbow triple, which is a contradiction.

Notice that by Lemma 29, it is sufficient to only consider the structure of Ri for 0 < i < p+1

2
.

Lemma 30. Suppose c does not admit a rainbow triple. If there exists 0 < i < p such that |Pi \ P0| ≥ 1,
then |P0| = 1.

Proof. Since c does not admit a rainbow triple, Pi = Pp−i. Without loss of generality, suppose thatG ∈ Pi\P0

and let c(pa1 + i) = c(pa2 + p− i) = G. Let pb ∈ R0 be arbitrary. Consider the following triple:

x1 = pb

x2 = p(pa1 + i− b)

x3 = pa1 + i.

Since c is rainbow-free, c(x1) = c(x2). Next, consider the following triple:

x′

1 = p(pa1 + i− b)

x′

2 = p(pa2 + p− i− pa1 − i+ b)

x′

3 = pa2 + p− i.

Since c is rainbow-free, c(x′

1) = c(x′

2). This implies that

c(pb) = c(p(pa2 + p− i− pa1 − i+ b)).

Notice that difference in position between x′

2 and pb, given by pa2 + p− i− pa1 − i+ b− b, does not depend
on b. Furthermore, pa2 + p − i − pa1 − i + b − b is relatively prime to pα−1. Therefore, all elements in R0

receive the same color.

Lemma 31. Let p be prime with p ≥ 5. If there exists 0 < i < p+1

2
such that |Pi \P0| ≥ 2 and G /∈ Pi ∪P0,

then c admits a rainbow triple.

Proof. For the sake of contradiction, suppose that c does not admit a rainbow triple. Since p ≥ 5 and
|P0| = 1, there exists j 6= i such that 0 < j < p and G ∈ Pj \ (Pi ∪ P0). By Lemma 29, Pj = Pp−j and
Pi = Pp−i. Let c(pa1 + j) = c(pa2 + p− j) = G. Let pb+ i ∈ Ri be arbitrary. Consider the following triple:

x1 = pb+ i

x2 = p(pa1 + j − b− 1) + p− i

x3 = pa1 + j.

Then c(x1) = c(x2). Next consider the following triple:

x′

1 = p(pa1 + j − b− 1) + p− i

x′

2 = p(pa2 + p− j − pa1 − j + b) + i

x′

3 = pa2 + p− j

11



Then c(x′

1) = c(x′

2). This implies that

c(pb + i) = c(p(pa2 + p− j − pa1 − j + b) + i).

Notice that the difference in position between x′

2 and pb+ i, given by pa1 + p− j − pa1 − j + b− b, does not
depend on b. Furthermore, pa2 + p− j − pa1 − j + b− b is relatively prime to pα−1. Therefore, all elements
in Ri receive the same color. This is a contradiction, since |Pi| ≥ 2.

Lemma 32. If p ≥ 5, Zpα is colored with at least 4 colors, and there exists 0 < i < p+1

2
with Im(c) = Pi∪P0

and |Pi \ P0| ≥ 2, then c admits a rainbow triple.

Proof. For the sake of contradiction, suppose that c does not admit a rainbow triple. By Lemma 30, let
P0 = {R}. By Lemma 29, Pi = Pp−i. Since Pi contains all colors except possibly R, there exists a, b, d such
that c(pa+ i) = G, c(pb+ p− i) = B and c(pd+ i) = B. Consider the following triple:

x1 = pa+ i

x2 = p(pb+ p− i− a− 1) + p− i

x3 = pb+ p− i.

Then c(x2) ∈ {B,G}. Let x ∈ {a, d} such that c(px+ i) 6= c(x2) and consider the following triple:

x′

1 = p(pb− p− i− a− 1) + p− i

x′

2 = p(px− pb+ p+ 2i+ a) + i

x′

3 = px+ i.

Notice that c(x′

2) ∈ {B,G}. Furthermore, the difference in position between x′

2 and pa + i, given by
px − pb + p + 2i ≡ 2i mod p, does not depend on a, b, d modulo p. Therefore, for any x ∈ Zp there exists
a ≡ x such that c(pa+ i) ∈ {B,G}.

Since Pp−i contains all colors of c except for possibly R, there exists y such that c(py+p− i) = Y . Select
a ≡ −1 − y mod p such that c(pa + i) ∈ {B,G}. Then the triple (py + p − i, pa+ i, a + y + 1) is rainbow
since a+ y + 1 ∈ R0.

Proof of Theorem 4. Proposition 27 provides the lower bound for p = 3, α ≥ 2. Observation 25 covers the
case when p = 3, α = 1, 2.

We will proceed by induction on α. Suppose that rb(Zpα−1 , 3) = 4 for some α ≥ 3. Let c be a 4 coloring
of Z3α . For the sake of contradiction, suppose that c does not admit a rainbow triple. If |P0| = 4, then c
admits a rainbow triple by the induction hypothesis. Therefore, |P0| ≤ 3 and there exits 0 < i < p such
that |Pi \ P0| ≥ 1. By Lemma 30, |P0| = 1. This implies that im(c) = |Pi \ P0|. By Lemma 32, c admits a
rainbow triple. This completes the case when p = 3.

Let p ≥ 5. With Proposition 26 as the base case, we will proceed by induction on α. Suppose that
rb(Zpα−1 , p) = p+1

2
+ 1 for some α ≥ 2. For the sake of contradiction, suppose that c does not admit a

rainbow triple. If |P0| =
p+1

2
+ 1, then c admits a rainbow triple by the induction hypothesis. Therefore,

|P0| ≤
p+1

2
and there exists 0 < j < p such that |Pj \P0| ≥ 1. By Lemma 30, P0 = {R}. By the pigeon hole

principle, there exists 0 < i < p+1

2
such that |Pi \ P0| ≥ 2. Notice that one of the following must hold:

1. G /∈ Pi ∪ P0 for some color G 6= R,

2. im(c) = Pi ∪ P0.

Therefore, by Lemmas 31 and 32, c must admit a rainbow triple. This completes the case when p ≥ 5.
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2.3 Lower bound for rb(Zn, p), p prime

Since p is the coefficient of the equation that we are considering, we will use q to denote a prime other than
p. Using values for rb(Zq, k), we establish a lower bound for rb(Zn, p). In order to proceed in a similar
manner as with the Schur equation, two lemmas about the structure of triples are necessary.

Lemma 33. If x1 + x2 = kx3 is a triple in Zn where m|x1, x2, x3 for some m|n, m,n ∈ Z, then there exists
a triple of the form x1/m+ x2/m = kx3/m in Z n

m
.

Proof. By definition x1 + x2 = kx3 in Zn implies:

x1 + x2 = qn+ r

kx3 = tn+ r

Divide both equations by m to get:

x1

m
+

x2

m
= q

n

m
+

r

m

k
x3

m
= t

n

m
+

r

m

Now we must check that r
m is an integer. Since m|(x1+x2−qn), we know m|r. By definition, this means

there exists a triple of the form x1/m+ x2/m = x3/m in Z n
m
.

Next, we show that q cannot divide exactly two terms of a triple.

Lemma 34. Let (x1, x2, x3) be a triple of the form x1 + x2 = kx3 in Zqn. If q is relatively prime to k and
q divides two of the terms in (x1, x2, x3) then q must divide the third term in (x1, x2, x3).

Proof. We consider the case where q divides x1, x2 and the case where q divides x1, x3.
Case 1: Assume q divides x1, x2. By definition the equation x1 + x2 = kx3 in Zqn means:

x1 + x2 = c1qn+ r

k · x3 = c2qn+ r

We rearrange the first equation to get q divides x1+x2− c1qn which implies that q divides r. Thus q divides
c2qn+ r which mplies q divides kx3. We know q and k are relativity prime, therefore q must divide x3.

Case 2: Similarly, assume q divides x1, x3. By definition the equation x1 + x2 = kx3 in Zqn means:

x1 + x2 = c1qn+ r

k · x3 = c2qn+ r

From the second equation we get q divides kx3 − c2qn which implies that q divides r. Thus q divides
x1 − c1 · qn− r which implies q divides x2.

Notice that Lemmas 33 and 34 are stated for the equation x1 + x2 = kx3 without the stipulation that k
is prime. We can use the above lemmas to find our lower bound.

Lemma 35. Let q, t be positive integers with q prime, and q 6= p. If there exists a rainbow-free r-coloring of
Zt, then there exists a rainbow-free (r + rb(Zq , p)− 2)-coloring of Zqt.

Proof. Let q, t ∈ Z such that q is prime, and q 6= p. Let ĉ be a rainbow-free r-coloring for Zt and let c̄ be a
maximum coloring of Zq such that 0 is uniquely colored and the other color classes are symmetric subsets, as
described in Corollary 24. Let c be an exact (r+1)-coloring of Zqt if rb(Zq, p) = 3 or an exact (r+2)-coloring
of Zqt if rb(Zq , p) = 4 as follows:

c(x) =

{

ĉ(xq ) x ≡ 0 mod q

r + c̄(x mod q) otherwise.
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Since q and p are distinct primes, q and p are relatively prime. By Lemma 34, since q is relatively prime
to p, q cannot divide exactly two of the terms in (x1, x2, x3) for the equation x1 + x2 = px3. Therefore, for
all triples in Zqt, q can divide all three elements, no elements, or exactly one element of the triple.

Case 1: If q divides all three terms in (x1, x2, x3), then by the constructions of c, the triple has the same
colors as the triple (x1

q , x2

q , x3

q ) in ĉ. By Lemma 33, if (x1, x2, x3) is a triple in Zqt and q|x1, x2, x3, then

(x1

q , x2

q , x3

q ) is a triple in Zt. Thus, since ĉ is a rainbow-free coloring, triples where all three elements are
divisible by q cannot be rainbow in c.

Case 2: Suppose q divides none of the terms in (x1, x2, x3), there is a maximum of two colors added on
terms not divisible by q. Thus, there are at most two colors coloring the elements in any such triple, and
triples of the form (x1, x2, x3) with each xi not divisible by q are not rainbow.

Case 3: Suppose q divides exactly one of (x1, x2, x3). First assume q divides x1. Notice that if x1+x2 ≡
px3 mod qt then x1 + x2 ≡ px3 mod q. Since 0 is uniquely colored in c̄, the rainbow-free coloring of Zq,
any triple in Zq of the form 0 + x2 ≡ px3 mod q is colored so that x2 and x3 receive the same color. In
this case, c(x2) = r + c̄(x2 mod q) and c(x3) = r + c̄(x3 mod q), so (x1, x2, x3) is not rainbow under c. If
q divides either x2 or x3 the argument proceeds the same way.

Proposition 36. Let p be prime and let n be an integer with prime factorization n = pα · qα1

1 · qα2

2 · · · qαm
m

where qi is prime, qi 6= qj for i 6= j and αi ≥ 0. Then,

rb(Zn, p) ≥ rb(Zpα , p) +

m
∑

i=1

(

αi(rb(Zqi , p)− 2)
)

Proof. If n is a power of p, then there is nothing to show. Suppose that the claim holds true for n where n
has N prime factors that are not p.

Assume that n = pα · qα1

1 · qα2

2 · · · qαm
m where α1 + · · ·+ αm = N + 1. By the induction hypothesis, there

exists a rainbow-free r-coloring of Zn/q1 where

r = rb(Zpα , p) +

m
∑

i=1

(

αi(rb(Zqi , p)− 2)
)

− rb(Zq1 , p) + 2.

Therefore, by Lemma 35 there exists a rainbow-free r + Zq1 , p)− 2 coloring of Zn. Thus, by induction

rb(Zpα , p) +

m
∑

i=1

(

αi(rb(Zqi , p)− 2)
)

.

2.4 Upper bound for rb(Zn, p), p prime

In this section we prove an upper bound matching Proposition 36. The proof of the upper bound uses the
following lemmas.

Lemma 37. Suppose c is a rainbow-free coloring of Zqt for x1 + x2 = px3 where t is some positive integer
and q 6= p is prime. Let R0, · · · , Rt−1 be the residue classes modulo t of Zqt, with corresponding color
palettes P0, · · · , Pt−1. Let j be an index such that |Pj | ≥ |Pi| for all 0 ≤ i ≤ t− 1. Then |Pi \ Pj | ≤ 1 for all
0 ≤ i ≤ t− 1.

Proof. For the sake of contradiction, assume that there exists i such that |Pi \ Pj | ≥ 2. This implies that
there exists tu+ i and tv+ i with colors G and B respectively, that are not in Pj . Without loss of generality,
v > u

First suppose that Ppi−j 6= Pj . There are two cases: either Ppi−j has a color that is not in Pj , or Pj has
a color that is not in Ppi−j .
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Case 1: Suppose that c(st+ pi− j) /∈ Pj . Without loss of generality, c(st+ pi− j) 6= G. Then

x1 = ts+ pi− j

x2 = ptu+−ts+ j

x3 = tu+ i

is a rainbow triple.
Case 2: Suppose that c(ts+ j) /∈ Ppi−j . Then

x1 = ts+ j

x2 = ptu− ts+ pi− j

x3 = tu+ i

is rainbow.
Since c is assumed to be rainbow-free, both cases result in a contradiction. Therefore, Pj = Ppi−j .
Let ts+ j ∈ Rj . Since c is rainbow-free, c(ptu− ts+ pi− j) = c(ts+ j). Similarly, the triple

{t(pu− s) + pi− j, t(pv − pu+ s) + j, tv + i}

shows that c(ptv − ptu + ts + j) = c(ptu − ts + pi − j) = c(ts + j). Notice that the difference of position
between ptv − ptu+ ts+ j and ts+ j in Rj is p(v − u). Since p 6= q is prime and v − u < q, we know that
p(v − u) generates Zq. Therefore, Rj is monochromatic; this contradicts the maximality of |Pj |.

Lemma 37 allows us to create a well-defined reduction of a coloring of Zqt to a coloring of Zt.

Lemma 38. Let t be a positive integer and q 6= p be prime. Let R0, R1, · · · , Rt−1 be the residue classes
modulo t for Zqt with corresponding residue palettes {Pi}. Let j be an index such that |Pj | ≥ |Pi| for all
0 ≤ i < t. Suppose c is a coloring of Zqt where |Pi \ Pj | ≤ 1. Let ĉ be a coloring of Zt such that:

ĉ(i) :=

{

Pi \ Pj if |Pi \ Pj | = 1

α otherwise

If ĉ contains a rainbow triple then c contains a rainbow triple.

Proof. Suppose that (x1, x2, x3) is a rainbow triple in Zt under ĉ. There are two cases:ĉ(x3) = α, or ĉ(x3) 6= α.
Case 1: If ĉ(x3) = α, then α 6= ĉ(x1), ĉ(x2). Without loss of generality, suppose that x1 and x2 are

colored G and B, respectively. This implies that there exists u, v such that c(tu+x1) = G and c(tv+x2) = B.
We must find integer s such that

u+ v − ps ≡

{

1 mod q x1 + x2 ≥ t

0 mod q x1 + x2 < t
.

Since p and q are relatively prime, we can alway solve for s. Therefore, there exists a rainbow triple in Zqt

under c.
Case 2: Assume ĉ(x3) 6= α. Without loss of generality, ĉ(x1) 6= α, and there exists u, v such that

c(tu + x1) = G and c(tv + x3) = B where G,B /∈ Px2
. Notice that ptv − tu + px3 − x1 ∈ Rx2

. Therefore,
there exist a rainbow triple in Zqt under c.

Proposition 39. Let t be a positive integer, and let q and p be distinct primes. Then

rb(Zqt, p) ≤ rb(Zt, p) + rb(Zq , p)− 2.
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Proof. Let c be a rainbow-free r-coloring of Zqt, and let ĉ be a coloring constructed from c as described in
Lemma 38. Notice that the set of colors used in c is comprised of the colors in Rj and each color used in ĉ
other than α. Thus, we know that r = |Pj |+ |ĉ| − 1, where |ĉ| is the number of colors appearing in ĉ.

Since c is a rainbow-free coloring of Zqt, then c|Rj
must be a rainbow-free coloring of Zq, so |Pj | ≤

rb(Zq , p) − 1. Furthermore, ĉ is a rainbow-free coloring of Zt, implying that |ĉ| ≤ rb(Zt, p) − 1. Therefore,
r ≤ rb(Zt, p)+ rb(Zq, p)−3. If we let c be the maximum rainbow-free coloring of Zqt, then r = rb(Zqt, p)−1.
This shows that rb(Zqt, p) ≤ rb(Zt, p) + rb(Zq , p)− 2.

We can use Proposition 39 to find a matching upper bound for Proposition 36.

Proof of Theorem 5. Recursively applying Proposition 39 for every prime factor pi 6= p of n gives

rb(Zn, p) ≤ rb(Zpα , p) +

m
∑

i=1

(

αi(rb(Zqi , p)− 2)
)

.

Since this is identical to the lower bound from Proposition 36, we can conclude

rb(Zn, p) = rb(Zpα , p) +

m
∑

i=1

(

αi(rb(Zqi , p)− 2)
)

.
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