Michael Tait

Increasing paths in edge-ordered graphs

Michael Tait

University of California-San Diego

mtait@math.ucsd.edu Supported by NSF grant DMS-1427526

January 6, 2016

Michael Tait

Joint work with Jessica De Silva, Theodore Molla, Florian Pfender, and Troy Retter

A game

Let's play a game

What is the longest increasing path you can find?

Definitions

Definition

An edge-ordering ϕ of a graph G is a bijection $\phi: E(G) \rightarrow \{1, \dots, |E(G)|\}.$

Definition

Given an edge-ordering ϕ , and *increasing path* is a path $e_1e_2\cdots e_k$ such that $\phi(e_1) < \phi(e_2) < \cdots < \phi(e_k)$.

Note that a path is a self-avoiding walk, ie no vertex is visited more than once.

A game

Michael Tait

There is an increasing path of length at least 4.

Our opponent

Our goal is to find a long increasing path. Our opponent's goal is to order the edges so that we cannot find a long increasing path.

Our opponent

Our goal is to find a long increasing path. Our opponent's goal is to order the edges so that we cannot find a long increasing path.

Max-min problem

If both players play optimally, how long will the longest increasing path be? Given a graph G, define f(G) to be this length.

Definition

Fix a graph G. Define

 $f(G) = \min_{\phi}$ length of longest increasing path under ϕ

where ϕ runs through all edge-orderings.

History

- Chvátal and Komlós ask about $f(K_n)$ in 1971.
- Graham and Kleitman show $f(K_n) \ge \sqrt{n-1}$ in 1973.
- Rödl shows if G has average degree d, then $f(G) \gtrsim \sqrt{d}$ in 1973.
- A series of upper bounds for $f(K_n)$ follow, settling on $f(K_n) < (1/2 + o(1))n$ by Calderbank, Chung, and Sturtevant in 1984.
- Alon and Yuster study graphs of bounded maximum degree in 2001.

Our Theorems

Theorem (GRWC 2014)

Let Q_d denote the d-dimensional hypercube. Then for all $d \ge 2$,

$$f(Q_d) \ge \frac{d}{\log d}.$$

Theorem (GRWC 2014)

Let ω be any function tending to infinity, and $p \leq \frac{\log n}{\sqrt{n}} \omega(n)$. Then with probability tending to 1,

$$f(G(n,p)) \ge \frac{(1-o(1))np}{\omega(n)\log n}.$$

Both of these bounds are tight up to the logarithmic factor.

Michael Tait (UCSD)

Our theorem shows that a random graph with expected degree just slightly larger than \sqrt{n} satisfies the same lower bound that Graham and Kleitman showed for K_n . We thought that this was good evidence that the lower bound for $f(K_n)$ was not correct.

Theorem (Milans)

 $f(G) = \Omega\left((n/\log n)^{2/3}\right).$

Theorem (Graham-Kleitman 1973, Rödl 1973) Every edge-ordering of K_n contains an increasing path of length at least $\sqrt{n-1}$. That is

$$f(K_n) \ge \sqrt{n-1}.$$

Place a pedestrian on each vertex.

Call out the edges in order. The two pedestrians switch places unless it would cause one of them to revisit a vertex she has already seen.

Call out the edges in order. The two pedestrians switch places unless it would cause one of them to revisit a vertex she has already seen.

Call out the edges in order. The two pedestrians switch places unless it would cause one of them to revisit a vertex she has already seen.

Call out the edges in order. The two pedestrians switch places unless it would cause one of them to revisit a vertex she has already seen.

Michael Tait

Michael Tait (UCSD)

January 6, 2016 20 / 28

Michael Tait

The blue pedestrian has walked an increasing path of length 4 (1 - 4 - 10 - 15).

Theorem (Graham-Kleitman 1973, Rödl 1973)

Every edge-ordering of K_n contains an increasing path of length at least $\sqrt{n-1}$. That is

$$f(K_n) \ge \sqrt{n-1}.$$

Proof:

- Suppose each pedestrian walks $\leq k$ steps during this process.
- Then at most $\frac{kn}{2}$ edges are traversed.
- Each pedestrian declines to walk an edge at most $\binom{k+1}{2} k$ times.

edges walked+edges declined =
$$\binom{n}{2} \leq \frac{kn}{2} + \binom{k}{2}n = \frac{k^2n}{2}.$$

Consider the pedestrian algorithm on an arbitrary graph G. Every edge in G is either traversed or is declined by some pedestrian. An edge may only be declined if it is contained in the subgraph induced by the path walked by a pedestrian.

Lemma

Let G be any graph. If f(G) < k, there exist sets $V_1, \dots, V_n \subset V(G)$ such that $|V_i| \le k$ and every edge of G is contained in a subgraph induced by some V_j .

In particular,

 $n \cdot (\# \text{ edges in densest subgraph on } f(G) \text{ vertices}) \ge |E(G)|.$

Michael Tait

$n \cdot (\# \text{ edges in densest subgraph on } f(G) \text{ vertices}) \ge |E(G)|$

Theorem (GRWC 2014)

$$f(Q_d) \ge \frac{d}{\log d}$$

Proof: Lemma: Any subgraph of a hypercube has density less than or equal to a subhypercube of the same size.

The random graph

Theorem (GRWC 2014)

Let $\omega(n)$ be a function tending to infinity arbitrarily slowly. Then for any $p \geq \frac{\log n}{\sqrt{n}}\omega(n)$, with probability tending to 1

$$f(G(n,p)) \geq \frac{(1-o(1))np}{\omega(n)\log n}$$

Proof: The graphs induced by the pedestrians' paths must cover all of the edges of G(n, p). If $f(G(n, p)) \leq \frac{np}{\omega(n)\log n}$, we get a lower bound on the number of pairs that *cannot* be edges. The probability that this occurs is $o\left(\binom{n}{f(G(n,p))}^n\right)$, i.e. it is so unlikely that even adding up over all possible paths for the pedestrians the probability that it occurs is still o(1).

Upper Bounds

Our opponent wants to label the edges of G so that there is no long increasing path. Constructing an edge-labeling yields an upper bound on f(G).

A first strategy: Consider a proper edge-coloring of a graph G with colors c_1, \dots, c_k . Label the edges with color c_1 with the smallest labels. Label the edges with color c_2 with the next smallest labels. Continue this process. Any increasing path can use at most one edge of each color.

Open problems

Lavrov and Loh studied a variant of this problem. What happens when the edges of K_n are ordered randomly?

Theorem (Lavrov-Loh)

With probability tending to 1, a random edge-ordering of K_n has a monotone path of length at least .85n. With probability at least 1/e - o(1), a random edge-ordering of K_n has an increasing Hamiltonian path.

Conjecture

With probability tending to 1, a random edge-ordering of K_n contains an increasing Hamiltonian path.

Open problems

- Improve the lower bound $f(K_n) = \Omega\left((n/\log n)^{2/3}\right)$.
- Does $f(Q_d) = d$?
- Are there graphs G with $\Delta(G) = k$ and f(G) = k + 1?
- Show a random edge-ordering of K_n contains an increasing Hamiltonian path with probability tending to 1.