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Abstract

A conjecture widely attributed to Neumann is that all finite non-desarguesian pro-
jective planes contain a Fano subplane. In this note, we show that any finite projective
plane of even order which admits an orthogonal polarity contains a Fano subplane. The
number of planes of order less than n previously known to contain a Fano subplane was
O(log n), whereas the number of planes of order less than n that our theorem applies
to is not bounded above by any polynomial in n.
Mathematics Subject Classification: 05C99, 51A35, 51A45

1 Introduction

A fundamental question in incidence geometry is about the subplane structure of pro-
jective planes. There are relatively few results concerning when a projective plane
of order k is a subplane of a projective plane of order n. Neumann [9] found Fano
subplanes in certain Hall planes, which led to the conjecture that every finite non-
desarguesian plane contains PG(2, 2) as a subplane (this conjecture is widely attributed
to Neumann, though it does not appear in her work).

Johnson [7] and Fisher and Johnson [4] showed the existence of Fano subplanes in
many translation planes. Petrak [10] showed that Figueroa planes contain PG(2, 2) and
Caliskan and Petrak [3] showed that Figueroa planes of odd order contain PG(2, 3).
Caliskan and Moorhouse [2] showed that all Hughes planes contain PG(2, 2) and that
the Hughes plane of order q2 contains PG(2, 3) if q ≡ 5 (mod 6). We prove the
following.

Theorem 1. Let Π be a finite projective plane of even order which admits an orthogonal
polarity. Then Π contains a Fano subplane.

Ganley [5] showed that a finite semifield plane admits an orthogonal polarity if and
only if it can be coordinatized by a commutative semifield. A result of Kantor [8]
implies that the number of nonisomorphic planes of order n a power of 2 that can be
coordinatized by a commutative semifield is not bounded above by any polynomial in
n. Thus, Theorem 1 applies to many projective planes.
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2 Proof of Theorem 1

The proof of Theorem 1 is graph theoretic, and we collect some definitions and results
first. Let Π = (P,L, I) be a projective plane of order n. We write p ∈ l or say p is on
l if (p, l) ∈ I. Let π be a polarity of Π. That is, π maps points to lines and lines to
points, π2 is the identity function, and π respects incidence. Then one may construct
the polarity graph Goπ as follows. V (Goπ) = P and p ∼ q if and only if p ∈ π(q). That
is, the neighborhood of a vertex p is the line π(p) that p gets mapped to under the
polarity. If p ∈ π(p), then p is an absolute point and the vertex p will have a loop
on it. A polarity is orthogonal if exactly n + 1 points are absolute. We note that
as neighborhoods in the graph represent lines in the geometry, each vertex in Goπ has
exactly n+ 1 neighbors (if v is an absolute point, it has exactly n neighbors other than
itself). We provide proofs of the following preliminary observations for completeness.

Lemma 1. Let Π be a projective plane with polarity π, and Goπ be the associated polarity
graph.

(a) For all u, v ∈ V (Goπ), u and v have exactly 1 common neighbor.

(b) Goπ is C4 free.

(c) If u and v are two absolute points of Goπ, then u 6∼ v.

(d) If v ∈ V (Goπ), then the neighborhood of v induces a graph of maximum degree at
most 1.

(e) Let e = uv be an edge of Goπ such that neither u nor v is an absolute point. Then
e lies in a unique triangle in Goπ.

Proof. To prove (a), let u and v be an arbitrary pair of vertices in V (Goπ). Because Π
is a projective plane, π(u) and π(v) meet in a unique point. This point is the unique
vertex in the intersection of the neighborhood of u and the neighborhood of v. (b) and
(c) follow from (a).

To prove (d), if there is a vertex of degree at least 2 in the graph induced by the
neighborhood of v, then Goπ contains a 4-cycle, a contradiction by (b).

Finally, let u ∼ v and neither u nor v an absolute point. Then by (a) there is a
unique vertex w adjacent to both u and v. Now uvw is the purported triangle, proving
(e).

Proof of Theorem 1. We will now assume Π is a projective plane of even order n, that
π is an orthogonal polarity, and that Goπ is the corresponding polarity graph (including
loops). Since n is even and π is orthogonal, a classical theorem of Baer ([1], see also
Theorem 12.6 in [6]) says that the n+ 1 absolute points under π all lie on one line. Let
a1, . . . , an+1 be the set of absolute points and let l be the line containing them. Then
there is some p ∈ P such that π(l) = p. This means that in Goπ, the neighborhood
of p is exactly the set of points {a1, . . . , an+1}. For 1 ≤ i ≤ n + 1, let Ni be the
neighborhood of ai. Then by Lemma 1.b, Ni ∩Nj = ∅ if i 6= j. Further, counting gives
that

V (Goπ) = p ∪

(
n+1⋃
i=1

ai

)
∪

(
n+1⋃
i=1

Ni

)
. (1)
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Figure 1: ERo
2

Let ERo2 be the graph on 7 points which is the polarity graph (with loops) of PG(2, 2)
under the orthogonal polarity.

Lemma 2. If ERo2 is a subgraph of Goπ, then Π contains a Fano subplane.

Proof. Let v1, . . . , v7 be the vertices of a subgraph ERo2 of Goπ. Let li = π(vi) for
1 ≤ i ≤ 7. Then the lines l1, . . . , l7 in Π restricted to the points v1, . . . , v7 form a
point-line incidence structure, and one can check directly that it satisfies the axioms
of a projective plane.

Thus, it suffices to find ERo2 in Goπ. To find ERo2 it suffices to find distinct i, j, k
such that there are vi ∈ Ni, vj ∈ Nj , and vk ∈ Nk where vivjvk forms a triangle in Goπ,
for then the points p, ai, aj , ak, vi, vj , vk yield the subgraph ERo2. Now note that for all
i, and for v ∈ Ni, v has exactly n neighbors that are not absolute points. There are
n + 1 choices for i and n − 1 choices for v ∈ Ni. As each edge is counted twice, this
yields

n(n− 1)(n+ 1)

2

edges with neither end an absolute point. By Lemma 1.e, there are at least

n3 − n
6

triangles in Goπ. By Lemma 1.c, there are no triangles incident with p, by Lemma 1.b,
there are no triangles that have more than one vertex in Ni for any i, and by Lemma
1.d there are at most bn−1

2 c = n
2 − 1 triangles incident with ai for each i. Therefore,

by (1), there are at least
n3 − n

6
− (n+ 1)

(n
2
− 1
)

copies of ERo2 in Goπ. This expression is positive for all even natural numbers n.
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3 Concluding Remarks

First, we note that the proof of Theorem 1 actually implies that there are Ω
(
n3
)

copies
of PG(2, 2) in any plane satisfying the hypotheses, and echoing Petrak [10], perhaps
one could find subplanes of order 4 for n large enough. We also note that it is crucial
in the proof that the absolute points form a line. When n is odd, the proof fails (as it
must, since our proof does not detect if Π is desarguesian or not).

Acknowledgments

The author would like to thank Gary Ebert and Eric Moorhouse for helpful comments.

References

[1] Reinhold Baer. Projectivities with fixed points on every line of the plane. Bulletin
of the American Mathematical Society, 52(4):273–286, 1946.

[2] Cafer Caliskan and G Eric Moorhouse. Subplanes of order 3 in hughes planes.
The Electronic Journal of Combinatorics, 18(P2):1, 2011.

[3] Cafer Caliskan and Bryan Petrak. Subplanes of order 3 in figueroa planes. Finite
Fields and Their Applications, 20:24–29, 2013.

[4] J Chris Fisher and Norman L Johnson. Fano configurations in subregular planes.
Note di Matematica, 28(2):69–98, 2010.

[5] MJ Ganley. Polarities in translation planes. Geometriae Dedicata, 1(1):103–116,
1972.

[6] Daniel R Hughes and Frederick Charles Piper. Projective planes, volume 6.
Springer, 1973.

[7] Norman L Johnson. Fano configurations in translation planes of large dimension.
Note di Matematica, 27(1):21–38, 2009.

[8] William M Kantor. Commutative semifields and symplectic spreads. Journal of
Algebra, 270(1):96–114, 2003.

[9] Hanna Neumann. On some finite non-desarguesian planes. Archiv der Mathematik,
6(1):36–40, 1954.

[10] Bryan Petrak. Fano subplanes in finite figueroa planes. Journal of Geometry,
99(1-2):101–106, 2010.

4


