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Abstract

Hegyvári and Hennecart showed that if B is a sufficiently large brick of a Heisenberg
group, then the product set B ·B contains many cosets of the center of the group. We
give a new, robust proof of this theorem that extends to all extra special groups as
well as to a large family of quasigroups.

1 Introduction

Let p be a prime. An extra special group G is a p-group whose center Z is cyclic of order
p such that G/Z is an elementary abelian p-group (nice treatments of extra special groups
can be found in [2, 6]). The extra special groups have order p2n+1 for some n ≥ 1 and occur
in two families. Denote by Hn and Mn the two non-isomorphic extra special groups of order
p2n+1. Presentations for these groups are given in [4]:

Hn = 〈a1, b1, . . . , an, bn, c | [ai, aj] = [bi, bj] = 1, [ai, bj] = 1 for i 6= j,

[ai, c] = [bi, c] = 1, [ai, bi] = c, api = bpi = cpi = 1 for 1 ≤ i ≤ n〉
Mn = 〈a1, b1, . . . , an, bn, c | [ai, aj] = [bi, bj] = 1, [ai, bj] = 1 for i 6= j,

[ai, c] = [bi, c] = 1, [ai, bi] = c, api = cpi = 1, bpi = c for 1 ≤ i ≤ n〉.

From these presentations, it is not hard to see that the center of each of these groups consists
of the powers of c so are cyclic of order p. It is also clear that the quotient of both groups
by their centers yield elementary abelian p-groups.

In this paper we consider the structure of products of subsets of extra special groups. The
structure of sum or product sets of groups and other algebraic structures has a rich history
in combinatorial number theory. One seminal result is Freiman’s theorem [5], which asserts
that if A is a subset of integers and |A + A| = O(|A|), then A must be a subset of a small
generalized arithmetic progression. Green and Ruzsa [7] showed that the same result is true
in any abelian group. On the other hand, commutativity is important as the theorem is
not true for general non-abelian groups [8]. With this in mind, Hegyvári and Hennecart
were motivated to study what actually can be said about the structure of product sets in
non-abelian groups. They proved the following theorem.
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Theorem 1.1 (Hegyvári-Hennecart, [9]). For every ε > 0, there exists a positive integer
n0 such that if n ≥ n0, B ⊆ Hn is a brick and

|B| > |Hn|3/4+ε

then there exists a non trivial subgroup G′ of Hn, namely its center [0, 0,Fp], such that B ·B
contains at least |B|/p cosets of G′.

The group H1 is the classical Heisenberg group, so the groups Hn form natural general-
izations of the Heisenberg group. Our main focus is on the second family of extra special
groups Mn. The group Hn has a well-known representation as a subgroup of GLn+2(Fp)
consisting of upper triangular matrices

[x, y, z] :=

1 x z
0 In y
0 0 1


where x, y ∈ Fnp , z ∈ Fp, and In is the n×n identity matrix. Let ei ∈ Fnp be the ith standard
basis vector. In the presentation for Hn, ai corresponds to [ei, 0, 0], bi corresponds to [0, ei, 0]
and c corresponds to [0, 0, 1]. By matrix multiplication, we have

[x, y, z] · [x′, y′, z′] = [x+ x′, y + y′, z + z′ + 〈x, y′〉]

where 〈 , 〉 denotes the usual dot product.

A second focus of this paper is to consider generalizations of the higher dimensional Heisen-
berg groups where entries come from a quasifield Q rather than Fp. We recall the definition
of a quasifield:

A set L with a binary operation ∗ is called a loop if

1. the equation a ∗ x = b has a unique solution in x for every a, b ∈ L,

2. the equation y ∗ a = b has a unique solution in y for every a, b ∈ L, and

3. there is an element e ∈ L such that e ∗ x = x ∗ e = x for all x ∈ L.

A (left) quasifield Q is a set with two binary operations + and ∗ such that (Q,+) is a
group with additive identity 0, (Q∗, ∗) is a loop where Q∗ = Q\{0}, and the following three
conditions hold:

1. a ∗ (b+ c) = a ∗ b+ a ∗ c for all a, b, c ∈ Q,

2. 0 ∗ x = 0 for all x ∈ Q, and

3. the equation a ∗ x = b ∗ x+ c has exactly one solution for every a, b, c ∈ Q with a 6= b.

Given a quasifield Q, we define Hn(Q) by the set of elements

{[x, y, z] : x ∈ Qn, y ∈ Qn, z ∈ Q}

and a multiplication operation defined by

[x, y, z] · [x′, y′, z′] = [x+ x′, y + y′, z + z′ + 〈x, y′〉].

Then Hn(Q) is a quasigroup with an identity element (ie, a loop), and when Q = Fp we
have that Hn(Q) is the n-dimensional Heisenberg group Hn.
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1.1 Statement of main results

Let Hn be a Heisenberg group. A subset B of Hn is said to be a brick if

B = {[x, y, z] such that x ∈ X, y ∈ Y , z ∈ Z}

where X = X1 × · · · ×Xn and Y = Y1 × · · · × Yn with non empty-subsets Xi, Yi, Z ⊆ Fp.

Our theorems are analogs of Hegyvári and Hennecart’s theorem for the groups Mn and the
quasigroups Hn(Q). In particular, their structure result is true for all extra special groups.
We will define what it means for a subset B of Mn to be a brick in Section 2.1.

Theorem 1.2. For every ε > 0, there exists a positive integer n0 = n0(ε) such that if
n ≥ n0, B ⊆Mn is a brick and

|B| > |Mn|3/4+ε

then there exists a non trivial subgroup G′ of Mn, namely its center, such that B ·B contains
at least |B|/p cosets of G′.

Combining Theorem 1.1 and Theorem 1.2, we have
Theorem 1.3. Let G be an extra special group. For every ε > 0, there exists a positive
integer n0 = n0(ε) such that if n ≥ n0, B ⊆ G is a brick and

|B| > |G|3/4+ε

then there exists a non trivial subgroup G′ of G, namely its center, such that B ·B contains
at least |B|/p cosets of G′.

For Q a finite quasifield, we similarly define a subset B ⊆ Hn(Q) to be a brick if

B = {[x, y, z] such that x ∈ X, y ∈ Y , z ∈ Z}

where X = X1 × · · · ×Xn and Y = Y1 × · · · × Yn with non empty-subsets Xi, Yi, Z ⊆ Q.

Theorem 1.4. Let Q be a finite quasifield of order q. For every ε > 0, there exists an
n0 = n0(ε) such that if n ≥ n0, B ⊆ Hn(Q) is a brick, and

|B| > |Hn(Q)|3/4+ε,

then there exists a non trivial subquasigroup G′ of Hn(Q), namely its center [0, 0, Q] such
that B ·B contains at least |B|/q cosets of G′.

Taking Q = Fp gives Theorem 1.1 as a corollary.

2 Preliminaries

2.1 A description of Mn

We give a description of Mn with which it is convenient to work. Define a group G whose
elements are triples [x, y, z] where x = (x1, . . . , xn), y = (y1, . . . , yn), with xi, yi, z ∈ Fp for
1 ≤ i ≤ n. The group operation in G is given by

[x, y, z] · [x′, y′, z′] = [x+ x′, y + y′, z + z′ + 〈x, y′〉+ f(y, y′)]
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where the function f : Zn × Zn → N is defined by

f ((y1, . . . , yn), (y′1, . . . , y
′
n)) =

n∑
i=1

⌊
yi mod p+ y′i mod p

p

⌋
.

Concretely, f counts the number of components where (after reducing mod p) yi + y′i ≥ p.
This is slight abuse of notation, as y, y′ ∈ Fnp , but is well-defined if we regard them as
elements of Zn.
Lemma 2.1. With the operation defined above, G is a group isomorphic to Mn.

Proof. We first need to check associativity of the operation. After cancellation, this reduces
to checking the equality

f(y + y′, y′′) + f(y, y′) = f(y, y′ + y′′) + f(y′, y′′)

which holds because⌊
(yi + y′i) mod p+ yi mod p

p

⌋
+

⌊
yi mod p+ y′i mod p

p

⌋
=

⌊
yi mod p+ y′i mod p+ y′′i mod p

p

⌋
=

⌊
(yi + y′i) mod p+ yi mod p

p

⌋
+

⌊
(yi + y′i) mod p+ yi mod p

p

⌋
,

as all three of the expressions count the largest multiple of p dividing

yi mod p+ y′i mod p+ y′′i mod p.

Since G is generated {[ei, 0, 0], [0, ei, 0], [0, 0, 1]}, we define a homomorphism ϕ : G→Mn by
ϕ
(
[ei, 0, 0]

)
= ai, ϕ

(
[0, ei, 0]

)
= bi, and ϕ ([0, 0, 1]) = c. This map is clearly surjective and

it is easy to check that the generators of G satisfy the relations in Mn. Since |G| = p2n+1,
ϕ is an isomorphism and G ∼= Mn, as claimed.

With this description, there is a natural way to define a brick in Mn. A subset B of Mn is
said to be a brick if

B = {[x, y, z] such that x ∈ X, y ∈ Y , z ∈ Z}

where X = X1 × · · · ×Xn and Y = Y1 × · · · × Yn with non empty-subsets Xi, Yi, Z ⊆ Fp.

2.2 Tools from spectral graph theory

For a graph G with vertex set {v1, . . . , vn}, the adjacency matrix of G is the matrix with a 1
in row i and column j if vi ∼ vj and a 0 otherwise. Since this is a real, symmetric matrix, it
has a full set of real eigenvalues. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of its adjacency
matrix.

If G is a d-regular graph, then its adjacency matrix has row sum d. In this case, λ1 = d
with the all-one eigenvector 1. Let vi denote the corresponding eigenvector for λi. We will
make use of the trick that for i ≥ 2, vi ∈ 1⊥, so Jvi = 0 where J is the all-one matrix of
size n× n (see [3] for more background on spectral graph theory).
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It is well-known (see [1, Chapter 9] for more details) that if λ2 is much smaller than the
degree d, then G has certain random-like properties. A graph is called bipartite if its vertex
set can be partitioned into two parts such that all edges have one endpoint in each part. For
G be a bipartite graph with partite sets P1 and P2 and U ⊆ P1 and W ⊆ P2, let e(U,W ) be
the number of pairs (u,w) such that u ∈ U , w ∈ W , and (u,w) is an edge of G. We recall
the following well-known fact (see, for example, [1]).

Lemma 2.2 (Corollary 9.2.5, [1]). Let G = (V,E) be d-regular bipartite graph on 2n vertices
with partite sets P1 and P2. For any two sets B ⊆ P1 and C ⊆ P2, we have∣∣∣∣e(B,C)− d|B||C|

n

∣∣∣∣ ≤ λ2
√
|B||C|.

2.3 Sum-product graphs

Let Q be a finite quasifield. The sum-product graph SPQ,n is defined as follows. SPQ,n is a
bipartite graph with its vertex set partitioned into partite sets X and Y, where X = Y =
Qn × Q. Two vertices U = (x, z) ∈ X and V = (y, z′) ∈ Y are connected by an edge,
(U, V ) ∈ E(SPQ,n), if and only if 〈x, y〉 = z+z′. We need information about the eigenvalues
of SPQ,n.

Lemma 2.3. If Q is a quasifield of order q, then the graph SPQ,n is qn regular and has
λ2 ≤ 21/2qn/2.

We provide a proof of Lemma 2.3 for completeness in the appendix, and we note that similar
lemmas were proved in [11] and [10].

3 Proof of Theorem 1.2

Lemma 3.1. Let B ⊆ Mn be a brick in Mn with B = [X, Y , Z] where X = X1 × · × Xn

and Y = Y1 × · · · × Yn. For given a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Fnp , suppose that

|Z|2
n∏
i=1

|Xi ∩ (ai −Xi)||Yi ∩ (bi − Yi)| > 2pn+2,

then we have
B ·B ⊇ [a, b,Fp].

Proof. Let X ′i = Xi∩(ai−Xi), Y
′
i = Yi∩(bi−Yi), X ′ = (X ′1, . . . , X

′
n), and Y ′ = (Y ′1 , . . . , Y

′
n).

We first have

B ·B ⊇ {[x, y, z] · [a− x, b− y, z′] : x ∈ X ′, y ∈ Y ′, z, z′ ∈ Z}.

On the other hand, it follows from the multiplicative rule in Mn that for

[x, y, z] · [a− x, b− y, z′] = [a, b, z + z′ + 〈x, (b− y)〉+ f(y, b− y)].

To conclude the proof of the lemma, it is enough to prove that{
z + z′ + 〈x, (b− y)〉+ f(y, b− y) : z, z′ ∈ Z, x ∈ X ′, y ∈ Y ′

}
= Fp
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under the condition |Z|2|X ′||Y ′| > 2pn+2.

To prove this claim, let λ be an arbitrary element in Fp, we define two sets in the sum-
product graph SPFp,n, E ⊆ X and F ⊆ Y as follows:

E = X ′ × (−Z + λ), F =
{

(b− y,−z − f(y, b− y)) : z ∈ Z, y ∈ Y ′
}
.

It is clear that |E| = |Z||X ′| and |F | = |Z||Y ′|. It follows from Lemma 2.2 and Lemma 2.3
that if |Z|2|X ′||Y ′| > 2pn+2, then e(E,F ) > 0. It follows that there exist x ∈ X ′, y ∈ Y ′,
and z, z′ ∈ Z such that

z + z′ + 〈x, (b− y)〉+ f(y, b− y) = λ.

Since λ is chosen arbitrarily, we have{
z + z′ + 〈x, (b− y)〉+ f(y, b− y) : z, z′ ∈ Z, x ∈ X ′, y ∈ Y ′

}
= Fp.

Proof of Theorem 1.2. We follow the method of [9, Theorem 1.3]. First we note that if
|Z| > p/2, then we have Z + Z = Fp. This implies that

B ·B = [2X, 2Y ,Fp].

Therefore, B ·B contains at least |B ·B|/p ≥ |B|/p cosets of the subgroup [0, 0,Fp]. Thus,
in the rest of the proof, we may assume that |Z| ≤ p/2.

For 1 ≤ i ≤ n, we have∑
ai∈Fp

|Xi ∩ (ai −Xi)| = |Xi|2,
∑
bi∈Fp

|Yi ∩ (bi − Yi)| = |Yi|2,

which implies that

n∏
i=1

∑
ai∈Fp

|Xi ∩ (ai −Xi)|

∑
bi∈Fp

|Yi ∩ (bi − Yi)|

 =
n∏
i=1

|Xi|2|Yi|2.

Therefore we obtain∑
a,b∈Fn

p

n∏
i=1

|Xi ∩ (ai −Xi)||Yi ∩ (bi − Yi)| =
n∏
i=1

|Xi|2|Yi|2. (1)

Let N be the number of pairs (a, b) ∈ Fnp × Fnp such that

|Z|2
n∏
i=1

|Xi ∩ (ai −Xi)||Yi ∩ (bi − Yi)| > 2pn+2.

It follows from Lemma 3.1 that [a, b,Fp] ⊆ B ·B for such pairs (a, b). Then by equation (1)(
n∏
i=1

|Xi||Yi|

)
N + 2pn+2(p2n −N) >

(
n∏
i=1

|Xi||Yi|

)2

,

and so

N >

∏n
i=1 |Xi|2|Yi|2 − 2p3n+2∏n
i=1 |Xi||Yi| − 2pn+2

.
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By the assumption of Theorem 1.2, we have

|B| = |Z|

(
n∏
i=1

|Xi||Yi|

)
> |Mn|3/4+ε = p3n/2+3/4+ε(2n+1). (2)

Thus when n > 1/ε, we have
n∏
i=1

|Xi||Yi| > p3n/2+7/4,

since |Z| ≤ p.

In other words,

N ≥ (1− 2p−3/2)
n∏
i=1

|Xi||Yi| = (1− 2p−3/2)
|B|
|Z|
≥ |B|

p
,

since |Z| ≤ p/2.

4 Proof of Theorem 1.4

Lemma 4.1. Let Q be a quasifield of order q and let [X, Y , Z] = B ⊆ Hn(Q) be a brick.
For a given a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Qn, suppose that

|Z|2
n∏
i=1

|Xi ∩ (ai −Xi)||Yi ∩ (bi − Yi)| > 2qn+2,

then we have
B ·B ⊇ [a, b,Q].

Proof. The proof is similar to that of Lemma 3.1, so we leave some details to the reader.
Let

X ′ = (X1 ∩ (a1 −X1), . . . , Xn ∩ (an −Xn)), Y ′ = (Y1 ∩ (b1 − Y1), . . . , Yn ∩ (bn − Yn))

and E ⊆ X, F ⊆ Y in SPQ,n where

E = X ′ × (−Z + λ), F =
{

(b− y,−z) : z ∈ Z, y ∈ Y ′
}
,

and λ ∈ Q is arbitrary. Then e(E,F ) > 0 which implies that there exist x ∈ X ′, y ∈ Y ′,
and z, z′ ∈ Z such that

z + z′ + 〈x, (b− y)〉 = λ.

This implies that
[a, b,Q] ⊆ B ·B.

The rest of the proof of Theorem 1.4 is identical to that of Theorem 1.2. We need only to
show that if Z ⊆ Q and |Z| > |Q|/2, then Z + Z = Q. However, this follows since the
additive structure of Q is a group.

7



References

[1] N. Alon and J. H. Spencer, The Probabilistic Method, 2nd ed., Wiley-Interscience, 2000.

[2] M. Aschbacher, Finite Group Theory, Vol. 10. Cambridge University Press, 2000.

[3] A. Brouwer and W. Haemers, Spectra of Graphs, Springer, New York, etc., 2012.

[4] P. Diaconis, Threads through group theory, Character Theory of Finite groups, Con-
temporary Mathematics, 524 (2010): 33–47.

[5] G. A. Freiman, Addition of finite sets, Sov. Math. Dokl. 5 (1964) 1366-1370.

[6] D. Gorenstein, Finite Groups, Vol. 301. American Mathematical Soc., 2007.

[7] B. Green and I. Ruzsa, Freiman’s theorem in an arbitrary abelian group, J. Lond.
Math. Soc. 75 (2007), 163-175.
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Appendix

Proof of Lemma 2.3. Let Q be a finite quasifield of order q and let SPQ,n be the bipartite
graph with partite sets X = Y = Qn×Q where (x1, . . . , xn, zx) ∼ (y1, . . . , yn, zy) if and only
if

zx + zy = x1 ∗ y1 + · · ·+ xn ∗ yn. (3)

First we show that SPQ,n is qn regular. Let (x1, . . . , xn, zx) be an arbitrary element of X.
Choose y1, . . . , yn ∈ Q arbitrarily. Then there is a unique choice for zy that makes (3) hold,
and so the degree of (x1, . . . , xn, zx) is qn. A similar argument shows the degree of each
vertex in Y is qn.

Next we show that λ2 is small. Let M be the adjacency matrix for SPQ,n where the first
qn+1 rows and columns are indexed by X. We can write

M =

(
0 N
NT 0

)
where N is the qn+1 × qn+1 matrix whose (x1, . . . , xn, xz)X × (y1, . . . , yn, yz)Y entry is 1 if
(3) holds and 0 otherwise.

The matrix M2 counts the number of walks of length 2 between vertices. Since SPQ,n is
qn regular, the diagonal entries of M2 are all qn. Since SPQ,n is bipartite, there are no
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walks of length 2 from a vertex in X to a vertex in Y. Now let x = (x1, . . . , xn, xz) and
x′ = (x′1, . . . , x

′
n, x

′
z) be two distinct vertices in X. To count the walks of length 2 between

them is equivalent to counting their common neighbors in Y. That is, we must count
solutions (y1, . . . , yn, zy) to the system of equations

xz + yz = x1 ∗ y1 + · · ·+ xn ∗ yn (4)

and
x′z + yz = x′1 ∗ y1 + · · ·+ x′n ∗ yn. (5)

Case 1: For i ≤ 1 ≤ n we have xi = x′i: In this case we must have xz 6= x′z. Subtracting (4)
from (5) shows that the system has no solutions and so x and x′ have no common neighbors.

Case 2: There is an i such that xi 6= x′i: Subtracting (5) from (4) gives

xz − x′z = x1 ∗ y1 + · · ·+ xn ∗ yn − x′1 ∗ y1 − · · · − x′n ∗ yn. (6)

There are qn−1 choices for y1, . . . , yi−1, yi+1, . . . yn. Since xi−x′i 6= 0, these choices determine
yi uniquely, which then determines yz uniquely. Therefore, in this case x and x′ have exactly
qn−1 common neighbors.

A similar argument shows that for y = (y1, . . . , yn, yz) and y′ = (y′1, . . . , y
′
n, y

′
z), then either

y and y′ have either no common neighbors or exactly qn−1 common neighbors.

Now let H be the graph whose vertex set is X∪Y and two vertices are adjacent if and only
if they are either both in X or both in Y, and they have no common neighbors. For this
to occur, we must be in Case 1, and therefore we must have either xz 6= x′z or yz 6= y′z and
all of the other coordinates equal. Therefore, this graph is q − 1 regular, as for each fixed
vertex there are exactly q − 1 vertices with a different last coordinate and the same entries
on the first n coordinates. Let E be the adjacency matrix of H and note that since H is
q − 1 regular, all of the eigenvalues of E are at most q − 1 in absolute value. Let J be the
qn+1 by qn+1 all ones matrix. By the above case analysis, it follows that

M2 = qn−1
(
J 0
0 J

)
+ (qn − qn−1)I − qn−1E (7)

Now let v2 be an eigenvector of M for λ2. For a set of vertices Z let χZ denote the vector
which is 1 if a vertex is in Z and 0 otherwise (ie it is the characteristic vector for Z). Note
that since SPQ,n is a regular bipartite graph, we have that λ1 = qn with corresponding
eigenvector χX + χY and λn = −qn with corresponding eigenvector χX − χY. Also note
that v2 is perpendicular to both of these eigenvectors and therefore is also perpendicular to
both χX and χY. This implies that (

J 0
0 J

)
v2 = 0.

Now by (7), we have
λ22v2 = (qn − qn−1)v2 − qn−1Ev2.

Therefore q− 1− λ22
qn−1 is an eigenvalue of E and is therefore at most q− 1 in absolute value,

implying that λ2 ≤ 21/2qn/2.
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