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Abstract4

Let F be a graph. We say that a hypergraph H is a Berge-F if there is a bijection5

f : E(F )→ E(H) such that e ⊆ f(e) for every e ∈ E(F ). Note that Berge-F actually6

denotes a class of hypergraphs. The maximum number of edges in an n-vertex r-graph7

with no subhypergraph isomorphic to any Berge-F is denoted exr(n,Berge-F ). In this8

paper we establish new upper and lower bounds on exr(n,Berge-F ) for general graphs9

F , and investigate connections between exr(n,Berge-F ) and other recently studied10

extremal functions for graphs and hypergraphs. One case of specific interest will be11

when F = Ks,t. Additionally, we prove a counting result for r-graphs of girth five that12

complements the asymptotic formula ex3(n,Berge-{C2, C3, C4}) = 1
6n

3/2 + o(n3/2) of13

Lazebnik and Verstraëte [Electron. J. of Combin. 10, (2003)].14

1 Introduction15

Let F be a graph and H be a hypergraph. The hypergraph H is a Berge-F if there is a16

bijection f : E(F ) → E(H) such that e ⊆ f(e) for every e ∈ E(F ). Here we are following17

the presentation of Gerbner and Palmer [12]. This notion of a Berge-F extends Berge cycles18

and Berge paths, which have been investigated, to all graphs. In general, Berge-F is a family19

of graphs. Given an integer r ≥ 2, write20

exr(n,Berge-F )

for the maximum number of edges in an r-uniform hypergraph (r-graph for short) on n21

vertices that does not contain a subhypergraph isomoprhic to a member of Berge-F . In the22
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case that r = 2, Berge-F consists of a single graph, namely F , and ex2(n,Berge-F ) is the23

same as the usual Turán number ex(n, F ).24

By results of Győri, Katona and Lemons [14] and Davoodi, Győri, Methuku and Tompkins25

[6], we get tight bounds on exr(n,Berge-P`) where P` is a path of length `. When F is a26

cycle and r ≥ 3, Győri and Lemons [15] determined27

exr(n,Berge-C2`) = O(n1+1/`)

where the multiplicative constant depends on r and `. This upper bound matches the order28

of magnitude in the graph case as given by the classical Even-Cycle Theorem of Bondy and29

Simonovits [5]. Unexpectedly, the same upper-bound holds in the odd case, i.e., for r ≥ 3 it30

was shown in [15] that31

exr(n,Berge-C2`+1) = O(n1+1/`).

This differs significantly from the graph case where we may have bn2/4c edges and no odd32

cycle.33

Instead of a class of forbidden subhypergraphs, much effort has been spent on determining34

the Turán number of individual hypergraphs. One case closely related to the Berge question35

is the so-called expansion of a graph. Fix a graph F and let r ≥ 3 be an integer. The36

r-uniform expansion of F is the r-uniform hypergraph F+ obtained from F by enlarging37

each edge of F with r− 2 new vertices disjoint from V (F ) such that distinct edges of F are38

enlarged by distinct vertices. More formally, we replace each edge e ∈ E(F ) with an r-set39

e ∪ Se where the sets Se have r − 2 vertices and Se ∩ Sf = ∅ whenever e and f are distinct40

edges of H.41

The r-graph F+ has the same number of edges as F , but has |V (F )| + |E(F )|(r − 2)42

vertices. The special case when F is a complete graph Kk has been studied by Mubayi [26]43

and Pikhurko [28]. A series of papers [20, 21, 22] by Kostochka, Mubayi, and Verstraëte44

consider expansions for paths, cycles, trees, as well as other graphs. The survey of Mubayi45

and Verstraëte [27] discusses these results as well as many others. Given an integer r ≥ 346

and a graph F , we write47

exr(n, F
+)

for the maximum number of edges in an n-vertex r-graph that does not contain a subhyper-48

graph isomorphic to F+. A representative theorem in [22] is that49

ex3(n,K
+
s,t) = O(n3−3/s)

whenever t ≥ s ≥ 3. It is also shown that this bound is sharp when t > (s− 1)!.50

For a fixed graph F , both the Berge-F and expansion F+ hypergraph problems are closely51

related to counting certain subgraphs in (ordinary) graphs with no subgraph isomorphic to52

F . Let G and F be graphs. Following Alon and Shikhelman [2], write53

ex(n,G, F )

for the maximum number of copies of G in an F -free graph with n vertices. A graph is F -free54

if it does not contain a subgraph isomorphic to F . The function ex(n,G, F ) was studied in55
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the case (G,F ) = (K3, C5) by Bollobás and Győri [4], and when (G,F ) = (K3, C2`+1) by56

Győri and Li [16]. Later, Alon and Shikhelman [2] initiated a general study of ex(n,G, F ).57

Among others, they proved58

Theorem 1 (Alon, Shikhelman [2]). If F is a graph with chromatic number χ(F ) = k > r,59

then60

ex(n,Kr, F ) = (1 + o(1))

(
k − 1

r

)(
n

k − 1

)r
.

Note that the famous Erdős-Stone theorem is the case when r = 2.61

The next proposition demonstrates a connection between the three extremal functions62

that we have defined so far.63

Proposition 2. If H is a graph and r ≥ 2, then64

ex(n,Kr, F ) ≤ exr(n,Berge-F ) ≤ exr(n, F
+).

One of the main questions that we consider in this work is the relationship between these65

functions for different graphs F . We will see that in some cases, all three are asymptotically66

equivalent, while in others they exhibit different asymptotic behavior. In light of the Erdős-67

Stone Theorem, it is not too surprising that the chromatic number of F plays a crucial role.68

When χ(F ) > r (the so-called nondegenerate case) we have the following known result which69

was stated in [27]. We provide a proof in Section 3.1 for completeness. Given two functions70

f, g : N→ R, we write f ∼ g if lim f(n)
g(n)

= 1.71

Theorem 3. Let k > r ≥ 2 be integers and F be a graph. If χ(F ) = k, then72

ex(n,Kr, F ) ∼ exr(n,Berge-F ) ∼ exr(n, F
+) ∼

(
k − 1

r

)(
n

k − 1

)r
.

When χ(F ) ≤ r (the so-called degenerate case), we have the following.73

Theorem 4. Let r ≥ k ≥ 3 be integers. If F is a graph with χ(F ) = k, then74

exr(n, F
+) = o(nr).

It is important to mention that our proofs of Theorem 3 and Theorem 4 rely heavily on75

a well-known theorem of Erdős (see Theorem 11 in Section 2).76

In the case that χ(F ) ≤ r, the asymptotic equivalence between these three extremal77

functions need not hold. As an example, let us consider K2,t. In [2], it is shown that for78

every fixed t ≥ 2,79

ex(n,K3, K2,t) =

(
1

6
+ o(1)

)
(t− 1)3/2n3/2

as n tends to infinity. However, ex3(n,Berge-K2,2) ≥
(

1
3
√
3
− o(1)

)
n3/2 (see for instance80

Theorem 5 in [12]). Therefore,81

ex(n,K3, K2,2) � ex3(n,Berge-K2,2)

The next result implies that ex3(n,Berge-K2,t) and ex(n,K3, K2,t) have the same order of82

magnitude for all t ≥ 2.83
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Theorem 5. If r ≥ 3 and t ≥ r − 1 are integers, then84

exr(n,Berge-K2,t) ≤
(
r − 1

t

(
t

r − 1

)
+ 2t+ 1

)
ex(n,K2,t).

We note that during the preparation of this manuscript we became aware of a very similar85

bound on exr(n,Berge-K2,t) given in a preprint of Gerbner, Methuku and Vizer [13]. The86

result of [13] gives a better constant than the one provided by Theorem 5, and shows that87

for all t ≥ 7,88

ex(n,K3, K2,t) ∼ ex3(n,Berge-K2,t).

On the other hand, by taking all
(
n−1
2

)
triples that contain a fixed element we get a 3-89

graph with Ω(n2) edges that contains no K+
2,t. For more on the Turán number of Berge-K2,t,90

see [13, 31].91

In the case that 3 ≤ r ≤ s ≤ t, we have the following upper bound which is a consequence92

of a more general result that is proved in Section 4.1.93

Theorem 6. For 3 ≤ r ≤ s ≤ t and sufficiently large n,94

exr(n,Berge-Ks,t) = O(nr−
r(r−1)

2s ).

As for lower bounds, we use Projective Norm Graphs and a simple probabilistic argument95

to construct graphs with no Ks,t, but many copies of Kr.96

Theorem 7. Let s ≥ 3 be an integer. If q is an even power of an odd prime, then97

ex(2qs, K4, Ks+1,(s−1)!+2) ≥
(

1

4
− o(1)

)
q3s−4.

By Proposition 2, we have a lower bound on ex4(2q
2,Berge-Ks+1,(s−1)!+2). In the case98

when s = 3, this lower bound that is better than the standard construction using random99

graphs. This is discussed further in Section 4.2.100

Our final result concerns counting r-graphs with no Berge-F where F is a family of101

graphs. Given an r-graph H, the girth of H is the smallest k such that H contains a Berge-102

Ck. When k = 2, C2 is the graph with two parallel edges and H has girth at least 3 if103

and only if H is linear. In general, the girth of H is at least g if and only if H contains no104

Berge-Ck for k ∈ {2, 3, . . . , g − 1}. One of the seminal results in this area is the asymptotic105

formula106

ex3(n,Berge-{C2, C3, C4}) =

(
1

6
+ o(1)

)
n3/2

of Lazebnik and Verstraëte [24]. This bound implies that there are at least107

2(1/6+o(1))n3/2

n-vertex 3-graphs with girth 5. Our counting result provides an upper bound that matches108

this lower bound, up to a constant in the exponent, and holds for all r ≥ 2.109
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Theorem 8. Let r ≥ 2. Then there exists a constant cr such that the number of n-vertex110

r-graphs of girth at least 5 is at most 2crn
3/2

.111

This is a consequence of a more general result that is given in Section 5. It was recently112

shown by Ergemlidze, Győri, and Methuku [9] that ex3(n,Berge-{C2, C4}) =
(
1
6

+ o(1)
)
n3/2.113

We leave it as an open problem to determine if Theorem 8 holds under the weaker assumption114

that the graphs we are counting may have a Berge-C3.115

The rest of this paper is organized as follows. Section 2 gives the notation and some116

preliminary results that we will need. Section 3 contains the proof of Theorems 3 and 4.117

Section 4 focuses on the special case when F = Ks,t, while Section 5 contains the proof of118

Theorem 8 and related counting results.119

2 Notation and preliminaries120

In this section we introduce the notation that will be used throughout the paper. Addition-121

ally, we recall some known results that will be used in our arguments, and give a proof of122

Proposition 2.123

For a graph G and a vertex ∈ V (G), km(G) is the number of copies of Km in G and124

ΓG(v) is the subgraph of G induced by the neighbors of v. For positive integers r, m, and x,125

we write Kr(x) for the complete r-partite r-graph with x vertices in each part. The graph126

Km(x) is the complete m-partite graph with x vertices in each part and we write Km instead127

of Km(1).128

In the previous section we defined the expansion F+ of a graph. An important special129

case is when F = Kk for some k ≥ 2. By definition, the r-graph K+
k must contain a set130

of k vertices, say {v1, . . . , vk}, such that every pair {vi, vj} is contained in exactly one edge131

of K+
k . We call this set the core of K+

k . As k ≥ 2, the core is uniquely determined since132

every vertex not in the core is contained in exactly one edge and every vertex in the core is133

contained in exactly k− 1 edges. The r-graph K+
k has

(
k
2

)
edges and k+

(
k
2

)
(r− 2) vertices.134

Let H be an r-graph. We define ∂H to be the graph consisting of pairs contained in at135

least one r-edge of H, i.e.,136

∂H = {{x, y} ⊂ V (H) : {x, y} ⊂ e for some e ∈ H}.

Given {x, y} ∈ ∂H, let137

d(x, y) = |{e ∈ H : {x, y} ⊂ e}|.

The r-graph H is d-full if d(x, y) ≥ d for all {x, y} ∈ ∂H. If more than one hypergraph is138

present, we may write dH(x, y) instead of d(x, y) to avoid confusion.139

The first lemma is a very useful tool for Turán problems involving expansions (see [22,140

27]).141

Lemma 9 (Full Subgraph Lemma). For any positive integer d, the r-graph H has a d-full142

subgraph H1 with143

e(H1) ≥ e(H)− (d− 1)|∂H|.
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Proof. If H is not d-full, choose a pair {x, y} ∈ ∂H for which d(x, y) < d. Remove all edges144

that contain the pair {x, y} and let H ′ be the resulting graph. If H ′ is d-full, then we are145

done. Otherwise, we iterate this process which can continue for at most |∂H| steps. At each146

iteration, at most d− 1 edges are removed.147

The next simple lemma is useful for finding pairs of vertices with bounded codegree in148

an r-graph with no Berge-F . See Lemma 3.2 of [20] for a similar result.149

Lemma 10. Let r ≥ 3 be an integer and H be an r-graph with no Berge-F . If ∂H contains150

a copy of F , then there is a pair of vertices {x, y} such that151

dH({x, y}) < e(F ).

Proof. Suppose ∂H contains a copy of F , say with edges e1, . . . , em where m = e(F ). If152

every pair ei = {xi, yi} has153

dH({xi, yj}) ≥ e(F ), (1)

then we can choose e(F ) distinct edges e′i ∈ H for which {xi, yi} ⊂ e′i for all 1 ≤ i ≤ m.154

This gives a Berge-F in H and so (1) cannot hold for all {xi, yj}.155

A consequence of Lemma 10 is that if H is an r-graph with no Berge-F and H ′ is a d-full156

subgraph of H with d ≥ e(F ), then ∂H ′ must be F -free. Lemma 10 will be used frequently157

in Section 4.1.158

Lastly, we will need the following result of Erdős [7].159

Theorem 11 (Erdős [7]). Let r and x be positive integers. There is an n0 = n0(r, x)160

and a positive constant αr,x such that for all n > n0, any n-vertex r-graph with more than161

αr,xn
r−1/xr−1

edges must contain a complete r-partite r-graph with x vertices in each part.162

We conclude this section by providing a proof of Proposition 2.163

Proof of Proposition 2. We begin the proof by showing that the first inequality holds. Let G164

be an n-vertex graph that is F -free and has ex(n,Kr, F ) copies of Kr. Let H be the r-graph165

with the same vertex set as G, and an r-set e is an edge in H if and only if the vertices in e166

form a Kr in G. The number of edges in H is ex(n,Kr, F ). Suppose that H has a Berge-F .167

Any pair of vertices {u, v} that are contained in an edge of H are adjacent in G. Therefore,168

a Berge-F in H gives a copy of F in G. Namely, if f : E(F ) → E(H) is an injection with169

the property that {x, y} ⊂ f({x, y}) for all {x, y} ∈ E(F ), then these same pairs {x, y} for170

which {x, y} ∈ E(F ) are edges of a copy of F in G. We conclude that H has no Berge-F .171

The second inequality is trivial since F+ is a particular Berge-F and so any r-graph that172

has no Berge-F has no F+.173

3 General upper bounds174

In this section, we prove an Erdős-Stone type result for r-graphs with no F+. By Proposi-175

tion 2 this gives general upper bounds on exr(n,Berge-F ). We begin with the non-degenerate176

case, i.e., when χ(F ) > r.177
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3.1 Non-degenerate case and the proof of Theorem 3178

In this section we prove Theorem 3. As mentioned in the introduction, this result was stated179

in Mubayi and Verstraëte’s survey on Turán problems for expansions [27]. Let F be a graph180

with chromatic number χ(F ) = k > r. By Theorem 1 and Proposition 2 it is enough to181

show that exr(n, F ) ∼
(
k−1
r

) (
n
k−1

)r
.182

It was shown by Mubayi [26] (and later improved by Pikhurko [28]) that183

exr(n,K
+
k ) ∼

(
k − 1

r

)(
n

k − 1

)r
.

Therefore, in order to prove Theorem 3 it remains to prove the following lemma.184

Lemma 12. Let k > r ≥ 2 be integers and F be a graph with f vertices. If χ(F ) = k and185

ε > 0, then for sufficiently large n, depending on k, r, f , and ε, we have186

exr(n, F
+) < exr(n,K

+
k ) + εnr.

Proof. Let F be a graph with f vertices and χ(F ) = k where k > r ≥ 2 are integers. Let187

ε > 0 and G be an n-vertex r-graph with188

e(G) ≥ exr(n,K
+
k ) + εnr.

By the Supersaturation Theorem of Erdős and Simonovits [8], there is a positive constant189

c = c(ε) such that G contains at least cnm copies of K+
k where190

m := k +

(
k

2

)
(r − 2)

is the number of vertices in the r-graph K+
k . Let Z be the m-graph with the same vertex191

set as G where e is an edge of Z if and only if there is a K+
k in G with vertex set e.192

Fix a positive integer x large enough so that193

xk ≥
(
m

k

)
αk,fx

k−1/fk and x > fk

where αk,f is the constant from Theorem 11. Note that x depends only on r, k, and f . For194

large enough n, depending on c and hence ε, we have195

e(Z) ≥ cnm > αm,xn
m− 1

xm−1

so that Z contains a Km(x), say with parts P1, . . . , Pm. Therefore, for any196

(p1, . . . , pm) ∈ P1 × · · · × Pm,

there is a K+
k in G whose vertex set is {p1, . . . , pm}.197
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A K+
k must contain k vertices that form the core and since198

|P1 × · · · × Pm| = xm,

there are at least xm/
(
m
k

)
copies of K+

k whose vertex sets are the edges of Z, and whose199

vertices in the core come from the same set of k Pi’s. Without loss of generality, we may200

assume that we have xm/
(
m
k

)
copies of K+

k whose core vertices come from k-tuples in201

P1 × · · · × Pk.

Let Y be the k-partite k-graph with vertex set P1∪ · · · ∪Pk whose edges are the k-tuples202

(p1, . . . , pk) ∈ P1 ∪ · · · ∪ Pk for which there is a K+
k in G whose vertices are an edge of Z,203

and whose core is {p1, . . . , pk}. Given an edge (p1, . . . , pk) of Y , there are at most xm−(k+1)
204

edges in Z that contain {p1, . . . , pk} so that205

e(Y ) ≥
xm/

(
m
k

)
xm−k

=
xk(
m
k

) .
We have chosen x large enough so that206

xk(
m
k

) ≥ αk,fx
k−1/fk

holds. By Theorem 11, Y contains a Kk(f), say with parts R1, . . . , Rk where Ri ⊂ Pi for207

1 ≤ i ≤ k.208

Let us pause a moment to recapitulate what we have so far. For every k-tuple209

(r1, . . . , rk) ∈ R1 × · · · ×Rk

and every (m− k)-tuple210

(pk+1, . . . , pm) ∈ Pk+1 × · · · × Pm,

there is a K+
k in G with vertex set {r1, . . . , rk, pk+1, . . . , pm} whose core is {r1, . . . , rk}. Since211

x > fk and each Pi has x vertices, we can choose fk tuples212

(pk+1, . . . , pm) ∈ Pk+1 × · · · × Pm

such that the corresponding sets are pairwise disjoint. We then pair each one of these sets213

up with a k-tuple in R1 × · · · × Rk in a 1-to-1 fashion. Each such pairing forms a K+
k in G214

and altogether, we have constructed a Kk(f)+ in G. That is, we have an expansion of the215

complete k-partite Turán graph with f vertices in each part. As F is a subgraph of Kk(f),216

F+ is a subgraph of Kk(f)+ and so G contains a copy of F+.217
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3.2 The degenerate case and the proof of Theorem 4218

In this section we prove Theorem 4, i.e., that if F is a graph with χ(F ) ≤ r, then219

exr(n, F
+) = o(nr).

As mentioned in the introduction, the proof is based on Theorem 11. It is an immediate220

corollary of the following.221

Theorem 13. If r ≥ 3 is a fixed integer and F is a graph with χ(F ) ≤ r, then there is a222

positive constant C, depending on r and F , such that223

exr(n, F
+) ≤ Cnr−1/x

r−1

where x =
(
r
2

)
|V (F )|2 + |V (F )|.224

Proof. Assume that |V (F )| = f so that x =
(
r
2

)
f 2 + f . Let H be an n-vertex r-graph with225

e(H) ≥ Cnr−1/x
r−1

where C can be taken large as a function of r and F . We will show that226

H contains a subhypergraph isomorphic to F+.227

For large enough C, we have e(H) > αr,xn
r−1/xr−1

. By Theorem 11, H contains a Kr(x).228

Here Kr(x) is the complete r-partite r-graph with x vertices in each part. Let W1, . . . ,Wr229

be the parts of the Kr(x) in H. Partition each Wi into two sets Ui and Di where |Ui| = f230

and |Di| =
(
r
2

)
f 2. We are going to construct a Kr(f)+ in H one edge at a time. The vertices231

that lie in exactly one edge of the Kr(f)+ will come from the sets D1 ∪ · · · ∪ Dr, and the232

other vertices will come from U1 ∪ · · · ∪ Ur.233

Let x ∈ U1 and y ∈ U2. Choose exactly one vertex, say zi, from Di for 3 ≤ i ≤ r and234

make {x, y, z3, . . . , zr} an edge. Next we pick a new pair x′ ∈ U1 and y′ ∈ U2 and choose235

exactly one vertex, say z′i, from Di\{zi} for 3 ≤ i ≤ r. Make {x′, y′, z′3, . . . , z′r} an edge.236

We can continue this process and in the next round, we add an edge {x′′, y′′, z′′3 , . . . , z′′r }237

where {x′′, y′′} is a new pair (x′′ ∈ U1, y
′′ ∈ U2) and the sets {z3, . . . , zr}, {z′3, . . . z′r}, and238

{z′′3 , . . . , z′′r } are all pairwise disjoint.239

Since |Di| ≥ f 2, we can continue this process for all pairs of vertices in U1 and U2. Even240

more, since |Di| ≥
(
r
2

)
f 2, this process can continue until we have considered all pairs Ui and241

Uj with 1 ≤ i < j ≤ r. When the process is completed, we have constructed a Kr(f)+ in242

H. Now since F is a subgraph of Kr(f), we have that F+ is a subgraph of Kr(f)+ and this243

completes the proof of the theorem.244

4 Forbidding Berge-Ks,t245

In this section we investigate the special case of forbidding the Berge-Ks,t.246

4.1 Upper bounds and the proof of Theorems 5 and 6247

We begin with an easy lemma.248
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Lemma 14. If 2 ≤ m ≤ s, then249

ex(n,Km, K1,s) ≤
(n
s

)( s
m

)
.

Proof. Let G be an n-vertex K1,s-free graph. Every vertex of G has degree at most s− 1 so250

km(G) =
1

m

∑
v∈V (G)

km−1(ΓG(v)) ≤ n

m

(
s− 1

m− 1

)
=
n

s

(
s

m

)
.

251

We are now ready to prove Theorem 5.252

Proof of Theorem 5. Fix integers 3 ≤ r ≤ t and let H be an n-vertex r-graph with no253

Berge-K2,t. Let254

H0 = H, F0 = ∂H0,255

and G0 be the graph with no edges and vertex set V (H0). If the graph F0 is not K2,t-free,256

then by Lemma 10, there is a pair of vertices {x1, y1} with257

dH0({x1, y1}) < 2t.

Now let H1 be obtained from H0 by removing all of the edges that contain {x1, y1} and258

F1 = ∂H1.

Let G1 be the graph obtained by adding the edge {x1, y1} to G0.259

Now we iterate this process. That is, for i ≥ 1, we proceed as follows.260

If Fi−1 is not K2,t-free, then by Lemma 10 there is a pair of vertices {xi, yi} in Hi−1 with261

dHi−1
({xi, yi}) < 2t.

Let Hi be the r-graph obtained from Hi−1 by removing all of the edges that contain the pair262

{xi, yi}, let263

Fi = ∂Hi

and Gi be the graph obtained by adding the edge {xi, yi} to Gi−1. Observe that264

e(Hi) > e(Hi−1)− 2t.

Suppose that this can be done for l := δe(H) steps where265

δ :=
1

r−1
t

(
t

r−1

)
+ 2t+ 1

.
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Consider the graph Gl. This graph has l edges and must be K2,t-free otherwise, we find a266

K2,t in H since edges in Gi come from different edges in H. Thus,267

δe(H) = e(Gl) ≤ ex(n,K2,t)

so268

e(H) ≤ 1

δ
ex(n,K2,t)

and we are done.269

Now assume that this procedure terminates for some l ∈ {0, 1, . . . , δe(H)} where l = 0 is270

allowed. The graph Fl must be K2,t-free so271

|∂Hl| = e(Fl) ≤ ex(n,K2,t).

Let272

dt =
r − 1

t

(
t

r − 1

)
+ 1.

The values dt and δ satisfy the equation273

dt
1− 2tδ

=
1

δ
.

If e(H) ≤ dt
1−2tδex(n,K2,t), then we are done. For contradiction, suppose that274

e(H) >
dt

1− 2tδ
ex(n,K2,t). (2)

Let H ′ be a dt-full subgraph of Hl with275

e(H ′) ≥ e(Hl)− dt|∂Hl| ≥ e(H0)− 2tl − dtex(n,K2,t)

≥ e(H0)− 2tδe(H)− dtex(n,K2,t)

= (1− 2tδ)e(H)− dtex(n,K2,t) > 0

where the last inequality follows from (2).276

Let F ′ = ∂H ′. We now make a few observations about the graph F ′. First note that F ′277

contains edges since e(H ′) > 0. Second, F ′ is K2,t-free. This is because H ′ is a subgraph of278

Hl and so F ′ is a subgraph of Fl, but Fl is K2,t-free. Let v be a vertex of F ′ with positive279

degree. The subgraph of F ′ induced by the neighbors of v, which we denote by ΓF ′(v), is280

K1,t-free. Since t ≥ r − 1, we have by Lemma 14 that281

kr−1(ΓF ′(v)) ≤
(
dF ′(v)

t

)(
t

r − 1

)
. (3)

Now we find a lower bound for kr−1(ΓF ′(v)). Let w be a vertex in ΓF ′(v). Since H ′ is dt-full,282

there are at least dt r-sets in H ′ which contain {v, w}. Now if e is an r-set in H ′ that contains283
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{v, w}, then the (r − 1)-set e\{v} forms a (r − 1)-clique in ΓF ′(v). Therefore, this holds for284

any of the dF ′(v) vertices in ΓF ′(v) and so285

kr−1(ΓF ′(v)) ≥ 1

r − 1
dF ′(v)dt. (4)

Combining (3) and (4) gives286

1

r − 1
dF ′(v)dt ≤ kr−1(ΓF ′(v)) ≤

(
dF ′(v)

t

)(
t

r − 1

)
.

As dF ′(v) > 0, the above inequality implies287

dt ≤
r − 1

t

(
t

r − 1

)
which is a contradiction since dt = r−1

t

(
t

r−1

)
+ 1. We conclude that (2) cannot hold and this288

completes the proof.289

We now prove a general upper bound that implies Theorem 6. A similar result was proved290

in [13]. We have chosen to use notation similar to that of [13] to highlight the correspondence.291

Theorem 15. Suppose F is a bipartite graph and that there is a vertex x ∈ V (F ) such that292

for all m ≥ 1,293

ex(m,Kr−1, F − x) ≤ cmi

for some positive constant c and integer i ≥ 1. If r ≥ 3 is an integer, vF is the number of294

vertices of F , and eF is the number of edges of F , then for large enough n, depending on r295

and F ,296

exr(n,Berge-F ) ≤ 4c(r − 1)2i−1
ex(n, F )i

ni−1
+ 4(vF + eF )n2.

Proof. Let F be a bipartite graph satisfying the assumptions of the theorem. Let H be an297

n-vertex r-graph with no Berge-F . If e(H) ≤ 4(vF + eF )n2, then we are done. Assume298

otherwise and that θ satisfies299

e(H) = 4(vF + eF )nr−θ.

Note that r − θ ≥ 2 since e(H) > 4(vF + eF )n2. Let H1 be a (vF + eF )-full subgraph of H300

with301

e(H1) ≥ e(H)− (vF + eF )|∂H| ≥ 4(vF + eF )nr−θ − (vF + eF )n2

≥ 3(vF + eF )nr−θ.

If ∂H1 contains a copy of F , then since H1 is (vF + eF )-full, we have a Berge-F in H1 (and302

thus H) by Lemma 10; a contradiction Thus, ∂H1 is F -free and therefore |∂H1| ≤ ex(n, F ).303

Let304

d =
(vF + eF )nr−θ

ex(n, F )
.
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Let H2 be a d-full subgraph of H1 with305

e(H2) ≥ e(H1)− d|∂H1| ≥ 3(vF + eF )nr−θ − d · ex(n, F )

= 2(vF + eF )nr−θ.

Let H3 be the subgraph of H2 obtained by removing all isolated vertices and let G = ∂H3.306

The graph G is F -free as it is a subgraph of ∂H1, so e(G) ≤ ex(n, F ). Let v be a vertex307

of G with308

dG(v) ≤ 2ex(n, F )

n
. (5)

Let ΓG(v) be the subgraph of G induced by the neighbors of v in G. As H3 is d-full, we have309

that there are at least d edges in H3 that contain both v and w for any vertex w ∈ ΓG(v).310

Each such edge in H3 gives rise to a Kr−1 in ΓG(v) that contains w. Therefore,311

kr−1(ΓG(v)) ≥ dG(v)d

r − 1
.

However, G is F -free and so ΓG(v) is (F − x)-free where x is any vertex in F . We conclude312

that313

dG(v)d

r − 1
≤ kr−1(ΓG(v)) ≤ ex(dG(v), Kr−1, F − x)

for any x ∈ V (F ). Using our hypothesis and the definition of d, this inequality can be314

rewritten as315

dG(v)(vF + eF )nr−θ

(r − 1)ex(n, F )
≤ cdG(v)i.

We can cancel a factor of dG(v) and rearrange the above inequality to get, using (5), that316

(vF + eF )nr−θ ≤ c(r − 1)ex(n, F )

(
2ex(n, F )

n

)i−1
.

Since e(H) = 4(vF + eF )nr−θ,317

e(H) ≤ 4c(r − 1)2i−1
ex(n, F )i

ni−1
.

318

We complete this section by using Theorem 15 to prove Theorem 6. We must show that319

exr(n,Berge-Ks,t) = O(nr−
r(r−1)

2s )

for 3 ≤ r ≤ s ≤ t.320
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Proof of Theorem 6. Let 3 ≤ r ≤ s ≤ t be integers. By a result of Alon and Shikhelman321

(see Lemma 4.2 [2]),322

ex(m,Kr−1, Ks−1,t) ≤
(

1

(r − 1)!
− om(1)

)
(t− 1)

(r−1)(r−2)
2(s−1) mr−1− (r−1)(r−2)

2(s−1) .

We apply Theorem 15 with c sufficiently large as a function of r, s, and t, with323

i = r − 1− (r − 1)(r − 2)

2(s− 1)
,

and use the well-known bound ex(n,Ks,t) = O(n2−1/s) to get that for large enough n,324

exr(n,Berge-Ks,t) = O(n(2−1/s)i−i+1).

Here the implied constant depends only on r, s, and t. A short calculation shows that325

(2− 1/s)i− i+ 1 = r − r(r − 1)

2s

and this completes the proof.326

4.2 Lower Bounds and the proof of Theorem 7327

By Proposition 2,328

ex(n,Kr, F ) ≤ exr(n,Berge-F ) ≤ exr(n, F
+).

We can use this inequality together with the results of [2] to immediately obtain lower bounds329

on exr(n,Berge-F ) and exr(n, F
+).330

Theorem 16 (Alon, Shikhelman [2]). For r ≥ 2, s ≥ 2r − 2, and t ≥ (s− 1)! + 1,331 (
1

r!
+ o(1)

)
nr−

r(r−1)
2s ≤ ex(n,Kr, Ks,t).

For s ≥ 2 and t ≥ (s− 1)! + 1,332 (
1

6
+ o(1)

)
n3− 3

s ≤ ex(n,K3, Ks,t).

Kostochka, Mubayi, and Verstraëte [22] proved that for any 3 ≤ s ≤ t,333

ex3(n,K
+
s,t) = O(n3−3/s).

It follows from Proposition 2 that all three of the functions334

ex(n,K3, Ks,t), ex3(n,Berge-Ks,t), and ex3(n,K
+
s,t)

are O(n3−3/s), and in the case that t ≥ (s− 1)! + 1, they are Θ(n3−3/s).335

Before giving our lower bounds we introduce some notation. Let G be a graph and A336

and B be disjoint subsets of V (G). Write G[A] for the subgraph of G induced by A and337

G(A,B) for the spanning subgraph of G whose edges are those with one endpoint in A and338

the other in B.339
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Lemma 17. Let 3 ≤ s ≤ t be integers. Let G be a graph and V (G) = A ∪ B be a partition340

of the vertex set of G. If G[A] is K2,2-free, G[B] is K2,2-free, and G(A,B) is Ks,t-free, then341

G is Ks+1,t+1-free.342

Proof. For contradiction, suppose that343

{x1, . . . , xs+1} and {y1, . . . , yt+1}344

are parts of a Ks+1,t+1 in G. Assume first that A contains at least s of the xi’s. Since s > 2345

and G[A] is K2,2-free, A can contain at most one yj so that B contains at least t of the yj’s.346

This, however, gives a Ks,t in G(A,B) which is a contradiction. By symmetry, B cannot347

contain s of the xi’s and so we may assume that A contains at least two xi’s and B contains348

at least two xi’s. Here we are using the fact that s+ 1 ≥ 4. As G[A] and G[B] are K2,2-free,349

each of A and B can contain at most one yj which is a contradiction since t+ 1 > 2.350

Our construction will make use of the Projective Norm Graphs of Alon, Kollár, Rónyai,351

and Szabó [1, 18]. Let q be a power of an odd prime, s ≥ 2 be an integer, and N : Fqs−1 → Fq352

be the norm function defined by353

N(X) = X1+q+q2+···+qs−2

.

The Projective Norm Graph, which we denote by H(s, q), is the graph with vertex set354

Fqs−1 × F∗q where (x1, x2) is adjacent to (y1, y2) if N(x1 + y1) = x2y2. We will use a bipartite355

version of this graph. Let Hb(s, q) be the bipartite graph whose parts are A and B where A356

and B are disjoint copies of Fqs−1 × F∗q, and (x1, x2)A in A is adjacent to (y1, y2)B in B if357

N(x1 + y1) = x2y2.

It is shown in [1] that H(s, q) is Ks,(s−1)!+1-free. A similar argument gives that Hb(s, q) is358

Ks,(s−1)!+1-free.359

Lemma 18. Let s ≥ 3 be a fixed integer. The graph Hb(s, q) has at least360

(1− o(1))
q4(s−1)

4

copies of K2,2 where o(1)→ 0 as q →∞.361

Proof. We will use a known counting argument to obtain a lower bound on the number of362

K2,2’s in a d-regular bipartite graph with n vertices in each part.363

Suppose that F is a d-regular bipartite graph with parts X and Y where |X| = |Y | = n.364

Write X(2) for the set of all subsets of size 2 in X and write d̂({x, x′}) for the number of365

vertices that are adjacent to both x and x′. We have366 ∑
{x,x′}∈X(2)

d̂({x, x′}) =
∑
y∈Y

(
d(y)

2

)
= n

(
d

2

)
. (6)
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The number of K2,2’s in F is367

∑
{x,x′}∈X(2)

(
d̂({x, x′})

2

)
≥
(
n

2

)((n
2

)−1∑
{x,x′}∈X(2) d̂({x, x′})

2

)
≥
(
n

2

)(
n
(
d
2

)
/
(
n
2

)
2

)

where the first inequality is by convexity and the second is by (6). Therefore, the number368

of K2,2’s in F is at least369

1

2
n

(
d

2

)(
n
(
d
2

)(
n
2

) − 1

)
=
nd(d− 1)

4

(
d(d− 1)

n− 1
− 1

)
.

The graph Hb(s, q) has qs−1(q − 1) vertices in each part and is (qs−1 − 1)-regular. For370

s ≥ 3, we have that the number of K2,2’s in Hb(s, q) is at least371

(1− o(1))
q4s−4

4

where o(1)→ 0 as q →∞.372

Let q be a power of an odd prime and Rq be the graph with vertex set Fq × Fq where373

(a1, a2) is adjacent to (b1, b2) if and only if a1 + b1 = a2b2. The graph Rq has q2 vertices. It374

is easy to check (see [25]) that Rq has 1
2
q2(q − 1) edges and no copy of K2,2.375

We now have all of the tools that we need in order to prove Theorem 7. We must show376

that for s ≥ 3 and q an even power of an odd prime,377

ex(2qs, K4, Ks+1,(s−1)!+2) ≥
(

1

4
− o(1)

)
q3s−4.

Proof of Theorem 7. Let A and B be disjoint sets of qs vertices each. Choose A′ ⊂ A and378

B′ ⊂ B arbitrarily with |A′| = |B′| = qs−1(q − 1). Put a copy of Hb(s, q) between A′ and379

B′. Finally, pick two independent random copies of Rqs/2 on vertex sets A and B and let G380

be the resulting graph. Observe that a given pair in A (or B) is adjacent with probability381

q−s/2. By Lemma 18 and independence, the expected number of copies of K4 in G is at least382 (
1

4
− o(1)

)
q4(s−1)

(
1

qs/2

)2

=

(
1

4
− o(1)

)
q3s−4.

Fix a graph Gq with at least this many copies of K4. Clearly Gq[A] and Gq[B] are both383

K2,2-free and the edges of Gq(A,B) form a Hb(s, q) which is Ks,(s−1)!+1-free. By Lemma 17,384

Gq is Ks+1,(s−1)!+2-free.385

A density of primes argument, Theorem 7, and Theorem 6 give the following result for386

4-graphs.387
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Corollary 19. If s ≥ 3 is an integer, then for sufficiently large n, there are positive constants388

cs and Cs such that389

csn
3−4/s ≤ ex4(n,Berge-Ks+1,(s−1)!+2) ≤ Csn

4−6/(s+1).

In particular, there is a positive constant c such that390

cn5/3 ≤ ex(n,K4, K4,4) (7)

provided n is sufficiently large. This lower bound is better than what one obtains using391

a simple expected value argument and random graphs. Indeed, suppose G is a random392

n-vertex graph where a pair forms an edge with probability p, independently of the other393

edges. Let X be the number of 4-cliques in G and Y be the number of K4,4’s in G. We have394

E(X − Y ) ≥
(n

4

)4
p6 − n8p16.

If p =
(

3
211

)1/10
n−2/5, then395

E(X − Y ) ≥ 0.00004n8/5.

This implies that there is an n-vertex graph for which we can remove one edge from each396

K4,4 and have a subgraph that is K4,4-free and has at least 0.00004n8/5 copies of K4. While397

simple, this argument does not improve (7).398

5 Counting r-graphs of girth 5 and the proof of Theo-399

rem 8400

For a family of forbidden subgraphs F , denote by Fr(n,F) the family of all r-uniform simple
hypergraphs on n vertices which do not contain any member of F as a subgraph and let
Fr(n,F ,m) denote those graphs in Fr(n,F) which have m edges. Let

fr(n,F) = |Fr(n,F)|
fr(n,F ,m) = |Fr(n,F ,m)|.

It is clear that401

fr(n,F) ≥ 2exr(n,F). (8)

In this section, we will study the quantities fr(n,F) and fr(n,F ,m) when F is the family402

of Berge cycles of length at most 4. Let Bk = {Berge-C2, . . . ,Berge-Ck}. Note that when a403

hypergraph is Berge-C2-free, this means that any two hyperedges share at most one vertex404

(i.e., the hypergraph is linear). Throughout this section, when we say a hypergraph of girth405

g, we mean an r-uniform hypergraph that is Bg−1-free, i.e, it contains no Berge-Ck for k < g.406

Lazebnik and Verstraëte [24] examined girth 5 hypergraphs and gave the following bounds407

for r = 3408

ex3(n,B4) =
1

6
n3/2 + o(n3/2)
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and for general r (with n large enough),409

1

4
r−4r/3n4/3 ≤ exr(n,B4) ≤

1

r(r − 1)
n3/2 +O(n).

Our main result in this section is the next theorem.410

Theorem 20. Let r ≥ 2 and n be large enough. Then411

fr(n,B4,m) ≤ exp
(
n4/3 log3 n

)( n3

m2

)m
.

Theorem 20 yields the following two corollaries, the first of which implies Theorem 8.412

Corollary 21. Let r ≥ 2. Then there exists a constant C such that413

fr(n,B4) ≤ 2Cn
3/2

.

The first group to consider extremal problems in random graphs was probably Babai-414

Simonovits-Spencer [3]. Among others they asked: what is the maximum number of edges of415

a C4-free subgraph of the random graph Gn,p when p = 1/2? Here we give a partial answer to416

the corresponding question in Berge-hypergraph setting. Let G
(r)
n,p be the random r-uniform417

hypergraph on n vertices, each edge being present independently with probability p.418

Corollary 22. Let 0 < p < 1
(r(r−1))2 . Then there exists an ε > 0 such that with probability419

tending to 1,420

exr(G
(r)
n,p,B4) < (1− ε)exr(n,B4).

Theorem 20 implies Corollary 21 by noting that (n3/m2)m = 2O(n3/2) and Corollary 22421

by a simple first moment argument combined with the fact [24] that exr(n,B4) ≤ 1+o(1)
r(r−1)n

3/2.422

Proof of Theorem 20. For a graph H and a natural number d, let ind(H, d) denote the423

number of independent sets of size exactly d in H. We adapt the proofs of Kleitman’s424

and Winston’s upper bound on the number of C4-free graphs [17] (see also [29] for a nice425

exposition) and Füredi’s extension to graphs with m edges [11]. The rough idea of the proof426

is that any hypergraph of girth 5 can be decomposed into a sequence of subhypergraphs427

satisfying mild conditions, and that the number of such sequences is bounded.428

If G is any hypergraph, we may successively peel off vertices of minimum degree. Specif-429

ically, let vn be a vertex such that dG(vn) = δ(G). Once vn, vn−1, . . . , vk+1 are chosen, let vk430

satisfy431

|Γ(vk) \ {vn, . . . , vk+1}| = δ(G \ {vn, . . . , vk+1}).
For each i, let Gi = G[{v1, . . . , vi}]. This sequence of subhypergraphs has the property that432

for all i,433

δ(Gi−1) ≥ δ(Gi)− 1 = dGi
(vi)− 1.

That is, δ(Gi) ≤ δ(Gi−1)+1. Now, if G is B4-free, then each Gi is also B4-free. To summarize,434

any hypergraph of girth 5 may be constructed one vertex at a time such that435
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1. At each step, the subhypergraph is B4-free.436

2. When adding the i’th vertex vi, we have that the minimum degree of the graph which437

vi is being added to is at least dGi
(vi)− 1.438

The crux of the upper bound is that one cannot add a vertex to a graph of high minimum439

degree and keep it B4-free in too many ways. To formalize this, let gi(d) be the maximum440

number of ways to attach a vertex of degree d to a B4-free graph on i vertices with minimum441

degree at least d−1, such that the resulting graph remains B4-free, and let gi = maxd≤i gi(d).442

Note that443

gi(d) ≤
(

i

(r − 1)d

)
((r − 1)d)! (9)

for all d, so gi is well-defined. Now let us count the number of sequences of subhypergraphs444

G1, . . . , Gn that can come from a hypergraph of girth 5 with m edges, G. Note that each445

G of girth 5 creates (once the vertices are ordered) a unique sequence G1, . . . , Gn. First,446

we trivially bound the number of ways to order the vertices (v1, . . . , vn) by n!, and we also447

trivially bound the number of degree sequences {dG1(v1), . . . , dGn(vn)} by n!. By the way we448

have constructed the sequence {G1, . . . , Gn} and by the definition of gi(d), we have that449

fr(n,B4,m) ≤ n!n! max
n∏
i=1

gi(di),

where the maximum is taken over all degree sequences such that
∑
di = m.450

If di ≤ i1/3 log i, we use (9) and have that, for large i,451

gi(di) ≤ ii
1/3 log2 i.

From now on we will assume di ≥ i1/3 log i. Assume that Gi is a hypergraph of girth 5 on452

i vertices with minimum degree at least d. We construct an auxiliary graph Hi with vertex453

set V (Hi) = V (Gi) and xy ∈ E(Hi) if and only if there is a path of length 2 from x to y in454

the hypergraph Gi.455

Now we observe that in order to attach vi+1 to Gi and have the resulting graph Gi+1456

remain B4-free, the neighborhood of vi+1 must be an independent set in Hi. To see this, if457

vi+1 ∼ x and vi+1 ∼ y where xy ∈ E(Hi), then there is a path of length 2 in Gi from x to458

y. Now, if there exists a hyperedge e ∈ E(Gi+1) such that {x, y, vi+1} ⊂ e, this creates a459

Berge-C3 in Gi+1. Otherwise, the vertex vi+1 creates a Berge-C4 in Gi+1.460

Therefore to bound gi(di) it suffices to give a uniform upper bound on ind(Hi, di). To461

do this, we use a lemma of Kleitman and Winston, which is the original inspiration for the462

container method [17].463

Lemma 23 (Kleitman and Winston (cf [19, 29]). Let G be a graph on n vertices. Let464

β ∈ (0, 1), q an integer, and R a real number satisfy465

1. R ≥ e−βqn.466
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2. For all subsets U ⊂ V (G) with |U | ≥ R,467

eG(U) ≥ β

(
|U |
2

)
.

Then for all m ≥ q,468

ind(G,m) ≤
(
n

q

)(
R

m− q

)
.

We now give an upper bound on ind(Hi, d). Let B ⊂ V (Hi). Then (with floors and
ceilings omitted)

eHi
(B) ≥

∑
z∈V (Gi)

(
|ΓGi

(z) ∩B|/(r − 1)

2

)

≥ i

( 1
(r−1)i

∑
z∈V (Gi)

|ΓGi
(z) ∩B|

2

)
≥ i

( 1
(r−1)i

∑
y∈B

d(y)
r

2

)
≥ i

( |B|δ(Gi)
r2i

2

)
≥ i

( |B|(di−1)
r2i

2

)
≥ |B|

2d2i
8r4i

,

where the last inequality holds for i large enough. This quantity is bigger than469

i−1/3 log i

(
|B|
2

)
for i large enough since di ≥ i1/3 log i. Now we let β = i−1/3 log i (which is in (0, 1) for i large470

enough), R = i
di

, and q = i1/3. Note that R > 1 and e−βqi = 1. Therefore by Lemma 23, we471

have472

ind(Hi, di) ≤
(

i

i1/3

)( i
di

di − i1/3

)
.

Since di − i1/3 ≥ 1
2
di for i large enough, we have473

ind(Hi, di) ≤
(

2ei

d2i

)di
(i2/3)i

1/3

.

Thus

fr(n,B4,m) ≤ n!n! max
∏(

2ei

d2i

)di
(n2/3)2n

1/3 log2 n

≤ exp
(
n4/3 log3 n+ (log n+O(1))

∑
di − 2

∑
di log di

)
for n large enough. Next we note that

∑
di = m and by convexity

∑
di log di ≥ m log(m/n).474

Rearranging gives the result.475
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