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Abstract

We show the minimum spectral gap of the normalized Laplacian over all
simple, connected graphs on n vertices is (1+o(1)) 54

n3 . This minimum is achieved
asymptotically by a double kite graph. Consequently, this leads to sharp upper
bounds for the maximum relaxation time of a random walk, settling a conjecture
of Aldous and Fill. We also improve an eigenvalue-diameter inequality by giving a
new lower bound on the second eigenvalue of the normalized Laplacian, improving
a previous result of the second author by a factor of 4.

1 Introduction

Graph eigenvalues play a powerful role in the study of random walks. In partic-
ular, eigenvalues are a primary tool for bounding a number of key random walk
parameters, such as mixing time. Consequently, bounds on graph eigenvalues are
not only of interest in themselves, but also may have immediate implications for
the behavior of the random walk (for a survey, see [14]). In the case of the relax-
ation time of a discrete reversible Markov chain, eigenvalues themselves define
the quantity of interest.

In this paper, we examine an extremal problem concerning the normalized
Laplacian spectral gap, the reciprocal of which defines the relaxation time of a
random walk. The normalized Laplacian matrix L of a graph G is

L = I − T−1/2AT−1/2,

where T denotes the diagonal degree matrix with (u, u) entry equal to d(u) and
A denotes the adjacency matrix. Throughout, we assume G is simple, meaning
G has no loops or multiple edges. We write the eigenvalues of L in increasing
order, where

0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 ≤ 2.
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It is well-known (c.f. [6]) that the second eigenvalue or spectral gap of L is
nonzero if and only if G is connected, and can be characterized as

λ1 = inf
f∑

u f(u)d(u)=0

∑
u∼v

(f(u)− f(v))2∑
v

f(v)2d(v)
,

with corresponding eigenvector g = T 1/2f . We call the nontrivial function f
achieving the above infimum the harmonic eigenfunction of L. Landau and
Odlyzko proved the following lower bound on λ1.

Theorem 1 (Landau, Odlyzko [12]). For a connected graph on n vertices with
maximum degree ∆ and diameter D, we have

λ1 ≥
1

n∆(D + 1)
.

In [6], Chung gives an improved lower bound on λ1 in terms of the graph’s
diameter and volume, where vol(G) =

∑
u∈V (G) d(u).

Theorem 2 (Chung [6]). For a connected graph G with diameter D, we have

λ1 ≥
1

D · vol(G)
.

For symmetrical graphs, stronger lower bounds may be obtained. For exam-
ple, Chung showed that for a vertex-transitive graph with degree k and diameter
D, we have

λ1 ≥
1

kD2
.

In this paper, we make two main contributions. First, we improve the con-
stant in Theorem 2 by a factor of 4.

Theorem 3. For a connected graph G with diameter D, we have

λ1 ≥
4

D · vol(G)
.

Second, we examine the minimal value of λ1 over all connected graphs on n
vertices.

Theorem 4. The minimum normalized Laplacian spectral gap α(n), defined by

α(n) = min{λ1(G) : G is a simple, connected graph on n vertices}

satisfies

α(n) ∼ 54

n3
.
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As an immediate consequence of Theorem 4, we confirm a conjecture of Al-
dous and Fill on relaxation time. The relaxation time τ of a random walk on a
(connected) graph G with probability transition matrix P = T−1A is defined as

τ(G) =
1

1− ρn−1
,

where ρ1 ≤ · · · ≤ ρn−1 < ρn = 1 denote the eigenvalues of P . A central prob-
lem in the study of random walks is to determine the mixing time, the required
number of steps in the random walk guaranteeing closeness to the stationary dis-
tribution. As seen throughout the literature [1, 6, 13], the eigenvalue ρn−1 and
hence the relaxation time is the primary term controlling mixing time. There-
fore, relaxation time is directly associated with the rate of convergence for a
random walk. At least as early as 1994, Aldous and Fill [1, Problem 6.13, p. 216]
conjectured the following concerning relaxation time:

Conjecture 1 (Aldous and Fill, c. 1994). The maximum relaxation time β(n),
defined by

β(n) = max{τ(G) : G is a simple, connected graph on n vertices},

satisfies

β(n) ∼ n3

54
.

In [1], Aldous and Fill showed that β(n) is bounded above by (1 + o(1))2n
3

27 .
In general, Conjecture 1 fits into a body of work addressing extremal problems
for random walk parameters. For example, Brightwell and Winkler [4] found
the maximum hitting time between two vertices over all n-vertex graphs and
determined the extremal graphs are lollipop graphs. Relatedly, Mazo considered
maximum and minimum mean hitting time [15]. Furthermore, Feige obtained
sharp upper bounds on cover time [9, 10], and Coppersmith, Tetali, and Winkler
found the maximum commute time [7].

It is easy to see that T−1/2LT 1/2 = I − T−1A, and hence λi is an eigenvalue
of L if and only if 1− ρi is an eigenvalue of T−1A. Consequently, the relaxation
time of a graph may equivalently be written as τ = 1/λ1 and so Theorem 4
confirms Conjecture 1.

Corollary 1. The maximum relaxation time β(n) for the random walk on a
simple, connected graph on n vertices satisfies β(n) ∼ n3/54. The extremal value
β(n) is achieved asymptotically by a double kite graph, DK(n3 ,

n
3 ).

The double kite graph can be defined as follows:

Definition 1. A double kite graph, denoted DK(r, s), consists of two copies of
the r-vertex complete graph Kr and a path connecting them, p0, p1, . . . , ps, ps+1,
where p0 is a selected vertex from one copy of Kr and ps+1 is a selected vertex
from the other copy of Kr. See Figure 1 for an illustration.
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Figure 1: The double kite graph DK(8, 6).

Remark 1. In [1], Aldous and Fill call DK(r, s) the barbell graph. The specific
cases of DK(n2 , 0) as well as DK(n3 ,

n
3 ) have also both been commonly referred

to as the barbell graph (e.g., see [11] and [17] respectively).

Remark 2. Landau and Odlyzko also consider the construction DK(n3 ,
n
3 ) to

show that the n3 order of magnitude implied by their bound (Theorem 1) is best
possible. Applying their bound to this construction yields λ1 ≥ (1+o(1)) 9

n3 , while
we show, λ1 ∼ 54

n3 .

Remark 3. We note that the bound in Theorem 3 is asymptotically tight for
DK(n3 ,

n
3 ), yielding λ1 ≥ (1 + o(1)) 54

n3 . In general, however, the lower bound
4/D ·vol(G) may be off by orders of magnitude. For example, applying the bound
to the complete graph Kn yields λ1 ≥ 4

n(n−1) , whereas λ1 = n
n−1 . On the other

hand, in Section 2 we show that Theorem 3 is sharp in a strong sense: for a wide
range of D and vol(G) there is an infinite sequence of graphs for which it is tight
asymptotically, including the multiplicative constant.

In addition to its interpretation in the random walk setting, Theorem 4 is
also part of the literature surrounding extremal spectral graph theory, where
one optimizes a spectral invariant over a fixed family of graphs. Such problems
were first formalized by Brualdi and Solheid [5] and since then have attracted
attention from many researchers. Rather than give a broad survey of such work,
we briefly mention a few results directly relevant to ours. For the spectral gap of
the adjacency matrix, Stanic [16] proved some lower bounds for the spectral gap
of the adjacency matrix, and conjectured that double kite graphs minimize the
adjacency spectral gap. For the combinatorial Laplacian, Fallat and Kirkland [8]
find the combinatorial Laplacian algebraic connectivity minimizing graphs over
all n-vertex trees with given diameter. Brand, Guiduli, and Imrich [3] minimized
λ1 of the Laplacian over all 3-regular graphs, and characterized the extremal
graphs. For the general case, [2] showed that the n-vertex graphs minimizing
algebraic connectivity must consist of a chain of cliques.

The remainder of the paper is structured as follows: in Section 2, we prove
a lemma from which Theorem 3 follows as a corollary and show Theorem 3 is
sharp for a wide range of values of D and vol(G). In Section 3, we apply this
lemma, among others, to also prove Theorem 4. In Section 4, we conclude by
mentioning related open problems.
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2 Proof of Theorem 3

In this section, we establish the lemma from which Theorem 3 will follow as
a corollary. To establish this lemma, we first require the solution to a related
optimization problem.

Proposition 1. Fix (d1, . . . , dn) ∈ Nn. Let (f1, . . . , fn) be a sequence minimizing
the quantity

(fn − f1)2

subject to the constraints

n∑
i=1

fidi = 0, (1)

n∑
i=1

f2i di = 1, (2)

and
f1 ≤ fk ≤ fn

for all k. Then for all k either f1 = fk or fn = fk.

Proof. First we consider the optimization problem without the constraint that
f(1) ≤ f(k) ≤ f(n). In this case, consider the Lagrangian

(fn − f1)2 − α

(
n∑
i=1

fidi

)
− β

(
n∑
i=1

f2i di − 1

)
.

We show that either we are on the boundary where there exists a k such that
f(1) = f(k) or f(n) = f(k), or the critical point of this Lagrangian maximizes the
objective function (fn− f1)2, and so the minimum must occur on the boundary.
A critical point of the Lagrangian occurs when

2 (fn − f1)− αdn − 2βfndn = 0 (3)

−2(fn − f1)− αd1 − 2βf1d1 = 0 (4)

αdi + 2βfidi = 0, (5)

for i = 2, . . . , n−1. If β = 0, then from Eq. (5), α = 0, in which case subtracting
Eq. (3) from Eq. (4) yields f1 = fn. But from the definitions of f and d and
Eq. (1), it is clear fn > 0 and f1 < 0. So β 6= 0 and fi = − α

2β for i = 2, . . . , n−1.
Applying this fact and rewriting Eqs. (1) and Eq. (2) yields

f1d1 + fndn =
α

2β

n−1∑
i=2

di, (6)

f21d1 + f2ndn = 1− α2

4β2

n−1∑
i=2

di. (7)

5



Adding Eqs. (3) and (4), then applying Eq. (6) yields

α

n∑
i=1

di = 0,

from which we can see that α = 0. Now, Eqs. (5), (6), (7) tell us fi = 0 for
i = 2, . . . , n− 2, and

f1d1 + fndn = 0,

f21d1 + f2ndn = 1.

Rewriting the former equation above, we get f1 = −c · dn and fn = c · d1 for
c := fn/d1. Plugging this into the latter, we find

c2 =
1

d1dn(d1 + dn)
.

Finally, we have

(fn − f1)2 = c2(d1 + dn)2 =
1

d1
+

1

dn
.

We claim that this is the maximum value of (fn−f1)2 subject to the constraints.
To see this, note that letting

f1 = f2 = −

√
dn

(d1 + d2)(d1 + d2 + dn)
, fn =

√
d1 + d2

dn(d1 + d2 + dn)
,

satisfies all of the constraints and gives

(fn − f1)2 =
1

d1 + d2
+

1

dn
,

which is smaller than 1
d1

+ 1
dn

since d2 ≥ 1. Therefore, the only critical point of
the Lagrangian interior to the boundary is a maximum, and thus the minimum
must occur when there is a k such that f1 = fk or fn = fk. In this case, we may
substitute for fk, and we are left with a similar optimization problem in n − 1
variables, where we have eliminated the variable fk and replaced d1 with d1 + dk
if f1 = fk or dn by dn + dk if fn = fk. We may use this argument repeatedly
to show that the minimum must occur on the boundary until there are only 2
variables remaining. At this point, the objective function is constant subject to
the constraints, and we are done.

We now prove the lemma from which Theorem 3 will follow. Let G be a
connected graph with normalized Laplacian eigenvalues λ0 ≤ λ1 ≤ · · · ≤ λn−1,
and let f be a harmonic eigenvector for λ1. Once f is fixed, let u and v be vertices
corresponding to minimum and maximum entries of f respectively. That is, for
all z ∈ V (G) we have f(u) ≤ f(z) ≤ f(v). Further, let

volP =
∑

z:f(z)≥0

d(z),
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volN =
∑

z:f(z)<0

d(z).

Lemma 1. Let G be a connected graph with f a harmonic eigenvector for λ1 of
its normalized Laplacian. Let u and v be vertices which minimize and maximize
f respectively, and let volP and volN be defined as above. Then

λ1 ≥
2

dist(u, v)
√

volP · volN
.

Proof. Let f be a harmonic eigenvector for λ1, and let u and v be vertices which
minimize and maximize f respectively, so f(u) ≤ f(z) ≤ f(v) for all z ∈ V (G).
Let S be a shortest path from u to v. Then,

λ1 =

∑
x∼y(f(x)− f(y))2∑

x(f(x))2d(x)

≥
∑

xy∈S(f(x)− f(y))2∑
x(f(x))2d(x)

≥
1
|S|(f(u)− f(v))2∑

x(f(x))2d(x)
,

where the last inequality is by Cauchy-Schwarz. Now, since f is a harmonic
eigenvector, we have ∑

x

f(x)d(x) = 0.

We may without loss of generality scale f so that∑
x

(f(x))2d(x) = 1.

By Proposition 1, we have that the quantity (f(u)− f(v))2 is bounded below by
(c2 − c1)2 where c1 and c2 satisfy∑

x∈N
c1d(x) +

∑
x∈P

c2d(x) = 0,

and ∑
x∈N

c21d(x) +
∑
x∈P

c22d(x) = 1.

If c1 and c2 satisfy this system, then we have

c1 = −

√
volP

vol2N + volPvolN
, c2 =

√
volN

vol2P + volPvolN
.

Thus we have

λ1 ≥
1

dist(u, v)

(√
volN

vol2P + volPvolN
+

√
volP

vol2N + volPvolN

)2

.
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Using calculus, one can see that(√
volN

vol2P + volPvolN
+

√
volP

vol2N + volPvolN

)2

≥ 2√
volPvolN

.

As a corollary of this, we can now prove Theorem 3.

Proof of Theorem 3. Note that vol(G) = volP + volN , and so the AM-GM in-
equality gives us

vol(G)

2
≥
√

volP · volN .

Now, if D is the diameter of G, we have by Lemma 1 that

λ1 ≥
2

dist(u, v)
√

volPvolN
≥ 2

D
√

volPvolN
≥ 4

D · vol(G)
.

Next we give a family of constructions showing that Theorem 3 is sharp.

Proposition 2. Let D and d be fixed, and let n−D+1 be divisible by 4. Let H1

and H2 be d-regular graphs on n−D+1
2 vertices, and let H be the graph obtained

by joining H1 and H2 by a path of length D. Then

λ1(H) ≤ 4

Dd(n−D)
.

Proof. Label the vertices on the path between H1 and H2 as p0, p1, . . . , pD, where
the terminal vertices p0 and pD belong to H1 and H2 respectively. Define f :
V (H)→ R by

f(u) =


1 if u ∈ H1,

−1 if u ∈ H2,

1− 2i
D if u = pi.

One may check that
∑

u f(u)d(u) = 0, and hence

λ1 ≤
∑

u∼v(f(u)− f(v))2∑
v f(v)2d(v)

≤
∑

u∼v(f(u)− f(v))2

(n−D)d
=

∑D
i=1(f(pi)− f(pi−1))

2

(n−D)d

=
D
(
2
D

)2
(n−D)d

.

Now, given H we have that vol(H) = (n −D + 1)d + 2D and the diameter
of H is at most D + diam(H1) + diam(H2). Therefore, as long as we have
d(n − D + 1) + 2D ∼ d(n − D) and diam(H1) + diam(H2) = o(D), then the
lower bound in Theorem 3 is asymptotically tight for λ1(H) as n goes to infinity.
Since we may choose d-regular graphs with diameter O(log n), for any D and

vol satisfying D � log n and n � vol ≤ n2

2 , there is a sequence of graphs with
diameter asymptotic to D and volume asymptotic to vol for which the bound in
Theorem 3 is asymptotically sharp.
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3 Proof of Theorem 4

We first prove an upper bound on α(n), which is straightforward by considering
the double kite graph.

Claim 1.

α(n) ≤ (1 + o(1))
54

n3
.

Proof. Consider G = DK(n3 ,
n
3 ). By Proposition 2 we have λ1(G) ≤ (1+o(1)) 54

n3 .

It remains to prove that α(n) ≥ (1 + o(1)) 54
n3 . To do so, we will use Lemma

1 from Section 2, as well as an additional lemma below that establishes a key
property of the extremal graphs. Henceforth, we assume G achieves α(n) with
harmonic eigenvector f satisfying

λ1 =

∑
x∼y(f(x)− f(y))2∑

x(f(x))2d(x)
.

Let

P = {z ∈ V (G) : f(z) ≥ 0},
N = {z ∈ V (G) : f(z) < 0}.

Further, let u and v satisfy f(u) ≤ f(z) ≤ f(v) for all z ∈ V (G) and let S be a
shortest path from u to v.

Lemma 2. If G achieves α(n), then the number of edges with one endpoint in
N and the other in P satisfies

1 ≤ e(N,P ) ≤ n− 1.

Proof. Since f is a harmonic eigenvector, we have
∑

x f(x)d(x) = 0 and so
f(u) < 0 < f(v). Therefore, there must be an edge in S that has one endpoint
in N and the other in P . To see the upper bound, we claim that any edge with
one endpoint in N and the other in S must be a bridge. To see this, let

a =
∑
x∼y

(f(x)− f(y))2,

and
b =

∑
x

(f(x))2d(x),

so that λ1 = a
b . Now let e = wz be an edge with one endpoint in N and the

other in P , and let G′ = G \ {e}. Furthermore, let d′(x) be the degree sequence
of G′, and let f ′(x) = f(x) + c where c is chosen so that

∑
x f
′(x)d′(x) = 0. So

0 =
∑
x

(f(x) + c) d′(x) =
∑
x

(f(x) + c) d(x)− f(w)− c− f(z)− c
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=
∑
x

f(x)d(x) + c
∑
x

d(x)− f(z)− f(w)− 2c

= c
∑
x

d(x)− 2c− f(z)− f(w).

We get

c =
f(z) + f(w)∑

x d(x)− 2
. (8)

If RG(f) is the Rayleigh quotient of graph G with harmonic eigenfunction f ,
then define c1, c2 so that

RG′(f ′) =
a− c1
b− c2

,

where c1, c2 > 0. It is easily seen that

a− c1
b− c2

<
a

b

if and only if

λ1 =
a

b
<
c1
c2
.

By definition of f ′ and G′, we have c1 = (f(w) − f(z))2 > f(w)2 + f(z)2,
since f(w)f(z) < 0. Also,

c2 =
∑
x

f(x)2d(x)−
∑
x

f ′(x)2d′(x)

=
∑
x

f(x)2d(x)−

(∑
x

(f(x) + c)2d(x)− (f(z) + c)2 − (f(w) + c)2

)

= f(z)2 + f(w)2 + 2c(f(z) + f(w))− c2
(∑

x

d(x)− 2

)
.

Using Expression 8 we get

c2 = f(z)2 + f(w)2 +
(f(z) + f(w))2∑

x d(x)− 2
≤ f(z)2 + f(w)2 +

f(z)2 + f(w)2∑
x d(x)− 2

,

again using the fact that f(w)f(z) < 0. Combining these, we get

c1
c2
>

f(z)2 + f(w)2

f(z)2 + f(w)2 + f(z)2+f(w)2∑
x d(x)−2

=
1

1 + (
∑

x d(x)− 2)−1
.

If G′ is connected, we have the (very weak) bound
∑

x d(x)− 2 > 2n− 4, so for
any ε > 0 if n is large enough we have c1

c2
> 1− ε > λ1. Therefore deleting this

edge would decrease λ1. By minimality we conclude that e is a bridge. Now,
given a connected graph, take any connected spanning tree. Since any edge not
on this spanning tree cannot disconnect the graph, there can be at most n − 1
bridges, giving us the upper bound.
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We are now in a position to prove a lower bound on α(n), which completes
our proof of Theorem 4.

Claim 2.

α(n) ≥ (1 + o(1))
54

n3
.

Proof. Assume G achieves α(n) and let GP and GN be the graphs induced by
P and N respectively. Note that

volP = 2e(GP ) + e(N,P ),

and
volN = 2e(GN ) + e(N,P ).

Let P ′ = P \S and N ′ = N \S, and let |P ′| = α1n, |N ′| = α2n, and |S| = α3n.
So α1 + α2 + α3 = 1. Now, since S is a shortest path from u to v, we have that
any vertex in V (G) \ S may have at most 3 neighbors on S, and any vertex in S
may have at most 2 neighbors in S. Thus we have

2e(GP ) =
∑
z∈P

d(z) ≤ |P ′|2 + 2e(P ′, S) + 2|S| ≤ |P ′|2 + 6|P ′|+ 2|S| ≤ α2
1n

2 + 8n.

By Lemma 2 we have that volP ≤ α2
1n

2 + 9n. Similarly, volN ≤ α2
2n

2 + 9n. By
Lemma 1, we have

λ1 ≥
2

|S|
√

volPvolN
≥ (1 + o(1))

2

α1α2α3n3
.

Since α1 +α2 +α3 = 1, this quantity is minimized when α1 = α2 = α3 = 1
3 , and

so

λ1 ≥ (1 + o(1))
54

n3
.

4 Problems and remarks

In this paper, we proved an asymptotically sharp lower bound on the normalized
Laplacian spectral gap of a connected graph. However, many questions remain
unanswered. Here we mention several related problems:

• Characterize the extremal graphs for which λ1 = α(n). One might guess
that all such extremal graphs are double kite graphs for large enough n,
but we were not able to prove this.

• Prove the corresponding theorem for the adjacency matrix: Stanic [16]
conjectured that double kite graphs minimize the adjacency spectral gap.

• Minimize λ1 of the normalized Laplacian over the family of all regular
graphs. Aldous and Fill [1] conjectured that the minimum is (1 + o(1))2π

2

3n2

and is achieved by a necklace graph. An affirmative answer to this con-
jecture was given for 3-regular graphs by [3], but the general case is still
open.
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