The Alon-Saks-Seymour and Rank-Coloring
Conjectures

Michael Tait

Department of Mathematical Sciences
University of Delaware
Newark, DE 19716
tait@math.udel.edu

April 20, 2011



SITYor
WWARE

» A graph is a set of vertices
V(G) and a set of edges ._.
E(G), where each edge is an
unordered pair of vertices.

» The adjacency matrix of a

graphis a |V(G)| x |V(G)|

matrix with rows and columns ¢

indexed after the vertices.

The xy’th entry is 1 is xy is an

edge in G and 0 otherwise.

This matrix is denoted by

AG) e—©
» We denote the rank of A(G)

by rank(A(G)).
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A proper k-coloring of a graph G assigns k colors to the vertices of G in such a way
that if two vertices are adjacent they do not have the same color. The chromatic
number of a graph is the minimum number k such that a proper k coloring of G exists

and is denoted x(G).

N
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» The complete graph on n vertices is the graph on n vertices with all (3) possible

edges and is denoted K.

» An independent set is a set of vertices that are pairwise nonadjacent.

» A complete bipartite graph (also called biclique) is an independent set of size a
and an independent set of size b with all a- b edges between them and is denoted
Ka,b-
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» The biclique partition number of a graph G is the minimum number of bicliques
necessary to partition the edge set of G, and is denoted bp(G).

» So for example, bp(Ky) < 3.
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» In fact, bp(Kn) < n— 1 forany n.

» We can prove by induction. To see this, we can take a Ki ,_4 out of the edge set
of K, and what we are left with is the edge set of K,,_1.

» This problem begins with the Graham-Pollak Theorem. In 1971, Graham and
Pollak proved that the inequality also goes the other direction, i.e. that
bp(Kn) > n—1.

Theorem (Graham-Pollak Theorem)
The edge set of the complete graph on n vertices cannot be partitioned into fewer than
n — 1 complete bipartite subgraphs.
» Several proofs of this fact have since been discovered (e.g. Witsenhausen, Peck,
Tverberg, Vishwanathan).
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» Since x(Kn) = n, the Graham-Pollak Theorem can be rephrased as
x(Kn) =bp(Kn) + 1.
» This prompted Alon, Saks, and Seymour to make the following conjecture in 1991.

Alon-Saks-Seymour Conjecture - 1991
If the edge set of a graph G can be partitioned into the edge disjoint union of k
bicliques, then k + 1 > x(G).
» Rephrasing, the conjecture says for any graph G, the inequality x(G) < bp(G) + 1
holds.



» We also notice that rank(A(Kn)) = n.

» In 1976, van Nuffelen stated what became known as the Rank-Coloring
Conjecture.

Rank-Coloring Conjecture
For any simple graph G, x(G) < rank(A(G)).



» Neither conjecture is true!

In 1989, Alon and Seymour constructed the first counterexample to the
Rank-Coloring Conjecture with a graph that has rank 29 and chromatic number 32.

In 1992, Razborov found the first counterexample with a superlinear gap between
rank and chromatic number by constructing an infinite family of graphs Gp, such
that x(Gn) > c(rank(A(Gn)))*/® for some fixed ¢ > 0.

At the current time, a construction of Nisan and Wigderson yields the largest gap
between rank and chromatic number.

The Alon-Saks-Seymour Conjecture remained open for 20 years until Huang and
Sudakov constructed graphs Hy such that x(Hn) > ¢(bp(Hn))®/5 for some fixed
c>0.
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We construct new infinite families of counterexamples to both conjectures.

These families generalize the constructions of Razborov and of Huang and
Sudakov.

We explain the relationship between these conjectures and questions in
theoretical computer science.

We consider a generalization of the Graham-Pollak Theorem to hypergraphs.

v

v

v
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We construct graphs G(n, k, r) with n?k+2+1 vertices for all integers n > 2, k > 1,

r>1.
>
n2k+2r
x(G(n,k,r)) > CTEER (1)
» Fork > 2,
2k(2f + 1)(!7 _ 1)2k+2r—1 < bp(G(n, k, f)) < 02k+2r—1 2k+2r—1 @
and
[
2k(2r +1)(n — 1)2k*2r=1 < rank(A(G(n, k, 1)) < 2k(2r + 1)n?k+2r=1 (3)

v

So for fixed k, r, and n large enough, G(n, k, r) is a counterexample to both
conjectures.



Let Qn be the n-dimensional cube with vertex set {0, 1}". Let the all ones and all
zeros vectors be denoted by 17 and 0”.

Let Q, be definedas Qn \ {17,0"}.

Given integers n, k, r, we define G(n, k, r) as follows.

V(G(n, k, r)) = [n]PK+2r1 = {(x1, ..., Xogpor41) 1% € [N),1 < i <2k +2r +1}).
For any two vertices x = (X1, ..., Xoks2r+1) @nd y = (V1, ..., Yokiori1), let

P(X,,V) = (P1 (Xz.y)» covy P2k4-2r41 (va))

where p;(x,y) = 1if x; # y; and p;(x,y) = 0if x; = y;.
We define adjacency as x ~ y if and only is p(x, y) € S where

S= sz+2r+1 \[(12k % Q27+1) U {02/( % 02!+1}U {02k % 12r+1 }]



Proposition:
Forn>2and k,r > 1, x(G(n, k, 1)) > S+

Proof (Very brief sketch): Using the definition of the set S, we show that an
independent set in G can have size at most (2r + 1)n. Using the fact that (for any

graph) x(G) > ‘V ;' the bound follows.

nlk+ar
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Proposition:
Forn,k >2and r > 1, bp(G(n, k, r)) < 22k+2r—1p2k+ar—1,
Proof (Very brief sketch):
» First we prove that S can be partitioned into 2-dimensional subcubes.

» This allows us to write G as the edge disjoint union of subgraphs Gy, ..., G¢, where
t < 22k+2r=1 and each G; is an n? blowup of some graph G] which has n?k+2r—
vertices.

> Since any blowup of a biclique is still a biclique, we see that bp(G;) < bp(G)).

» Then because the edge set of G is partitioned by the edges of the G;’s, we have

t t t
bp(G) < Y bp(Gj) <Y bp(G)) < D |V(G))| — 1 < 25k+2r=1pphver=
p

i=1 i=1
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Proposition:

Forn>2and k,r > 1,

2k(2r 4+ 1)(n — 1)2k+2r=1 < rank(A(G(n, k, r))) < 2k(2r + 1)n?k+2r=1,
Proof (Very brief sketch):

» We notice that G can be defined by something called the Non-complete Extended
P-Sum (NEPS). Because of this, we can determine the spectrum of G by

2k+2r+1
s:
f(X1"")X2k+2H~1) = Z H X[I
[C Spir2r+1)€S =1
where f is evaluated at all possible combinations where the x;’s are eigenvalues of
the complete graph K.

» This looks complicated but actually simplifies nicely! By plugging in values
carefully, we obtain lower bounds on the number of both zero and non zero
eigenvalues of G and show

2k(2r +1)(n — 1)2$+2=1 < rank(A(G(n, k, 1))) < 2k(2r + 1)n?k+2r—1



SITYor
[ﬁ,ﬁ,&WARE

v

That was technical, but most importantly, remember that we’ve constructed graphs
G(n, k, r) on n?k+2r+1 vertices.

>
n2k+ar
G(n,k,r) > .
x(Glnkr) > T
» Fork > 2,
2k(2f + 1)(n _ 1)2k+2r71 < bp(G(n, k, I')) < 22k+2r71 n2k+2r71
and

>

2k(2r + 1)(n — 1)2+2=1 < rank(A(G(n, k, 1)) < 2k(2r + 1)n?k+2r=1,

v

So for fixed k, r, and n large enough, G(n, k, r) is a counterexample to both
conjectures.



Next we talk about the applications of the Alon-Saks-Seymour and Rank-Coloring
Conjectures to theoretical computer science.

We talk about a deterministic model of communication complexity that was first
introduced by Yao in 1979.

The basic model is that there are two parties (traditionally named Alice and Bob),
and two finite sets X and Y. The task is to evaluate a boolean function

f: XxY—{0,1}

The function is publicly known, the difficulty is that Alice is the only one who can
see the input x € X and Bob is the only one that can see the input y € Y.
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» Given a protocol p, we define the cost of evaluating the function ap(x, y) to be the
number of bits that Alice and Bob need to exchange before f(x, y) can be
computed.

» Then the deterministic communication complexity of f is defined the be the cost of
the “best” protocol given the “worst” inputs x and y and we will denote it by C(f).
More precisely

C(f) = Minpe pMaXye X, ye vap(X, y)
where P is the set of all protocols.
» For any boolean function f we can define a matrix My where the rows are indexed
after X and the columns after Y where (M)x,y = f(x, y).
Theorem (Yao/Mehlhorn and Schmidt)
C(f) > log, rank(Mj).
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» Lovasz and Saks have conjectured that this bound is “almost” tight.

Conjecture (Still open!)
(Log-Rank Conjecture) There exists a constant k > 0 such that for any function f

C(f) < (log, rank(My))F.

» Next we explain the connection between the Log-Rank Conjecture and the
Rank-Coloring Conjecture.
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Proposition
The Log-Rank Conjecture is true if and only if there exists a constant / > 0 such that

for any graph G
log, x(G) < (log, rank(A(G)))’

» Further, for any graph G such that rank(A(G)) < x(G) there is a corresponding
boolean function f : V(G) x V(G) — {0, 1} such that log, (rank(Ms) — 1) < C(f).

» We constructed graphs G(n, k, r) such that x(G(n, k, r)) > ner and
rank(A(G(n, k, r))) < 2k(2r + 1)n2k+2r=1,

» These graphs correspond to functions f defined by My = J — A(G(n, k, r)) such

that
2k +2r

C(f) > W log, (rank(My)) — ¢

for a fixed constant c.



We apply the question of deterministic communication complexity to the Clique vs.
Independent Set Problem (CL-IS).

In this problem there is a publicly known graph G. Alice gets a complete subgraph
C of G and Bob gets an independent set / of G.

Letting X be the set of all cliques and Y the set of all independent sets, the
objective function is given by f : X x Y — {0,1} where f(C,/) = |Cn .

We denote the deterministic communication complexity of the function by

C(CL — 1Sg).

To find a lower bound, notice that we can consider each vertex as both a clique
and an independent set of size 1. Then there are | V(G)| vertices that may be
given to Alice and Bob. This means that /|y(g)| is a submatrix of My, which means
that rank(M,«) > rank(/‘ V(G)\) = |V(G)|ThIS lmplles that

C(CL — ISg) > log, |V(G)).

Surprisingly, this is the best lower bound known.
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» We discuss the connection between the CL-IS problem and the
Alon-Saks-Seymour Conjecture.

Proposition
(Alon and Haviv) For and graph G with x(G) > bp(G) + 1 there is a corresponding
graph H with C(CL — ISy) > log, | V(H)|.

> nRk+2r

> B and

» We constructed graphs G(n, k, r) with x(G(n, k, r))
bp(G(n, k, I’)) < 22k+2r—1 p2k+2r—1
» These correspond to graphs H = H(n, k, r) such that

2k +2r
_ >_S°Te H)| —
C(CL ISH) P |092 |V( )‘ Cc

for a fixed constant c.



Next we talk about a generalization of the Graham-Pollak Theorem.

The complete r-uniform hypergraph on n vertices has vertex set [n] and edge set
(I and is denoted K.

If X1, ..., X; are disjoint subsets of [n], then the complete r-partite r-uniform
subgraph with partite sets Xi, ..., X, has edge set {(x1, ..., xr)|x; € Xi}.

In 1986, Alon asked the question, how many complete r-partite r-uniform
subgraphs are necessary to partition the edge set of K,(,') and we denote this
value by f-(n).

Indeed this is a generalization of the Graham-Pollak Theorem, because for r = 2
the question asks how many bicliques are necessary to partition the edge set of
Kn.
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» The value of f;(n) is not known for r > 4.

The best published bounds are given by Cioaba, Kiingden, and Verstraéte, who
improved a result of Alon and proved the following theorem.

Theorem
If f-(n) denotes the minimum number of complete r-partite r-uniform subgraphs
necessary to partition the edge set of the complete r-uniform graph on n vertices, then

2("")

)

<t(m < (" k) @

and 1
(=1 < () < ("), (®)
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» We find the value of f;(n) exactly in the case when n=r + 2.

Theorem ,
f2k(2k + 2) = f2k+1 (2k + 3) = "W"

» We make a slight improvement on the upper bound of fo(n) by showing

wor< (-5
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In the final chapter of the thesis, we list open problems:

» |s the Log-Rank Conjecture true? Equivalently, does there exist a constant / > 0
such that for all graphs G

logs X(G) < (log, rank(A(G)))'-

» Do there exist graphs Gp with arbitrarily large biclique partition number k, and
chromatic number at least 2¢/°9° 4 for some fixed constant ¢ > 0?
» What is the correct value for f(n) and fo1(n)?



