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Preliminaries

@ Joint work with Sebastian Cioaba.

o All graphs will be finite. A(G) will denote the adjacency matrix of a
graph G.

@ The terms biclique and complete bipartite subgraph will be used
interchangeably.
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Preliminaries

@ First let us consider the problem of partitioning the edges of a graph
by bicliques. Since each edge is a biclique, this can always be done.
However, we want to use the fewest number of bicliques possible.

Definition
The biclique partition number of a graph G is the minimum number of
bicliques necessary to partition the edges of a graph. We will denote it by

bp(G).

@ In general, this graph invariant is hard to compute.
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Preliminaries

e For a graph G, upper bounds on bp(G) come from constructions. We
find bicliques whose edges partition the edge set of G.
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Graham-Pollak Theorem

Theorem (Graham, Pollak 1972)

The edge set of a K, cannot be partitioned into the edge disjoint union of
less than n — 1 complete bipartite subgraphs.

e bp(K,) > n—1.

@ This bound is tight, and there are many partitions of K,, into n — 1
bicliques.

@ For example, we can take n — 1 "stars” (i.e. K, is partitioned into

Kin-1, Ki,n—2, ..., K12, K1,1).
bp(K,) =n—1.

Michael Tait (UCSD) L-Coverings June 2012 5/1



Proofs of the Graham-Pollak Theorem

@ Linear algebra based proofs by Tverberg (1982), Witsenhausen
(1980s), and G.W. Peck (1984).

@ A polynomial space proof by Vishwanathan (2008)
@ A counting proof by Vishwanathan (2010).
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L-Coverings

In this talk we want to consider a generalization of the Graham-Pollak
Theorem. Instead of requiring a partition of the edges of K,,, we require
that the number of times each edge is covered comes from a specified list.

Definition

Let L={h,..., I} where 0 </ < ... < Iy are integers. An biclique
covering of Type L of a graph G is a set of complete bipartite subgraphs
of G that cover the edges of G such that the number of times each edge
of G is covered is in L.

We will denote the minimum number of bicliques required for such a
covering by bp, (G).
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L-coverings

If L ={1}, then bp,(G) = bp(G).

If L =N, bp,(K,) is the biclique cover number: bpy(K,) = [log, n]
Exact results are known for very few lists L.

For L = {1,2,...,t}, Alon gave bounds for bp,(Kj,) in 1997.

Huang and Sudakov improved his lower bound recently.
Next we will talk about some other lists.
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General upper bounds

Given any list L, how can we find upper bounds for bp, (K,)? We have the
following recursive technique:

Proposition

For any list L, and any a and b

bp; (Katb-1) < bp,(Ks) + bp (Kp).
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General upper bounds

@ Let the vertex sets of K; and K}, intersect on one vertex x.

S

@ We will modify an optimal L-covering of K; and of K},

o Leave the bp, (Kj,) bicliques unchanged, modify the bp, (Kj) bicliques
in Kp into bicliques in Kyyp_1.

e If a biclique contains x, say x € U, then replace it by (V(K,)U U, V).
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General upper bounds

Edges that are completely inside K, or K, are covered the number of
times that they were before. Edges pg with p € A\ {x} and g € B\ {x}
are covered the same number of times as the edge xq which is in Kp.
Thus all edges are L-covered.
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Odd cover problem

Suppose now we ask the question, how many bicliques are necessary to
cover K, such that each edge is covered an odd number of times?

@ So we are asking for bp,(K,) where L = {1,3,5,7,...}.
@ This question was first asked by Babai and Frankl in 1992.
@ It is called the odd-cover problem.

Proposition (Cioaba and MT, 2012)
If L ={1,3}, then

n—1 4n
> < bp,(Kn) < - +2.
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Odd cover problem

Proof:

o For the lower bound, let {B;(U;, W;)}<_, be bicliques that cover K,
such that each edge is covered either 1 or 3 times.

@ We want to write A(K,,) as a linear combination of matrices.

d
A(Ka)=> AB)-2 > A(BinBNBy).
i=1 1<i<j<k<d
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Odd cover problem

Reducing over 5, we have

@ We use subadditivity of rank to complete the proof.
@ Since A(K,) has rank at least n — 1 over F, and each A(B;) has rank
2, we have 2d > rank (Z?:l A(B,-)) >n—1.
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Odd cover problem

For the upper bound, bp,(Ks) = 4.
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Now we use the recursion from before and induction.

bp, (Kn) < bp,(Kn—7) + bp.(Ks).

We note that the same lower bound holds for L = {1,3,5,7,...} with the
same proof technique.
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Even cover problem

We might ask the same question for even instead of odd.
e For L={2,4,6,...}, what is bp; (K,)?

@ Given the answer to the previous problem, we might expect the
answer to be linear.

@ Surprisingly, it is not.

Proposition
For L ={2,4,6,...},
bp,; (K,) = [logy n] + 1.
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Now let's consider the list L = {\} for a fixed A.
bp,; (Kn) = bp(AK,) where AK), is the complete multigraph.

The lower bound is bpyyy(Kn) > n — 1. The proof is the same as for
the Graham-Pollak Theorem.

@ de Caen conjectured in 1993 that for any A, for every n larger than
some Ny, bpyy(Ks) =n—1.
This conjecture is true for A < 18.

Perhaps we can use the recursion to show bpyyy(Kn) < n+cy for n
large enough.
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Graham-Pollak for hypergraphs

@ We can also generalize the Graham-Pollak Theorem to hypergraphs.

@ We ask, how many complete r-partite r-uniform hypergraphs are
necessary to partition the edge set of the complete r-uniform
hypergraph on n vertices.

e We denote this quantity by 7,(n).
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Graham-Pollak for hypergraphs

fa(n) = bp(K,) = n— 1.
fz(n) =n-—2.
f,(n) = ©(nlr/21).

In general, this problem seems very hard.
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Graham-Pollak for hypergraphs

Theorem - Cioabd, Kiindgen, Verstraéte (2009)
n—1
2(")

2k

(k)

< foy(n)

and

f(n) < Frega(n+1) < <" . k>.

This improved a result of Alon.
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Graham-Pollak for hypergraphs

Theorem - Cioab3d and MT (2012)

2k?® + 5k + 3
fok(2k +2) = [————]

and 2 .
2k +5k+3

This can be used to improve the general upper bound by a lower order
term.
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|
Open Problems

o For any fixed A, can we prove bpy,(Kp) < n+c)?
o For fixed L, is bp,(K,) = ©(n'/¥) for some fixed k?
e What is f4(n)?
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