Generalizations of the Graham-Pollak Theorem

Michael Tait

Department of Mathematics University of California San Diego La Jolla, CA 92093 mtait@math.ucsd.edu

June 12, 2012

Preliminaries

- Joint work with Sebastian Cioabă.
- All graphs will be finite. *A*(*G*) will denote the adjacency matrix of a graph *G*.
- The terms *biclique* and *complete bipartite subgraph* will be used interchangeably.

Preliminaries

• First let us consider the problem of partitioning the edges of a graph by bicliques. Since each edge is a biclique, this can always be done. However, we want to use the fewest number of bicliques possible.

Definition

The **biclique partition number** of a graph G is the minimum number of bicliques necessary to partition the edges of a graph. We will denote it by bp(G).

• In general, this graph invariant is hard to compute.

Preliminaries

• For a graph G, upper bounds on bp(G) come from constructions. We find bicliques whose edges partition the edge set of G.

• So for example, $bp(K_4) \leq 3$.

Theorem (Graham, Pollak 1972)

The edge set of a K_n cannot be partitioned into the edge disjoint union of less than n-1 complete bipartite subgraphs.

- $bp(K_n) \ge n-1$.
- This bound is tight, and there are many partitions of K_n into n − 1 bicliques.
- For example, we can take n-1 "stars" (i.e. K_n is partitioned into $K_{1,n-1}, K_{1,n-2}, ..., K_{1,2}, K_{1,1}$).
- $\operatorname{bp}(K_n) = n 1.$

Proofs of the Graham-Pollak Theorem

- Linear algebra based proofs by Tverberg (1982), Witsenhausen (1980s), and G.W. Peck (1984).
- A polynomial space proof by Vishwanathan (2008)
- A counting proof by Vishwanathan (2010).

L-Coverings

In this talk we want to consider a generalization of the Graham-Pollak Theorem. Instead of requiring a partition of the edges of K_n , we require that the number of times each edge is covered comes from a specified list.

Definition

Let $L = \{l_1, ..., l_k\}$ where $0 < l_1 < ... < l_k$ are integers. An **biclique** covering of Type L of a graph G is a set of complete bipartite subgraphs of G that cover the edges of G such that the number of times each edge of G is covered is in L.

We will denote the minimum number of bicliques required for such a covering by $bp_L(G)$.

L-coverings

- If $L = \{1\}$, then $bp_L(G) = bp(G)$.
- If $L = \mathbb{N}$, $bp_L(K_n)$ is the biclique cover number: $bp_{\mathbb{N}}(K_n) = \lceil \log_2 n \rceil$
- Exact results are known for very few lists L.
- For $L = \{1, 2, ..., t\}$, Alon gave bounds for $bp_L(K_n)$ in 1997.
- Huang and Sudakov improved his lower bound recently. Next we will talk about some other lists.

Given any list L, how can we find upper bounds for $bp_L(K_n)$? We have the following recursive technique:

Proposition

For any list L, and any a and b

 $\operatorname{bp}_{L}(K_{a+b-1}) \leq \operatorname{bp}_{L}(K_{a}) + \operatorname{bp}_{L}(K_{b}).$

General upper bounds

• Let the vertex sets of K_a and K_b intersect on one vertex x.

- We will modify an optimal L-covering of K_a and of K_b
- Leave the bp_L(K_a) bicliques unchanged, modify the bp_L(K_b) bicliques in K_b into bicliques in K_{a+b-1}.
- If a biclique contains x, say $x \in U$, then replace it by $(V(K_a) \cup U, V)$.

General upper bounds

Edges that are completely inside K_a or K_b are covered the number of times that they were before. Edges pq with $p \in A \setminus \{x\}$ and $q \in B \setminus \{x\}$ are covered the same number of times as the edge xq which is in K_b . Thus all edges are *L*-covered.

Suppose now we ask the question, how many bicliques are necessary to cover K_n such that each edge is covered an odd number of times?

- So we are asking for $bp_L(K_n)$ where $L = \{1, 3, 5, 7, ...\}$.
- This question was first asked by Babai and Frankl in 1992.
- It is called the odd-cover problem.

Proposition (Cioabă and MT, 2012)

If $L = \{1, 3\}$, then

$$\frac{n-1}{2} \leq \operatorname{bp}_{L}(K_{n}) \leq \frac{4n}{7} + 2.$$

Proof:

- For the lower bound, let $\{B_i(U_i, W_i)\}_{i=1}^d$ be bicliques that cover K_n such that each edge is covered either 1 or 3 times.
- We want to write $A(K_n)$ as a linear combination of matrices.

$$A(K_n) = \sum_{i=1}^d A(B_i) - 2 \sum_{1 \leq i < j < k \leq d} A(B_i \cap B_j \cap B_k).$$

Reducing over \mathbb{F}_2 , we have

$$A(K_n) \equiv \sum_{i=1}^d A(B_i) \pmod{2}$$

- We use subadditivity of rank to complete the proof.
- Since $A(K_n)$ has rank at least n-1 over \mathbb{F}_2 , and each $A(B_i)$ has rank 2, we have $2d \ge \operatorname{rank}\left(\sum_{i=1}^d A(B_i)\right) \ge n-1$.

Odd cover problem

For the upper bound, $bp_L(K_8) = 4$.

Now we use the recursion from before and induction.

$$\mathrm{bp}_{L}(K_{n}) \leq \mathrm{bp}_{L}(K_{n-7}) + \mathrm{bp}_{L}(K_{8}).$$

We note that the same lower bound holds for $L = \{1, 3, 5, 7, ...\}$ with the same proof technique.

We might ask the same question for even instead of odd.

- For $L = \{2, 4, 6, ...\}$, what is $bp_L(K_n)$?
- Given the answer to the previous problem, we might expect the answer to be linear.
- Surprisingly, it is not.

Proposition

For $L = \{2, 4, 6, ...\}$,

$$\operatorname{bp}_{L}(K_{n}) = \lceil \log_{2} n \rceil + 1.$$

 $L = \{\lambda\}$

- Now let's consider the list $L = \{\lambda\}$ for a fixed λ .
- $bp_L(K_n) = bp(\lambda K_n)$ where λK_n is the complete multigraph.
- The lower bound is bp_{λ}(K_n) ≥ n − 1. The proof is the same as for the Graham-Pollak Theorem.
- de Caen conjectured in 1993 that for any λ , for every *n* larger than some N_{λ} , $bp_{\{\lambda\}}(K_n) = n 1$.
- This conjecture is true for $\lambda \leq 18$.
- Perhaps we can use the recursion to show $bp_{\{\lambda\}}(K_n) \le n + c_{\lambda}$ for n large enough.

- We can also generalize the Graham-Pollak Theorem to hypergraphs.
- We ask, how many complete *r*-partite *r*-uniform hypergraphs are necessary to partition the edge set of the complete *r*-uniform hypergraph on *n* vertices.
- We denote this quantity by $f_r(n)$.

•
$$f_2(n) = bp(K_n) = n - 1.$$

•
$$f_3(n) = n - 2$$
.

•
$$f_r(n) = \Theta(n^{\lceil r/2 \rceil}).$$

• In general, this problem seems very hard.

Theorem - Cioabă, Kündgen, Verstraëte (2009)

$$\frac{2\binom{n-1}{k}}{\binom{2k}{k}} \leq f_{2k}(n)$$

and

$$f_{2k}(n) \leq f_{2k+1}(n+1) \leq \binom{n-k}{k}.$$

This improved a result of Alon.

Theorem - Cioabă and MT (2012)

$$f_{2k}(2k+2) = \lceil \frac{2k^2 + 5k + 3}{4} \rceil$$

and

$$f_{2k+1}(2k+3) = \lceil \frac{2k^2+5k+3}{4} \rceil.$$

This can be used to improve the general upper bound by a lower order term.

Open Problems

- For any fixed λ , can we prove $bp_{\{\lambda\}}(K_n) \leq n + c_{\lambda}$?
- For fixed L, is $bp_L(K_n) = \Theta(n^{1/k})$ for some fixed k?
- What is $f_4(n)$?