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Abstract

Graham and Pollak proved that one needs at least n − 1 complete bipartite sub-
graphs (bicliques) to partition the edge set of the complete graph on n vertices. In
this paper, we study the extension of Graham and Pollak’s result to coverings of a
graph G where each edge of G is allowed to be covered a specified number of times
and its generalization to complete uniform hypergraphs. We also discuss the recently
disproved Alon-Saks-Seymour Conjecture (which can be regarded as a generalization of
the previous result of Graham and Pollak) and compute the exact values of the ranks
of the adjacency matrices of the known counterexamples to the Alon-Saks-Seymour
Conjecture. The rank of the adjacency matrix of a graph G is related to important
problems in computational complexity and provides a non-trivial lower bound for the
minimum number of bicliques that partition the edge set of G.

1 Introduction

The biclique partition number, bp(G), of a finite, loopless multigraph G is the minimum
number of complete bipartite subgraphs (bicliques) whose edges partition the edge set
of G. Determining bp(G) for a general graph G is a hard problem (see Kratzke, Reznick
and West [19]). As the edge set of G can be partitioned into stars centered at the ver-
tices of a vertex cover, bp(G) is at most the minimum size of a vertex cover of G. Wit-
senhausen (cf. Graham and Pollak [15, 16]) proved that bp(G) ≥ max(n+(G), n−(G)),
where n+(G) (n−(G)) is the number of positive (negative) eigenvalues of the adjacency
matrix of G; a graph G is called eigensharp if equality holds above (see [19]).

Graham and Pollak [15, 16] studied the biclique partition number of multigraphs
in connection to some network routing problems (see also Babai and Frankl [6, Section
1.4], Van Lint [30] and Van Lint and Wilson [31, Chapter 9]). Graham and Pollak
proved that the minimum length of {0, 1, ∗}-words needed to label the vertices of a
connected graph G such that the distance between any two vertices equals the number
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of positions in their labels where the entries are distinct and not ∗, equals bp(D(G)),
where D(G) is the distance multigraph of G. The distance multigraph D(G) has the
same vertex set as G, and the multiplicity of the edge uv in D(G) equals the distance
between u and v in G. When G is the complete graph Kn on n vertices, D(Kn) = Kn,
and hence addressing Kn is equivalent to determining bp(Kn). Using algebraic methods
involving Sylvester’s law of inertia, Graham and Pollak [16] proved that bp(Kn) ≥ n−1.
As the edges of Kn can be partitioned into n − 1 bicliques (one can use n − 1 edge
disjoint stars, but there are many other ways; see Babai and Frankl [6, Ex 1.4.5, p.29]),
this shows bp(Kn) = n − 1. Peck [24], Tverberg [29] and Vishwanathan [32, 33] gave
other proofs of Graham and Pollak’s result, bp(Kn) = n− 1.

A natural generalization of the Graham–Pollak Theorem asks whether any graph
G can be properly colored with bp(G) + 1 colors. This result was actually conjec-
tured by Alon, Saks, and Seymour (cf. Kahn [18]). The Alon-Saks-Seymour Con-
jecture remained open for twenty years until recently when Huang and Sudakov [17]
disproved it and constructed graphs G with arbitrarily large biclique partition number
such that χ(G) ≥ c(bp(G))6/5, for some absolute positive constant c. In [11], the au-
thors extended Huang and Sudakov’s work and constructed other counterexamples to
the Alon-Saks-Seymour Conjecture.

At the present time, the construction of Huang and Sudakov gives the largest gap
between bp(G) and χ(G), and these authors conjectured in [17] that there exist graphs

G with biclique partition number k and chromatic number at least 2c log
2 k, for some

constant c > 0. The existence of such graphs would resolve the complexity of the clique
vs. independent set problem (see [17]).

The graphs constructed in [11] are also counterexamples to the Rank-Coloring Con-
jecture [23] stating that χ(G) ≤ rank(A(G)), where rank(A(G)) is the rank of the adja-
cency matrix, A(G), of G. The Rank-Coloring Conjecture was first disproved by Alon
and Seymour [4], and the first superlinear gap between χ(G) and rank(A(G)) was ob-
tained by Razborov [26]. The construction from [11] is also an extension of Razborov’s
work. At the present time, the biggest gap between χ(G) and rank(A(G)) is given
by a construction of Nisan and Wigderson [22]. The Alon-Saks-Seymour Conjecture
and the Rank-Coloring Conjecture are closely related to problems in computational
complexity (see [17, 22, 26]).

In this paper, we discuss several extensions of the previous result of Graham and
Pollak. In Section 2, we study the minimum number of bicliques needed to cover the
edges of a graph G such that the number of times each edge of G is covered belongs
to a specific list. If L is a list of positive integers and G is a graph, let bpL(G) denote
the minimum number of bicliques that partition the edge-set of G such that each edge
of G is contained in exactly l bicliques for some l ∈ L. As each edge is a biclique,
this parameter is well-defined, and the Graham–Pollak Theorem can be restated as
bpL(Kn) = n− 1 for L = {1}. In Section 2, we obtain some lower bounds on bpL(G)
using algebraic methods (Theorem 2.1 and Theorem 2.3), and we present some old and
new constructive upper bounds for bpL(Kn) for several lists L (Examples 1-6).

In Section 3, we study the hypergraph version of the Graham–Pollak Theorem where
few exact results are known. Let fr(n) be the minimum number of complete r-partite
r-uniform hypergraphs needed to partition the edge set of the complete r-uniform
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hypergraph on n vertices. The Graham–Pollak Theorem states that f2(n) = n − 1.
Alon [1] proved that f3(n) = n − 2 and fr(n) = Θ(nbr/2c) for fixed r ≥ 4. Cioabă,
Kündgen and Verstraëte [10] improved Alon’s bounds in the lower order terms. For
r ≥ 4, not many values of fr(n) are known. In Section 3, we improve the upper bounds
of Alon [1] and Cioabă, Kündgen and Verstraëte [10] (Theorem 3.1 and Proposition
3.3), and we determine the exact value of fr(r+2) for every r (Proposition 3.7) and the
asymptotic value of fr(r + t) for fixed t (Proposition 3.8). The results of this section
show that finding the exact value of fr(n) or even coming up with a conjectured value
of fr(n) will be quite difficult, since fr(n) does not equal the current lower or upper
bounds for r ≥ 6.

In Section 4, we discuss the recently disproved Alon-Saks-Seymour Conjecture and
compute the precise value of the rank of the adjacency matrix of the known counterex-
amples to this conjecture (Theorem 4.1 and Proposition 4.2). Our results extend the
work from [11] and give the exact order of magnitude of the biclique partition number
of these counterexamples. We conclude the paper with some open problems.

2 L-bipartite coverings

Our graph notation is standard (for undefined terms, see West [34]). Let L = {l1, ..., lr},
where l1, ..., lr are positive integers. An L-bipartite covering of a graph G is a collection
of bicliques such that every edge of G is contained in exactly li bicliques for some
li ∈ L. As each edge is a biclique, every graph has an L-biclique covering. We denote
by bpL(G) the minimum number of bicliques in an L-bipartite covering of G. The
parameter bp{1}(G) is the biclique partition number of G (see the survey [21]) and the
Graham–Pollak Theorem states that bp{1}(Kn) = n − 1. Also, bp{1,2,...,t}(G), which
will be denoted by bpt(G), is the bipartite covering number of order t or the t-biclique
covering number of G (see Alon [2] and Huang-Sudakov [17]). For fixed t ≥ 2, Alon [2]
showed that (1 + o(1))(t!/2t)1/tn1/t ≤ bpt(Kn) ≤ (1 + o(1))tn1/t. Huang and Sudakov
[17] improved Alon’s lower bound to (1 + o(1))(t!/2t−1)1/tn1/t ≤ bpt(Kn). The gap
between the two bounds is still fairly large, even in the case t = 2. For L = {λ}, the
parameter bpL(Kn) was studied by De Caen, Gregory, and Pritikin [9]. When L is the
set of all odd numbers, the parameter bpL(Kn) was investigated by Radhakrishnan,
Sen and Vishwanathan [25].

2.1 Lower Bounds for bpL(G) and bpL(Kn)

In this subsection, we obtain two lower bounds for bpL(G) and bpL(Kn) using algebraic
methods. Our first result, Theorem 2.1, gives a lower bound for bpL(G) for any list
L and any graph G. Our proof is a modification of the proof of Huang and Sudakov
[17] yielding a lower bound of (1 + o(1))(t!/2t−1)1/tn1/t for bpt(Kn). These authors
follow a proof of the Graham–Pollak Theorem given by Peck [24] whereas we complete
the argument in the spirit of a different proof of the Graham–Pollak Theorem, due to
Witsenhausen (see, e.g. [8]). We believe that our proof can yield useful information
about the case of equality. Our second result, Theorem 2.3, gives a lower bound for
bpL(Kn) for any list L. Our proof is inspired by an argument of Alon [2]. We make a
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small improvement to Alon’s proof (one that does not change the order of magnitude
of the lower bound).

Theorem 2.1. If there exists an L-bipartite covering of a graph, with d bicliques, then

max(n+(A(G)), n−(A(G)) ≤
∑
l∈L

2l−1
(
d

l

)
,

where n+(A(G)) and n−(A(G)) are the number of positive and negative eigenvalues of
A(G), respectively.

Proof. Suppose that the edges of G are covered by the bicliques {B(Ui,Wi)}di=1 such
that the number of times every edge in G is covered is in the list L. For every subset
of indices S ⊂ [d] with |S| ∈ L, let HS =

⋂
j∈S B(Uj ,Wj), and let AS be its n × n

adjacency matrix. If |S| = s, then for every {0, 1} vector z = (z1, ..., zs−1) consider the
complete bipartite graph with partite sets Xz and Yz defined as follows:

Xz =
⋂

j:zj=0

Uj
⋂

j:zj=1

Wj

⋂
Us and Yz =

⋂
j:zj=0

Wj

⋂
j:zj=1

Uj
⋂
Ws.

As z ranges over all {0, 1}-vectors of length s− 1, these bicliques are edge-disjoint and
their union is HS . Thus, HS is the disjoint union of at most 2s−1 bicliques, which
means that AS can be written as the sum of the adjacency matrices of at most 2s−1

bicliques.
Now we can write

A(G) =

r∑
k=1

ck
∑

S⊂[d],|S|=lk

AS , (1)

where ci = 1−
∑i−1

k=1 ck
(
li
lk

)
. This implies that A(G) is a linear combination of the n×n

adjacency matrices of at most M bicliques, where M =
∑

l∈L
(
d
l

)
2l−1. Denote by ui and

vi the characteristic vectors of the partite sets of the i-th biclique in this decomposition.
If Di is the n× n adjacency matrix of the i-th biclique, then Di = uiv

T
i + viu

T
i . Let

W = Span{w ∈ Rn : wTui = 0, for 1 ≤ i ≤M},

P = Span{Eigenvectors of the positive eigenvalues of A}.

Since W consists of n-dimensional vectors that are all orthogonal to M vectors, we have
dim(W ) ≥ n−M . Since pTAp > 0 for all nonzero p ∈ P , we have that W ∩ P = {0}.
Therefore dim(W ) ≤ n− dim(P ) = n− n+(A(G)). This implies M =

∑
l∈L
(
d
l

)
2l−1 ≥

n+(A(G)). The inequality M ≥ n−(A(G)) can be proved similarly.

As n+(A(Kn)) = 1 and n−(A(Kn)) = n − 1, the previous theorem will imply the
following result.

Corollary 2.2. If Kn has an L-bipartite covering of size d, then n−1 ≤
∑

l∈L 2l−1
(
d
l

)
.

Theorem 2.3. If Kn has an L-bipartite covering of size d, then n ≤
∑|L|

i=0 2i
(
d
i

)
−∑|L|−1

i=0 2i
(
d−1
i

)
= 2|L|

(
d
|L|
)

+
∑|L|−1

i=1 2i
(
d−1
i−1
)
.

4



Proof. Let B1, ...Bd with partite sets U1, ..., Ud and W1, ...Wd respectively be complete
bipartite graphs that form an L-bipartite covering of Kn with size d. Let N = V (Kn) =
{1, ..., n}. For i ∈ N , define a polynomial Pi(x1, ..., xd, y1, ..., yd) by

Pi(x1, . . . , xd, y1, . . . , yd) =
∏
l∈L

 ∑
p:i∈Up

xp +
∑

q:i∈Wq

yq − l

 .

For i ∈ N , let ei = (wi1, ..., wid, ui1, ..., uid) be the vector in which uip = 1 if i ∈ Ui
and 0 otherwise, and wiq = 1 if i ∈Wq and 0 otherwise. Then

∑
p:i∈Up

xp +
∑

q:i∈Wq
yq

evaluated at ej is precisely the number of times the edge between i and j appears in
one of the bicliques B1, . . . , Bd . Thus

Pi(ej) = 0 for all 1 ≤ i 6= j ≤ n and Pi(ei) =
∏
l∈L

(−l) 6= 0.

Let P i(x1, . . . , xd, y1, . . . , yd) be the multilinear polynomial obtained from Pi by replac-

ing each monomial of the form
∏
s∈S x

αs
s

∏
t∈T y

βt
t , where αs ≥ 1 and βt ≥ 1 for each s

and t, by the linear monomial
∏
s∈S xs

∏
t∈T yt. When x1, . . . , xd, y1, . . . , yd ∈ {0, 1}, we

have Pi(x1, . . . , xd, y1, . . . , yd) = P i(x1, . . . , xd, y1, . . . , yd) for 1 ≤ i ≤ n. By the above
equation, this implies P i(ej) = 0 for 1 ≤ i 6= j ≤ n and P i(ei) 6= 0 for 1 ≤ i ≤ n. By
the diagonal criterion (see [2, 6] for more details), the multilinear polynomials P1, ..., Pn
are linearly independent. Each Pi is a multilinear polynomial of degree at most r = |L|.

By definition, each P i does not contain any monomials that contain both xj and yj
for the same j. Also, without loss of generality, we may assume that vertex 1 always
goes in partite set Ui whenever vertex 1 appears in a biclique Bi. Thus, none of the
Pi’s contains y1. The polynomials Pi are in the space generated by

∏
x∈S xs

∏
t∈T yt,

where S and T range over all subsets of N satisfying |S| + |T | ≤ r and S ∩ T = ∅
and 1 6∈ T . Since there are

∑r
i=0 2i

(
d
i

)
−
∑r−1

i=0 2i
(
d−1
i

)
pairs {S, T}, these facts imply

n ≤
∑r

i=0 2i
(
d
i

)
−
∑r−1

i=0 2i
(
d−1
i

)
.

2.2 Constructive Upper Bounds for bpL(Kn)

In this subsection, we give some examples of lists with |L| > 1 such that the previous
lower bounds give the right order of magnitude for bpL(Kn). Theorem 2.1 will yield
better bounds for lists of the form L = {1, . . . , t}, while Theorem 2.3 will be stronger
in the other cases. We remark here that there are examples of lists where neither of the
results in the previous section will produce the correct order of magnitude of bpL(Kn).
For example, if L contains only integers congruent to a (mod p) for some prime number
p and natural number a coprime with p, then one can show that bpL(Kn) ≥ n−1

2 (see
the remark below and also [25]), while Theorem 2.2 and Theorem 2.3 will only produce
sublinear lower bounds.

Remark 1. If Kn is covered by bicliques B1, ..., Bd so that each edge is covered a
number of times congruent modulo p to a number not divisible by p, then

A(Kn) ≡
d∑
i=1

a ·A(Bi) (mod p).
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This implies n−1 ≤ rank(A(Kn)) ≤
∑d

i=1 rank(a·A(Bi)) = 2d, which implies d ≥ n−1
2 .

The upper bound in the first example is a construction by Alon [2], which we recall
here for completeness. The upper bound in the second example is a modification of a
different construction of Alon [2]. The third and fourth example seem to be new. The
fifth example is due to Alon (private communication to the authors).

Example 1. L = {1, 2}.

Let d = bpL(Kn). Theorem 2.2 gives n ≤ 1+d2; that is, d ≥
√
n− 1. For the upper

bound, let k = b
√
nc. This means k2 ≤ n < (k + 1)2. If n = k2, then we put the n

vertices into a grid with k rows, {Ri}ki=1, and k columns, {Ci}ki=1. The 2k−2 bicliques
(described by their color classes) {(Ri,∪kj=i+1Rj)}

k−1
i=1 and {(Ci,∪k+1

j=i+1Cj)}
k−1
i=1 form a

{1, 2}-covering of Kn. Thus if n = k2, then

√
n− 1 ≤ bp{1,2}(Kn) ≤ 2b

√
nc − 2.

One can show by a similar argument that if k2 < n < k2 + k, then bp{1,2}(Kn) ≤
2b
√
nc − 1, and if k2 + k < n < (k + 1)2, then bp{1,2}(Kn) ≤ 2b

√
nc. By some tedious

case analysis, which we omit here, we have checked that bp2(Kn) equals this upper
bound for 3 ≤ n ≤ 9 and n = 12.

Example 2. L = {2, 4, ..., 2k}.

Let d = bpL(Kn). Theorem 2.3 gives

n ≤ 2k
(
d

k

)
+
k−1∑
i=1

2i
(
d− 1

i− 1

)
.

Thus d is bounded below by roughly (k!n)1/k

2 . To see the upper bound, consider the

complete graph on n vertices, where n =
(
d
k

)
+
(
d

k−2
)
+...+

(
d

k−2bk/2c
)
. Index the vertices

by the subsets of [d] of size k, k − 2, k − 4, ..., k − 2 bk/2c. Cover Kn with d bicliques,
where in biclique i we put vertex A ∈ Ui if and only if i ∈ A and A ∈ Wi if and only
if i 6∈ A. The number of edges joining A and B equals |A∆B|; hence the number of
times each edge is covered is contained in {2, 4, ..., 2k}. Thus, d is bounded above by
roughly (k!n)1/k.

Example 3. L = {2, 3}.

Let d = bpL(Kn). Theorem 2.3 gives n ≤ 2(d2−d+1), which implies d >
√

n
2 . For

the upper bound, assume that n =
(
k
2

)
and arrange the vertices of Kn in a triangular

grid with k vertices on each side. For each direction parallel with one of the sides of
the grid, we construct k − 1 bicliques as follows. When the direction of the side is
horizontal and 1 ≤ i ≤ k − 1, construct a biclique whose first partite set is the i-th
row (from the bottom) of the triangular grid and second partite set is formed by the
rows i + 1, . . . , k (see Figure 1). After a similar construction for the other two sides,
we obtain 3(k − 1) bicliques that cover the edges of Kn so that each edge is covered
two or three times. If xy is an edge of Kn and the points corresponding to xy in the
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Figure 1: A biclique in the triangular grid

triangular grid create a line parallel to one of the sides of the triangular grid, then xy
is covered exactly two times. Otherwise, xy is covered exactly three times.

Thus, we obtain k
2 < bp{2,3}(K(k2)

) < 3k.

Example 4. L = {1, 3}.

Remark 1 implies that bp1,3(Kn) ≥ n−1
2 for every n (this lower bound will be n

2
when n is even). In [25], the authors show that actually bp{1,3}(K8) = 4. Using this
fact and a similar argument to one in [9] (which we will describe below), we can obtain
the upper bound bp{1,3}(Kn) ≤ 4n

7 + 2.

Proposition 2.4. For any list L and natural numbers a, b.

bpL(Ka+b−1) ≤ bpL(Ka) + bpL(Kb).

Proof. Denote the vertex set of Ka by A and the vertex set of Kb by B. Identify one
element of A with one element of B and call this element x. We will think of the vertex
set of Ka+b−1 as being A ∪B with an overlap at x.

We will now construct an L-covering of Ka+b−1 with bpL(Ka) + bpL(Kb) bicliques.
Leave the bpL(Ka) bicliques in an optimal covering as they were. Change the bpL(Kb)
bicliques in an optimal covering of Kb into bicliques in Ka+b−1 as follows:

1. if a biclique (U, V ) does not contain x, then leave it unchanged.

2. if a biclique (U, V ) contains x (say x ∈ U), then replace it by (A ∪ U, V ).

The edges inside Ka are L-covered. The edges inside Kb are L-covered. Any edge pq
with p ∈ A \ {x} and q ∈ B \ {x}) is covered the same number of time as the edge xq
which is in Kb. This finishes the proof.

The previous result implies that bp{1,3}(Kn) ≤ bp{1,3}(Kn−7) + bp{1,3}(K8) =

bp{1,3}(Kn−7)+4, which gives bp{1,3}(Kn) ≤ 4n
7 +2. Thus, bn2 c ≤ bp{1,3}(Kn) ≤ 4n

7 +2.
The following example was suggested to the authors by Noga Alon (private com-

munication in October 2011).

Example 5. L = {1, 2, 4}.
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Using the construction from Example 2 (for k = 2), we obtain bpL(Kn) ≤ (
√

2 +
o(1))n1/2. Let t = bpL(Kn). If Kn is covered by bicliques B1, . . . , Bt so that the
number of times each edge is covered lies in L, then A(B1) + · · ·+A(Bt) ≡ A mod 3,
where A = (ai,j)1≤i,j≤n is a symmetric n × n matrix having 0 diagonal and ai,j =
±1 mod 3 for i 6= j. The subadditivity of the rank implies t ≥ rank(A)/2. Since
the matrix (a2i,j)1≤i,j≤n is the identity In, a result of Alon [3, Lemma 2.3] implies

rank(A) ≥ (
√

2− o(1))n1/2. Thus, bpL(Kn) ≥
(
1/
√

2− o(1)
)
n1/2.

Example 6. L = {λ}.

When L = {λ}, De Caen, Gregory, and Pritikin conjectured [9] that bpL(Kn) =
n − 1 for n large enough. This is known to be true for λ ≤ 18 and is related to
interesting problems in design theory and finite geometry (see [9] for more details).

To the knowledge of the authors, there are not many lists of constant size greater
than 1 (not depending on n) for which the exact value of bpL(Kn) is known. It is well
known that if L = {1, . . . , blog2 nc}, then bpL(Kn) = dlog2 ne. In [25], the authors
showed that bpL(n) = n

2 for infinitely many values of even n, where L is the list of
odd numbers less than n; these authors also proved similar results when L is the list
of numbers congruent to 1 (mod p), p a fixed prime.

3 The Graham–Pollak Theorem for Hypergraphs

We first explain the hypergraph notation used in this section (see also [7]). Let [n]
denote the set {1, ..., n} and [n](r) denote the family of r-subsets of [n]. If X1, ..., Xr

are disjoint subsets of [n], then
∏r
i=1Xi denotes the family of r-subsets {x1, . . . , xr}

where xi ∈ Xi for 1 ≤ i ≤ r. The complete r-partite r-uniform hypergraph [X1, . . . , Xr]
with parts X1, ..., Xr is the r-uniform hypergraph with edge set

∏r
i=1Xi.

In this section, we study the problem of determining the minimum number of

complete r-partite r-uniform hypergraphs needed to partition the edge set of K
(r)
n .

Given an r-uniform hypergraph H, let fr(H) denote the minimum number of complete
r-partite r-uniform hypergraphs needed to partition the edge set of H. We denote

fr(K
(r)
n ) by fr(n). The Graham–Pollak Theorem states that f2(n) = bp(Kn) = n− 1.

Aharoni and Linial (cf. [1]) raised the natural problem of determining or estimating
fr(n) for r > 2. In particular, they asked whether fr(n) is a nonlinear function of n
for some fixed r > 2. Alon [1] answered this question and proved that f3(n) = n − 2
and fr(n) = Θ(nbr/2c) for fixed r ≥ 4 and n → ∞. When r ≥ 4, the exact value of
fr(n) is known in very few cases.

The best known bounds for fr(n) were obtained by Cioabă, Küngden, and Ver-
straëte [10], who improved previous results of Alon [1] and showed that

2
(
n−1
k

)(
2k
k

) ≤ f2k(n) (2)

and

f2k(n) ≤ f2k+1(n+ 1) ≤
(
n− k
k

)
. (3)
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In Subsection 3.1, we improve the above upper bound (3) for f2k(n) from [10] when
k ≥ 3. In Subsection 3.2, we determine the exact value of fr(r+2) whenever r ≥ 2 and
we asymptotically determine fr(r + t) for fixed t and r →∞. These results will show
that neither of the bounds (2) and (3) gives the exact value of fr(n). This suggests
that determining the exact value of fr(n) is a difficult problem.

3.1 Improved upper bound for f2k(n) when k ≥ 3

In this subsection, we use a recursive construction to improve the upper bound f2k(n) ≤(
n−k
k

)
for k ≥ 3. We obtain this improvement by considering the n vertices as the union

of a set of j vertices and a set of n− j vertices for some j. We can then use some upper
bounds on the smaller sets from Section 3.2 (more precisely, the fact that f6(8) = 9)
to bound f2k(n). The following is the main result of this section.

Theorem 3.1. For n ≥ 2k + 2 ≥ 8,

f2k(n) ≤
(
n− k
k

)
− 2

⌊ n
16

⌋(⌊n
2

⌋
− k + 3

k − 3

)
.

To prove this result, we will need Lemma 3.2 and Proposition 3.3, which we describe
below.

Lemma 3.2. Fix j, k. For n ≥ j, we have(
n− k
k

)
=

2k∑
i=0

(
j −

⌈
i
2

⌉⌊
i
2

⌋ )(
n− j −

⌈
2k−i
2

⌉⌊
2k−i
2

⌋ )
.

Proof. We use induction on n. Since
(
m
t

)
= 0 for m < 0 and

(
0
0

)
= 1, both sides equal(

j−k
j

)
when n = j. For larger n, applying Pascal’s Identity to the second factor in the

sum breaks the sum into two sums that, by the induction hypothesis, equal
((n−1)−k

k

)
and

((n−2)−(k−1)
k

)
which sum to

(
n−k
k

)
.

Proposition 3.3. For n ≥ 8,

f6(n) ≤
(
n− 3

3

)
−
⌊n

8

⌋
.

Proof. Let n = 8j + r with 0 ≤ r < 8. We use induction on j. For the base case,
we have n = 8 + r, where 0 ≤ r < 8. We break the n vertices into one part of size

r and one part of size 8. A decomposition of K
(6)
n into complete 6-partite 6-uniform

hypergraphs can be obtained from a partition of K
(i)
8 into fi(8) complete i-partite i-

uniform hypergraphs and a partition of K
(6−i)
r into f6−i(r) complete (6 − i)-partite

(6− i)-uniform hypergraphs, when i takes values between 0 and 6. Thus

f6(n) ≤
6∑
i=0

fi(8)f6−i(r).

9



We bound everything above by (3) except for the term f6(8), where we use Theorem
3.7. Using Lemma 3.2, this proves the base case.

For j > 1, we provide a recursive construction by breaking the n vertices into a set
of size 8 and a set of size n− 8, and find

f6(n) ≤
6∑
i=0

fi(8)f6−i(n− 8) = f6(8) + f6(n− 8) +

5∑
i=1

fi(8)f6−i(n− 8)

For i from 1 to 5 we bound above by (3), and for i = 0 and i = 6 we use the inductive
hypothesis and base case. Applying Lemma 3.2 gives

f6(n) ≤
(
n− 3

3

)
− 1−

⌊
n− 8

8

⌋
,

which proves the lemma.

We are now ready to describe the proof of Theorem 3.1.

Proof. It suffices to prove the claim for even n, so we assume this for convenience.

Again, a decomposition of K
(2k)
n into complete 2k-partite 2k-uniform hypergraphs can

be obtained from a decomposition of K
(i)
n
2

into fi(
n
2 ) complete i-partite i-uniform sub-

graphs and a partition of K
(2k−i)
n
2

into f2k−i(
n
2 ) complete (2k−i)-partite (2k−i)-uniform

hypergraphs, when i takes values from 0 to 2k. Thus

f2k(n) ≤ 2f6

(n
2

)
f2k−6

(n
2

)
+

∑
i 6=6,2k−6

fi

(n
2

)
f2k−i

(n
2

)
.

We bound each term of the previous sum from above by (3) for all fj(
n
2 ) except for

i = 6, where we use the bound given by Proposition 3.3. Using Lemma 3.2, we obtain
the desired result:

f2k(n) ≤
(
n− k
k

)
− 2

⌊ n
16

⌋(⌊n
2

⌋
− k + 3

k − 3

)
.

3.2 Determining fr(n) when n− r is a constant

In this section, we determine the exact value of fr(r + 2). Exact values for fr(n) are
only known for r ∈ {2, 3}. We also determine the asymptotics of fr(r + t) when t is
fixed and r →∞.

When n = r + 2, the complement of each hyperedge can be seen as an edge of

Kr+2, and we refer to Kr+2 as the complement of K
(r)
r+2. If we decompose K

(r)
r+2 into

complete r-partite r-uniform subgraphs, then the complements of the hyperedges will

decompose the graph Kr+2. An r-partite r-complete subhypergraph of K
(r)
r+2 has one

of the following forms:

1. It has r partite sets of size 1, and it produces a K2 in the complement.
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2. It has r − 1 partite sets of size 1 and one partite set of size 2, and it produces a
path of two edges in the complement.

3. It has r − 1 partite sets of size 1 and one set of size 3, and it produces a triangle
in the complement.

4. It has r− 2 partite sets of size 1 and two partite sets of size 2, and it produces a
4-cycle in the complement.

Thus, partitioning K
(r)
r+2 into complete r-partite r-uniform hypergraphs is equivalent

to decomposing Kr+2 into copies of K2,K1,2,K3, and C4.

Proposition 3.4. For any natural number r, f8r−1(8r + 1) = r(8r + 1).

Proof. Because 4|4r(8r+ 1) =
(
8r+1
2

)
, one can partition K8r+1 into r(8r+ 1) copies of

C4 (see Sajna [27]). The lower bound f8r−1(8r + 1) ≥ (8r+1
2 )
4 = r(8r + 1) holds since

each of K2,K3, C4, or K1,2 contains at most four edges.

Proposition 3.5. For k ≥ 2, f2k(2k + 2) ≥ d (k+1)(2k+3)
4 e.

Proof. Consider an optimal decomposition of K2k+2 using {K2,K1,2,K3, C4}. Since
each vertex ofK2k+2 has odd degree, each vertex must be incident with at least one copy
of K2 or K1,2. Suppose that t graphs with at most two edges have been used, where

t ≥ k + 1. At least
(
2k+2
2

)
− 2t edges remain uncovered, and at least

(2k+2
2 )−2t
4 graphs

from K3 or C4 must be used to cover these edges. Thus, f2k(2k+ 2) ≥ t+
(2k+2

2 )−2t
4 ≥

(2k+2
2 )+2(k+1)

4 = (k+1)(2k+3)
4 .

Proposition 3.6. For any natural number r, f8r(8r + 2) = 8r2 + 5r + 1.

Proof. Let v be a vertex of K
(8r)
8r+2. The hyperedges containing v can be partitioned

into f8r−1(8r + 1) hypergraphs. The hyperedges not containing v can be partitioned
into f8r(8r+ 1) hypergraphs. This gives f8r(8r+ 2) ≤ f8r−1(8r+ 1) + f8r(8r+ 1). The

hypergraph K
(8r)
8r+1 can be partitioned into the following 4r+ 1 complete 8r-partite 8r-

uniform subgraphs: G1 = {{1, 2}, {3}, {4}, ..., {8r+1}}, G2 = {{1}, {2}, {3, 4}, ..., {8r+
1}},...,G4r = {{1}, {2}, ...{8r − 1, 8r}, {8r + 1}}, G4r+1 = {{1}, {2}, ..., {8r}}, showing
f8r(8r + 1) ≤ 4r + 1. Proposition 3.4 gives f8r−1(8r + 1) = 8r2 + r. Combining all
these facts, we get f8r(8r+ 2) ≤ 8r2 + 5r+ 1. The lower bound is given by Proposition
3.5.

Theorem 3.7. For k ≥ 2, f2k(2k + 2) = f2k+1(2k + 3) = d2k2+5k+3
4 e.

Proof. We prove that f2k(2k+2) = d2k2+5k+3
4 e by induction on k. For the base cases, it

is known that f2(4) = 3. Equation (3) gives f4(6) ≤ 6, which is the lower bound given
by Proposition 3.5. We also have f6(8) ≤ f7(9) = 9 by Proposition 3.4 and f6(8) ≥ 9

from Proposition 3.5. Assume that f2k(2k + 2) = d2k2+5k+3
4 e. Proposition 3.5 implies

f2k+2(2k + 4) ≥
⌈
2k2+9k+10

4

⌉
. Consider the following decomposition of K2k+4 using

{K2,K1,2,K3, C4}. Pick any two vertices of K2k+4. Take an optimal decomposition
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into
⌈
2k2+5k+3

4

⌉
copies of K2,K1,2,K3, or C4 of the complete graph induced by the

other 2k + 2 vertices. To complete the decomposition, we need to cover all edges
joining the 2k+ 2 original vertices to the two remaining vertices, plus the edge joining
the two remaining vertices. We use a copy of K2 to cover the edge between the two
vertices, and k + 1 copies of C4, each containing those two vertices and one of the
k + 1 pairs of vertices as its nodes. Thus, we can decompose K2k+4 into copies of

K2,K1,2,K3, and C4 using d2k2+5k+3
4 e + 1 + (k + 1) = d2k2+9k+11

4 e subgraphs. Thus,⌈
2k2+9k+10

4

⌉
≤ f2k+2(2k + 4) ≤

⌈
2k2+9k+11

4

⌉
.

These bounds are the same whenever k ≡ 0, 1 (mod 4). If k ≡ 3 (mod 4), then the
result follows from Proposition 3.6. If k ≡ 2 (mod 4), then we want to find f8r+6(8r+8)
for some r. However, f8r+6(8r+8) ≤ f8r+7(8r+9) = (r+1)(8r+9) by Proposition 3.4.

This completes our proof that f2k(2k+2) = d2k2+5k+3
4 e. We know that f2k+1(2k+3) ≥

f2k(2k+ 2) = d2k2+5k+3
4 e by equation (3). To prove equality, one can use induction on

k and a similar construction to the one above. We omit the details.

The following result determines fr(r + t) asymptotically for fixed t and large r.

Proposition 3.8. If t ≥ 3, then f2k(2k+ t) ∼ kt

t! and f2k+1(2k+ t) ∼ kt−1

(t−1)! as k →∞.

Proof. Let k ≥ t ≥ 3 be two integers. Since a complete 2k-partite 2k-uniform hyper-

graph on 2k+ t vertices has at most 2t hyperedges, we obtain f2k(n) ≥ (2k+t
2k )
2t =

(2k+t
t )
2t .

The upper bound (3) gives f2k(2k + t) ≤
(
k+t
k

)
, and this yields f2k(2k + t) ∼ kt

t! as

k →∞. The proof of f2k+1(2k + t) ∼ kt−1

(t−1)! is similar and is omitted.

4 The Alon-Saks-Seymour Conjecture

Alon, Saks, and Seymour (cf. Kahn [18]) conjectured that for every graph G, χ(G) ≤
bp(G)+1, where χ(G) is the chromatic number of G. The Alon-Saks-Seymour Conjec-
ture can be seen as a generalization of the Graham–Pollak Theorem, since χ(Kn) = n
and bp(Kn) = n − 1. Recently, Huang and Sudakov [17] disproved the Alon-Saks-
Seymour Conjecture by constructing graphs G with arbitrarily large biclique partition
number such that χ(G) > c(bp(G))6/5. Huang and Sudakov [17] conjectured that
there exists a graph G with biclique partition number k and chromatic number at least
2c log

2 k, for some constant positive constant c, and this problem remains open.
The Huang-Sudakov construction was generalized in [11], where the authors con-

structed graphs G(n, k, r) on n2k+2r+1 vertices with chromatic number greater than
or equal to Ω(n2k+2r) and biclique partition number at most O(n2k+2r−1), for n, k, r
with n ≥ 2, k ≥ 2, and r ≥ 1. The graphs G(n, k, r) are also counterexamples to
the previously-disproved Rank-Coloring Conjecture (see [11, 17, 23]) which stated that
χ(G) ≤ rank(A(G)), where A(G) is the adjacency matrix of G. The authors obtained
asymptotically tight bounds for the ranks and the biclique partition numbers of these
graphs in [11] (see also [28]). In this section, we extend these results, and we determine
the exact value of the rank of the adjacency matrix of G(n, k, r). We also compute the
eigenvalues (and their multiplicities) of G(2, k, r). These results imply that that the
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order of magnitude of the biclique partition number of G(n, k, r) is Θ(n2k+2r−1) for
fixed k and r with k ≥ 2 and r ≥ 1, and n large.

Let Qn be the n-dimensional cube with vertex set {0, 1}n, where two vertices are
adjacent if and only if they differ in exactly one coordinate. A k-dimensional subcube
of Qn is a subgraph of Qn that can be written as

{x = (x1, ..., xn) ∈ Qn : xi = bi,∀i ∈ B},

where B is a set of n − k fixed coordinates and each bi ∈ {0, 1}. We represent the all
ones and all zeros vectors as 1n and 0n respectively, and we define Q−n = Qn \ {1n, 0n}.

For n, k, r with n ≥ 2, k ≥ 1, and r ≥ 1, we define the graph G(n, k, r) as follows.
Its vertex set is

V (G(n, k, r)) = [n]2k+2r+1 = {(x1, ..., x2k+2r+1) : xi ∈ [n], ∀i, 1 ≤ i ≤ 2k + 2r + 1}.

For any two vertices x and y, let

ρ(x, y) = (ρ1(x, y), ..., ρ2k+2r+1(x, y)) ∈ {0, 1}2k+2r+1,

where ρi(x, y) = 1 if xi 6= yi and ρi(x, y) = 0 if xi = yi.
We define adjacency in G(n, k, r) as follows: the vertices x and y are adjacent in

G(n, k, r) if and only if ρ(x, y) ∈ S where

S = Q2k+2r+1 \ [(12k ×Q−2r+1) ∪ {0
2k × 02r+1} ∪ {02k × 12r+1}].

The main results of this section are:

Theorem 4.1. For n, k, r with n > 2, k ≥ 2, r ≥ 1, the rank of the adjacency matrix
of G(n, k, r) is n2k+2r+1− (n− 1)2kn2r+1−n2k(n− 1)2r+1 + (n− 1)2k+2r+1 + (n− 1)2k.

and

Proposition 4.2. The spectrum of G(2, k, r) is(
22k+2r+1 − 22r+1 22r+1 − 4 0 −4 −22r+1

1 22k−1 22k+2r + 22k+2r−1 − 22k−1 22k+2r−1 − 22k−1 22k−1 − 1

)
.

Next, we determine the rank of the adjacency matrix of G(n, k, r). We will use the
following graph operation called NEPS (Non-complete Extended P-Sum) introduced
by Cvetković in his thesis [12] (see [13, p.66] for more details including an explanation
of the notation NEPS). The NEPS operation is a generalization of various other graph
products including the cartesian or Kronecker product of graphs.

Definition 1. Given B ⊂ {0, 1}t \ {0t} and graphs G1, . . . , Gt, the NEPS with basis B
of the graphs G1, ..., Gt is the graph whose vertex set is V (G1)×· · ·×V (Gt) in which two
vertices (x1, ..., xt) and (y1, ..., yt) are adjacent if and only if there is a t-tuple (b1, ..., bt)
in B such that xi = yi exactly when bi = 0 and xiyi ∈ E(Gi) exactly when bi = 1.
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When G1, . . . , Gt all are isomorphic to Kn, the NEPS with basis B of G1, . . . , Gt
will be the graph whose vertex set is [n]t with (x1, . . . , xt) ∼ (y1, . . . , yt) if and only
if ρ((x1, . . . , xt), (y1, . . . , yt)) = (b1, . . . , bt) for some (b1, . . . , bt) ∈ B. Hence, the graph
G(n, k, r) is the NEPS of 2k + 2r + 1 copies of Kn with basis

S = Q2k+2r+1 \ [(12k ×Q−2r+1) ∪ {0
2k × 02r+1} ∪ {02k × 12r+1}].

Another important observation (see [13, Theorem 2.21, p. 68]) is that the adjacency
matrix of the NEPS with basis B of G1, . . . , Gt equals∑

(b1,...,bt)∈B

A(G1)
b1 ⊗ · · · ⊗A(Gt)

bt ,

where X ⊗ Y denotes the Kronecker product of two matrices X and Y .
We are ready to complete the proof of Theorem 4.1

Proof. The spectrum of a graph X will be denoted by Spec(X). Since G = G(n, k, r)
can be written as a NEPS of 2k + 2r + 1 copies of the complete graph with set S, the
spectrum of G (see [13, Theorem 2.21]) is given by

Spec(G) = {f(λ1, ..., λ2k+2r+1) : λi ∈ Spec(Kn)},

where

f(x1, ..., x2k+2r+1) =
∑

(s1,...,s2k+2r+1)∈S

2k+2r+1∏
i=1

xsii (4)

This can be written as

f(x1, ..., x2k+2r+1) =
2k+2r+1∏
i=1

(1+xi)−1−
2k∏
i=1

xi

(
2k+2r+1∏
i=2k+1

(1 + xi)− 1−
2k+2r+1∏
i=2k+1

xi

)
−

2k+2r+1∏
i=2k+1

xi

(5)
where each xi runs through the spectrum of Kn. The eigenvalues of Kn are −1 with
multiplicity n− 1 and n− 1 with multiplicity 1. Let a be the number of copies of −1
in the first 2k entries of (x1, . . . , x2k+2r+1), and b the number of copies of −1 in the
last 2r + 1 entries of (x1, . . . , x2k+2r+1). Let

A =
2k∏
i=1

xi = (−1)a(n− 1)2k−a

and

B =
2k+2r+1∏
2k+1

xi = (−1)b(n− 1)2r+1−b.

If a = 0 and b = 0, then we obtain the degree of regularity n2k+2r+1 − 1 − (n −
1)2k[n2r+1 − 1− (n− 1)2r+1]− (n− 1)2r+1 as an eigenvalue with multiplicity 1.

If a = 0 and b 6= 0, then we obtain

−1 + (n− 1)2k(1 +B)−B (6)
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as an eigenvalue with multiplicity
(
2r+1
b

)
(n− 1)b.

If a 6= 0 and b = 0, then we obtain

−1−A(n2r+1 − 1− (n− 1)2r+1)− (n− 1)2r+1 (7)

as an eigenvalue with multiplicity
(
2k
a

)
(n− 1)a.

Finally, if a, b 6= 0, then we obtain

A+AB −B − 1 (8)

as an eigenvalue with multiplicity
(
2k
a

)(
2r+1
b

)
(n− 1)a+b.

We remark that A and B are powers of n− 1 multiplied by positive or negative 1,
so that in (6), (7), (8), the eigenvalues are −1 plus or minus some powers of (n − 1).
Since n > 2, this means that we can only have 0 as an eigenvalue if these powers of
n− 1 add to 1. This puts many restrictions on A and B and thus on a and b described
above.

In (6), the only way we can obtain 0 as an eigenvalue is if B = −1. This means
that b = 2r + 1, which corresponds to the situation in (5) where the first 2k positions
contain all n − 1, and all of the last 2r + 1 positions are −1. This gives eigenvalue 0
with multiplicity (n− 1)2r+1.

In (7) we cannot obtain 0 as an eigenvalue.
In (8) we obtain 0 as an eigenvalue if A = 1 or if B = −1. This happens when in

(5), either the first 2k positions are −1 or the last 2r+1 positions are −1. In this case,
we obtain 0 as an eigenvalue with multiplicity (n− 1)2kn2r+1 + n2k(n− 1)2r+1 − (n−
1)2k+2r+1 − (n− 1)2k − (n− 1)2r+1.

Thus, the multiplicity of eigenvalue 0 is

(n− 1)2kn2r+1 + n2k(n− 1)2r+1 − (n− 1)2k+2r+1 − (n− 1)2k,

which means the rank of G(n, k, r) equals

n2k+2r+1 − (n− 1)2kn2r+1 − n2k(n− 1)2r+1 + (n− 1)2k+2r+1 + (n− 1)2k.

We remark here that in [11] (page 7) before equation (15), one should add and when
not all the last 2r + 1 positions are n − 1 in order for the equation (15) to hold. We
thank Robert Coulter for observing this error which does not affect the main result of
[11]. We give below a short proof of Proposition 4.2.

Proof. The spectrum of G(2, k, r) can be obtained by plugging the eigenvalues of Kn

into the formula (5). Another way to compute the eigenvalues of G(2, k, r) is by
computing the eigenvalues of the complement Gc of G(2, k, r). The complement of
G(n, k, r) is the Cayley graph of the additive group F2k+2r+1

2 with generating set (12k×
Q−2r+1)∪{02k×12r+1} (see [5, 20] or [8] for details on calculating eigenvalues of Cayley
graphs). We can express the 22k+2r+1 eigenvalues of Gc as

λw =
∑
t∈T

(−1)t·w
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for w ∈ F2k+2r+1
2 and T = {(12k ×Q−2r+1) ∪ {02k × 12r+1}}.

Suppose that w has a 1’s in the first 2k positions and b 1’s in the last 2r + 1
positions, and denote by w′ = (w2k+1, ..., w2k+2r+1) the projection of w onto the last
2r + 1 components.

If b = 0, then we obtain λw = 1 + (−1)a|Q−2r+1| = 1 + (−1)a(22r+1 − 2). Thus,
we get eigenvalue 22r+1 − 1 with multiplicity 22k−1 (corresponding to a even in the
previous expression) and eigenvalue −22r+1 + 3 with multiplicity 22k−1 (corresponding
to a odd).

If b 6= 0, then we have

λw = (−1)b + (−1)a
∑

t∈Q−2r+1

(−1)t·w
′

= (−1)b + (−1)a

 ∑
t∈Q2r+1

(−1)t·w
′ − (−1)0 − (−1)b


= (−1)b + (−1)a

(
0− 1− (−1)b

)
= (−1)b + (−1)a+1 + (−1)a+b+1.

In this case, we obtain eigenvalue 3 with multiplicity 22k+2r−1 − 22k−1 (correspond-
ing to a odd and b even) and eigenvalue −1 with multiplicity 22k+2r + 22k+2r−1 −
22k−1 (corresponding to the remaining cases). Thus, the spectrum of Gc is given by
22r+1−1, 3,−1, 3−22r+1, with multiplicities 22k−1, 22k+2r−1−22k−1, 22r+2k+22r+2k−1−
22k−1, 22k−1, respectively. By standard results in graph spectra (see [8, 14]), we ob-
tain the spectrum of G(2, k, r) below (the first row denotes the distinct eigenvalues of
G(2, k, r), and the second row denotes their multiplicities):(

22k+2r+1 − 22r+1 22r+1 − 4 0 −4 −22r+1

1 22k−1 22k+2r + 22k+2r−1 − 22k−1 22k+2r−1 − 22k−1 22k−1 − 1

)
.

5 Conclusion

In this paper, we studied several variations of the Graham–Pollak Theorem.
We discussed a generalization of the Graham–Pollak Theorem to L-coverings of

the complete graph. We obtained some lower bounds for bpL(Kn) and bpL(G) and
presented several constructions determining the correct order of magnitude for bpL(Kn)
for several lists L. Our results motivate the following natural questions.

Open Problem 1. For what lists L of constant size greater than one can the exact
value for bpL(Kn) be found for n large? Is it true that for any fixed list L, there exist

constants cL and qL such that lim bpL(Kn)

n1/qL
→ cL as n→∞?

Based on our results for small values of n, we pose the following questions:
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Open Problem 2. Is the upper bound given by the construction of Alon [2] and

described in Example 1 the true value of bp2(Kn)? Does the limit limn→∞
bp2(Kn)

n1/2

exist?

We also discussed a generalization of the Graham–Pollak Theorem for uniform hy-
pergraphs. With fr(n) denoting the minimum number of complete r-partite r-uniform
hypergraphs necessary to partition the edges of the complete r-graph, we showed that

f2k(n) ≤
(
n− k
k

)
− 2

⌊ n
16

⌋(⌊n
2

⌋
− k + 3

k − 3

)
.

We also determined the exact value of fr(r + 2) and the asymptotic value of fr(r + t)
for t fixed and r large. We note here that we could not improve the upper bound on
f2k+1(n) from [10] by a similar method, because Lemma 3.2 breaks down in this case.
Thus the best upper bound known, f2k+1(n) ≤

(
n−k−1

k

)
, is still given by (3). A better

upper bound for f2k+1(n) may still be found, since f2k+1(2k + 3) = d2k2+5k+3
4 e.

For fixed k and large n, the best known bounds for f2k(n) and f2k+1(n) are still far
apart. We raise the following natural questions.

Open Problem 3. For r ≥ 4, is there a constant cr such that fr(n)

nbr/2c
→ cr as n→∞?

Is it true that f2k(n) ∼ f2k+1(n+ 1) for k fixed and n→ +∞?

We found the exact rank of the counterexamples to the Alon-Saks-Seymour Con-
jecture described in [11, 17]. This extends the work from [11] and gives the exact order
of magnitude for the biclique partition of these counterexamples. At this time, we do
not know the exact order of magnitude of the chromatic number of these graphs, and
this is a problem that might be worth studying. Another interesting open problem is
constructing other graphs G with a large gap between χ(G) and bp(G).
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