Coupon colorings of regular graphs

Michael Tait

University of California-San Diego

mtait@math.ucsd.edu

Joint work with Bob Chen, Jeong Han Kim, Jacques Verstraëte

June 20, 2014

Michael Tait

Preliminaries

Coupon Coloring Cubes

Definition of coupon coloring

Let G be a graph with no isolated vertices.

A k-coupon coloring is a coloring of the vertices from [k] such that the neighborhood of every vertex of G contains all colors from [k].

The maximum k for which a k-coupon coloring of G exists is called the *coupon coloring number of* G and will be denoted by $\chi_c(G)$.

Michael Tait

Preliminaries

Coupon Coloring Cubes

Example of coupon coloring

Coloring with four colors.

Not coupon colored

Coupon coloring OK

 $\chi_c(G)$ is well defined since we may color every vertex the same color.

Michael Tait

Preliminaries

Coupon Coloring Cubes

Definition of injective coloring

An *injective* k-coloring is a coloring of the vertices from [k] such that the neighborhood of every vertex contains distinct colors. i.e. vertices with a path of length 2 between them receive different colors.

The minimum k for which an injective k-coloring exists is called the *injective coloring number of* G and will be denoted by $\chi_i(G)$

Michael Tait

Preliminaries

Coupon Coloring Cubes

Example of injective coloring

Coloring with ≥ 5 colors.

Not injectively colored

Injective coloring OK

 $\chi_i(G)$ is well defined since we may assign distinct colors to every vertex.

Michael Tait

Preliminaries

Coupon Coloring Cubes

However, we can observe that if G has minimum degree δ and maximum degree Δ , then

 $\chi_c(G) \le \delta \le \Delta \le \chi_i(G).$

We will be interested in d-regular graphs with d large.

Michael Tait

Preliminaries

Coupon Coloring Cubes

Previous Work

d-regular graphs that obtain $\chi_c(G) = d = \chi_i(G)$ are called rainbow graphs.

Figure: Lazebnik and Woldar

Michael Tait

Preliminaries

Coupon Coloring Cubes

Coupon coloring has been studied in relation to large multi-robot networks.

Coupon coloring is related to panchromatic hypergraph coloring.

Many researchers have studied injective colorings, in particular on the Hamming graph in relation to scalability of optical networks

Michael Tait

Preliminaries

Coupon Coloring Cubes

Coloring Q_n

The Hypercube Q_n is the graph with vertex set $\{0, 1\}^n$. Two vectors x and y are adjacent if they have Hamming distance 1.

 $(0, 1, 1, 0, 0) \sim (1, 1, 1, 0, 0)$

 $(0,1,1,0,0) \not\sim (1,1,1,0,1)$

 Q_n is *n*-regular

Michael Tait

Preliminaries

Coupon Coloring Cubes

Coloring Q_n

Theorem

Let $n = 2^t$. Then

$$\chi_c(Q_n) = \chi_i(Q_n) = n.$$

Proof: We will exhibit a coloring with n colors such that if $v \sim y$ and $v \sim z$, then y and z have distinct colors.

Michael Tait

Preliminaries

Coupon Coloring Cubes

Identify $V(Q_n)$ with the power set of \mathbb{F}_n in the natural way.

$$\mathbb{F}_4 = \{0, 1, \alpha, \alpha^2\}$$
$$v = (1, 0, 0, 1)$$
$$A_v = \{0, \alpha^2\}$$

Identify colors with \mathbb{F}_n . Color A_v with

$$\sum_{x \in A_v} x$$

Michael Tait

Preliminaries

Coupon Coloring Cubes

Coloring Q_n

Now assume $v \sim y$ and $v \sim z$. This means y and z each have Hamming distance 1 from v. Then there exists $\alpha, \beta \in \mathbb{F}_n$ such that

y colored with
$$(\pm)\alpha + \sum_{x \in A_v} x$$

z colored with $(\pm)\beta + \sum_{x \in A_v} x$

$$y \neq z$$
 implies $\alpha \neq \beta$.

Michael Tait

Preliminaries

Coupon Coloring Cubes

Theorem (Chen, Kim, MT, Verstraëte)

For every $\delta > 0$, there exists a $d_0(\delta)$ such that if $d \ge d_0(\delta)$, then every d-regular graph G has

$$\chi_c(G) \ge (1-\delta)\frac{d}{\log d}$$

For every $\epsilon > 0$, there exists a $d_1(\epsilon)$ such that if $d \ge d_1(\epsilon)$, then as $n \to \infty$, almost every d-regular n-vertex graph has

$$\chi_c(G) \le (1+\epsilon) \frac{d}{\log d}$$

This gives $\chi_c(G) \sim \frac{d}{\log d}$ for almost all *d*-regular graphs.

Michael Tait

Preliminaries

Coupon Coloring Cubes

Coupon Collector Problem

The expected time to collect n coupons drawing uniformly, independently, and with replacement is asymptotic to $n \log n$.

Theorem (Erdős and Rényi, 1961) Let T_n be the time to collect n coupons. Then

$$\mathbb{P}(T_n < n\log n + cn) \to e^{-e^{-c}}$$

as $n \to \infty$.

Michael Tait

Preliminaries

Coupon Coloring Cubes

Bounds for χ_c

Michael Tait

Preliminaries

Coupon Coloring Cubes

Main Result Open Problems

d neighbors is the expected time to see $\frac{d}{\log d}$ colors if they were distributed randomly. If there are $(1-\delta)\frac{d}{\log d}$ colors, coloring randomly gives each vertex a high chance of seeing all colors. If there are $(1+\epsilon)\frac{d}{\log d}$ colors, it is very unlikely that a vertex sees every color when generating a random graph.

Open Problems

The Hamming Graph H(n,q) is the graph with vertex set $[q]^n$ and two vectors adjacent if they have Hamming distance 1. H(n,q) is (q-1)n regular. Östergard (2004) showed $\chi_i(H(n,q)) \sim (q-1)n$ for q = 2, 3.

Conjecture

Fix q, then as $n \to \infty$

$$\chi_i(H(n,q)) \sim \chi_c(H(n,q)) \sim (q-1)n$$

Michael Tait

Preliminaries

Coupon Coloring Cubes

Open Problems

Can one find an explicit family of *d*-regular graphs with coupon coloring number $(1 + o(1)) \frac{d}{\log d}$ as $d \to \infty$?

Paley graphs come within a factor of 4.

Michael Tait

Preliminaries

Coupon Coloring Cubes

Michael Tait

Preliminaries

Coupon Coloring Cubes

Main Result Open Problems

Thank You!