Math 292: Homework 5

Due Wednesday March 7 in lecture

Hillier and Lieberman 6.1.3, 6.1.7, 6.1.11

Consider the problem,

	max	$2x_1 + x_2$
subject to constraints		
	$x_1 \dashv$	$-x_2 \le 5$
	$3x_1 +$	$-x_2 \le 10$

and $x_1, x_2 \ge 0$.

- (a) Construct the dual problem and graph its feasible region.
- (b) Graph the feasible region of the primal problem and list the basic feasible solutions that the simplex method goes to in order, and plot them on the graph.
- (c) List the corresponding basic solutions in the dual problem, and plot them on the graph.
- (d) How does the optimal solution change if 5 changes to $5 + \varepsilon$ in the first constraint?
- (e) How does the optimal solution change in the dual problem if 2 changes to $2 + \varepsilon$ in the first constraint?