
Math 301: Homework 7

Due Wednesday November 1 at noon on Canvas

1. Show that any graph on n vertices that has at least nd edges contains a subgraph of
minimum degree d+ 1.

Solution: Let G have n vertices and nd edges. If G has minimum degree at least
d+ 1 we are done. Otherwise, let v be a vertex of minimum degree at most d and let
G1 = G \ {v}. Continue this process recursively: if Gi has minimum degree at least
d + 1 we are done, otherwise there is a vertex v with degree in Gi at most d and let
Gi+1 = Gi \ {v}. We claim that this process stops, and then you are left with your
graph of minimum degree i. If not, then we remove vertices until we are left with just
one vertex remaining and no edges. In this case we have removed at most (n � 1)d
edges. But the original graph contained nd edges, a contradiction.

2. (a) Modify the proof of the upper bound for ex(n,K2,t) that we did in class to prove
the Kővari-Sós-Turán Theorem. For 2  s  t there exists a constant c such that
ex(n,Ks,t)  cn2�1/s.

(b) Give the best lower bound you can for ex(n,Ks,t).

Solution: See bottom.

3. (a) Let G be a graph where V (G) consists of n points in the Euclidean plane and two
points are adjacent if and only if they are at distance 1 from each other. Show that
no matter how the points are placed, the number of edges in the graph is O(n3/2).

Solution: In a unit distance graph, the vertices adjacent to a fixed vertex v must
be on the circle with radius 1 which is centered at v. Therefore, in order for a
vertex to be adjacent to both v and u, it must be on the intersection two unit
circles, one centered at u and one at v. Since two circles can intersect in at most
two points, u and v may have at most 2 neighbors in common. Since u and v
are arbitrary, this means that any unit distance graph is K2,3 free. By the KST
theorem it contains at most O(n3/2) edges.

(b) Make a construction of n points in the plane that has as many pairs at unit distance
as you can. How many edges are in the graph?

Solution: Here is an example of a unit distance graph with n log n edges. This is
not best possible (no one knows what is best possible). Let n = 2k and write the
vertices of a graph on n vertices as binary vectors of length k. Let v1, · · · ,vk
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be k distinct unit vectors (it doesn’t matter what they are). Given a vertex
(x1, · · · , xk) 2 {0, 1}k, place the vertex in the Euclidean plane at point

kX

i=1

xivi.

Then any pair of vertices with Hamming distance 1 will be placed at unit distance
in the Euclidean plane. This gives a graph on 2k vertices with minimum degree k.

4. Let T be a tree on t+ 1 vertices.

(a) Assume that n is divisible by t. Show that ex(n, T ) � t�1
2 n. (Hint: Kt cannot

contain a copy of T ).

Solution: If n is divisible by t we may place down n
t disjoint copies of Kt. Since T

has t+ 1 vertices, this graph does not contain a copy of T , and it has t�1
2 n edges.

(b) Use Problem 1 to show that ex(n, T )  (t� 1)n.

Solution: Let G be a graph on n vertices with (t� 1)n edges. We will show that
G contains a copy of T . By problem 1, G has a subgraph G0 which has minimum
degree t. We embed T greedily in G0 as a breadth first search. Since T has only
t+1 vertices, and G0 has minimum degree t, we may always choose a vertex which
has not yet been used in continue on our breadth first search.

5. Let k be fixed. Show that there is a constant c so that ex(n, {C3, C4, · · · , C2k}) 
cn1+1/k. (Hint: you need to show that if G has more than cn1+1/k edges then it must
contain a cycle of length at most 2k. Assume G has this many edges and use Problem
1 to start with a graph of minimum degree c0n1/k. Do a breadth first search and show
that you must find your cycle).

Solution: Let c = 2 and by way of contradiction assume that there is a graph on n
vertices with 2n1+1/k edges and no cycle of length at most 2k. By problem 1, there is
a subgraph with minimum degree at least n1/k + 1. Do a breadth first search starting
from an arbitrary vertex. Once the search is k levels from the root, the graph induced
by those vertices must be a tree, otherwise there is a cycle of length at most 2k in the
graph. But a tree with k + 1 levels (including the root) and minimum degree n1/k + 1
must contain more than n vertices, a contradiction.
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Proof. Fix some positive natural numbers n, s, and t with s Æ t, and choose an arbitrary edge-
maximal Ks,t-free graph G on n vertices and m edges. We first claim that ”(G) Ø s ≠ 1. If this
were not the case, then there would be some vertex v of degree at most s≠2 in G. Form a graph GÕ

by adding an edge between v and an arbitrary other vertex.2 Then we cannot have added any Ks,t

to this graph: clearly any new Ks,t would need to use this new edge, so v would need to be in
this Ks,t, but

degGÕ(v) = degG(v) + 1 Æ s ≠ 1 < s Æ t;
if v were part of a Ks,t then its degree would need to be either s or t, and this is not possible.
Therefore, any Ks,t in GÕ exists in G, so the fact that G is Ks,t-free implies that GÕ is, too. But
this is a contradiction: we selected G as an edge-maximal Ks,t-free graph, yet GÕ witnesses that it
is not.
Now, we proceed with the main proof. For all S ™ V (G), let

deg(S) =
---
‹

vœS

�(v)
---

be the mutual degree of the vertices in S. Then for all S ™ V (G) with |S| = s, we must have

deg(S) Æ t ≠ 1

because otherwise S and its mutual neighborhood would contain a Ks,t. We therefore note that
ÿ

S™V (G)
|S|=s

deg(S) Æ
3

n

s

4
(t ≠ 1).

Note that this summation is one way to count the number of K1,ss in G: we can form a K1,s

by first picking a set S to form the satellites, and then picking any of their deg(S)-many mutual
neighbors to be the center. Alternatively, we can first pick any v œ G as the center, and then
choose any s-subset of its neighbors. Therefore, we have

ÿ

vœV (G)

3
deg(v)

s

4
. =

ÿ

S™V (G)
|S|=s

deg(S) Æ
3

n

s

4
(t ≠ 1).

Now, let X be a random variable whose value is the degree of a vertex chosen uniformly at random
from V (G). Let Ï : {z œ R : z Ø s ≠ 1} æ R be given by Ï(z) =

!
z
s

"
; we know from lemma 1 that

Ï is convex. Note that Ï(X) is a well-defined random variable, because each value that X takes
is at least ”(G), which is at least s ≠ 1 as previously justified. Similarly, Ï(E(X)) is well-defined
because E(X) Ø min X Ø ”(G). Therefore, Jensen’s inequality dictates that

Ï(E(X)) Æ E(Ï(X))
3 1

n

q
vœV deg(v)

s

4
Æ 1

n

ÿ

vœV

3
deg(v)

s

4
.

For the left-hand side, we have
3 1

n

q
vœV deg(v)

s

4
=

3
2m/n

s

4
Ø

12m

ns

2s

= (2/s)smsn≠s.

On the right-hand side, we have

1
n

ÿ

vœV

3
deg(v)

s

4
Æ 1

n

3
n

s

4
(t ≠ 1) Æ 1

n
ns(t ≠ 1) = ns≠1(t ≠ 1).

2
This is not possible only if G is complete, but if G is complete and contains no Ks,t then n must be smaller than s + t.

There are only finitely many (isomorphism classes of) such graphs, and so we may simply adjust our final constant C0 by making

sure that it is large enough to handle all of these “special cases.” For instance, choosing C = max {C0, (s + t)2} su�ces.
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Combining these yields

(2/s)smsn≠s Æ ns≠1(t ≠ 1)
ms Æ (t ≠ 1)(s/2)s · n2s≠1

m Æ (t ≠ 1)1/s(s/2) · n2≠1/s.

Because (t ≠ 1)1/s(s/2) is a constant depending only on s and t, the proof is now complete.

(b) We use the method of alterations. Fix some s and t. Suppose that we construct a random graph
on n vertices by choosing each vertex independently with some probability p œ (0, 1). Let X be
the number of edges in this graph, and let Y be the number of Ks,ts that appear in this graph.
Then by removing at most one arbitrary edge from each Ks,t in G, we form a Ks,t-free graph with
X ≠ Y edges. Note that

E(X) = p

3
n

2

4
¥ pn2

and
E(Y ) Æ pst

3
n

s

43
n ≠ s

t

4
¥ pstns+t,

because there are at most
!

n
s

"!
n≠s

t

"
possible copies of Ks,t in G. (Interestingly, this count is exact

for s ”= t, but when s = t we are counting each Ks,t twice and so must divide this count by 2.) It
then follows that

E(X ≠ Y ) = E(X) ≠ E(Y ) Ø p

3
n

2

4
≠ pst

3
n

s

43
n ≠ s

t

4
.

To maximize this value, we should expect to choose p such that pn2 ¥ pstns+t, so choose

p = Á · n(s+t≠2)/(1≠st)

for some small Á > 0. Then, writing xy = x ø y for legibility, we find a Ks,t-free graph with edge
count at least

E(X ≠ Y ) Ø p

3
n

2

4
≠ pst

3
n

s

43
n ≠ s

t

4

Ø p(n/2)2 ≠ pstns+t

= Á

4 · n ø
1

2 + s + t ≠ 2
1 ≠ st

2
≠ Ást · n ø

1st(s + t ≠ 2)
1 ≠ st

+ s + t
2

= Á

4 · n ø (2 ≠ 2st) + (s + t ≠ 2)
1 ≠ st

≠ Ást · n ø (s2t + t2s ≠ 2st) + (s ≠ s2t) + (t ≠ st2)
1 ≠ st

= Á

4 · n ø s + t ≠ 2st

1 ≠ st
≠ Ást · n ø s + t ≠ 2st

1 ≠ st

= (Á/4 ≠ Ást) · n ø s + t ≠ 2st

1 ≠ st
,

and by choosing a small enough Á we can make Á/4 ≠ Ást > 0 to guarantee that this expression is
always positive.
This seems like a pretty good lower bound, which we can see by considering the case when s ¥ t.
Indeed, if we let s = t then the exponent on n is

s + t ≠ 2st

1 ≠ st
= 2(s ≠ s2)

1 ≠ s2 = 2s(1 ≠ s)
(1 + s)(1 ≠ s) = 2s

1 + s
= 2 ≠ 2

1 + s
.

So we have a lower bound of 2 ≠ 2/(1 + s), which is approximately 2 ≠ 2/s and is thus quite close
to our upper bound of 2 ≠ 1/s.
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