Problem 1:

We want to show G has a dominating set of size at most

n
6+1

(log(6 + 1)+ 1).

Choose a set X randomly by putting each vertex in X independently with
probability p. We will choose p later. Let Y be the set of all vertices not in X
that do not have a neighbor in X. Then the probability a vertex is in X is p, so

E(X) = np.

Since each vertex has minimum degree d, the probability a vertex v is in Y is
the probability that v and none of its neighbors are in Y which is

< (1-p)°th.
Let Z be an indicator with value 1 is a vertex is in Y and 0 otherwise. Then
E(X +Y) = E(X)+ E(Y) <np+n(1 —p)°*+.

Note that the S = X UY, which gives precisely those vertices which are either
in G or has a neighbor in S. Then S < np + n(1 — p)®*!. From homework 1,
we know that (1 —p) <e™P, so

S < np +ne PO+,

log(6+1)

ST~ e have

Now if we pick p =

log(6 + 1
S < % + ne~(loe(0+1)) — 6—7: 1 (log(6 +1) + 1),

as desired.

Problem 2:
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(g)

If e < 4n, then

e3 (4n)®
64n? " " 6an?
64n°
=n-—-n
=0
< cr(Q),

so the lemma is indeed trivially true: surely any drawing of G must have at least zero crossings.

It is easy to see that cr(F) > e(F) — e(F’) for any edge-maximal planar F’: as we add the edges
back to form F, each edge adds at least one crossing. And, by Euler’s formula,

—e(F') > —3v(F) +6,

o)
cr(F) > e(F) — e(F')
>e(F)—3u(F)+6
> e(F) — 3u(F),
as desired.
AsY =e(H) and X = v(H), the previous step immediately implies that

Y —3X < cr(H).

Furthermore, in our drawing of G we have a drawing of H with exactly cg crossings, so surely it is
possible to draw H with at least this few; that is,

cr(H) < cs.
Each of the n vertices of G is included in H with probability p, so
E(X) = pn.

Each of the e edges of G is included in H with probability p?—each of its endpoints must be
selected—so
E(Y) = p?e.

And each crossing corresponds to two disjoint edges, so each of the cr(G)-many crossings in G is
included in H (i.e., contributes 1 to cg) with probability p?, so

E(cg) = p* cr(G).
Combining these values with our result from the previous step shows that
p2e — 3pn < p* cr(G).

We showed in the first step that it suffices to assume that e < 4n; under this assumption, it follows



that 4n/e € [0, 1], so it is a valid probability. Choosing this for p yields
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this completes the proof.
For the theorem. ..

(b) Suppose that we produce a drawing of G by placing the points at their actual positions in the plane,
and connecting points with straight line segments. Each crossing in this drawing corresponds to
an intersection of two distinct lines in L, and each pair of lines can contribute at most one such
crossing. So

er(G) < (’;) < m?.

(c) Let a(P’, L") denote the number of incidences between a set of points P’ and a set of lines L', so
that £ = a(P,L). Then note that

o(P,L) = |L| =Y (AP, {€}) — 1)

LeL

< Z|{{u,v} € E(G) : u,v € £}

LeL

=e(Q).

(The inequality in the second step is an equality unless £N P = (), in which case a(P, {£}) — 1= —1
but [{{u,v} € E(G) : u,v € £}| =0.)

(d) It follows by our lemma that
e(G)°

2
>\
m >Cr(G)_64v(G)2 v(G)
3
25 (B=m)°
= a2 "

64n’m? > (z — m)® — 64n®
4(n?3m?/3) > (x —m) — 4n
4(n*Pm?/3) + dn +m > z.
Thus, z is O(n?/3m?/3 + n 4+ m), and we are done!
For the construction. ..

It’s hard for me to think about coming up with a construction that depends explicitly on
fractional powers. Instead, I’ll choose an integer parameter k, and create a construction
in terms of ©(k®) lines and O (k%) points. So mn is ©(k®), and thus m?/3n?/3 is O(k*).



Finding ©(k*) point-line incidences is thus sufficient for a construction. (As m and n are of
the same order, the “+m+n” terms in the Szemeredi-Trotter theorem dwindle in comparison
to m2/3n?/3, so we are justified in ignoring them.)
Let ¢(ag, a1) denote the line in the plane that passes through (0,a¢) and has slope a;. Then
consider the family of lines

L; ={£(,m) : m € [k]}.

Of the points in {1,...,k} x {i +1,...,i+ k2}, each line passes through exactly k, so this
gives us k2 incidences already—at the cost of k3 points. But as we vary 4, we will see that we
only have to create a few new points. To be more specific: define

L= U L;.
1€ [k?]

For each z € [k], each line £ € L has (z,y) € £ for some y € [k? + k2], because the slope of ¢
is at most k and the intercept is at most k2. So choosing P = [k] x [2k?] allows each of the
k3 lines to intersect exactly k points, while using only ©(k®) points in total. Therefore, we
have ©(k*) intersections using ©(k®) points and ©(k?) lines, quod erat faciendum. O

3. For both proofs, we will, for each S € (V(f)), let Ag be the event that G[S] = K4, and let Xg be an
indicator variable for Ag. Then also let X = )" ¢ Xg be a random variable that counts the number
of K4 in G. Note that each

E(Xs) = P(As) =5,

B0 = ()2

by our standard inequalities, we thus have
n\% ¢ en\?
DY 8 < E(X) < (—) 6,
(4) pEX)<(7)r

(a) Proof. Suppose that p < 1/(w(n)n?/3). Then, as X is nonnegative, Markov’s inequality yields that

and so

P(G has a K4) =P(X > 1)
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As w(n) — oo, certainly w(n)~8 — 0. Therefore, the probability that G contains a K4 tends to 0,
so the probability that it does not contain a K4 tends to 1, as desired. O

(b) Proof. Suppose that p > w(n)/n?/3. In fact, it suffices to suppose that exactly p = w(n)/n?/3: if p
is larger, then we can surely add in extra edges without decreasing the probability that there is
a Ky in the resulting graph.
We’d like to use Chebyshev’s inequality, so we should compute the variance of X, and doing so
requires computing the covariance of the Xg.
Choose S,T € (V(f)). We consider cases based on the size of [SNT|.



Case: |[SNT| < 1. In this case, there are no edges shared among G[S] and G[T7], so As and Ar
are independent: Cov(Xg, X1) = 0.
Case: |SNT|=2. In this case, G[S] and G[T] share exactly one edge, and so e(G[S UT]) = 11.
So
E(XsXT) = IP’(AS N AT) = pn,
and thus
Cov(Xs,X7) = E(XsX7) — E(X5)E(XT) = p'! — p'2.
Case: |[SNT|=3. In this case, G[S] and G[T'] share exactly three edges, and so e(G[SUT]) = 9.

So
E(XsXr) =P(AsN A7) =p°,
and
Cov(Xs, X1) = E(XsXr) — E(Xs)E(X7) = p° — p'2.
Case: |SNT|=4. Inthis case, G[S] = G[T], and we are just interested in computing the variance.

We have
Cov(Xs, Xr) = p° — p'%.

Then, we may write the variance of X as follows:

Var(X) = Var(Z Xs)
se(V@)

= ZZCOV(Xs,XT)
S T
= Z Z Z COV(Xs,XT)

S 0<k<4 T
|TNS|=k

- XS:(O +0+ (;1) (n ) 4) (" —p") + <§) (n . 4) 0° — ')+ 1-(0° — p'2))

- <Z) (B(n —4)(n=3)(p" —p"*) +12(n - 4)(p" — p"*) + (0" — %))

< n4(3n2(p11 _ p12) + 12n(p9 _p12) + (pG _p12))
< 3n5p!! 4 12n5p° + npS.
Recalling our bound from above that E(X) > é
P(X =0) <P(|X - E(X)| > E(X))
< Var(X)
— E(X)?
3nSplt + 12n5p° + n4pb
' n8pl2

n*pS, we now apply Chebyshev’s inequality:

< (64?)

= (64)( & R E— . )
n2w(n)n=2/3  n3wn)dn2 niwn)dn-12/3
( 3 n 12 n 1 )
n*Bwn)  nwn)®  wn)s

< (64)2(3+12+1)

B w(n)

€ O(1/w(n))
We know that w(n) — 0o, so 1/w(n) — 0. Thus, the probability that G contains no K4 tends to 0,
and so the probability that G contains a K4 tends to 1, as was to be shown. O




