1. Let G be a graph. We motivate a solution by picturing the edges in a
maxcut as being the edges in a bipartite graph (removing all other edges)
AUB. If we want to maximize the number of edges, then |A| = |B| or as
close as possible- if there is some vertex in A that has more edges in the
original G, ie this vertex would be adjacent to more vertices in A than in
B, we can swap it.

Next we split the problem into two cases- n = 2k, n = 2k + 1.

e n = 2k: Let A have k elements, B other k where both sets can have
(2:) possibilities, and let X represent the number of edges e such
that e N A| = 1, which we will denote as event C. Then

E(X) =E( ), xc)=)_E(xc) =) P(C)
e€E(G) e e

Suppose e = {u,v} and we fix u € A, v ¢ A. The rest of A is (3*~7).

This idea is symmetric, so the probability of an edge being half in A

is

2(2;5:12) k0
2%\ 9%k —1 9n—
( . ) 2k—1 2n-—2
Thus the maxcut is at least | E(G)|5"5 (which is greater than 5" ).

e n = 2k+1: we use the same reasoning in this case where |A| = k+1,
|B| = k. Everything else is identical to the prior proof except that
A has one more vertex. If u € A, v ¢ A, the rest of A can be made
in (*.1) (same for u, v swapped). Note that (**!) = (3*7]) and
(2:111) = (*F1), so it does not matter whether we look at a vertex
being half in A or B. The probability of such an occurrence is

2(*,7) _ (k+1)(k+1) _ n+1 n+1

(3 k(2k+1) =562

Since 1 < 21 |E(Q)|5:-2~ < |E(G)|(2L) (L) < mazcut(G).

n ? 2n—-1 — n 2n—2

2. First, we state that it is sufficient to consider complete bipartite graphs. If
we can assign a valid list coloring to a K, ;, s+t = n, then such a coloring



Problem 2

Let G be a bipartite graph on n vertices. For each vertex v € V(G), let L(v) be a list of colors
associated to v of size |log,n| + 1. Show that it is possible to choose for each vertex v a color from
L(v) such that no edge has two endpoints that are the same color.

Let G be partioned into A and B, so that V(G) = AUB and E(G) C Ax B. In the worst case,
E = A X B, which suggests we must avoid choosing the same color for a vertex in A and a vertex
in B. Define L(G) = ,cv(g) L(v) to be the list of all possible colors. We'll partition L(G)
into L(A) and L(B) by independently putting each color in L(A) with probability p. For every
a € A, let X, be an indicator for the event that L(a) N L(A) = (). Likewise for every b € B, let
X3 be an indicator for the event that L(b) N L(B) = 0. Define X =3 ., Xa+ Y yc5 Xp. In
words, X is the number of vertices which cannot be assigned a color based on the partitioning
of L(G). Then,

E(X) =) E(X,)+ Y E(Xp)

a€A beB
— Z(l —p) lloga nJ+1 Zleog2 n+1
acA beB

We set p = % and write |log,n| + 1 as log, n + € for some € > 0. Then we can simplify to
1 log, nte 1 1 € 1 €
=0-% () () G)-0)
veEV(G)

Thus E(X) < 1, which implies that there exists a partition of the colors L(G) into L(A) and
L(B) such that every vertex v € V(G) can be colored such that no edge has two endpoints of
the same color.




3.

(a)

Note that (3)1 =3
Given a fully connected graph on 4 vertices, observe the following 3 cycles:

A---B A-——-B A B
(I \ / I \/I
C---D / \ I/ \I

/ N\ C D

In a fully connected graph, we have (Z) fully connected graphs on 4 vertices, each
with 3 4-cycles. So the total amount of 4-cycles is 3(}) = (3) (5) 5
Instead of going for a probabilistic proof, we’ll go for an explicit construction here.
Consider the tree on n vertices where each node has at most 1 child (it forms just
a path). Connect the end of the path to the node two before it to create a 3-cycle
at the end of the graph. This has n edges, the the max must be bounded below

by n. Thus,we know that ex(n,Cy) € Q(n)

Suppose that we construct our graph by connecting two vertices with an edge
with probability p.

Let P be a random variable representing the amount of edges in the graph.

Let @ be a random variable representing the amount of 4-cycles in the graph.
To break all the 4-cycles, we can remove one edge from every 4-cycle we create in
this process.

Thus, the amount of edges in the graph can be expressed as P — Q.

We are interested in the expected value of P — Q).

E[P — Q] = E[P] — E[Q)] by linearity of expectation.

E|[P] is just the amount of possible edges times the probability of an edge existing,
n

or (3)p-
The expected value of the amount of four cycles is the total amount of 4-cycles

times the probability of all four edges existing. This is just (})(5)2p*

So the expected value ends up being (3)p — (}) (3) 3*
We want to find the value of p that maximizes this formula.
To do this, we take the derivative with respect to p, yielding:

(3)-2() ()

1

And we find the zeroisat p= ———
((n—3)(n—2))3



Plugging p back into our original formula, we get:

n(n —1) _ (n=3)(n—=2)(n—1)n
2/n-3)n—2)  8(n-3)n-2)

This value is always positive, and the first term is approximately "T; = n3 and
n

the second term is similarly a factor of n‘%, but is dominated by the first term.

Thus, the expected value of edges in the §raph created with our chosen p is in
4

Q(n3). Since our expected value is in 2(n3), we know the true value must be as

well.



