Math 301: Homework 11

Due Friday December 8 at noon on Canvas

- 1. Let G be the bipartite incidence graph of a projective plane of order q. Compute the eigenvalues of G (Hint: Let A be the adjacency matrix of G. Compute the eigenvalues of A^2).
- 2. The Kneser graph $\operatorname{KG}(n,k)$ is the graph whose vertex set is the k-element subsets of [n] where A and B are adjacent if and only if they are disjoint. It is known that for $0 \leq j \leq k$, $\operatorname{KG}(n,k)$ has eigenvalue $(-1)^j \binom{n-k-j}{k-j}$ with multiplicity $\binom{n}{j} \binom{n}{j-1}$ for j > 0 and 1 for j = 0. Use the Hoffman Ratio Bound to prove the Erdős-Ko-Rado theorem.
- 3. Let G be a graph on n vertices and let n_+ and n_- be the number of positive and negative eigenvalues of G respectively.
 - (a) Use eigenvalue interlacing to prove the Cvetković Inertia Bound:

$$\alpha(G) \le \min\{n - n_+, n - n_-\}.$$

- (b) Give an example of a graph for which this bound is tight.
- 4. Let $m_r(G)$ denote the minimum number of complete at most r-partite graphs (each graph is complete k-partite with $2 \le k \le r$) that partition the edge set of G. Show that

$$m_r(G) \ge \frac{1}{r-1}n_-(G)$$

where n_{-} denotes the number of negative eigenvalues of G.