Math 301: Homework 1

Due by email to mtait@cmu.edu Wednesday September 6 at noon

1. Determine the number of integral solutions there are to the equation

$$x_1 + x_2 + x_3 + x_4 + x_5 = 100$$

which satisfy the constraints $x_1, x_2, x_3 \ge 0$, $x_4 \ge -2$ and $x_5 \ge 10$. Your answer should not contain a sum.

- 2. We proved in class that $n! \leq en\left(\frac{n}{e}\right)^n$.
 - (a) Prove that for all real x, $1 + x \le e^x$.
 - (b) Use part (a) to give a second proof of the upper bound on n! by induction on n.
 - (c) Prove that $e\left(\frac{n}{e}\right)^n \leq n!$.
 - (d) Prove that $n! \leq e\sqrt{n} \left(\frac{n}{e}\right)^n$.
- 3. (a) Let x and y be positive integers and let m be a positive integer. Prove the following identity:

$$\binom{x+y}{m} = \sum_{k=0}^{m} \binom{x}{k} \binom{y}{m-k}.$$

Is it true for all real x and y? For a real number x we define $\binom{x}{k} := \frac{x(x-1)\cdots(x-k+1)}{k!}$.

- (b) Prove the same identity using a bijection with lattice paths.
- (c) Prove that the number of even subsets of [n] is equal to the number of odd subsets of [n] in two ways: using a bijection and using the binomial theorem.