
Math 21-301 Exam 3 November 15, 2017

Name:
Instructions: You have 50 minutes to complete this exam. Show your work and
justify all of your responses. No calculators, notes, or other external aids are allowed.
You may use the following theorems:

1. (10 points) Show that any coloring of the edges of K17 with 3 colors contains a
monochromatic triangle.

Solution: Fix a vertex v arbitrarily. Of the 16 edges incident with it, by the
pigeonhole principle, one color must have at least 6 edges. Without loss of
generality call this Color 1, and let v1, · · · , v6 be vertices with edge vvi Color
1. Then if vi and vj are joined by an edge in Color 1 for any 1 ≤ i < j ≤ 6,
then we have a triangle in Color 1, so we may assume that the vertices
v1, · · · , v6 induce a K6 that is only colored with Colors 2 and 3. Now fix a
vertex in this K6 arbitrarily. Of the 5 edges incident with it in the K6, at
least 3 must be of the same color. Without loss of generality assume this is
Color 2, and that the 3 edges in Color 2 are connected to vertices u1, u2, u3.
If any edge between u1, u2, u3 is of Color 2, then we have a triangle in Color
2, so we may assume that they are all of Color 3. But this creates a triangle
in Color 3.
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2. (10 points) Use Ramsey’s theorem to show that for each k, there exists an
n such that any 2 coloring of the integers [n] contains a monochromatic set
{x1, x2, · · · , xk, x1 + x2 + · · ·+ xk} (when k = 2 this is Schur’s theorem).

Solution: Let n = R(k + 1, k + 1) and let χ : [n] → {red, blue} be an
arbitrary 2-coloring of [n]. We 2-color the edges of Kn as follows: let the
vertex set be [n] and for i < j color the edge ij with χ(j − i). Since this
is a 2-coloring of the edges of Kn where n = R(k + 1, k + 1), there must
be a monochromatic Kk+1. Let this monochromatic Kk+1 be on the vertices
i1 < i2 < · · · < ik+1. Then by how the coloring is defined, we know that in
the two coloring of the integers [n], the integers

i2 − i1
i3 − i2

...

ik+1 − ik
ik+1 − i1

must all have the same color. Then we let

x1 = i2 − i1
x2 = i3 − i2

...

xk = −k + 1− ik.

Then x1, x2, · · · , xk, x1+x2+· · ·+xk all have the same color since x1+· · ·xk =
ik+1 − i1.
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3. (10 points) A graph is called triangle saturated if it does not contain any tri-
angles but changing any non-edge to an edge creates a triangle. The extremal
number ex(n,K3) is the maximum number of edges in a triangle saturated graph
on n vertices. In this problem we will be interested in finding the minimum
number of edges in a triangle saturated graph. This quantity is denoted

sat(n,K3).

Give an exact formula for sat(n,K3) (ie, make a construction giving an upper
bound, and then prove that any triangle saturated graph on n vertices must have
at least that many edges). It may be useful to know that if you want to solve
the following real number optimization problem:

minimize
∑

xi

subject to δ ≤ xi ≤ ∆∑
x2i ≥ k,

Then the solution is given by making as many xi as possible equal to δ and the
rest equal to ∆ (with at most one xi in between these two values).

Solution: First we note that the star K1,n−1 is triangle saturated. If any
nonedge uv is added, then u, v and the center of the star create a triangle.
So sat(n,K3) ≤ n− 1.

To show the upper bound, assume that G is a triangle saturated graph. We
must show that e(G) ≥ n − 1. Since G is triangle saturated, if uv 6∈ E(G)
then the addition of uv must create a triangle. This means that there must
be a vertex w which is adjacent to both u and v. That is, for any non-edge
u 6∼ v, we must have

d(u, v) = |Γ(u) ∩ Γ(v)| ≥ 1.

Then ∑
u6∼v

d(u, v) ≥
(
n

2

)
− e(G).

However, note that since G is triangle free, it means that for any edge xy,
d(x, y) = 0. Therefore∑

u6∼v

d(u, v) =
∑
u6=v

d(u, v) =
∑

v∈V (G)

(
d(v)

2

)
=

(
1

2

∑
v

(d(v))2

)
− e(G).
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Combining, we get ∑
v

(d(v))2 ≥
(
n

2

)
.

Next we note that a triangle saturated graph cannot have any isolated ver-
tices. If there was an isolated vertex, we could add an edge incident with
it and a triangle would not be created. So we are interested in knowing the
number of edges in a graph G subject to the constraints∑

v

(d(v))2 ≥
(
n

2

)
and

1 ≤ d(v) ≤ n− 1

for all v. Since e(G) = 1
2

∑
dv, the solution to the optimization problem tells

us that ∑
dv ≥ (n− 1) + 1 + 1 + · · ·+ 1.

Therefore e(G) ≥ n− 1.


