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Introduction

The only way to learn mathematics is to do mathematics.

– Paul Halmos

These are lecture notes for Math 21-301: Combinatorics, taught during the Fall

semester 2017 at Carnegie Mellon University. My goal for this course is to give you

a reasonable introduction to several fundamental areas of combinatorics. My rough

plan is to split the course into four modules each lasting three to four weeks. The

four main topics covered will be: enumeration, probabilistic methods, extremal graph

theory, and algebraic methods in combinatorics.

I have laid out an ambitious schedule for this course, and it will be hard. You

should expect to spend many hours a week reading the texts, reworking your notes,

or doing homework problems. You should expect that you will spend a long time on

a single problem and possibly still not be able to solve it. This is ok! My goal is for

you to learn as much math as possible, and the best way to learn mathematics is to

do mathematics. Even though the course will be hard, as long as you show me that

you have learned a lot of mathematics, I will grade reasonably.

1



Course announcements will be found at

http://www.math.cmu.edu/∼mtait/21-301Fall2017

and you should check this page regularly.
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2

Enumeration

There is no problem in all mathematics that cannot be solved by direct count-

ing.

– Ernst Mach

2.1 Sequences and the Multiplication Principle

As you may have realized in calculus, the study of sequences is quite important in

mathematics, and this is where we will start our course. In this lecture, we will use

the terms sequence, string, and word interchangeably. From calculus, you know that

a sequence is just an ordered list of objects, and we will now make this definition

precise.

We will use the notation [n] as shorthand for the set of natural numbers from

1 to n, {1, 2, · · · , n}. A sequence (or string, or word) is defined to be a function

s : [n] → X where X is some fixed set of objects. We will refer to the set X as the

alphabet or the set of characters. That is, for each natural number we are associating

to it a unique element of X. In calculus, X was generally the set of real numbers,
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and a sequence was just an ordered list of real numbers (that is, you are associating

a real number to 1, a real number to 2, a real number to 3, etc).

We will sometimes write s = s1s2s3 . . . sn rather than s(1) = s1, s(2) = s2, · · · ,

s(n) = sn. You should think of a string as an element of the n-fold cartesian product

X ×X × · · · ×X.

We will be interested in fixing some property of our string that we are interested in,

and then counting how many strings satisfy that property. If X is the set of lower case

letters {a, b, c, · · · , y, z}, then combinatorics, abcdefghijklm and zzzzzzzzzzzzz are

all examples of 13 letter words coming from the alphabet X. How many 13 letter

words from X are there?

Multiplication Principle. The number of sequences (s1, s2, · · · , sn) such that there

are ai choices for si after having chosen s1, s2, · · · , si−1 for each i = 1, 2, · · · , n is

exactly a1a2 · · · an. In particular, if S1, S2, · · · , Sn are finite sets, then

|S1 × S2 × · · · × Sn| =
n∏
i=1

|Si|.

By the Multiplication Principle, the number of 13 letter words coming from the

alphabet of lower case letters is exactly 2613. We note that the Multiplication Principle

does not require that each entry comes from the same base set. In our original

definition of a word, we had each entry coming from some alphabet which we called

X. In practice, the interesting questions will arise when there is some restriction on

what the entry in the i’th position is allowed to be. For each i, we may be constrained

to pick an element from a subset Xi ⊂ X, and in this case each word will be an element

of

X1 ×X2 × · · · ×Xn.

The Multiplication Principle allows us to count the number of words we are in-

terested in in this case as well.
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Example. How many strings of digits from 1–9 of length 5 have an odd number in

the odd positions and an even number in the even positions?

We may split the digits 1–9 into odd and even, say Xo = {1, 3, 5, 7, 9} and Xe =

{2, 4, 6, 8}. Then the strings s1s2s3s4s5 which satisfy the required property must have

s1, s3, s5 ∈ Xo and s2, s4 ∈ Xe. By the Multiplication Principle, we have that the

number of such strings is |Xo|3|Xe|2 = 53 · 42.

Sometimes it is tricky to count the number of sequences we are interested in all at

once, but more straightforward once break the problem into smaller, disjoint pieces.

Example. Rob has 4 blue socks, 7 red socks, 5 white socks, and 3 black socks. Rob

likes to wear either a red sock on his left foot with a blue sock on his right foot or a

white sock on his left foot with a black sock on his right foot. How many ways are

there for Rob to choose his socks?

By the Multiplication Principle, there are 4 · 7 = 28 ways for Rob to wear a blue

and red sock, and there are 5 · 3 = 15 ways for him to wear a white and a black sock.

How many are there total? It is clear that we should add 28 and 15.

Summation Principle. If S1, S2, · · · , Sn are finite disjoint sets, then∣∣∣∣∣
n⋃
i=1

Si

∣∣∣∣∣ = |S1|+ |S2|+ · · ·+ |Sn|.

2.2 Permutations and Combinations

What if we want a sequence of integers from [n] of length k where all of the entries

are distinct? There is no restriction for the first element of the string, ie there are n

choices. When choosing the second element of the string we can choose any integer in

[n] except for the first number in the sequence, so there are n−1 choices. Continuing
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this process we see that there are

n(n− 1)(n− 2) · · · (n− k + 1)

sequences in which all elements are distinct. We call such a sequence a permutation.

For a positive integer n, we define n factorial, written n!, as

n! := n · (n− 1) · · · 2 · 1.

We denote the number of permutations of length k coming from alphabet [n] as

P (n, k). By the above discussion

P (n, k) = n(n− 1) · · · (n− k + 1) =
n!

(n− k)!
.

Example. A website requires that your password be a string of 7 lower case letters

with no repeated letters. Then there are P (26, 7) = 26 · 25 · · · 20 possible passwords.

Note that when trying to figure out how many distinct passwords there are, the

order of the characters matters. In general in a permutation the order of the letters

of your string matters.

Example. A class of 100 students is electing a president, a vice president, and a

treasurer. Then there are P (100, 3) ways that the leadership positions can be filled.

Again, here the order of the choices matters (ie if Bob is president and Alice is

vice president, then it is a different leadership than if Alice is president and Bob is

vice president). Let’s look at two similar examples.

Example. You are playing Scrabble and there is exactly one of each letter left in the

bag. You are about to draw 7 tiles. How many different hands can you draw?

Example. A class of 100 students is electing 3 students to fill a leadership committee.

How many different ways can they choose their leadership?
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In the Scrabble example, if I choose {A,B,C,D,E, F,G} it is the same hand as

if I choose {G,A,B, F, C,E,D}. In the leadership example, electing Alice, Bob, and

Eve to the committee is the same as electing Eve, Alice, and Bob to the committee.

That is, in contrast to the permutation examples, in these two cases the order of

choices does not matter.

Let S be a finite set with |S| = n, and let k be a positive integer with k ≤ n. We

will use the notation
(
n
k

)
(said: n choose k) to denote the number of ways to choose

k (unordered) elements from S.

In the Scrabble example, we could take each unordered hand and turn it into many

different 7 letter passwords of distinct letters. How many? By the Multiplication

Principle we could order each set of 7 unordered letters into 7! ordered sequences.

Similarly, there are 3! choices of President, Vice President, and Secretary for each

unordered 3-person committee.

Using these ideas we can see that
(
n
k

)
k! = P (n, k). To see this, note that if we were

trying to count P (n, k) we could first choose the k elements to be in our permutation,

then we could order them. This gives us the formula(
n

k

)
=

n!

k!(n− k)!
.

2.3 Bijections and Double Counting

My profit’s so nice me and dog gon’ count it twice.

– Rick Ross

We may look at the formula for
(
n
k

)
and see that(

n

k

)
=

n!

k!(n− k)!
=

(
n

n− k

)
.
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Can we explain why this is true in a way other than algebraic manipulation? That

is, can we give a combinatorial reason why this should be true?

The binomial coefficient
(
n
k

)
counts the number of ways to distinguish k elements

in an n element set. When we are setting aside k elements which we are “choosing”,

we are also setting to the other side n − k elements which we are “not choosing”.

Therefore, choosing k elements is equivalent to not choosing n−k elements. Formally,

what we have done is created a bijection between the set of all k-element subsets

and the set of all n − k element subsets, the function being defined by taking the

complement. If there is a one-to-one correspondence between two finite sets, then

they must have the same size. This is the Principle of Bijection.

Bijection Principle. If S and T are two finite sets and there is a bijection from S

to T , then |S| = |T |.

Let’s see a few examples of using the Bijection Principle. The first one is so

natural that it is almost trivial.

Example. There is a natural bijection between binary strings of length n (ie se-

quences of length n coming from the alphabet {0, 1}) and subsets of an n elements

set. Specifically, let X = {x1, · · · , xn} be a set of n elements. Then given a binary

string s = s1s2 · · · sn, create a subset of X ′ ⊂ X by putting xi in the subset if and

only if si = 1. s is sometimes called the characteristic vector for X ′.

This example shows that the number of binary strings of length n with exactly

k 1s is the same as the number of ways to choose k elements from an n-element set,(
n
k

)
. Let’s combine this with our first use of double counting.

Double Counting Principle. If two expressions count the same set, then they must

be equal.
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Example. Prove the following identity

n∑
k=0

(
n

k

)
= 2n.

Let’s count the number of binary strings of length n in two different ways. Going

through each position of a binary string, there is a choice of whether that position

should be a 0 or a 1. Since there are n positions, by the Multiplication Principle there

are 2n binary strings of length n. Now let’s count binary strings based on the number

of 1s there are. By the previous example there are
(
n
k

)
binary strings with k 1s. A

binary string can have between 0 and n 1s inclusive. By the Summation Principle

there are
∑n

k=0

(
n
k

)
binary strings of length n.

Homework. Prove the identity

n∑
k=0

(
n

k

)
6k = 7n.

Example.
n∑
k=0

(
n

k

)2

=

(
2n

n

)
.

Proof.
(

2n
n

)
is the number of binary strings of length 2n with exactly n 1s. Let’s count

these strings in another way. Note that if a binary string of length 2n has exactly

n 1s, then if it has k 1s in the first n positions it must have exactly n − k 1s in the

second k positions. Thus we can enumerate binary strings of length 2n with exactly

n 1s by partitioning them according to how many 1s are in the first n positions. By

the Summation Principle, the number of them is exactly

n∑
k=0

(
n

k

)(
n

n− k

)
.

By the identity
(
n
k

)
=
(

n
n−k

)
we are done.
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Theorem (Pascal’s Identity). Define
(
n
0

)
to be 1. Then for n, k ≥ 0(

n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
Proof. We can count k-subsets of an n element set in two different ways. Enumerating

them directly gives
(
n
k

)
. Let the “first” element of the n-element set be distinguished.

Then we can partition the k element subsets into subsets that have the first element

and those that don’t. There are
(
n−1
k

)
k-subsets which do not contain the first element

and there are
(
n−1
k−1

)
k-subsets which do contain the first element.

Next we will consider another natural bijection between a combinatorial object

and subsets. Consider an (x × y) integer lattice of points in Z2. Assume that the

bottom left hand corner of the rectangle is the origin and the top right hand corner is

the point (x, y). An (x, y) lattice path is a sequence of unit steps up and to the right,

starting at the origin and ending at (x, y). We let L(x, y) be the number of (x, y)

lattice paths. It is clear that L(x, 0) = L(0, y) = 1 for any natural numbers x and y,

and we will define L(0, 0) to be 1.

There is a natural bijection between (x, y) lattice paths and binary strings of

length x + y. Namely, given an (x, y) lattice path, we construct a binary string of

length x + y where the i’th position is R if the i’th step of the path is to the right

and U if the i’th step of the path is up. By the Bijection Principle, this gives

L(x, y) =

(
x+ y

x

)
=

(
x+ y

y

)
.

Example. Classifying lattice paths by whether their first step is up or to the right

gives the recurrence L(x, y) = L(x− 1, y) + L(x, y − 1). This is Pascal’s identity.

Homework. How many (n, n) lattice paths are there that never go below the line

y = x?

Homework. How many subsets of [n] are there with odd size?
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We will now discuss compositions, which are counted by binomial coefficients

despite not appearing to be counted by sets. A composition of n is a sequence of

positive integers (x1, · · · , xk) which sum to n. Each xi is called a part. How many

compositions of n are there into k parts? One way to think of this is instead of

choosing each part, you can choose what the partial sums are. Since the k parts must

sum to n, once x1, · · · , xk−1 is chosen xk is determined. Therefore the composition is

determined by the first k−1 partial sums of the parts. Any k−1 distinct numbers in

[n−1] are possible partial sums, and any k−1 partial sums can be reverse engineered

into a unique list of k − 1 parts. Therefore the number of compositions of n into k

parts is exactly
(
n−1
k−1

)
.

Example. A mother has 23 one dollar bills that she wants to distribute between her

4 children such that each child receives at least 1 dollar. In how many ways can she

do this?

We note that in this example we are assuming that the children are distinct (their

order matters), but the one dollar bills are indistinguishable (their order does not

matter). We can reformulate this problem into an integer programming problem. We

want the number of integer solutions to

x1 + x2 + x3 + x4 = 23

subject to the constraint xi ≥ 1. This is exactly a composition of 23 into 4 parts! So

the number of ways is
(

22
3

)
. What if we drop the assumption that each child receives

at least one dollar? Then we have changed the constraints to xi ≥ 0. To solve this

problem we may create new variables zi = xi + 1. Then the equation becomes

(z1 − 1) + (z2 − 1) + (z3 − 1) + (z4 − 1) = 23

subject to constraints zi ≥ 1. The rest is left as an exercise.

We end this section with the Binomial Theorem.
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Theorem (Binomial Theorem). Let n be a natural number.

(x+ y)n =
n∑
k=0

(
n

k

)
xkyn−k.

Proof. Expand the left hand side, and classify according to the number of x’s taken

from the factors.

Note that the binomial theorem immediately gives the identity
∑n

k=0

(
n
k

)
= 2n by

setting x = y = 1. What other identities can you prove with it?

2.4 Estimation

log log log n is proven to go to infinity with n, but has never been observed

to do so.

– Carl Pomerance

In the previous sections, we were able to count certain quantities exactly. This is

the ideal scenario, but is not always possible. Sometimes it is too difficult to count

something exactly (eg, for very large n, how many prime numbers are there between

1 and n?). When this is the case, what we as mathematicians should try to do is

obtain the best upper and lower bounds we can for the quantity in question.

Being able to estimate quantities quickly and effectively is an important skill in

combinatorics. With time you will get a feel for when terms can be thrown away

because they are not asymptotically important, for when care needs to be taken

with error terms, for when it is appropriate to obtain a crude bound on a quantity

rather than a precise one, etc. Often we estimate quantities by simple and often-used

functions like log, polynomials, exponentials. When doing so, it is important to know

“how fast” functions grow. For example, you may remember from calculus (say, using
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L’Hopital’s rule) that for any ε > 0, nε is “much bigger” than log n and for any α > 1,

xα is “much bigger” than any polynomial in n. This can be made precise using limits.

In mathematics and computer science, we use “Big-Oh” notation to succinctly convey

how large one function is compared to another.

Notation Definition Meaning

f(n) = O(g(n)) lim supn→∞
f(n)
g(n)

is finite f not much bigger than g

f(n) = Ω(g(n)) g(n) = O(f(n)) f not much smaller than g

f(n) = Θ(g(n))
f(n) = O(g(n))

f(n) = Ω(g(n))
f and g have the same order of magnitude

f(n) = o(g(n)) limn→∞
f(n)
g(n)

= 0 f is much smaller than g

f(n) ∼ g(n) limn→∞
f(n)
g(n)

= 1 f and g grow at the same rate

Let’s try to estimate a nontrivial function that appears often in mathematics and

computer science. Let

Hn := 1 +
1

2
+

1

3
+ · · ·+ 1

n
=

n∑
k=1

1

k
.

Hn is called the nth harmonic number. You learned in calculus that Hn →∞ as

n→∞, but how fast does it go to infinity? One way is to group the terms as

Hn = 1 +

(
1

2
+

1

3

)
+

(
1

4
+

1

5
+

1

6
+

1

7

)
+ · · · .

That is, we are grouping together the numbers 1
k

where

1

2k
<

1

k
≤ 1

2k−1
.

The number of terms in each subsequent set of parentheses will double and the number

of total pairs of parentheses will be 1 + blog2 nc. Next we notice that in the i’th set

of parentheses, there are 2i terms each of which are at most 1
2i

. This means that Hn
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is bounded above by the number of pairs of parentheses. Similarly, besides perhaps

the last set of parentheses, each set contains 2i terms each of which are strictly

greater than 1
2i+1 . Therefore Hn is bounded below by 1

2
times the number of pairs of

parentheses minus 1. We have shown

1

2
blog2 nc < Hn ≤ 1 + log2 n.

This shows that Hn = Θ(log n), so we have determined its order of magnitude.

Homework. Use calculus to show that Hn ∼ log2 n.

Let’s now try to estimate the factorial function. Some first attempts are as follows.

2n−1 =
n∏
i=2

2 ≤
n∏
i=1

i = n! =
n∏
i=1

i ≤
n∏
i=1

n = nn.

So n! is somewhere between 2n−1 and nn. Is either of these estimates any good? Being

a bit more careful (and ignoring ceilings and floors), we can see that

n! =

n/2∏
i=1

i
n∏

n/2+1

i ≤
(n

2

)n/2
nn/2 =

nn

2n/2
.

So n! = o (nn). On the other hand, for all 1 ≤ i ≤ n
2

we have i(n− i+ 1) ≥ n (why?),

which gives that (assume n is even for simplicity)

n! =

n/2∏
i=1

i(n− i+ 1) ≥ nn/2

Now 2n−1 = o
(
nn/2

)
(why?), so neither of our estimates is good so far. We can be

much more precise:

Theorem. For n ≥ 1 we have

e
(n
e

)n
≤ n! ≤ en

(n
e

)n
.
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Proof. You will prove the lower bound in your first homework. For the upper bound,

we will consider lnn!. By properties of the logarithm, we have

lnn! = ln 1 + ln 2 + · · ·+ lnn

We note that this is a right Riemann sum for the function f(x) = ln x on the interval

from 1 to n+ 1. Since f(x) is concave down, the right Riemann sum underestimates

the area under the curve. Therefore,

lnn! ≤
∫ n+1

1

lnx dx = (n+ 1) ln(n+ 1)− n.

Now

n! = elnn! ≤ e(n+1) ln(n+1)−n =
(n+ 1)n+1

en
.

This is equivalent to the expression in the upper bound.

We use this to give simple but very useful upper and lower bounds for the binomial

coefficient.

Theorem. For n ≥ 1 and 1 ≤ k ≤ n, we have(n
k

)k
≤
(
n

k

)
≤
(en
k

)k
.

Proof. Fix n and k with k ≤ n. Calculus shows that the function f(x) = n−x
k−x is

nondecreasing. Therefore, for any 0 ≤ i ≤ k − 1, we have n
k
≤ n−i

k−i . Then(
n

k

)
=
n

k

n− 1

k − 1
· · · n− k + 1

k − k + 1
≥
(n
k

)k
.

On the other hand (
n

k

)
≤ nk

k!
.

Using the previous theorem gives the upper bound.
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2.5 Inclusion-Exclusion

In our section of Math 301, there are 32 students, 21 math majors, and 14 seniors.

How many students are there that are neither math majors nor seniors? This is

equivalent to counting the number of students who are either math majors or seniors

(or both). It is clear that we do not have enough information to solve this problem.

We can’t simply add the number of math majors to the number of seniors, because

we will over count those students that are senior math majors. However, it is clear

that if we add 21 to 14, then we have counted people who are either math majors or

seniors but not both exactly once, and we have counted senior math majors exactly

twice. Therefore, if we subtract the number of senior math majors from 21 + 14 we

will have found the number of students who fit into at least one of the two categories.

Our class has 3 students who are senior math majors, which means that the number

of students who are neither math majors nor seniors is

32− (21 + 14− 3) = 2.

This example shows us how to count when there are two sets: if A and B are

finite sets, then

|A ∪B| = |A|+ |B| − |A ∩B|.

What if there are three sets? Let A, B, and C be finite sets. Then

|A|+ |B|+ |C|

counts every element in A∪B ∪C, but it counts elements that are in more than one

set more than once. Similar to before we may try

|A|+ |B|+ |C| − |A ∩B| − |B ∩ C| − |A ∩ C|.
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Now any element in exactly one of the sets is counted exactly once, and any element

in exactly two of the sets is counted exactly 2 − 1 times. But if an element is in all

three sets it is counted 3− 3 times. Therefore, we see that

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|.

Now try 4 sets and then 5. You may see a pattern emerging. It will be more

convenient for us to count the number of elements which are in none of the sets,

which is the same as taking the number of elements in the union and taking the

complement.

Theorem (Inclusion-Exclusion Theorem). Let A1, · · · , Am be a collection of m sub-

sets of a finite set X. Then∣∣∣∣∣X \
(

m⋃
i=1

Ai

)∣∣∣∣∣ =
∑
S⊂[m]

(−1)|S|

∣∣∣∣∣⋂
i∈S

Ai

∣∣∣∣∣
where we define the intersection of zero sets to be X.

Proof. If an element of X is in none of the sets A1, · · · , Am, then it is counted exactly

once on the left hand side, and in the sum on the right hand side it is included exactly

once, when S = ∅. Assume that an element of X is included in exactly n of the sets

in A1, · · · , Am where n > 0. Then the number of subsets S with |S| = k such that

the element is included in
⋂
i∈S Ai is exactly

(
n
k

)
. Therefore, the number of times the

element is counted in the sum on the right hand side is exactly

n∑
k=0

(−1)k
(
n

k

)
.

By the binomial theorem, this is equal to 0.

Let’s see some examples. The first three are classical.
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Example (Counting Derangements). A sequence of length n from [n] which is a

bijection is called a permutation. We use the notation Sn to denote the set of all

permutations of [n]. A permutation σ ∈ Sn is called a derangement if σ(i) 6= i for all

i = 1, 2, · · · , n. How many derangements of [n] are there?

We can solve this problem by using the Inclusion-Exclusion Theorem. We will let

the set Ai ⊂ Sn be the set of permutations τ such that τ(i) = i. Then a permutation

σ is a derangement if it is not in any of the sets Ai. Let S ⊂ [n] have size k. To apply

the theorem we must be able to calculate the size of⋂
i∈S

Ai.

A permutation is in this intersection if and only if it is fixed on the set of k indices

of S. The permutation may do anything else outside of those indices (on n− k other

positions). Therefore, ∣∣∣∣∣⋂
i∈S

Ai

∣∣∣∣∣ = (n− k)!.

The number of subsets of [n] of size k is exactly
(
n
k

)
, therefore the Inclusion-Exclusion

Theorem gives us that∣∣∣∣∣Sn \
(

n⋃
i=1

Ai

)∣∣∣∣∣ =
n∑
k=0

(−1)k
(
n

k

)
(n− k)!.

This is a good result, but we should try to simplify the formula. Let D be the set of

all derangements.

|D| =
n∑
k=0

(−1)k
(
n

k

)
(n− k)! =

n∑
k=0

(−1)k
n!

k!
= n!

n∑
k=0

(−1)k
1

k!
.

Recalling from calculus that the Taylor series for ex is

ex =
∞∑
k=0

xk

k!
,
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We see that the sum is a truncated Taylor series for 1
e
. This tells us that as n→∞,

the number of derangements of [n] tends to 1
e

of the total number of permutations of

[n].

Example (Counting Surjections). Let m ≤ n. How many surjections are there

f : [n]→ [m]?

A function f is not a surjection if there is a k ∈ [m] such that f(i) 6= k for all

i ∈ [n]. Therefore, let Ak be the set of functions f : [n] → [m] such that k is not in

the range of f . Let F be the set of all functions from [n]→ [m]. Then∣∣∣∣∣F \
(

m⋃
k=1

Ak

)∣∣∣∣∣
is exactly the number of surjections from [n] to [m] (let’s call this set S(n,m)). Then

Inclusion-Exclusion tells us

|S(n,m)| =
m∑
i=0

(−1)i
(
m

i

) ∣∣∣∣∣∣∣∣
⋂
k∈S
|S|=i

Ak

∣∣∣∣∣∣∣∣ .
We must count the size of ⋂

k∈S
|S|=i

Ak.

Functions in this intersection have a fixed set of i values in [m] which are not in the

range of the function. Therefore, any function from [n] to [m]\S is in the intersection.

There are (m− i)n of these functions. So

|S(n,m)| =
m∑
i=0

(−1)i
(
m

i

)
(m− i)n.

Example (The Euler φ function). Let n ≥ 2 be a positive integer. The Euler totient

function is defined by

φ(n) = |m ∈ N : m ≤ n, gcd(m,n) = 1|.
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If n has prime factorization n = pe11 · · · pemm , what is φ(n).

We want to count the number of natural numbers less than n which are coprime to

n. If n = pe11 · · · pemm then a number is coprime with n if and only if it is not divisible

by pi for any i ∈ [m]. Therefore, if we let Ai be the set of natural numbers in [n]

which are divisible by pi, then

φ(n) = n−

∣∣∣∣∣
m⋃
i=1

Ai

∣∣∣∣∣ .
To count ∣∣∣∣∣⋂

i∈S

Ai

∣∣∣∣∣ ,
let S = {pi1 , · · · , pik}. Then a number r ∈

⋂
i∈S Ai if and only if pi1 · · · pik |r. The

number of r ≤ n which satisfy this property is exactly

n

pi1 · · · pik

(viz, if P = pi1 · · · pik then they are exactly the integers {P, 2P, · · · , (n/(pi1 · · · pik))P}).

Therefore, by Inclusion-Exclusion

φ(n) =
∑
S⊂m

(−1)|S|
n∏
i∈S pi

= n
∑
S⊂[m]

(−1)|S|∏
i∈S pi

= n
m∏
i=1

pi − 1

pi
.

(Why is the last equality true?).

2.6 Generating Functions

This is the second magic of generating functions: the generating function for

complicated things can be obtained from the generating function for simple

things.

– Michel Goemans
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In this section we discuss a new way to talk about sequences. At first, this is just

a change of notation, but we will see that this change of notation allows us to use

powerful analytic methods. Given a sequence {an}, we may construct a generating

function

A(x) =
∑

anx
n.

Notice that we have not gained or lost any information here, we are simply associ-

ating the i’th element of the sequence with a symbol xi. Wilf describes a generating

function as “a clothesline on which we hang up a sequence of numbers for display”.

Often times we are considering a class of combinatorial objects A to be enumerated.

In this case, we call A(x) the generating function for A

A(x) =
∑

anx
n

where an is the number of objects in the class that have size (or weight) n (here we

are assuming that the number of objects in A of each fixed size is finite). Let’s look

at some simple examples.

Example. The sequence {an} = {1, 1, 1, 1, · · · } has generating function

A(x) =
∞∑
n=0

xn = 1 + x+ x2 + x3 + · · · .

Note that from calculus, if |x| < 1, then A(x) = 1
1−x . (This is a geometric series).

Example. Let A be the set of binary sequences. For a binary sequence, let its size

be the length of the sequence. Then the generating function for A is

A(x) =
∞∑
n=0

2nxn.

Example. Let A be the set of subsets of an N element set. For a subset, let its size

be the number of elements in the subset. Then the generating function for A is

A(x) =
N∑
n=0

(
N

n

)
xn.
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Note that for now we are treating the “variable” x just as a placeholder. If

we thought of it as a function, we could write the previous generating function as

A(x) = (1 + x)N . Let’s see some examples where we work with the generating

function.

Example. The Fibonacci numbers Fn are defined recursively. F1 = F2 = 1, and for

n ≥ 2, Fn = Fn−1 + Fn−2. The generating function for this sequence is

A(x) =
∞∑
n=0

Fnx
n.

(define F0 = 0). Multiplying the recurrence Fn = Fn−1 + Fn−2 by xn and summing

from n ≥ 2 gives ∑
n≥2

Fnx
n =

∑
n≥2

Fn−1x
n +

∑
n≥2

Fn−2x
n.

Notice that
∑

n≥2 Fnx
n = A(x) − x. Also notice that

∑
n≥2 Fn−1x

n = xA(x) and∑
n≥2 Fn−2x

n = x2A(x). Therefore, we see

A(x) =
x

1− x− x2
.

Our goal is to obtain the coefficients Fn, so we may try to simplify by using the

method of partial fractions. Let φ = 1+
√

5
2

and φ = 1−
√

5
2

. Then

A(x) =
−x

(x− φ)(x− φ)
=

1√
5

(
1

1− φx
− 1

1− φx

)
=

1√
5

((
1 + φx+ φ2x2 + · · ·

)
−
(

1 + φx+ φ
2
x2 + · · ·

))
.

So we can see that the coefficient of xn is 1√
5
(φn−φn), which gives an explicit formula

for Fn.

Were you uncomfortable with that calculation? The recurrence is a definition,

but why are we allowed to take an infinite sum on both sides? Then we did algebraic
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manipulations (viz the method of partial fractions and the expansion of a geometric

series) on something where I told you that the variable was just a placeholder. Does

this make any sense? Let’s formalize this.

2.7 Formal Power Series

Let {an}n≥0 be any sequence of real numbers. For this sequence, we formally define

an object (which we call a power series)

A(x) =
∞∑
n=0

anx
n.

Now we let R[x] be the set of all such A(x) as {an} runs over all sequences of real

numbers. As of now, this is just a set of objects. We call R[x] the ring of formal

power series. We will now define two operations on R[x] as follows. If A(x) =
∑
anx

n

and B(x) =
∑
bnxn, then

A(x) +B(x) =
∞∑
n=0

(an + bn)xn

and

A(x) ·B(x) =
∞∑
n=0

cnx
n,

where cn =
∑n

k=0 akbn−k. One can check (using properties of real numbers), that R[x]

satisfies all of the axioms of a ring, where the multiplicative identity is the function

A(x) = 1 +
∑

n≥1 0xn and the additive identity is
∑

n≥0 0xn. One can also check that

this is an integral domain. We define the coefficient operator for each n to be

[xn]A(x) = an.

That is, it extracts the coefficient of xn (this will be useful when asking questions

like, how many objects of weight n are there in A?). Since R[x] is a ring, we may ask

which elements have inverses. You should prove the following theorem as homework.
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Theorem. Let A(x) =
∑

n≥0 anx
n. Then A(x) has an inverse if and only if a0 6= 0.

In the case that a0 6= 0, then there is a unique B(x) ∈ R[x] such that A(x)·B(x) =

1. In this case we write

A(x) =
1

B(x)
.

One may now check formally that the function A(x) = 1 − x and the function

B(x) =
∑

n≥0 x
n are inverses in R[x]. Our intuition from geometric series carries

over to this ring. Maybe other properties that we “think should be true” will be.

We can use the geometric series to compute partial sums: if {an} is a sequence with

generating function A(x), and bn =
∑n

k=0 an is the sequence of partial sums, then the

generating function for {bn} is given by

B(x) =
A(x)

1− x
.

This is checked formally by the definition of multiplication in R[x]. We also define a

formal derivative and integral on R[x], which take a power series as input and output

another power series.

∂

∂x

∞∑
n=0

anx
n =

∞∑
n=0

nanx
n−1

and ∫ ∞∑
n=0

anx
n =

∞∑
n=0

an
n+ 1

xn+1.

For a real number r we define the formal power series

(1 + x)r =
∞∑
k=0

(
r

k

)
xk.

This generalizes the binomial theorem when r is a positive integer. One can check
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using the formal definition of addition and multiplication that in R[x] the usual rules

(1 + x)a(1 + x)b = (1 + x)a+b

((1 + x)a)b = (1 + x)ab

(1 + x)−a =
1

(1 + x)a

hold. One can also check that the formal power series (1 + x)r matches the Taylor

series for (1 + x)r from calculus.

2.8 Generating Functions Redux

We will most often be interested in using generating functions to count combinatorial

objects. For example, we previously saw that the generating function for binary

strings is given by

A(x) =
∑
n≥0

2nxn.

This generating function gives us the information that the number of binary strings of

length n is 2n. Note here two important details: the length of a binary string is well-

defined and we are grouping together strings with the same length, and the number of

strings of a fixed length is finite. In general, we will be interested in counting objects

with these two properties.

Definition. A set of combinatorial objects is a finite or countably infinite set on

which a size function is defined satisfying

1. The size of an element is a nonnegative integer.

2. For any k ∈ N ∪ {0}, the number of elements in the set of size k is finite.
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If A is a set of combinatorial objects, we may define the sequence {an} where an is

the number of elements of A with size n. This gives us a natural generating function

ΦA(x) =
∑
n≥0

anx
n =

∑
α∈A

x|α|,

where the notation |α| denotes the size of α. We will use the notation ΦA(x) whenever

we are working with the generating function of a set of combinatorial objects A.

The goal of formalizing sequences that count combinatorial objects in this way is

that now we can rigorously state decomposition theorems which allow us to count the

number of objects by breaking them down into smaller pieces.

Theorem (Sum Lemma). Let A and B be sets of combinatorial objects and let | · |

be a size function defined on A ∪ B, then

ΦA∪B = ΦA + ΦB − ΦA∩B

Proof. By the inclusion-exclusion theorem,∑
α∈A∪B

x|α| =
∑
α∈A

x|α| +
∑
α∈B

x|α| −
∑

x∈A∩B

x|α|.

Theorem (Product Lemma). Let A and B be sets of combinatorial objects with weight

functions | · |A and | · |B. Define a weight function on A× B as |(a, b)| = |a|A + |b|B.

Then

ΦA×B = ΦA · ΦB.

Proof. First, it is clear that A × B is a set of combinatorial objects under weight

function | · |, so ΦA×B is well-defined. Now, if (a, b) ∈ A × B such that |(a, b)| = n,

then there must be a k ∈ {0, · · · , n} such that |a|A = k and |b|B = n−k. Counting the

number of elements for which this occurs and applying the definition of multiplication

of power series gives the result.
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We may use the Sum and Product Lemma in surprisingly powerful ways. We will

now look at several examples where without this generating function magic it would

be completely unclear how to go about counting, but with this machinery it is almost

trivial.

2.8.1 Change making

How many ways are there to make change for a dollar using pennies, nickels, dimes,

and quarters? You can probably figure this out by brute force, but let’s use generating

functions to do it easily and in a way that is robust to changing the constraints of the

problem. Generally, we can use generating functions to find the way to make change

for n cents. The key idea is to use the Product Lemma to break the problem down

into pieces that are trivial to solve.

How many ways are there to make change for n cents using only pennies. Well,

for each n there is exactly one way. What about using only nickels? If n is a multiple

of 5 there is exactly one way, otherwise there are 0 ways. Similar reasoning is done

for dimes and quarters. This gives that the generating functions for making change

using pennies, nickels, dimes, and quarters are given by

Φp(x) = 1 + x+ x2 + · · · = 1

1− x

Φn(x) = 1 + x5 + x10 + · · · = 1

1− x5

Φd(x) = 1 + x10 + x20 + · · · = 1

1− x10

Φn(x) = 1 + x25 + x50 + · · · = 1

1− x25

Using the product lemma, the generating function for making change with all of

these coins is just the product of these functions. You can use the method of partial

fractions to get an explicit formula for the number of ways to make change on n cents.
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It is clear that we can also use the same method when there are other restrictions.

Say for example, you are only allowed to give at most 4 pennies when you make

change. Then the generating function for counting the number of ways to make

change with this restriction will be

(1 + x+ x2 + x3 + x4)Φn(x)Φd(x)Φq(x).

2.8.2 Compositions

Let’s first count something that we already know how to count: compositions of [n]

into k parts. It is easy to count the number of compositions of [n] into 1 part: there

is exactly 1. Therefore the generating function for compositions into 1 part (where

the size function is given by the sum of the parts) is just

Φ = x+ x2 + x3 + · · · = x

1− x
.

Using the product lemma, the generating function for compositions into k parts is

exactly

Φk =
xk

(1− x)k
.

Using the binomial theorem, we may extract the coefficient of xn in this series, and

see that it is (
−k
n− k

)
(−1)n−k =

(
n− 1

k − 1

)
.

We already knew this, but let’s count something that we didn’t know how to

before. Suppose we want the number of compositions of [n] into k parts where every

part is an odd number? The generating function for compositions into 1 part where

each part (the only part) is an odd number is

Φ = x+ x3 + x5 + · · · = x

1− x2
.
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Therefore the generating function for compositions of k odd integers is given by

Φk =

(
x

1− x2

)k
.

Using the binomial theorem shows that the coefficient of xn here is
(

(n+k−2)/2
(n−k)/2

)
if n−k

is even and 0 if n− k is odd.

2.8.3 Counting Subsets

We may count sets that have restrictions on them. How many subsets of [n] of size

k have no two consecutive integers? If we have such a set {x1, · · · , xk}, we may

encode it as the difference between adjacent elements in the set (x1, x2 − x1, x3 −

x2, · · · , xk − xk−1, n + 1 − xk). Then this gives a bijection between sets that we are

counting and compositions of [n + 1] of size k + 1 where every part except the first

and last are at least 2. Instead of trying to find the generating function directly, let’s

look at each constituent part and use the Product Lemma. Here our weight function

for a composition will be the sum of the integers. Then the generating function for

compositions of size 1 is just

x+ x2 + x3 + · · · = x

1− x
,

and the generating function for compositions of size 1 where each element (the only

element) is at least 2 is

x2 + x3 + · · · = x2

1− x
.

Therefore the generating function for compositions with k+1 parts where every party

except possibly the first and last is at least 2 is

x

1− x
·
(

x2

1− x

)k−1

· x

1− x
=

x2k

(1− x)k+1
.

Using the binomial theorem, we see that the coefficient of xn+1 in this series is
(
n−k+1

k

)
.
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2.8.4 Counting Strings

Let A and B be sets of strings over some fixed alphabet. We let AB denote the

concatenation of A and B, which means the set of all strings ab such that a ∈ A and

b ∈ B. We let A∗ denote the set

A∗ = {ε} ∪ A ∪ AA ∪ AAA ∪ · · ·

where ε denotes the empty string. We say that the elements of AB are uniquely

created if for every s ∈ AB there is a unique a ∈ A and b ∈ B such that s = ab.

We say that elements of A∗ are created uniquely similarly if all of {ε}, A, AA,· · · are

pairwise disjoint and each are uniquely created. For example {0, 1}∗ is the set of all

binary strings and is uniquely created. Then the Product and Sum lemma give the

following:

Theorem. Let A and B be finite sets of strings such that AB and A∗ are uniquely

created. Define the size of a string to be the length of that string. Then

ΦAB = ΦA · ΦB

and

ΦA∗ =
1

1− ΦA

.

The reason that we need the strings to be uniquely created is to ensure, for

example, that AB is isomorphic to A×B.

Example. Let’s count the number of binary strings which do not contain consecutive

zeroes (ie 00 free strings). If S is the set of strings that are 00-free, then

S = {ε, 0}({1}{0, ε})∗

and the strings are created uniquely. Therefore, we have

ΦS(x) = (1 + x) · 1

1− x− x2
.
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Since the generating function for Fibonnaci numbers is A(x) = x
1−x−x2 , we see that

the number of 00-free strings of length n is Fn+2.
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3

The Probabilistic Method

The probabilistic method is best described by examples.

– Joel Spencer

In this chapter we will learn how to use the probabilistic method to solve combina-

torial problems. The rough idea of the method is the following. Say we want to know

whether a certain combinatorial configuration exists. For example, we may be given

a graph and want to know whether it can be properly colored using 4 colors. One

way to show that a configuration with the desired properties exists is to construct a

probability space and show that a randomly chosen configuration in this space has

the desired properties with non-zero probability.

3.1 Preliminaries

A probability space is a triple (Ω,F ,P) that has

• Ω is a set.

• F is a subset of the power set of Ω that contains ∅ and that is closed under
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complementation and countable unions and intersections (this is called a σ-field

or σ-algebra).

• P is a function P : F → [0, 1] such that P(Ω) = 1 and for A,B ∈ F that are

disjoint, P(A ∪B) = P(A) + P(B).

Most of the time we will be interested in the case where Ω will be a finite set

and F will just be the power set of Ω. In this case, the entire probability space is

determined by the values of P on the elements of Ω. These are called elementary

events and the subsets in F are called events. Given an event A, we say that P(A)

is the probability of A.

It is easy to show with this definition that probability is subadditive:

Lemma 3.1.1. If A1, · · · , An are events in a probability space, then

P

(
n⋃
i=1

Ai

)
≤

n∑
i=1

P(Ai).

Proof. By induction, it suffices to show that P(A1 ∪A2) ≤ P(A1)P(A2). Let B1 = A1

and B2 = A2 \ A1. Note that B1 and B2 are disjoint, and so P(B1 ∪ B2) = P(B1) +

P(B2). Also note that A2 is the disjoint union of B2 and A1 ∩ A2, and therefore

P(A2) = P(B2) + P(A1 ∩ A2).

Since P is a nonnegative function, we have P(B2) ≤ P(A2). Since A1 ∪A2 = B1 ∪B2,

we have

P(A1 ∪ A2) = P(B1 ∪B2) = P(B1) + P(B2) ≤ P(A1) + P(A2).
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Two events A and B are said to be independent if P(A∩B) = P(A)P(B). Events

A1, · · · , An are independent if for any subset S ⊂ [n] of the events we have

P

(⋂
i∈S

Ai

)
=
∏
i∈S

Ai.

If A1, · · · , An are independent, it implies that any pair Ai and Aj are independent,

but the converse of this statement is not true (ie, there can be A1, A2 and A3 that

are pairwise independent but such that A1, A2, A3 are not independent).

Given a probability space (Ω,F ,P), a random variable is a function X : F → R

that is measurable (measurable means that for any real number t, the probability

that X ≤ t is well-defined. In our setting Ω is finite, and any function X will be

measurable).

3.2 The first moment method

In a finite probability space, given a random variable X, we define the expected value

of X to be

E(X) =
∑
ω∈Ω

P(ω)X(ω) =
∑

xP(X = x).

(In an infinite probability space, the expected value is defined by an integral).

The expected value of a random variable X is often called the first moment of X.

3.2.1 Linearity of expectation

One very powerful fact is that expectation is linear, ie if X and Y are random variables

and a and b are constants, then

E(aX + bY ) = aE(X) + bE(Y ).
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The proof of this follows because integrals are linear (which follows because limits are

linear). For example, this means that for random variables X1, · · · , Xn, we have

E(X1 + · · ·+Xn) = E(X1) + · · ·+ E(Xn),

and this is true no matter how the Xi’s are related, even if they are not independent!

Let’s see how powerful linearity of expectation can be:

The Ramsey number R(s) is defined to be the minimum n such that any graph

on n vertices contains either a complete graph on s vertices or an independent set on

s vertices. To show that R(s) ≤ N it means that no matter how I color the edges of

KN with red and blue, there will be a monochromatic clique on s vertices. To show

that R(s) > N it means that there exists a graph on N vertices that does not have

either an independent set of a clique on s vertices.

Theorem 3.2.1. For s ≥ 3, we have R(s) > 2s/2−1.

Proof. Let us consider a graph on n vertices where for every pair of vertices we flip

a coin and with probability 1/2 we put an edge. This determines a probability space

(the space of all labeled graphs with the uniform probability distribution). Let X be

the random variable that counts the number of sets of s vertices such that either all

of the
(
s
2

)
edges are present or none of them are. For any fixed set of s vertices, the

probability that it forms a clique in this random graph is (1/2)(
s
2) and the probability

that it forms an independent set is also (1/2)(
s
2).

Given a subset S of s vertices, let XS denote the number of cliques or independent

sets of size s on those s vertices (ie XS is 1 if S forms a clique or independent set and

0 otherwise). Then for each S, we have

E(XS) = 1·P(S is a clique)+1·P(S is an independent set)+0·P(S is neither) = 21−(s2).
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Now

X =
∑

S∈([n]
s )

XS

and so

E(X) =

(
n

s

)
21−(s2).

If the expected number of cliques or independent sets in the graph is less than 1, then

there must exist a graph that has 0 cliques or independent sets (why?). We have

E(X) = 2

(
n

s

)
2−(s2) < 2ns2−s(s−1)/2.

This is less than 1 if

2ns ≤ 2s(s−1)/2

and so we may take n = 2(s−1)/2.

Indeed, the same proof proves a more general theorem about off-diagonal Ramsey

numbers. The Ramsey number R(s, t) is defined to be the minimum n such that

any red/blue coloring of the edges of Kn contains either a red Ks or a blue Kt. If s

and t are not equal, we should not flip coins in our probabilistic construction with

probability 1/2 for each color. Coloring an edge blue with probability p and red with

probability 1 − p and following the proof above yields the following theorem (check

the details on your own!).

Theorem 3.2.2. If p ∈ [0, 1] satisfies the inequality(
n

s

)
(1− p)(

s
2) +

(
n

t

)
p(

t
2) < 1,

Then R(s, t) > n.

Homework. Use the above theorem to show that R(4, t) = Ω

((
t

log t

)3/2
)

.
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Let’s see another application, signing unit vectors:

Theorem 3.2.3. Given any unit vectors v1, · · · , vn ∈ Rn, there exists a signing

εi ∈ {−1, 1} such that

|ε1v1 + · · ·+ εnvn| ≤
√
n.

Note that any signing of an orthonormal set of basis vectors in Rn will have norm
√
n, so this is best possible.

Proof. Choose εi independently at random with probability 1/2 for each sign. Let

v =
∑
εivi. Let X be the random variable defined by |v|2. Note that

〈v, v〉 =
∑
i,j

εiεj〈vi, vj〉.

Note that 〈vi, vj〉 is a constant. Also note that the signing was chosen independently,

so for i 6= j, we have

E(εiεj) = E(εi)E(εj) = 0.

By linearity of expectation, the expected value of X is

E(X) = E

(∑
i,j

εiεj〈vi, vj〉

)
=
∑
ij

〈vi, vj〉E(εiεj) =
∑
i

|vi|2E(ε2i ) = n.

Since the expected norm of v is
√
n, there must exist a signing such that the norm of

v is at most
√
n.

3.3 Alterations

The most basic version of the first moment method says to construct a combinatorial

object randomly and then to show that with positive probability it has the properties

that we want. We now consider what to do in the situation where our randomly
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constructed object is close to having the desired properties but does not yet. In this

situation, we may delete part of or alter our object so that it does have the properties

that we want. This is called the alteration method. Let’s see two examples.

Theorem 3.3.1. For any p ∈ [0.1], we have

R(s, t) > n−
(
n

s

)
p(

s
2) −

(
n

t

)
(1− p)(

t
2).

Proof. Color the edges of Kn randomly and independently,red with probability p and

blue with probability (1− p). Then(
n

s

)
p(

s
2) +

(
n

t

)
(1− p)(

t
2)

is the expected number of red Ks plus blue Kt, and so there is a coloring with at

most this many. Fix such a coloring. Now, from each red Ks or blue Kt, remove one

vertex. After this deletion occurs, our graph no longer has any red Ks or blue Kt and

has at least

n−
(
n

s

)
p(

s
2) −

(
n

t

)
(1− p)(

t
2)

vertices.

Homework. Use this to show that R(4, t) = Ω

((
t

log t

)2
)

.

An independent set in a graph G is a set S such that u, v ∈ S implies uv is

not an edge in G. The independence number of a graph G is the size of the largest

independent set in G and is denoted by α(G).

Theorem 3.3.2. Let d ≥ 1 and let G be a graph with nd
2

edges. Then α(G) ≥ n
2d

.

Proof. Choose a set S randomly by putting each vertex in S independently with

probability p. We will choose p later. Let X be the size of S and let Y be the number

of edges of G that have both endpoints in S. Then the probability that a vertex is
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in S is p and the probability that an edge is in S is p2 (because vertices are put in S

independently).

Given S, we may choose a subset of S of size at least X−Y that is an independent

set by removing one vertex from each edge in S. That is, we take the original X

vertices in S, we remove at most Y vertices from S (one endpoint of each edge), and

by removing these vertices we destroy all edges in S. Therefore

α(G) ≥ E(X − Y ) = E(X)− E(Y ) = pn− p2dn

2
.

(note that we have used linearity of expectation multiple times). Choosing p = 1
d

yields the result.

3.4 Markov and Chebyshev

Chebyshev said it, but I’ll say it again: there’s always a prime between n

and 2n.

– Nathan Fine

Next we will develop some tools from probability. The first theorem, Markov’s

inequality, has a straightforward proof but is useful.

Theorem 3.4.1 (Markov’s Inequality). Let X be a nonnegative random variable and

λ > 0 a real number. Then

P(X ≥ λ) ≤ E(X)

λ
.

Proof. The definition of the expected value of X gives

E(X) =
∑

xP(X = x)

=
∑

0≤x<λ

xP(X = x) +
∑
x≥λ

xP(X = x) ≥ λ
∑
x≥λ

P(X = x) = λP(X ≥ λ).
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We use Markov’s inequality to prove a famous theorem of Erdős. The chromatic

number of a graph G is the minimum number of colors needed to color the vertices

so that no edge has the same color endpoints. The chromatic number of a graph

depends on local structure in the graph, eg, if there is a clique of size k in G then

that clique will need to use k distinct colors. The following theorem also shows that

the chromatic number can depend on the global structure of a graph. The girth of a

graph G is the length of its shortest cycle. If a graph has high girth then locally it is

very sparse.

Theorem 3.4.2. For every pair of number g, k there is a graph G with chromatic

number greater than k and girth greater than g.

Proof. We take a graph on n vertices with each edge included independently with

probability p = nγ

n
where 0 < γ < 1/g. For any t vertices, the probability that

(v1, v2, · · · , vt) forms a cycle is pt. Let X be the random variable that counts the

number of cycles of length at most g in G. Then

E(X) =
∑

3≤t≤g

n(n− 1)(n− 2) · · · (n− t+ 1)
pt

2t
≤ gngγ = o(n).

Therefore, by Markov’s inequality, P(X > n/2)→ 0 as n→∞. Set a = d3
p

lnne and

let Y be the random variable that counts the number of independent sets of size a in

G. Then

E(Y ) =

(
n

a

)
(1− p)(

a
2) ≤ nae−p(

a
2) = exp (a(lnn− p(a− 1)/2)) .

This term also goes to 0 as n→∞. By Markov’s inequality

P(α(G) ≥ a) = P(Y ≥ 1) ≤ E(Y )

1
→ 0.

Therefore, for n large enough, there is a G such that the number of cycles of length at

most g is less than n/2 and there is no independent set of size a. Using the alteration
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method, we delete one vertex for each of the cycles to obtain a graph G′ on at least

n/2 vertices that has girth g and independence number at most a. Then

χ(G′) ≥ n/2

a
= Ω(nγ).

This is larger than k for n large enough.

Sometimes just knowing the expected value of a random variable is not enough.

When the first moment fails, try the second moment!

Definition. Let X be a random variable. The variance of X is defined to be

Var[X] = E
[
(X − E[x])2

]
.

Expanding the definition and using linearity of expectation, one sees that

Var[X] = E
[
(X − E[X])2

]
= E

[
X2
]
− (E[X])2 .

The standard deviation of a random variable X is the square root of its variance and

is denoted by σ.

One of the most useful properties of expectation is that it is linear, which allowed

us to compute the expectation of a sum of random variables by computing their

expectations individually, knowing nothing about their possible dependencies. We

will not have this luxury with variance. Let X and Y be random variables, and let’s

try to compute the variance of their sum:

Var[X + Y ] = E
[
(X + Y )2

]
− (E[X + Y ])2

=
(
E
[
X2
]

+ 2E[XY ] + E
[
Y 2
])
−
(
(E[X])2 + 2E[X]E[Y ] + (E[Y ])2

)
= Var[X] + Var[Y ] + 2 (E[XY ]− E[X]E[Y ]) .
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This extra term E[XY ]−E[X]E[Y ] is called the covariance of X and Y and is denoted

by Cov[X, Y ]. You should check that this calculation extends to summing over any

number of random variables.

Theorem. Let X1, · · · , Xn be random variables. Then

Var

[
n∑
i=1

Xi

]
=

n∑
i=1

Var[Xi] +
∑
i 6=j

Cov[Xi, Xj].

The variance of a random variable gives us a new tool to obtain concentration

results: Chebyshev’s Inequality.

Theorem (Chebyshev’s Inequality). Let X be a random variable with Var[X] <∞.

Then for any λ > 0, we have

P[|X − E[X]| ≥ λ] ≤ Var[X]

λ2
.

Proof. Given X define a random variable Y by Y = (X − E[X])2. Then Y is a

non-negative random variable, and so by Markov’s Inequality we have

P[Y ≥ λ2] ≤ E[Y ]

λ2
=

Var[X]

λ2
.

Noting that that Y ≥ λ2 is equivalent to |X − E[X]| ≥ λ proves the result.

We will use Chebyshev’s inequality to prove two theorems.

Theorem 3.4.3. Let G be a graph on n vertices with each edge included independently

with probability p. Let ω(n) be any function that goes to infinity arbitrarily slowly.

Then

i If p < 1
ω(n)·n , G contains a triangle with probability tending to 0.
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ii If p > ω(n)
n

, then G contains a triangle with probability tending to 1.

Proof. Let T be the random variable which counts the number of triangles in G and

for each set of 3 vertices, let T1, · · · , T(n3)
be the indicator random variable that that

set of vertices forms a triangle. So P(Ti = 1) = p3 and P(Ti) = 0) = 1 − p3. Then

T =
∑
Ti, so E(T ) = p3

(
n
3

)
. If p < 1

ω(n)n
, then E(T ) = o(1) and so by Markov’s

inequality,

P(T ≥ 1) ≤ E(T )

1
= o(1),

and the first part is proved. For the second part, we must compute the variance of T .

Var[T ] = Var
[∑

Ti

]
=

(n3)∑
i=1

Var[Ti] +
∑
i 6=j

Cov[Ti, Tj].

T 2
i is a random variable which takes value 1 with probability p3 and 0 with prob-

ability 1 − p3. Therefore Var[Ti] = p3 − p6. For Ti and Tj, calculating Cov[Ti, Tj]

depends on how Ti and Tj intersect. If Ti and Tj are edge-disjoint, then they are

independent random variables and so their covariance is 0. If Ti and Tj are not

edge-disjoint and i 6= j, then they must share exactly one edge. In this case, TiTj

is a random variable which takes value 1 with probability p5 and 0 with probability

1 − p5. So in this case Cov[Ti, Tj] = p5 − p6. There are less than n4 pairs Ti and Tj

which intersect on one edge, so

Var[T ] ≤ n3p3 + n4p5.

By Chebyshev’s inequality

P[T = 0] ≤ P[|T − E[T ]| ≥ E[T ]] ≤ Var[T ]

(E[T ])2
<
p3n3 + p5n4

p6n6
≤ ω(n)3 + ω(n)4/n

ω(n)6
→ 0.
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For the second application of Chebyshev’s inequality, the basic question is this:

what is the largest subset A of [n] such that all of the subsets of A have distinct sums.

If A has size k, then A has 2k subsets, all of which must have distinct sums. Further,

all of these sums must be less than kn, and so we must have 2k < kn, which simplifies

to k < log2 n + log2 log2 n + 1. We use Chebyshev to improve the second term. It is

a 500 USD Erdős question to improve the upper bound to log2 n+O(1).

Theorem 3.4.4. If A ⊂ [n] is such that all of its subsets have distinct sums, then

|A| ≤ log2 n+ 1
2

log2 log2 n+ 2.

Proof. Let A = {x1, · · · , xk} ⊂ [n]. For all i we will flip a coin and set γi = 0 with

probability 1/2 and γi = 1 with probability 1/2. Define a random variable

X =
k∑
i=1

γixi.

Then E[X] = 1
2

∑
xi and

Var[X] =
1

4

k∑
i=1

x2
i <

kn2

4
.

Then by Chebyshev’s inequality, we have

P[|X − E[X]| ≥ n
√
k/
√

2] ≤ 1

2
,

which is the same as saying P[|X − E[X]| < n
√
k/
√

2] ≥ 1
2
.

Now comes a key step in the proof: the point where we use the assumption that

A has distinct subset sums. Fix any integer x. Then either x is the sum of one of the

subsets of A or it is not. If it is not, then P[X = x] = 0. If it is, then because the

subset sums of A are distinct, there is a unique choice of γs such that X = x, and

therefore P[X = x] = 2−k. So for any integer x, the probability that X = x is either

2−k or 0. Therefore

P[|X−E[X]| < n
√
k/
√

2] = P[Xlies in a specific set of
√

2n
√
k inegers] ≤ 2−k

√
2n
√
k,
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which combined with the above lower bound gives

1

2
< 2−k

√
2kn.

This is equivalent to the upper bound.

3.5 Chernoff Bound

Chebyshev’s inequality gives an upper bound on the probability that a random vari-

able deviates from its mean. Recall that σ, the standard deviation, is the square root

of the variance. If X has standard deviation σ, Chebyshev’s inequality says

P[|X − E[X]| ≥ kσ] ≤ Var[X]

k2σ2
=

1

k2
.

So Chebyshev gives us that the probability that a random variable is k standard

deviations away from its mean goes to 0 polynomially in k. Often we need even

better concentration than this. In general we cannot ask for a better bound, but in

many situations we can do much better.

Let X1, · · · , Xn be independent and identically distributed as Xi = −1 with prob-

ability 1/2 and Xi = 1 with probability 1/2. Let X = X1 + · · ·+Xn. Note that the

expected value of S is 0.

Theorem 3.5.1. For any k ≥ 0, we have

P(X ≥ k
√
n) < e−k

2/2 and P(X ≤ k
√
n) < e−k

2/2.

Note that the standard deviation of S is
√
n, so this says that the probability of

being k standard deviations away from the mean is exponentially small in k.

Proof. We prove just the upper tail, and the lower tail can be seen by taking comple-

mentary events (or symmetry). Let t > 0 be a real number which we will optimize
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later. Then

P(X ≥ k
√
n) = P

(
etX ≥ etk

√
n
)

≤
E
(
etX
)

etk
√
n

where the upper bound is by Markov’s inequality. Now etX = etX1etX2 · · · etXn , and

since X1, · · · , Xn are independent, we have

E
(
etX
)

=
n∏
i=1

E
(
etXi

)
=
(
E
(
etX1

))n
since the Xi’s are identically distributed. Now etX1 takes value et with probability

1/2 and e−t with probability 1/2. Combining, we have

P
(
X > k

√
n
)
≤ ((et + e−t) /2)

n

etk
√
n

≤ ent
2/2

etk
√
n
.

The last inequality is using that (et + e−t)/2 ≤ et
2/2 which can be seen by comparing

the Taylor series of each side term by term. Choosing t = k√
n

yields the result.

This is called Chernoff’s Bound and there are several other slightly messier but

more general versions. One general version that is pretty easy to use is the following:

Theorem 3.5.2. Let X1, · · · , Xn be independent {0, 1} random variables and let

X = X1 + · · ·+Xn. Let µ = E(X) and let ε be any real number with 0 ≤ ε ≤ 1. Then

P (X ≤ (1− ε)µ) ≤ e−ε
2µ/2 and P (X ≥ (1 + ε)µ) ≤ e−ε

2µ/3.

Given a set v1, · · · , vn of n teams, a tournament is an assignment for every i, j that

either vi beats vj or vj beats vi. A ranking of the teams is a permutation σ ∈ Sn (eg

σ maps team i to their ranking. So if σ(j) = i, then team j is the best ranked team,

and if σ(k) = n then team k is the worst ranked team). An upset given a tournament

and a ranking is when vi beats vj but σ(j) < σ(i). Can we rank any tournament so

that there are not very many upsets? Shockingly the answer is no and not by a long

shot. We use the Chernoff bound to prove this.
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Theorem 3.5.3 (Erdős and Moon 1963). Given a tournament on n vertices, for each

σ ∈ Sn let Dσ be the difference in between the number of upsets and non-upsets with

the ranking σ. Then there exists a tournament T such that for all σ, Dσ < n3/2
√

log n.

Since the total number of games is
(
n
2

)
, this means that there are tournaments

where we cannot give a ranking that predicts 50.0001 percent of the games correctly.

Proof. Let σ be a fixed ranking. In the game between vi and vj we determine the

winner randomly and independently, each with probability 1/2. For each edge ij, let

Xij = 1 if σ correctly predicts the outcome and Xij = −1 if the game is an upset.

Then

Dσ =
∑

Xij.

Dσ has mean 0 and standard deviation
√(

n
2

)
. Then the Chernoff bound gives that

P

(
|Dσ| > k

√(
n

2

))
≤ 2e−k

2

2.

Choosing k =
√

2n log n gives

P
(
|Dσ| > n3/2

√
log n

)
< 2e−n logn = 2n−n.

Since the total number of rankings σ is n!, the probability that Dσ exceeds n3/2
√

log n

for any of them is at most n!(2n−n)→ 0.

3.6 Lovász Local Lemma

We are often trying to show that a certain combinatorial configuration exists by

showing that with positive probability, some list of “bad” events does not occur. For

example, we showed proved a lower bound for Ramsey numbers by showing that we

could color randomly and with positive probability, none of the sets of t vertices in
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the graph formed a monochromatic clique. Let A1, · · · , An be a set of “bad” events.

We would like to show that

P

(
n⋂
i=1

Aci

)
> 0.

One way to do this is the union bound: If

n∑
i=1

P(Ai) < 1,

then with positive probability none of the events occur. Unfortunately, we are not

always able to conclude that this sum will be less than 1. We can also get the

conclusion if the events are independent, for in that case

P

(
n⋂
i=1

Aci

)
= (1− P(A1))(1− P(A2)) · · · (1− P(An)).

Unfortunately, the events we are interested in are usually not independent.The Lovász

Local Lemma gives us a way to get to our conclusion if the events are not “too

dependent”. Let S ⊂ [n] \ {i}. We say that Ai is independent of all of the events

{Aj : j ∈ S} if for any subset S ′ ⊂ S, we have

P

(
Ai ∩

⋂
j∈S′

Aj

)
= P(Ai) · P

(⋂
j∈S′

A)j

)
.

For events A1, · · · , An we define a dependency graph D = (V,E) where V (D) = {Ai}

and for each i, Ai is independent of all of the events it is not adjacent to. (Note that

this graph is not unique).

Theorem 3.6.1 (Lovász Local Lemma). Let A1, · · · , An be events in a probability

space and let D be a dependency digraph for the Ai with maximum degree d. Then if

there exists a γ ∈ [0, 1) such that for all i

P(Ai) ≤ γ(1− γ)d,
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then

P

(
n⋂
i=1

Aci

)
≥ (1− γ)n > 0.

The theorem follows from a lemma:

Lemma 3.6.2. For any i, and any set S ∈ [n] \ i, we have

P

(
Ai|
⋂
j∈S

Acj

)
≤ γ.

Proof of Theorem. To prove the theorem from the lemma, note that

P

(
n⋂
i=1

Aci

)
= P(Ac1)P(Ac2|Ac1)P(Ac3|Ac1 ∩ Ac2) · · ·P(Acn| ∩n−1

i=1 A
c
i)

=
n∏
i=1

P

(
Aci |
⋂
j<i

Acj

)
> (1− γ)n.

Proof of Lemma. We prove this by induction on |S|. For the base case |S| = 0,

P(Ai| ∩j∈S Aj) = P(Ai) ≤ γ(1 − γ)d by the hypotheses. This is clearly at most γ.

Now we will show it is true for |S| = k and assume it is true for any S ′ with |S ′| < k.

Fix S and let I = {j : j ∈ S, (k, j) 6∈ E(D)} and D = {j : j ∈ S, (k, j) ∈ E(D)}. ie I

are the set of events in S that Ai is independent on and D is the set of events in S

that Ai may be dependent on. We make two notes: first that if D is empty then we

are done, so we may assume D is not empty, and second that

P

(
Ai|
⋂
j∈S

Acj

)
= P

(
Ai|

⋂
j∈I∪D

Acj

)
.

By Bayes’ Theorem we have

P

(
Ai|

⋂
j∈I∩D

Acj

)
=

P
(

(A ∩
⋂
j∈I A

c
j)|
⋂
j∈D A

c
j

)
P
(⋂

j∈I A
c
j|
⋂
j∈D A

c
j

) .
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We will upper bound the numerator and lower bound the denominator. For the

numerator, we see

P(Ai ∩ I|D) ≤ P(Ai|D) = P(Ai) ≤ γ(1− γ)d.

For the denominator, let I = {Ai1 , · · ·Ait} (note that t < k). We use the induction

hypothesis and have

P

(⋂
j∈I

Acj|
⋂
j∈D

Acj

)
= P

(
Aci1|

⋂
j∈D

Acj

)
P

(
Aci2 |A

c
i1
∩
⋂
j∈D

Acj

)
· · ·P

Acit| ⋂
j∈S\{Ait}

Acj

 ≥ (1−γ)d.

The last inequality follows since D has at most d elements.

We give a corollary of this symmetric version as well as the following more general

version, the Lopsided Lovász Local Lemma. Both proofs are your homework!

Corollary 3.6.3. Let A1, · · · , An be events in a probability space and let their depen-

dency graph have maximum degree d. Assume that there is a p such that P(Ai) ≤ p

for all i. Then if ep(d+ 1) ≤ 1, we have

P

(
n⋂
i=1

Aci

)
> 0.

Theorem 3.6.4 (LLLL). Let Ai, · · · , An be events in a probability space and let D be

a dependency graph for them. Assume that there exist real number x1, · · · , xn ∈ [0, 1)

such that for all i

P(Ai) ≤ xi
∏

(i,j)∈E(D)

(1− xj).

Then

P

(
n⋂
i=1

Aci

)
> 0.

We exhibit the power of the local lemma by proving two theorems.
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Theorem 3.6.5. Let k ≥ 9 and G be a k-regular graph. Then there is a vertex

coloring of G with two colors such that every vertex v has neighbors of each color.

Proof. Color the vertices uniformly and independently, each color with probability

1/2. Let Ai be the event that vertex i sees only one color (ie that its neighborhood

is monochromatic). Then if any of these events occurs, our coloring is bad, but if all

events do not occur simultaneously, then each vertex has a neighbor of each color.

We note that

P(Ai) =
1

2k−1
.

Further, each Ai is dependent only on events from vertices that are at distance 2 from

i. That is, if a vertex u does not share a neighbor with a vertex v, then knowing Au (or

even knowing all of the colors of the neighbors of u), does not give us any information

about whether Av will occur. Since G is k-regular, the event Av is independent of a

set of at least |V (G)| − k2 events, and so our dependency graph has degree at most

k2. We can check that for k ≥ 9, we have

e · 1

2k−1
· k2 < 1

and so the local lemma applies to show

P

 ⋂
i∈V (G)

Aci

 > 0.

Theorem 3.6.6. The Ramsey number R(t) satisfies

R(t) ≥ (1− o(1))

√
2

e
t2t/2

where the o(1) goes to 0 as t→∞.
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Recall that showing a lower bound R(t) ≥ m means showing that there exists an

edge coloring of Km such that there is no monochromatic Kt. This is still the best

lower bound that is known.

Proof. Color the edges of Kn randomly where n = (1−o(1))
√

2
e
t2t/2. Let A1, · · · , A(nt)

be events where we have ordered the t-subsets of the vertex set in any way and Ai

denotes the event that the i’th such set induces a monochromatic Kt. Then

P(Ai) = 21−(t2).

Two events Ai and Aj are independent unless they share at least one edge. If two

distinct cliques share at least one edge, then they share between 2 and t− 1 vertices.

Therefore the maximum degree of the dependency graph is

t−1∑
k=2

(
t

k

)(
n− t
t− k

)
.

Using standard estimates on binomial coefficients shows ep(d+ 1) < 1.
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4

Extremal Graph Theory

In this short note, I will restrict myself to Turán’s work in graph theory,

even though his main work was in analytic number theory and various other

branches of real and complex analysis. Turán had the remarkable ability to

write perhaps only one paper or to state one problem in various fields distant

from his own; later others would pursue his idea and a new subject would be

born.

– Paul Erdős

In extremal graph theory, we are trying to optimize a graph invariant over a fixed

family of graphs. This statement is deliberately broad, and an incredible number of

interesting problems can be phrased this way. We will mostly focus on two of the most

well-studied extremal graph theory problems: Turán-type problems and Ramsey-type

problems.

Throughout this chapter, G will always denote a graph on n vertices. For a vertex

v ∈ V (G), d(v) will denote the degree of v. We will use e(G) to denote the number

of edges in G.
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4.1 Turán’s Theorem

Let’s start with a quantity we have already seen. Given a graph F , let ex(n, F )

denote the maximum number of edges in an n vertex graph which does not contain a

copy of F . Extremal graph theory was born more than a century ago with Mantel’s

Theorem.

Theorem 4.1.1 (Mantel’s Theorem, 1907). Let G be a graph on n vertices which

does not contain a triangle. Then e(G) ≤ bn2

4
c with equality if and only if G is a

complete bipartite graph with partite sets of as equal size as possible.

In our notation, this says that ex(n,K3) ≤ n2

4
. As you noticed in lecture, the

extremal graph not only forbids K3 but actually does not contain any odd cycles!

This means that ex(n,K3) = ex(n, {K3, K5, K7, · · · }).

First proof of Mantel’s Theorem. Let e(G) = m. Note that for any edge xy, any

other vertex can be adjacent to at most one of x or y (otherwise we would have a

triangle). This means that for any edge xy we have

d(x) + d(y) ≤ n.

Summing over all of the edges in the graph gives∑
x∼y

d(x) + d(y) ≤ mn.

On the other hand ∑
x∼y

d(x) + d(y) =
∑

v∈V (G)

(d(v))2.

Now we may use Cauchy-Schwarz to see that

∑
v∈V (G)

(d(v))2 ≥

(∑
v∈V (G) d(v)

)2

n
=

4m2

n
.
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Rearranging gives m ≤ n2

4
. Go through the proof to see what must happen if we have

equality!

Second proof of Mantel’s Theorem. We prove by induction on n. If n = 1 or n = 2,

then the theorem is trivial, so the base case is done. Now let xy be an edge in G and

let H be the graph induced by V (G) \ {x, y}. Then

e(G) = d(x) + d(y)− 1 + e(H).

As we noted in the first proof, d(x) + d(y) ≤ n. By the induction hypothesis, e(H) ≤
(n−2)2

4
. So we have

e(G) ≤ n− 1 +
(n− 2)2

4
=
n2

4
.

Turán generalized Mantel’s theorem to graphs that do not contain a copy of Kr.

It is easy to see that a complete r− 1 partite graph cannot contain a copy of Kr: by

the pigeonhole principle, for any r vertices there must be at least 2 in the same partite

set, and therefore these two vertices will not have an edge between them, meaning

that any set of r vertices cannot form a Kr. This gives a lower bound on ex(n,Kr)

that is roughly
(
1− 1

r−1

) (
n
2

)
. Let T (n, r − 1) be the complete (r − 1)-partite graph

on n vertices with parts of sizes as equal as possible. Turán’s theorem says that no

graph that is Kr free has more edges than T (n, r − 1).

Theorem 4.1.2 (Turán). Let G be an n vertex graph with no copy of Kr as a sub-

graph. Then

e(G) ≤ e(T (n, r − 1)).

There are many proofs of Turán’s theorem. This one was told to me by Josh

Tobin, and is due to Zykov.
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First proof of Turán’s theorem. Let G be a graph on n vertices with no Kr that has

as many edges as possible. That is, assume e(G) = ex(n,Kr).

We define a relation on the vertex set of G. Let xRy if x and y are not adjacent.

We claim that this forms an equivalence relation on V (G). It is clear that xRx and

that if xRy and yRx, so to show that non-adjacency is an equivalence relation we

need to show transitivity. (side note: we are only claiming this is an equivalence

relation when G is maximal with respect to not having a Kr).

Let x, y, z be vertices with y not adjacent to either x or z. We assume x is adjacent

to z and derive a contradiction. If d(y) < d(x), then we may make a new graph where

we remove y and make a clone of x. Note that this cannot create a Kr, and the new

graph with have strictly more edges than G, contradicting that e(G) = ex(n,Kr). So

we must have d(y) ≥ d(x). Similarly d(y) ≥ d(z). Now let H = G \ {x, y, z}. Note

that

e(G) = e(H) + d(x) + d(y) + d(z)− 1

where the 1 is subtracted because we assumed that xz is an edge. Now create a new

graph G′ by adding 3 copies of the vertex y to H. Then

e(G′) = e(H) + 3d(y) ≥ e(H) + d(x) + d(y) + d(z) > e(G).

Noting that G′ does not contain a Kr and has strictly more edges than G gives us a

contradiction.

So we have shown that non-adjacency is an equivalence relation on V (G). This

means that the vertex set can be partitioned into equivalence classes, ie sets of vertices

that are related to each other. This means that G must be a complete multipartite

graph (a vertex must not be adjacent with anything in its equivalence class, and

must be adjacent to everything not in its equivalence class). Since G is Kr-free, there

must be at most r − 1 parts, and to maximize the number of edges we must take

G = T (n, r − 1).
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Second Proof of Turán’s theorem. Let v1, · · · , vn be the vertices of G. Choose a per-

mutation π ∈ Sn uniformly at random. Create a subset S ⊂ V (G) by putting vπ(i)

in S if vπ(i) is adjacent to all of the members already in S. Therefore, S induces a

clique, and so at the end of the process |S| ≤ r − 1. Let Xi be the indicator random

variable that vi ∈ S, so |S| =
∑
Xi. Then

r − 1 ≥ E(|S|) =
n∑
i=1

P(Xi) ≥
n∑
i=1

1

n− d(vi)
.

The last inequality is because a vertex vi to be in S if it comes before all of its

n− d(vi)− 1 non-neighbors in the permutation π. Now we use Cauchy-Schwarz with

ui =
√
n− d(vi) and vi = 1√

n−d(vi)
, which gives

n2 ≤

(
n∑
i=1

n− d(vi)

)(
n∑
i=1

1

n− d(vi)

)
≤ (r − 1)

(
n∑
i=1

n− d(vi)

)
.

Noting that
∑
d(vi) = 2e(G) and rearranging gives

e(G) ≤ (r − 2)

2(r − 1)
n2.

So this is very good! When the graph we are forbidding is complete, Turán’s

theorem gives us an exact result. Exact results are rare in extremal graph theory,

and so we are happy. What can we say more generally? What is ex(n, F ) if F is not

a complete graph? If we are willing to give up a small error term, in many cases we

can say something surprisingly sharp.

Let’s consider lower bounds first. The Turán graph with r parts was a good

candidate to exclude a complete graph on r + 1 vertices because of the pigeonhole

principle: for any r + 1 vertices, there must be a part with at least 2 of them, and

so these 2 vertices cannot be adjacent. But if we think a little bit we realize that the
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Turán graph is a good graph to exclude many other graphs as well. Say χ(F ) = r+1.

Then we claim that F cannot be a subgraph of T (n, r). Why? T (n, r) is a complete

r-partite graph. In particular, coloring each partite set with its own color gives a

proper r-coloring of T (n, r). This means that for any graph H which is a subgraph

of T (n, r), there is a proper coloring of H with r colors. Therefore, since F has

chromatic number strictly greater than r, it cannot be a subgraph of T (n, r). So

when χ(F ) = r + 1, we have shown

ex(n, F ) ≥ e(T (n, r)) ∼
(

1− 1

r

)(
n

2

)
.

Is this lower bound best possible? The celebrated Erdős-Stone theorem says, up to a

small error, yes.

Theorem 4.1.3 (Erdős-Stone theorem). Let F be a graph with χ(F ) = r + 1. Then

ex(n, F ) =

(
1− 1

r
+ o(1)

)(
n

2

)
where o(1) goes to 0 as n goes to infinity.

We already certified the lower bound. In order to prove the upper bound, one has

to show that for any ε > 0, there is an N such that for n ≥ N , any graph with at

least
(
1− 1

r
+ ε
) (

n
2

)
edges contains a copy of F . The proof outline is roughly this:

1. Assume G is a graph with at least
(
1− 1

r
+ ε
) (

n
2

)
edges. Our goal is to show

that F is a subgraph of G.

2. By removing vertices of small degree, show that it suffices to consider the case

where G has minimum degree at least
(
1− 1

r
+ ε
)
n. This part is the same idea

as number 1 on Homework 7!

3. Show that for any constant C that we choose, G must contain a complete (r+1)

partite graph with C vertices in each part. This is the key step in the proof of

60



the theorem. The proof is by induction on r and is the same double counting and

convexity technique that you will use to prove the Kővari-Sós-Turán theorem

on Homework 7.

4. Show that this implies the theorem. That is, once we have a compete (r + 1)-

partite subgraph of G, we can take C to be large enough to embed our copy of

F (eg if we take C > |V (F )| then we can certainly find a copy of F ).

So this is a very satisfying result. In most cases, this gives us an asymptotic

formula for ex(n, F ). However, if F is bipartite, then the theorem simply says that

ex(n, F ) = o(n2). In general, finding the Turán number for a bipartite graph is a

very difficult problem. For most bipartite graphs, not even the order of magnitude

is known. The following theorem, which you will prove in your homework, gives a

better upper bound for ex(n, F ) when F is bipartite.

Theorem 4.1.4 (Kővari-Sós-Turán theorem). Let t ≥ s ≥ 2. Then there is a con-

stant c such that

ex(n,Ks,t) ≤ cn2−1/s.

Since any bipartite graph F is a subgraph of Ks′,t′ for some constants s′ and t′,

we have that ex(n, F ) ≤ ex(n,Ks′,t′) = O
(
n2−1/s′

)
.

We will prove the theorem when s = 2. You will give the proof of the full theorem

in your homework.

Proof of KST theorem for s = 2. Let G be an n vertex graph that has no copy of

K2,t. Then since G is K2,t free, it means that for any vertices x and y, they can have

at most t−1 common neighbors. We write d(x, y) to denote |Γ(x)∩Γ(y)|, the number

of common neighbors of x and y. So∑
x,y

d(x, y) ≤ (t− 1)

(
n

2

)
.
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On the other hand∑
x,y∈V (G)

d(x, y) =
∑

v∈V (G)

(
d(v)

2

)
=

1

2

∑(
(d(v))2 − d(v)

)
=

(
1

2

∑
(d(v))2

)
− e(G).

Now by Cauchy-Schwarz, we have∑
(d(v))2 ≥ (

∑
d(v))2

n
=

4(e(G))2

n
.

Combining, this gives
2(e(G))2

n
− e(G) ≤ (t− 1)

(
n

2

)
.

Using the quadratic formula to solve for e(G) gives

e(G) ≤
1 +

√
1 + 4(t− 1)

(
n
2

)
2
n

2
n

=
n+ n

√
1 + 4(n− 1)(t− 1)

2
∼
√
t− 1n3/2.

The best lower bound we have see for ex(n,K2,2) = ex(n,C4) is Ω(n4/3). Which

is right? We will see shortly.

4.2 Projective planes

The survival of finite geometry as an active fields of study depends on some-

one finding a finite projective plane of a non-prime-power order.

– Gary Ebert

In this section we foray into the field of finite incidence geometry. A point-line

incidence structure (sometimes also called: a rank 2 geometry) is a set P of points

and a set L of lines, where each line is a subset of the point set. We say that a point

p is incident with a line l if p ∈ l. We say the the point p is on l to mean the same

thing.
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Definition 4.2.1. A projective plane is a point line incidence structure that satisfies

the following 3 axioms:

1. For every pair of points, there is a unique line which they are both on.

2. For every pair of lines, they intersect in a unique point.

3. The plane is non-degenerate.

There are two degenerate planes which trivially satisfy the first 2 axioms: if you

have only one line in your geometry and all of the points are on it, or if you have

only one point in your geometry and all of the lines go through it. It turns out that

besides these two examples, the first 2 axioms determine many structural properties

that a projective plane must have.

Theorem 4.2.2. Let Π be a finite projective plane. Then there is an integer q such

that every point is on q + 1 lines and every line contains q + 1 points.

Proof. Let p be a point and l be a line which does not contain p. Then for every

point q ∈ l, the first axiom tells us that there is a unique line lpq that goes through

both p and q. Axiom 2 tells us that for every line going through p, it meets l in a

unique point. Thus there is a bijection from the set of lines going through p to the

set of points on l, and therefore the sizes of these sets must be the same. But p and l

were arbitrary. Choosing different pairs of points and lines shows that all points have

the same number of lines going through them and all lines have the same number of

points on them, and that these numbers are the same. Call this number q + 1.

We call q the order of the projective plane.

Theorem 4.2.3. If Π is a projective plane of order q, then it has q2 + q + 1 points

and q2 + q + 1 lines.
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Proof. Let p be a point. Consider the q + 1 lines that go through p. These lines all

meet at p, but besides this are disjoint (by axiom 2). Furthermore, any point in the

projective plane must be on one of these lines. To see this, axiom 1 says that for any

point q, there is a unique line going through p and q, and so q must be on one of the

lines through p. Therefore, we can count the number of points in the projective plane

to be:

1 + (q + 1)(q + 1− 1) = q2 + q + 1.

The proof for lines can be done similarly, or one can double count to show that the

number of points must be the same as the number of lines.

We now show that a projective plane of order q exists whenever q is a prime power.

It is the biggest open problem in finite geometry to determine whether or not this is

the only time when a plane exists.

Theorem 4.2.4. Let q be a prime power. Then there is a projective plane of order

q.

Proof. Let Fq be the finite field of order q. Let V be a 3-dimensional vector space

over Fq. We define an incidence structure as follows:

• Let P be the set of 1-dimensional subspaces of V .

• Let L be the set of 2-dimensional subspaces of V .

• Define incidence by containment. ie a point (1-d subspace) is on a line (2-d

subspace) if the 1-d subspace is contained in the 2-d subspace.

Since two distinct 1-dimensional subspaces span a unique 2-dimensional subspace, this

structure satisfies the first axiom. Since V is 3-dimensional, any pair of 2-dimensional

subspaces must meet in a 1-dimensional subspace, so the second axiom is also satisfied.

It is easy to see that the plane is not degenerate.
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4.3 Sidon sets

At the very beginning, there was Simon Sidon.

– Alain Plagne

Recall from your second exam that if Γ is an abelian group, and A ⊂ Γ is called

a Sidon set if it has only trivial solutions to the Sidon equation

a+ b = c+ d.

That is, if a, b, c, d ∈ A and a + b = c + d, then it implies that {a, b} = {c, d}. Note

that if A is a Sidon set, then all of the sums are distinct, but also all of the nonzero

differences are distinct. This implies that if A ⊂ Γ is a Sidon set, then

|A|(|A| − 1) ≤ |Γ| − 1.

Finding the maximum size of a Sidon set in [n] is a 500 USD Erdős problem:

We show that there are Sidon sets of size asymptotic to the upper bound:

Theorem 4.3.1. Let p be an odd prime. There is a Sidon subset of Fp × Fp of size

p.

Proof. Let

A = {(x, x2) : x ∈ Fp}.
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It is clear that |A| = p. We now show that A is a Sidon set. Assume that

(a, a2) + (b, b2) = (c, c2) + (d, d2)

with a, b, c, d ∈ Fp. We must show that {a, b} = {c, d}. Without loss of generality,

assume that a 6= c. Then we have the following system of equations

a+ b = c+ d

a2 + b2 = c2 + d2

which is equivalent to

a− c = d− b

a2 − c2 = d2 − b2.

Since a 6= c and we are working in a field, we may divide through the second equation

by a− c = d− b to find that

a+ c = d+ b.

But this along with a− c = d− b implies that 2a = 2d which means that a = d (since

p is odd), and b = c.

4.4 Constructing C4-free graphs

Why did we talk about projective planes and Sidon sets? It turns out one can use

them to construct C4-free graphs.

Let Π be a projective plane of order q. We will make the bipartite incidence graph

of Π as follows (also called the Levi graph): Let P and L be the points and lines of

Π. We define our graph G by V (G) = P ∪L and for p ∈ P , l ∈ L we have pl ∈ E(G)

if and only if p ∈ l in Π. Why is this graph C4-free? We must show that for any pair
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of vertices, they have at most 1 neighbor in common. If one vertex is a point, and

one vertex is a line, then the pair have no neighbors in common since G is bipartite.

Now, if I have two vertices which are points, how many neighbors do they have in

common? The neighborhood of a point in G is the set of lines that it is on in Π. By

the axioms of a projective plane, a pair of points are on a unique common line. This

means that in G, any pair of points have exactly one neighbor in common. Similarly,

any pair of lines meet in a unique point. In G, the neighborhood of a line is the set

of points on it. Therefore, any two lines in G have a unique common neighbor. So

G is a q + 1 regular graph on 2(q2 + 2 + 1) points which is C4-free. Since we showed

that projective planes of order q exist if q is a prime power, we have the following

corollary:

Corollary 4.4.1. If q is a prime power, then

ex(2(q2 + q + 1), C4) ≥ (q + 1)(q2 + q + 1).

Using a density of primes argument that is the same as in your homework, this

implies that

ex(n,C4) &
1

2
√

2
n3/2.

So we have determined the order of magnitude of ex(n,C4). In your homework, you

will show that you can remove the constant multiple of
√

2 difference in the upper

and lower bounds by smashing together the two partite sets of the above graph in a

nice way.

Next we use Sidon sets to show an alternate way to get rid of the
√

2 factor.

Given an abelian group Γ and a set A ⊂ Γ, we can construct a Cayley sum graph. Let

V (G) = Γ, and let x ∼ y in G if and only if x+y ∈ A. Note that this graph may have

loops (if x+ x ∈ A), but if we remove the loops then the graph has minimum degree

|A| − 1. We claim that if A is a Sidon set, this graph is C4-free. To see this, consider
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a purported C4. That is, let x, y, w, z ∈ Γ and assume xy, yw,wz, zx ∈ E(G). Then

there are a, b, c, d ∈ A such that

x+ y = a

y + w = b

w + z = c

z + x = d

But then we have

x+ y + w + z = a+ c = b+ d,

where a, b, c, d ∈ A. Since A is a Sidon set, we must have {a, c} = {b, d}. If a = b

then x = w and if a = d then y = z. In either case, xywz is not a C4 in the graph.

By the construction of a Sidon set of size p in the group Fp×Fp, we have constructed

a graph on p2 vertices with minimum degree at least p− 1. Therefore we have, for p

a prime:

ex(p2, C4) ≥ 1

2
p2(p− 1).

By a density of prime numbers argument, we have the asymptotic formula ex(n,C4) ∼
1
2
n3/2.

4.5 Ramsey numbers

Recall that given graphs G and H, the Ramsey number R(G,H) is the minimum n

such that any red/blue coloring of the edges of Kn contains a copy of G with all red

edges or a copy of H with all blue edges. We write R(s, t) for R(Ks, Kt). Giving a

lower bound that R(s, t) > m means coloring the edges of Km such that there is no

red Ks or blue Kt. The first construction one might think of is to take t− 1 disjoint
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copies of Ks−1 which are colored red, and color the edges in between blue. This gives

R(s, t) > (s− 1)(t− 1).

For a while, it was thought that maybe this was the right order of magnitude. We

saw using the probabilistic method that one can do much, much better. The first

moment method gives

R(t, t) > 2t/2−1

and the Lovász Local Lemma gives

R(t, t) ≥ (1− o(1))

√
2s

e
2s/2.

This is still the best general lower bound. Let’s turn to upper bounds.

Theorem 4.5.1. Let s, t ≥ 2. Then

R(s, t) ≤
(
s+ t− 2

t− 1

)
.

Proof. We prove this by induction. The statement is clear for R(s, 2) and R(2, t).

Now consider a red-blue coloring of the edges of Kn and assume there is no red Ks

or blue Kt. We must show that n <
(
s+t−2
t−1

)
. Consider a vertex v and consider its

red neighborhood and its blue neighborhood. By induction, if the number of red

edges incident with v is at least
(

(s−1)+t−2
t−1

)
, then in the graph induced by its red

neighborhood contains either a red Ks−1 or a blue Kt, and so the complete graph

has either a red Ks or a blue Kt. So the red neighborhood may have size at most(
s+t−3
t−1

)
− 1. Similarly, the blue neighborhood of v may have size at most

(
s+t−3
t−2

)
− 1.

Therefore the number of vertices in the graph is at most

1 +

((
s+ t− 3

t− 1

)
− 1

)
+

((
s+ t− 3

t− 2

)
− 1

)
=

(
s+ t− 2

t− 1

)
− 1.
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This gives as a corollary that

R(t, t) = O

(
4t

t

)
.

The best known bound is due to David Conlon, who showed

R(t, t) ≤ t−Ω( log t
log log t)4t.

We would also like to define multicolor Ramsey numbers. Define

Rk(s1, · · · , sk)

to be the minimum n such that any k coloring of the edge set of Kn contains a

monochromatic copy of Ksi in color i. A priori, it is not even clear that these numbers

should be finite!

Theorem 4.5.2. For any integers s1, · · · , sk,

Rk(s1, · · · , sk) <∞.

Proof. We prove by induction on k. We have already proved the base case when k = 2.

Now let Kn be colored with k colors. Given this coloring we create a red/blue coloring

of Kn where we color an edge red if it was colored with color 1, and we color and

edge blue if it was colored with colors between 2 and k. Note that by the induction

hypothesis Rk−1(s2, · · · , sk) is a finite number. So if n = R(s1, Rk−1(s2, · · · , sk)),

then by the base case there exists either a red Ks1 or a blue KRk−1(s2,··· ,ck). If there is

a red Ks1 that means there is a clique of size s1 in color 1 and we are done. If there

is a blue KRk−1(s2,··· ,ck) then there is a clique on Rk−1(s2, · · · , sk) vertices using only

colors 2, · · · , k. By the induction hypothesis, this clique contains a clique of size si

in color i for some i between 2 and k.
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4.6 Combinatorial Number Theory

Ramsey-type theorems do not just have to be on graphs:

Theorem 4.6.1 (Schur’s Theorem). For any k, there exists an integer n such that

for any k coloring of the integers {1, · · · , n}, there are three integers x, y, z ∈ [n] with

the same color such that x+ y = z.

Proof. Choose n = Rk(3, 3, · · · , 3), and assume [n] is colored with k colors by the

function χ : [n] → [k]. We define an edge coloring of Kn by coloring the edge ij

with the color χ(|i − j|). Then by the graph Ramsey theorem, there must be a

monochromatic triangle in this graph. Consider a monochromatic triangle ijk in Kn

and assume i < j < k. Then we have

χ(j − i) = χ(k − i) = χ(k − j).

Letting x = j − i, y = k − j and z = k − i gives three integers in [n] with the same

color such that x+ y = z.

We use Schur’s Theorem to prove that Fermat’s Last Theorem does not hold over

finite fields:

Theorem 4.6.2. For each n, there exists a p0 such that for any prime p ≥ p0 the

equation

xn + yn ≡ zn (mod p)

has a solution.

Proof. Note that the multiplicative group (Z/pZ)∗ is cyclic, and so there is a generator

g such that (Z/pZ)∗ = {g0, g1, g2, · · · , gp−2}. For each x ∈ (Z/pZ)∗ define kx and ix

so that

x = gkxn+ix .
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Now we define a coloring of the integers c : {1, · · · , p} → [n] where c(x) = ix (note that

I am thinking of x as both an integer as an element of the group simultaneously). For

p large enough, Schur’s theorem guarantees a monochromatic solution to x′+ y′ = z′.

By the way that we have defined our coloring, this means that there exists an i so

that

gkx′n+i + gky′n+i ≡ gkz′n+i (mod p).

Dividing through by gi and taking x = gkx′ , y = gky′ and z = gkz′ gives the result.

We now discuss van der Waerden numbers.

Definition 4.6.3. Define w(r, k) to be the minimum n such that any r coloring of

the integers {1, · · · , n} contains a monochromatic k term arithmetic progression.

The coloring

12345678

shows that w(2, 3) > 8. We will now show that w(2, 3) ≤ 325. Assume the integers

[325] are colored red and blue. Partition [325] into 65 blocks B1, · · · , B65 as

{1, 2, 3, 4, 5}{6, 7, 8, 9, 10} · · · {321, 322, 323, 324, 325}.

Since there are 32 ways to color a block of 5 integers, there are two blocks in

B1, · · · , B33 that have the same coloring. That is, there is a 0 ≤ bi < bi+d ≤ 32

such that 5bi + k and 5bi+d + k have the same color for k ∈ {1, · · · , 5}. By the

pigeonhole principle again, at least 2 of 5bi + 1, 5bi + 2, 5bi + 3 have the same color.

Without loss of generality assume that the color is red and that the elements are a

and a+ e (where e ∈ {1, 2}). Then we know that {a, a+ e, a+ 5d, a+ 5d+ e} are all

colored red. a + 2e or a + 5d + 2e is red, then we have a red 3 term AP and we are

done, so assume that both of these are blue.
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But then what color is a+ 10d+ 2e? If it is red then {a, a+ 5d+ e, a+ 10d+ 2e}

are red and if it is blue then {a+ 2e, a+ 5d+ 2e, a+ 10d+ 2e} are blue. In general,

Gowers has the best upper bound for w(r, k) with

w(r, k) ≤ 22r
22
k+9

.

Graham conjectures (and offers 1000 USD for)

w(2, k) ≤ 2k
2

.

The Lovász Local Lemma gives

w(r, k) ≥ (1− o(1))
rk−1

4k

(
1− 1

k

)
,

and Szabó improved this slightly. Berlekamp showed that for p a prime

w(2, p+ 1) > 2p+1,

and Blankenship, Cummings, and Taranchuk generalized this to colorings with r

colors.

Here we give an upper bound for W (r, k) that is worse than even a tower.

Theorem 4.6.4. For all r, k, w(r, k) <∞.

Proof. We prove by double induction on r and k. The base cases w(1, k) = k for all

k and w(r, 2) = r + 1 for all r are easy. Next we will assume w(r, k − 1) exists for all

r and show that w(r, k) exists for all r.

We define a sunflower with m petals of length k − 1 to be a collection of m
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arithmetic progressions of length k − 1,

a+ d1 a+ 2d1 · · · a+ (k − 1)d1

a+ d2 a+ 2d2 · · · a+ (k − 1)d2

...
...

a+ dm a+ 2dm · · · a+ (k − 1)dm

where each AP is monochromatic but different APs have distinct colors. Note that

if there is a sunflower with m petals of length k − 1, then if a is colored with any

of those m colors, we have created a monochromatic k term AP. The theorem then

follows after the following lemma.

Lemma 4.6.5. Suppose w(r, k − 1) exists for all r. Then for any m, there exists an

n = w(r,m, k − 1) such that any r coloring of [n] contains either a monochromatic

k-term AP or a sunflower with m petals of length k − 1.

We prove this by induction on m. The base case follows by the assumption

that w(r, k − 1) < ∞. Now assume the statement is true for m − 1 and let n1 =

w(r,m− 1, k − 1) and n2 = 2w(rn1 , k − 1). Color [n1n2] and consider [n1n2] as split

into n2 blocks of length n1. Since there are only rn1 possible colorings of each block,

then by the definition of n2, there is a j and a d with n2/2 ≤ j < j + (k − 1)d such

that all of the blocks Bj+id have the same coloring for 0 ≤ i ≤ k − 1. Let c = dn1.

By the induction hypothesis and the definition of n1, each of these blocks contains

either a k-term AP or a sunflower with m − 1 petals of length k − 1. If there is a

k-term AP we are done, so assume the latter. Since the k − 1 blocks are colored

identically, we have for each color k − 1 APs each of length k − 1 which are “evenly

spaced”. That is, in color 1 we see
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a+ d1 a+ 2d1 · · · a+ (k − 1)d1

a+ d1 + c a+ 2d1 + c · · · a+ (k − 1)d1 + c

...
...

a+ d1 + (k − 1)c a+ 2d1 + (k − 1)c · · · a+ (k − 1)d1 + (k − 1)c

In color 2 we see

a+ d2 a+ 2d2 · · · a+ (k − 1)d2

a+ d2 + c a+ 2d2 + c · · · a+ (k − 1)d2 + c

...
...

a+ d2 + (k − 1)c a+ 2d2 + (k − 1)c · · · a+ (k − 1)d2 + (k − 1)c

etc, with color m− 1 seeing

a+ dm−1 a+ 2dm−1 · · · a+ (k − 1)dm−1

a+ dm−1 + c a+ 2dm−1 + c · · · a+ (k − 1)dm−1 + c

...
...

a+ dm−1 + (k − 1)c a+ 2dm−1 + (k − 1)c · · · a+ (k − 1)dm−1 + (k − 1)c

Now if a has any of the first m − 1 colors, then we have a k term AP. If a has

a different color, then there is a sunflower with m petals of length k − 1 centered at

a+ (k − 1)c.

75



4.7 Erdős-Ko-Rado Theorem

Let 2[n] denote the set of subsets of [n]. A family of subsets F ⊂ 2[n] is called

intersecting if for all F, F ′ ∈ F , F ∩ F ′ 6= ∅. The subset of 2[n] of subsets which

contain n is an intersecting (each pair intersects at at least the integer n) family of

size 2n−1. If n is odd, then the set of subsets of size at least n/2 is also an intersecting

family of size 2n−1.

Theorem 4.7.1. If F is an intersecting family, then |F| ≤ 2n−1.

Proof. If F is an intersecting family and F ∈ F , then F c is not in F . Therefore,

there is an injection from sets in F to sets not in F , which means that F can have

at most half of the possible subsets of [n].

What if we restrict our sets to have a fixed size? This is the famous Erdős-Ko-Rado

Theorem.

Theorem 4.7.2 (Erdős-Ko-Rado 1961). Fix a natural number k. If n ≥ 2k, and F

is an intersecting family where each element of F has size k, then

|F| ≤
(
n− 1

k − 1

)
.

Choosing every k element subset which contains a fixed element shows that this

is best possible. Furthermore, if n < 2k, then one may take every subset of size k

and the family will be intersecting.

Proof. Choose π ∈ Sn uniformly at random. Place the integers [n] in a circle in the

order prescribed by π. For a set F ∈ F , let AF be the event that the integers in F

form an interval on this circle (ie, that they are all in a row next to each other). Since

F is intersecting, the number of sets F for which AF can occur simultaneously is at

most k (the maximum number of intervals of length k that can intersect is k). Let
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1F be the indicator that AF occurs. Then for any outcome of the random process we

have ∑
F∈F

1F ≤ k.

Therefore,

E

(∑
F∈F

1F

)
=
∑
F∈F

P(AF ) ≤ k.

But for any F , the probability of AF is exactly

n · k! · (n− k)!

n!
=

n(
n
k

) .
Therefore

|F| n(n
k

) ≤ k.
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5

Spectral graph theory

The founders of Google computed the Perron-Frobenius eigenvector of the

web graph and became billionaires.

– Andries Brouwer and Willem Haemers

In this chapter we will learn spectral graph theory. Broadly speaking, the goal of

spectral graph theory is to associate a matrix with a graph, and then use properties

of the matrix to deduce properties of the graph. If you like linear algebra, you are

in luck! Spectral graph theory is a lot of linear algebra. If you don’t like linear

algebra, you are also in luck! The matrices that we associate with a graph are all

“very nice” and satisfy all of the properties that you would want a matrix to satisfy.

This means that if you can remember that the matrices we are using satisfy certain

nice properties, you can forget all of the other messy linear algebra that one needs

for general matrices.
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5.1 Linear Algebra Preliminaries

In this chapter, we will use properties of “nice” matrices frequently. Everything that

you need to know is proved in a course like 241 or 242, and so I will not prove

theorems about matrices here. Rather, we will take some basic linear algebra facts as

a blackbox and use them frequently (the proofs are not hard, but it takes some set

up). First, we will only be interested in matrices with entries that are real numbers.

Rn×m will denote the set of such matrices that have n rows and m columns. Given a

matrix A we will write Aij to denote the entry in the i’th row and j’th column.

A vector is a matrix with only 1 column. Given a set of vectors {v1, · · · ,vk}, for

any c1, · · · , ck ∈ R, we say that

c1v1 + c2v2 + · · ·+ ckvk

is a linear combination of the vectors. We say that the Span of a set of vectors is the

set of all linear combinations of those vectors

Span ({v1, · · · ,vk}) =
{∑

civi : ci ∈ R
}
.

We call a set of vectors {v1, · · · ,vk} linearly independent if∑
civi = 0

implies that ci = 0 for all i. That is, none of the vectors can be written as a linear

combination of the other ones. Given a subspace S of Rn, a basis for S is a set of

linearly independent vectors whose Span is all of S.

Proposition 5.1.1. If {v1, · · · ,vk} is a basis for S, then every vector in S can be

written as a unique linear combination of vectors in {v1, · · · ,vk}.

Proof. If {v1, · · · ,vk} is a basis for S, then any vector in S can be written as a linear

combination of vectors in {v1, · · · ,vk} by the definition of Span. Therefore, the only
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thing to show is that this representation is unique. Let u ∈ S and assume

∑
civi =

∑
bivi = u.

Then we have ∑
(ci − bi)vi = 0.

Since {v1, · · · ,vk} are linearly independent, this implies that (ci − bi) = 0 for all i,

ie the two representations of u are the same.

All bases for a set S have the same size (this is something you learn in 241), and

the number of vectors in a basis for S is called the dimension of S.

A matrix in Rn×n is a function from Rn to Rn. ie, it takes a vector in Rn and spits

out another vector in Rn. Furthermore, it is a consequence of matrix multiplication

that this function is linear. That is, for vectors v and u we have

A(v + u) = Av + Au,

and for any scalar c ∈ R we have

A(cu) = c(Au).

Since A is a function, we may ask about its range. The co-domain is Rn, but perhaps

not all of the vectors are actually outputs of the function. Let S be the range of the

function, that is

S = {Av : v ∈ Rn}.

We define the rank of a matrix A to be the dimension of S. You learn in 241 that

this is the same as the dimension of the Span of the rows of A (or of the columns).
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For two vectors

u =


u1

u2

...

un

 v =


v1

v2

...

vn


we define their dot product to be

u · v = u1v1 + u2v2 + · · ·+ unvn = uTv.

Two vectors are said to be orthogonal if their dot product is 0 (in Rn, this means

that the two vectors are perpendicular to each other). Matrix multiplication can be

defined via the dot product: for A,B ∈ Rn×n, we have

(AB)ij = (i’th row of A) · (j’th column of B).

Now we define something we will use constantly in this chapter, eigenvalues and

eigenvectors. Given a matrix A, a nonzero vector x is said to an eigenvector for A if

there is a real number λ such that

Ax = λx.

λ is called an eigenvalue of A. Another important fact (learned in 241) is that if a

matrix is symmetric, then it has a set of n linearly independent eigenvectors (in fact,

we can assume that the vectors are pairwise orthogonal). We say that the trace of a

matrix A is the sum of its diagonal entries. If A is symmetric, then there is a set of

eigenvectors and eigenvalues such that

Axi = λixi

for 1 ≤ i ≤ n. In this case (another fact from 241), we have trace(A) =
∑n

i=1 λi.
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5.2 The adjacency matrix

Can one hear the shape of a drum?

– Mark Kac

Can you hear the shape of a graph?

– Fan Chung

We now study the most common matrix associated with a graph, the adjacency

matrix. Given a graph G on n vertices we define a matrix A = A(G) which is an n

by n matrix. It’s rows and columns are indexed by the vertex set (in the same order

for the rows as the columns), and the entries of A are given by

Aij =

1 vi is adjacent to vj

0 vi is not adjacent to vj

Note that A is a symmetric matrix, since vi is adjacent to vj if and only if vj is adjacent

to vi. Therefore, there is an orthogonal set of eigenvectors x1, · · · ,xn corresponding

to eigenvalues λ1, · · · , λn. We will always order the indices so that

λ1 ≥ λ2 ≥ · · · ≥ λn.

Given a graph G, we call the multiset of its eigenvalues the spectrum of G

Spec(G) = {λ1, · · · , λn}.

Further, if G has no loops, then the diagonal entries of A are all 0, and so trace(A) =∑
λi = 0. Now we come to the central question in spectral graph theory:

Question 1. Given the spectrum of a graph G, what properties of G can we deter-

mine?
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In particular, given the spectrum of a graph, can you determine what the graph

is? This is what is meant by “hearing the shape of a graph”. One graph property

that we can immediately determine from the spectrum is the number of vertices in

the graph. eg, if I tell you that I have a graph and its spectrum is

{−1,−1,−1,−1, 4}

then you can immediately tell me that my graph has 5 vertices. What else can we

say about it? First we need to investigate the adjacency matrix a bit more:

Theorem 5.2.1. The matrix Ak counts walks of length k in the graph. Specifically

(Ak)ij is the number of walks of length k from vertex vi to vertex vj.

Proof. The proof is by induction on k. The number of walks of length 1 from vi to vj

is 1 if i and j are adjacent and is 0 otherwise. By the definition of A, the base case

is proved. Now assume it is true for Ak. Then

(Ak+1)ij = (AkA)ij = (the i’th row of Ak) · (the j’th column of A) =
n∑

w=1

(Ak)iwAwj.

Now if vw is not adjacent to vi then the summand is 0. Otherwise by induction, this

summand is equal to the number of walks of length k from vi to vw. Since in this

case vw ∼ vj, for each k walk from vi to vw, there is a k+ 1 walk from vi to vj. Since

we sum over the whole vertex set, this counts all of the k-walks.

We claim that this theorem tells us other information about the graph given its

spectrum. Note that if λ is an eigenvalue of A, then λk is an eigenvalue of Ak. There-

fore, if the spectrum of A is {λ1, · · · , λn}, then the spectrum of A2 is {λ2
1, · · · , λ2

n}.

But the matrix A2 counts walks of length 2 in the graph, and so for any i we have

(A2)ii = number of walks of length 2 from vi to itself = d(vi). And so

trace(A2) =
n∑
i=1

d(vi) = 2e(G).
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Therefore, knowing the spectrum of G determines the number of edges in G. So given

a graph with spectrum {−1,−1,−1,−1, 4} we know that it has 5 vertices and

1

2
((−1)2 + (−1)2 + (−1)2 + (−1)2 + 42) = 10

edges. What graph is it?

It is often useful to use the following characterization of λ1:

λ1 = max
xT x 6=0

xTAx

xTx
.

Using this we can show that the spectral radius of a graph is between its average

degree and its maximum degree.

Theorem 5.2.2. Let G be a graph with maximum degree ∆ and average degree d =

2e(G)
n

. Then

d ≤ λ1 ≤ ∆.

Proof. Since

λ1 = max
xT x 6=0

xTAx

xTx
.

we have

λ1 ≥
1TA1

1T1
,

where 1 represents the all ones vector. But

1TA1

1T1
=

2e(G)

n
,

so the lower bound is proved. To see the upper bound, let Ax1 = λ1x1. Let

x1 =


x1

x2

...

xn


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and assume that xz is the largest entry (if there is more than one largest entry, choose

of those arbitrarily). Then Ax1 = λ1x1 is a system of equations, and looking at the

one that corresponds to vertex z we have

λ1xz =
∑
v∼z

xv ≤
∑
v∼z

xz = xzd(z) ≤ xu∆.

And so λ1 ≤ ∆.

5.3 Short proofs of old results using spectral graph

theory

In this section we use the previous set up to give short proofs of several old results.

Using the inequality λ1 ≥ 2e(G)
n

will recover and sometimes strengthen these results.

We use the same set up as before: G will be a graph and A will be its adjacency matrix.

A will have eigenvaluses λ1 ≥ λ2 · · · ≥ λn and x will be an eigenvector corresponding

to λ1. We will normalize x so that it has infinity norm 1 (ie its maximum entry is

1), and we will let z be a vertex chosen so that xz = 1. The eigenvector eigenvalue

equation gives that for any vertex u,

λ1xu =
∑
v∼u

xv.

Multiplying both sides of this equation by λ1 and applying the above equation again

gives

λ2
1xu =

∑
v∼u

λ1xv =
∑
v∼u

∑
w ∼ vxw.

In particular, applying the above equation for u = z and noting that xw ≤ 1 gives

λ2
1 =

∑
v∼z

∑
w∼v

xw =
∑
v∼z

∑
w∼v

w∈N(z)

xw +
∑
v∼z

∑
w∼v

w 6∈N(z)

xw ≤ 2e(N(z)) + e(N(z), V (G) \N(z))

(5.1)
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where the last inequality follows because each eigenvector entry is at most 1, and

because each eigenvector entry appears at the end of a walk of length 2 from z: each

edge with both endpoints in N(z) is the second edge of a walk of length 2 from z

exactly twice and each edge with only one endpoint in N(z) is the second edge of a

walk of length 2 from z exactly once. Using this setup we give short proofs of the

following known results:

• Mantel’s Theorem.

• Stanley’s Bound (1987): if G is a graph with m edges and λ1 is the spectral

radius of its adjacency matrix, then λ1 ≤ 1
2

(
−1 +

√
1 + 8m

)
.

• A long-standing conjecture of Erdős (1975) is that every triangle-free graph may

be made bipartite with the removal of at most n2/25 edges. We show that the

conjecture is true for graphs with at least n2/5 edges, first proved by Erdős,

Faudree, Pach, and Spencer (1988).

• If G is a K2,t-free graph and the spectral radius of its adjacency matrix is λ1,

then λ1 ≤ 1/2+
√

(t− 1)(n− 1) + 1/4. This was originally proved by Nikiforov

(2010) and is a spectral strengthening of the Kővari-Sós-Turán Theorem applied

to ex (n,K2,t).

• An improvement of the Stanley Bound (Hong, 1998) and some variants of it

when one forbids cycles of length 3 and 4 (Nikiforov 2007 and Nosal 1970).

• An upper bound on the spectral radius of a graph based on local structure, first

proved by Favaron, Mahéo, and Saclé (1993).

Theorem 5.3.1 (Mantel’s Theorem). Let G be a triangle-free on n vertices. Then

G contains at most bn2/4c edges. Equality occurs if and only if G = Kbn/2cdn/2e.
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Proof. If G is triangle-free, then e(N(z)) = 0. Using λ1 ≥ 2e(G)
n

and (5.1) gives

4(e(G))2

n2
≤ e(N(z), V (G) \N(z)) ≤

⌈n
2

⌉ ⌊n
2

⌋
.

Equality may occur only if e(N(z), V (G) \ N(z)) = bn2/4c. The only bipartite

graph with this many edges is Kbn/2cdn/2e, and thus Kbn/2cdn/2e is a subgraph of G.

But G is triangle-free, and so G = Kbn/2cdn/2e.

Theorem 5.3.2 (Stanley’s Bound). Let G have m edges. Then

λ1 ≤
1

2

(
−1 +

√
1 + 8m

)
.

Equality occurs if and only if G is a clique and isolated vertices.

Proof. Using (5.1) gives

λ2
1 =

∑
z∼v

∑
v∼w
w 6=z

xw +
∑
v∼z

1 ≤ 2(m− dz) + dz ≤ 2m− λ1,

where the last inequality is because λ1 ≤ dz. The result follows by the quadratic

formula. Examining (5.1) shows that equality holds if and only if E(G) is contained

in the closed neighborhood of z, dz = λ1, and for each w ∼ z, xw = 1. Since z was

chosen arbitrarily amongst vertices of eigenvector entry 1, any vertex of eigenvector

entry 1 must contain E(G) in its closed neighborhood. Thus G is a clique plus isolated

vertices.

Theorem 5.3.3 (Erdős-Faudree-Pach-Spencer). Let G be a triangle-free graph on n

vertices with at least n2/5 edges. Then G can be made bipartite by removing at most

n2/25 edges.
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Proof. Let G be triangle-free with m edges, and let MaxCut(G) denote the size of a

maximum cut in G. So we are trying to show that m−MaxCut(G) ≤ n2/25. Since

G is triangle-free, N(z) induces no edges. Thus by (5.1)

4m2

n2
≤ λ2

1 ≤ e(N(z), V (G) \N(z)) ≤ MaxCut(G).

Let g(m) = m − 4m2

n2 . The function g(m) is decreasing for m ≥ n2

8
, and g(n2/5) =

n2/25, which implies the result.

Theorem 5.3.4 (Nikiforov). Let G be a K2,t-free graph of order n and spectral radius

λ1. Then

λ1 ≤ 1/2 +
√

(t− 1)(n− 1) + 1/4.

Noting that λ1 ≥ 2e(G)
n

implies the Kővari-Sós-Turán Theorem applied to ex(n,K2,t).

Proof. Let w be a vertex not equal to z. Since G is K2,t-free, there are at most t− 1

walks of length 2 from z to w. Therefore, by (5.1)

λ2
1 = dz +

∑
v∼z

∑
w∼v

w∈N(z)

xw +
∑
v∼z

∑
w∼v

w 6∈N(z)
w 6=z

xw

≤ dz + (t− 1)
∑

w∈N(z)

xw + (t− 1)
∑

w 6∈N(z)
w 6=z

xw

= dz +
∑

w∈N(z)

xw + (t− 2)
∑

w∈N(z)

xw + (t− 1)
∑

w 6∈N(z)
w 6=z

xw

= dz + λ1 + (t− 2)
∑

w∈N(z)

xw + (t− 1)
∑

w 6∈N(z)
w 6=z

xw

≤ dz + λ1 + (t− 2)dz + (t− 1)(n− dz − 1).

Applying the quadratic formula yields the result.

The next three theorems are variants of Stanley’s edge bound.
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Theorem 5.3.5 (Nosal (1970)). If G is triangle free with m edges and spectral radius

λ1, then λ1 ≤
√
m.

Proof. If G is triangle-free, then e(N(z)) = 0. (5.1) implies

λ2
1 ≤ e(N(z), V (G) \N(z)) ≤ m.

Theorem 5.3.6 (Nikiforov (2007)). Let G be an n-vertex graph of girth at least 5

and spectral radius λ1. Then λ1 ≤
√
n− 1.

Proof. Since G is triangle and quadrilateral-free, e(N(z)) = 0 and for any w ∈ V (G)\

{z ∪N(z)} |N(w) ∩N(z)| ≤ 1. Therefore e(N(z), V (G) \N(z)) ≤ dz + (n− dz − 1).

(5.1) gives λ2
1 ≤ n− 1.

Using λ1 ≤ ∆(G), we have for G of girth at least 5, λ1 ≤ min{∆,
√
n− 1}.

Nikiforov (2007) characterizes the cases of equality. We leave the characterization of

equality using our proof to the reader.

Theorem 5.3.7 (Hong). Let G be a connected graph on m edges with spectral radius

λ1, then

λ1 ≤
√

2m− n+ 1.

Equality occurs if and only if G is either a complete graph or a star.

Proof. Since G is connected, every vertex in V (G) \ {z ∪N(z)} has degree at least 1.

Therefore, at least n − dz − 1 edges contribute at most 1 to the sum in (5.1). This

gives

λ2
1 ≤ dz + 2e(N(z))− (n− dz − 1) ≤ 2m− n+ 1.

Equality occurs if and only if for all u ∈ V (G)\{z∪N(z)}, du = 1 and for any walk

of length 2 starting at z and ending at u, xu = 1. These conditions together imply
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that V (G) = z ∪ N(z). Now, if there are any edges in N(z), then both endpoints

must have eigenvector entry 1. If xw = 1 and N(w) ⊂ {z ∪N(z)}, then N(w) must

equal V (G) \ {w}. Therefore G is either a clique or a star.

Finally, we note that some of the above theorems are corollaries of the following

bound by Favaron, Mahéo, and Saclé. We prove (a stronger version of) their theorem

immediately from (5.1)

Theorem 5.3.8 (Favaron-Mahéo-Saclé). Let G be a graph with spectral radius λ1.

For i ∈ V (G) let si be the sum of the degrees of the vertices adjacent to i. Then

λ1 ≤ max
i

√
si.

Proof. Since 2e(N(z)) + e(N(z), V (G) \N(z)) = sz, we have immediately from (5.1)

λ2
1 ≤ sz ≤ max

i∈V (G)
si.

5.4 The Graham-Pollak Theorem

Beautiful graphs are rare. And so are gems like this proof.

– Babai and Frankl

Originally motivated by a problem of loop switching in networks, Graham and

Pollak became interested in partitioning the edge set of a multigraph by complete

bipartite subgraphs (henceforth bicliques). If G is a finite, loopless multigraph, the

biclique partition number, denoted bp(G), is the minimum number of bicliques whose

edge sets partition E(G). Since every edge is a biclique, this parameter is well-defined

and finite. Graham and Pollak showed that a problem on loop switching is equivalent

to partitioning a multigraph, and in the process proved their celebrated theorem.
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Theorem 5.4.1 (Graham-Pollak Theorem). The edge set of the complete graph on

n vertices cannot be partitioned into fewer than n− 1 complete bipartite subgraphs.

As the edges of Kn can be partitioned into n−1 bicliques using edge-disjoint stars

(there are also many other ways, exponentially many in fact), the Graham-Pollak

Theorem gives the result bp(Kn) = n − 1. Since Graham and Pollak’s result, many

other proofs of this fact have been discovered. Though the result is purely combina-

torial, most of the proofs are algebraic, including proofs by G.W. Peck, Tverberg, and

Vishwanathan. Vishwanathan also discovered a proof that replaces linear algebraic

techniques by using the pigeon-hole principle in a way that does not necessitate the

use of an underlying field. However, his proof mimics Gaussian elimination and uses

intermediate structures of large size (on the order of nn). He asked whether there

was a “better” combinatorial proof.

We now describe a beautiful result, attributed Witsenhausen [?], which gives the

Graham-Pollak Theorem as a corollary.

Theorem 5.4.2 (Witsenhausen, 1980s). Let G be a finite, loopless graph, and A its

adjacency matrix. Then, if n+(A) and n−(A) denote the number of positive eigenval-

ues and negative eigenvalues of A respectively,

bp(G) ≥ max(n+(A), n−(A)).

Since Kn has eigenvalue −1 with multiplicity n− 1, the Graham-Pollak Theorem

is a corollary.

Proof. Assume the edge set of a graph G is partitioned into bp(G) bicliques. If S is

a subset of the vertices of G, then the characteristic vector of S is the n-dimensional

(0, 1) column vector whose i-th position equals 1 if vertex i is in S and equals 0

otherwise. Denote by ui and vi the characteristic vectors of the partite sets of the
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i-th biclique of our decomposition. Define Di = uiv
T
i +viu

T
i . Then Di is the adjacency

matrix of the i-th biclique as a subgraph of G, and A =
∑bp(G)

i=1 Di. Let

W = Span{w ∈ Rn|wTui = 0,∀1 ≤ i ≤ bp(G)}

P = Span{Eigenvectors of the positive eigenvalues of A}.

Since W is made up of n-dimensional vectors that are all orthogonal to bp(G)

vectors, we have that dim(W ) ≥ n− bp(G). On the other hand, since pTAp > 0 for

all nonzero p ∈ P , we have that W ∩ P = {0}. Therefore

dim(W ) ≤ n− dim(P ) = n− n+(A).

It follows that n−bp(G) ≤ dim(W ) ≤ n−n+(A) which implies that bp(G) ≥ n+(A).

The argument for n−(A) follows similarly. Thus bp(G) ≥ max{n+(A), n−(A)}.

The two most interesting open problems, in the opinion of the author, are the

following.

Open Problem 1. What is the minimum number of bicliques necessary to cover

every edge of Kn at least once and at most twice? That is, what is bp2(Kn)?

The best known bounds for this problem are given by
√
n− 1 ≤ bp2(Kn) ≤

d
√
ne+ b

√
nc − 2 (cf Alon 1997).

Open Problem 2. What is the minimum number of complete r-partite r-uniform

hypergraphs necessary to partition the edge set of the complete r-uniform hypergraph?

This question seems to be extremely difficult, and the best bounds, due to Cioabă,

Kündgen, and Verstraëte in 2009 and Leader and Tan in 2017, are far apart. It would

be nice to use an eigenvalue approach here as well, but the eigenvalue theory for higher

order tensors is still not fully developed.
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5.5 The Expander-Mixing Lemma

In this section we discuss how the second and last eigenvalue of a graph can tell us

about the structure of the graph. We already saw how the first eigenvalue can tell us

about the maximum and average degree. Let’s say a graph is d regular: this property

can be deduced from the spectrum (if and only if d = λ1 = 1
n

∑
λ2
i ). But there are

many very different looking graphs which are all d regular, say two disjoint copies of

Kn/2 versus a Kn/2,n/2. Both of these are also very different from a “random regular

graph with degree n/2” (whatever that means). Can we detect these structural

differences from the spectrum? The answer is yes.

Given subsets S, T ⊂ V (G), we define

e(S, T ) = |{(u, v) : u ∈ S, v ∈ T, uv ∈ E(G)}|.

That is, e(S, T ) denotes the number of edges between S and T where if S and T

overlap and there is an edge with both endpoints in both of them, it is counted twice.

If G is a d-regular graph and we were to choose S of size |S| and T of size |T | uniformly

at random, then the probability for a vertex to be in S is |S|
n

and for it to be in T is

|T |
n

, and therefore by linearity of expectation we have

E[e(S, T )] =
∑

uv∈E(G)

|S|
n

|T |
n

+
|T |
n

|S|
n

=
dn

2
· 2|S||T |

n2
=
d|S||T |
n

.

The Expander-Mixing Lemma gives us a bound on how far away two sets in a

graph can be from this average:

Theorem 5.5.1 (Expander Mixing Lemma: Alon, Chung). Let G be a d-regular

graph and S, T ⊂ V (G). Then

λn

√
|S||T |

(
1− |S|

n

)(
1− |T |

n

)
≤ e(S, T )−d|S||T |

n
≤

√
|S||T |

(
1− |S|

n

)(
1− |T |

n

)
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Proof. We prove the lower bound here. The upper bound is the same proof. Let A

be the adjacency matrix of G and let λ1 ≥ λ2 ≥ · · · ≥ λn be its eigenvalues. Assume

that Axi = λixi and that the eigenvectors are orthonormal, ie xTi xj = 0 if i 6= j and

1 if i = j.

Let S, T ⊆ V (G), and let 1S (1T ) denote the characteristic vector of S (of T ).

Then 1S,1T ∈ Rn and we will now show that e(S, T ) = 1TS A1T .

xTAy = xT (Ay) =
∑
i

xi(Ay)i =
∑
i

xi
∑
j

Aijyj =
∑
i,j

Aijxiyj

In the above equation, Aij 6= 0 precisely when i ∼ j (in this case Aij = 1), hence

1TS A1T counts precisely the number of edges between S and T .

We can write 1S =
∑
αixi where αi = 1TSxi, and similarly 1T =

∑
βixi where

βi = 1TTxi. Note that
∑
α2
i = 1TS1S = |S| and

∑
β2
i = 1TT1T = |T |. Since G is

d-regular, x1 = 1√
n
1. Therefore α1 = 1TSx1 = 1√

n
|S| and β1 = 1TTx1 = 1√

n
|T |. Then

we have the following:

e(S, T ) = 1TS A1T =
(∑

i

αixi

)T
A
(∑

j

βjxj

)
=
(∑

i

αixi

)T(∑
j

βjAxj

)
=
∑
i,j

(αixi)(βjλjxj)

=
∑
i

λiαiβi

= λ1α1β1 +
n∑
i=2

λiαiβi

= d · 1

n
|S||T |+

n∑
i=2

λiαiβi.
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Hence we have

e(S, T )− d |S||T |
n

=
n∑
i=2

λiαiβi ≥ λn

n∑
i=2

αiβi ≥ λn

n∑
i=2

|αi||βi|

where the last inequality follows because λn < 0. Now, using Cauchy-Schwarz gives

e(S, T )− d |S||T |
n
≥ λn

(
n∑
i=2

α2
i

)1/2( n∑
i=2

β2
i

)1/2

= λn

(
|S| − |S|

2

n

)(
|T | − |T |

2

n

)
.

Rearranging gives the result.

As a corollary we have the very useful Hoffman Ratio bound:

Theorem 5.5.2 (Hoffman ratio bound). If G is a d regular graph then

α(G) ≤ n
−λn
d− λn

.

Proof. If S is an independent set in G then e(S, S) = 0. Therefore, by the expander

mixing lemma we have

−d |S|
2

n
≥ λn|S|

(
1− |S|

n

)
.

Rearranging gives |S| ≤ n −λn
d−λn .

5.6 The Hoffman-Singleton Theorem

In this section we ask the following optimization question: minimize the number of

vertices in a graph subject to the constraints that it is regular of a fixed degree and

has a fixed girth (length of the shortest cycle).

Five is a magic number, so let us consider regular graphs of girth five.

– Babai and Frankl
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Let’s say a graph G is d-regular and has girth 5. Since it has no cycles of length 3

or 4, then when we do a breadth first search from a vertex, all of the paths of length

2 from the root must lead to distinct vertices. Since the graph is d-regular, we have

at least

1 + d+ d(d− 1) = d2 + 1

vertices in the graph. So we must have n ≥ d2 + 1. This idea generalizes to arbitrary

girth:

Theorem 5.6.1 (The Moore Bound). Let G be a d-regular graph on n vertices with

girth at least 2k + 1. Then

n ≥ 1 +
k−1∑
i=0

d(d− 1)i.

Graphs attaining equality in this bound are called Moore graphs. Do Moore graphs

exist? If d = 2 then a cycle of length 2k + 1 is a Moore graph. If k = 1, then the

complete graph is a Moore graph with girth 3 and degree n − 1. After this it gets

harder: the Petersen graph is a 3 regular graph on 32 + 1 vertices with girth 5 and so

it is a Moore graph. Hoffman and Singleton constructed a graph on 72 + 1 vertices

which is regular of degree 7 and has girth 5. Their graph is similar in some sense to

the Petersen graph, and so one may think that there is an infinite family of Moore

graphs of girth 5. The following incredible theorem says that this is not true.

Theorem 5.6.2 (Hoffman and Singleton, 1960). If G is a d-regular graph with girth

5 on d2 + 1 vertices, then d ∈ {2, 3, 7, 57}.

Proof. First we show that the graph is more regular than we might expect. Take a

pair of vertices u and v. If u ∼ v then their common neighborhood must be empty,

otherwise G would have a triangle. What if uv 6∈ E(G)? If we go back to the breadth

first search argument, then since n = d2 + 1, we must have that all of the vertices are
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in a breadth first search two steps away from the root. Letting u be the root, since we

assumed that u 6∼ v, then v must be in the bottom layer of the tree. This means that

there is a unique path of length 2 from u to v and so their common neighborhood has

size 1.

Now, the adjacency matrix has a 1 in position uv if and only if u ∼ v. By the

above discussion, A2 has a 1 in position uv if and only if u 6∼ v. Therefore we have

A2 + A = (d− 1)I + J,

where J is the all ones matrix. Now, since G is regular, we have that the all ones

vector is an eigenvector for it corresponding to eigenvalue d. Furthermore, we can

assume that all of the other eigenvectors are orthogonal to this all ones vector. Let

Ax = λx where x is one of the other eigenvectors. Then we have

λ2x + λx− (d− 1)x = (A2 + A− (d− 1)I)x = Jx = 0.

Multiplying both sides by x gives that λ2+λ−(d−1) = 0 and therefore λ = −1±
√

4d−3
2

.

Note that this holds for any eigenvalue that does not have the all ones eigenvector, so

this means that G has eigenvalue d with multiplicity 1 and the other two eigenvalues

with some multiplicities m1 and m2. Now the total number of eigenvalues is the

number of vertices and so

1 +m1 +m2 = d2 + 1.

Also, the trace of A is 0, so we must have

d+m1

(
−1 +

√
4d− 3

2

)
+m2

(
−1−

√
4d− 3

2

)
= 0.

Rearranging gives

2d− (m1 +m2) + (m1 −m2)
√

4d− 3 = 2d− d2 + (m1 −m2)
√

4d− 3 = 0.
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Now, 4d−3 is an integer, and so
√

4d− 3 is either an integer or irrational. If
√

4d− 3

is irrational, then we must have m1 = m2 (since 0 is the right hand side of the equation

and is rational). In this case, we have 2d− d2 = 0 and so d = 2.

For the remainder of the proof, assume that
√

4d− 3 is an integer, call it s. Then

d =
s2 + 3

4
.

Substituting this expression for d gives

2

(
s2 + 3

4

)
−
(
s2 + 3

4

)2

+ (m1 −m2)s = 0,

or equivalently

8s2 + 24− (s4 + 6s2 + 9) + 16(m1 −m2)s = 0.

Rearranging gives

s(s3 − 2s− 16(m1 −m2)) = 15.

Since s and m1,m2 are integers, this means that s must divide 15, and so s ∈

{1, 3, 5, 15}. Therefore in this case d = (s2 + 3)/4 must satisfy d ∈ {1, 3, 7, 27}.

If d = 1 then the graph is a matching, and so we throw it away, finishing the proof of

the theorem.

To end these notes, we mention that it is an open problem to determine if the

Moore graph of degree 57 exists!
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