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Warm-Up

Call the equilateral triangle 4ABC. Let D,E, F be the midpoints of AB, BC, and AC
respectively. Triangles ADF,BDE,CEF,DEF partition triangle ABC, so by the pigeonhole
principle, one of these triangles contains two of the points. Since each of these smaller triangles
is an equilateral triangle of side length 1, the two points in that triangle are at distance at
most one from one another.

Problems

1. For i = 0, 1, . . . , 9, let ri be the number of people in their seats when we rotate the table
by i seats clockwise. Everyone is in their seat for exactly one rotation, so

∑9
i=0 ri = 10.

Since r0 = 0,
∑9

i=1 ri = 10. By the pigeonhole principle, there is some i such that
ri ≥ 2.

2. Since 999 = 37 · 27, we may split {1, 2, . . . , 999} into 37 intervals of length 27. Namely,
for i = 0, 1, . . . , 36 let Ii = {37i + j : j = 0, 1, . . . , 26}. By the pigeonhole principle,
there is some i such that Ii contain two of the selected integers, say x, y. Then

|x− y| ≤ max(Ii)−min(Ii) = (37i + 26)− (37i + 0) = 26 < 27

3. Split {1, 2, . . . , 2n} into n pairs of consecutive elements. By the pigeonhole principle,
one of these pairs contains two elements of S, say a, b (WLOG a = b + 1). Then
(a, b) = (b, b + 1) = (b, (b + 1)− b) = (b, 1) = 1.

4. The fewest groups that always suffice is 7.
(≥): We show by example that we may need at least 7 groups. Suppose S0, S1, . . . , S6 are
7 senators such that Si hates Si+1, Si+2, Si+3 (taken in mod 7, e.g. S5 hates S6, S0, S1).
Then every senator either hates or is hated by every other senator of these 7, so no two
of them can be placed in the same group. By the pigeonhole principles, this is only
possible if there are at least 7 groups.

(≤): We show that we can always get everyone into seven groups, G1, G2, . . . , G7. First
we claim that in any subset S of senators, there is a senator that is hated by at most 3
other senators in that subset. If S = {S1, . . . , Sk}, let xi be the number of of senators
in S that Si hates, and let yi be the number of of senators in S that hate Si. Each
senator hates only 3 senators in total, so he hates at most 3 senators in S. Thus we have∑k

i=1 xi ≤ 3k. The number of pairs (i, j) where Si hates Sj is equal to both
∑k

i=1 xi and∑k
i=1 yi, so in particular we have

∑k
i=1 yi =

∑k
i=1 xi ≤ 3k. By the pigeonhole principle,

there is a senator that is hated by at most 3 other senators in S, and the claim is proven.

We now order the senators in a very particular way. By the claim, one of the senators
who is hated by at most 3 senators, let him be S100. Now again by the claim, one of
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the remaining senators is hated by at most 3 of the remaining senators, and let him
be S99. We repeat this until we have numbered the senators S1, . . . , S100 such that Si

is hated by at most 3 of S1, . . . , Si−1 for all i = 1, . . . , 100. Now we place the senators
into 7 groups in increasing order of i. When Si is being placed, only S1, . . . , Si−1 have
been placed. At most 3 of these hate Si, and he hates at most 3 of them, so there are
at most 6 groups that we cannot place him in. By the pigeonhole principle, we always
have at least one group (of 7) to place Si in, so 7 groups is enough.

5. Take any 82× 4 rectangular grid in the plane. There are 34 = 81 possible ways to color
each row, so by the pigeonhole principle, there are two identically colored rows, say
ri, rj . Since there are 3 colors and 4 points in these rows, by the pigeonhole principle,
there are two identically colored points in ri, say the k-th and l-th points. Then the
k-th and l-th points of ri, rj form a monochromatic triangle.

6. Let our sequence be x1, . . . , xn2+1 Let Ik be the length of the longest increasing sub-
sequence that ends at k, let Dk be the length of the longest decreasing subsequence
that ends at k. We claim that the ordered pairs (Ik, Dk) are distinct. Take any
i < j ∈ {1, . . . , n2 + 1}. If xi < xj , then we can append xj to the end of the longest
increasing subsequence that ends at xi, so Ij > Ii. If xi > xj , then we can append xj to
the end of the longest decreasing subsequence that ends at xi, so Dj > Di. Thus, the
claim is proven.

Let I be the length of the longest increasing subsequence and D be the length of the
longest decreasing subsequence. Then (I1, D1), . . . , (In2+1, Dn2+1) are distinct elements
of {1, . . . , I} × {1, . . . , D}. There are at most ID such elements, so ID ≥ n2 + 1,
and thus max(I,D) ≥ n + 1. Consequently, there is either an increasing or decreasing
subsequence of length at least n + 1.

Homework
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