Euler's Totient Function and More!

Annie Xu and Emily Zhu September 18, 2016

1 Introduction

Definition 1 (Euler's Totient Function). Euler's Totient Function, denoted φ , is the number of integers k in the range $1 \le k \le n$ such that gcd(n,k) = 1. A closed form of this function is

$$\varphi(n) = n \prod_{\substack{\text{prime } p \\ \text{s.t. } p|n}} \left(1 - \frac{1}{p}\right)$$

Property 2 (Multiplicative Property). Euler's Totient Function satisfies the multiplicative property — that is, for m, n relatively prime, $\varphi(mn) = \varphi(m)\varphi(n)$

Example 3. $\varphi(36) = 36 * (1 - \frac{1}{2}) * (1 - \frac{1}{3}) = 12$

With each multiplication, we are essentially removing the factors of each prime p from our count. So, the first multiplication removes all the multiples of 2 that are at most 36 (leaving us with the size of $\{1, 3, \dots, 33, 35\}$), and the second removes the multiples of 3. This can be proved with the Principle of Inclusion-Exclusion.

Definition 4 (Euler's Totient Theorem). For all non-zero integers a relatively prime to n,

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$

Definition 5 (Fermat's Little Theorem). For any integer *a* and prime *p*, $a^p \equiv a \pmod{p}$. If *a* is not a multiple of *p*, this is equivalent to $a^{p-1} \equiv 1 \pmod{p}$. Otherwise, if *a* is a multiple of *p*, then $a^{p-1} \equiv 0 \pmod{p}$.

2 Problems

- 1. Compute $\varphi(30)$ and $\varphi(84)$.
- 2. Let p, q be primes. Can you find a formula for $\varphi(pq)$? Using this, compute $\varphi(1717)$.
- 3. Compute $7^{24} \pmod{15}$ and $55^{49} \pmod{84}$.
- 4. Find all primes p such that p divides $2^p + 1$.^[1]
- 5. Find the remainder when $4^{1996} + 5^{1997}$ is divided by 9.
- 6. Find the first positive integer n such that $43^n \equiv 1 \pmod{24}$.

^[1]From Number Theory for Mathematical Contests by David A. Santos

- 7. One of Euler's conjectures was disproved when it was found that there was a positive integer such that $133^5 + 110^5 + 84^5 + 27^5 = n^5$. Find *n*. ^[2]
- 8. Consider the sequence a_1, a_2, \ldots defined by

$$a_n = 2^n + 3^n + 6^n - 1 \ (n = 1, 2, ...)$$

Determine all positive integers that are relatively prime to every term of the sequence. ^[3]

- 9. Prove that $252 \mid n^9 n^3$. ^[1]
- 10. Prove that there exists a positive integer k such that $k \cdot 2^n + 1$ is composite for all integers n.

3 Challenge Problems

- 1. Prove that for any $m \in \mathbb{N}$, the sequence $2, 2^2, 2^{2^2}, 2^{2^2^2}, \dots \pmod{m}$ is constant from a certain point on. ^[4]
- 2. Let gcd(m,n) = 1. Prove that $m^{\varphi(n)} + n^{\varphi(n)} \equiv 1 \pmod{mn}$. ^[1]
- 3. Find all natural numbers n that divide $1^n + 2^n + \cdots + (n-1)^n$.^[1]
- 4. Let n be a positive integer such that n + 1 is divisible by 24. Prove that the sum of all the divisors of n is divisible by 24. ^[5]
- 5. Find all positive integer solutions to $3^x + 4^y = 5^z$. ^[6]

- ^[3]From IMO 2005
 ^[4]From USAMO 1991
- ^[5]From Putnam 1969

^[2]From AIME 1989

^[6]From IMO 1991