Miscellaneous Functions C.J. Argue

Logarithms

For any b > 0, the function \log_b is defined by the property that $\log_b(b^x) = b^{\log_b(x)} = x$. In other words, $\log_b(x)$ is the inverse function of b^x . The basic properties of log are:

- $\log_b(x^y) = y \log_b(x)$.
- $\log_b(xy) = \log_b(x) + \log_b(y)$ and $\log_b(x/y) = \log_b(x) \log_b(y)$.
- $\log_b(c) = \frac{\log_a(c)}{\log_a(b)}$ for any a > 0.

The following useful properties can be derived from the above:

•
$$\log_a b = \frac{1}{\log_b a}$$
.

• $\log_{a^n} b = \frac{1}{n} \log_a b.$

Floor/Greatest Integer Function

The floor function (also called the greatest integer function) is defined by $\lfloor x \rfloor$ equals the greatest integer y such that $y \leq x$. For example $\lfloor 1 \rfloor = 1$, $\lfloor 2.3 \rfloor = 2$, $\lfloor -10.2 \rfloor = -11$. An analogous but less common function is the ceiling function, defined by $\lceil x \rceil$ equals the least integer y such that $x \leq y$. For example, $\lceil \pi \rceil = 4$, $\lceil -3.333 \rceil = -3$.

The most common application of the function $|\cdot|$ is the following:

• If n is any nonnegative integer and p is any prime, then the greatest k such that $p^k | n!$ is given by $k = \sum_{j=1}^{\infty} \left\lfloor \frac{n}{p^j} \right\rfloor$. Note that for $j > \log_k n$, the term $\left\lfloor \frac{n}{p^j} \right\rfloor = 0$, so this is always a finite sum.

1 Problems

Logarithms

- 1. Prove the last two log identities.
- 2. (AIME 00) Compute $\frac{2}{\log_4 2000^6} + \frac{3}{\log_5 2000^6}$.
- 3. (ARML 90) Compute the k > 2 such that $\log_{10}(k-2)! + \log_{10}(k-1)! + 2 = 2\log_{10}k!$.
- 4. (ARML 80) Compute $(\log_2 25)(\log_5 27)(\log_3 16)$.
- 5. (ARML 77) Find all real x such that $x^{2\log_2 x} = 8$.
- 6. (HMMT 02) Given that a, b, c are positive real numbers such that $\log_a b + \log_b c + \log_c a = 0$, compute $(\log_a b)^3 + (\log_b c)^3 + (\log_c a)^3$.

Greatest integer

- 1. How many 0s are at the end of the decimal expansion of 100!? What about the base 12 expansion?
- 2. (HMMT 10) Compute the sum of the positive solutions to $2x^2 x \lfloor x \rfloor = 5$.
- 3. (HMMT 02) Determine all L for which $\sum_{n=1}^{L} \left\lfloor \frac{n^3}{9} \right\rfloor$ is a perfect square. Hint: use the formula $\sum_{n=1}^{k} n^3 = \frac{k^2(k+1)^2}{4}$.

4. (IMO 68) Find a closed form for $\sum_{k=0}^{\infty} \left\lfloor \frac{n+2^k}{2^{k+1}} \right\rfloor$ in terms of n.

Application of Greatest Integer (ARML 83)

The goal is to use the greatest integer function to show that for all positive integers a, b, $\frac{(2a)!(2b+1)!}{a!b!(a+b+1)!}$ and $\frac{(2a)!(2b)!}{2\cdot a!b!(a+b)!}$ are integers. For a challenge, don't read any further and prove this directly. For a guided solution, prove the following.

- 1. For any $x \in \mathbb{R}$, $a \in \mathbb{Z}$, $\lfloor a + x \rfloor = a + \lfloor x \rfloor$.
- 2. If x < y then $\lfloor x \rfloor \leq \lfloor y \rfloor$.
- 3. If $r, s \in [0, 1)$ then $|2r| + |2s| \ge |r| + |s| + |r+s|$. The same holds for all $r, s \in \mathbb{R}$.
- 4. If $a, b, c \in \mathbb{Z}$ and c > 0, then $\lfloor \frac{2a}{c} \rfloor + \lfloor \frac{2b+1}{c} \rfloor \ge \lfloor \frac{a}{c} \rfloor + \lfloor \frac{b}{c} \rfloor + \lfloor \frac{a+b+1}{c} \rfloor$.
- 5. If a, b are positive integers, then $\frac{(2a)!(2b+1)!}{a!b!(a+b+1)!}$ and $\frac{(2a)!(2b)!}{2\cdot a!b!(a+b)!}$ are integers.

Logarithms and Greatest Integer

- 1. (AIME 1994) Find the positive integer n for which $\sum_{k=1}^{n} \lfloor \log_2 k \rfloor = 1994$.
- 2. (AIME 04) Let S be the set of ordered pairs (x, y) such that $x, y \in [0, 1]$, and $\lfloor \log_2 \frac{1}{x} \rfloor$ and $\lfloor \log_5 \frac{1}{y} \rfloor$ are both even. Find the area of S.
- 3. (IMO 76) Let $u_0 = 2$, $u_1 = \frac{5}{2}$, $u_{n+1} = u_n(u_{n-1}^2 2) u_1$ for all $n \ge 1$. Prove that $3 \log_2 \lfloor u_n \rfloor = 2^n (-1)^n$.